blob: 6e67d1a8b5d167ef55884285416d066fb4de8f73 [file] [log] [blame]
Chris Lattner158e1f52006-02-05 05:50:24 +00001//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions. Note that the machine may be running in 32-bit mode.
26def HasV9 : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions. Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate. In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11 : PatLeaf<(imm), [{
47 // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48 return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13 : PatLeaf<(imm), [{
52 // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53 return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57 return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61 // Transformation function: shift the immediate value down into the low bits.
62 return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66 return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let NumMIOperands = 2;
77 let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80 let PrintMethod = "printMemOperand";
81 let NumMIOperands = 2;
82 let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91 def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000094SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000095def SDTSPbrcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000096SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000097def SDTSPselectcc :
Chris Lattner0c4dea42006-02-10 06:58:25 +000098SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
Chris Lattner158e1f52006-02-05 05:50:24 +000099def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
Chris Lattner0c4dea42006-02-10 06:58:25 +0000106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000108
109def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
Chris Lattner0c4dea42006-02-10 06:58:25 +0000115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
121def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq, [SDNPHasChain]>;
122
123def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
124def call : SDNode<"SPISD::CALL", SDT_SPCall,
125 [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
126
127def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
128def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
129 [SDNPHasChain, SDNPOptInFlag]>;
130
131//===----------------------------------------------------------------------===//
132// SPARC Flag Conditions
133//===----------------------------------------------------------------------===//
134
135// Note that these values must be kept in sync with the CCOp::CondCode enum
136// values.
137class ICC_VAL<int N> : PatLeaf<(i32 N)>;
138def ICC_NE : ICC_VAL< 9>; // Not Equal
139def ICC_E : ICC_VAL< 1>; // Equal
140def ICC_G : ICC_VAL<10>; // Greater
141def ICC_LE : ICC_VAL< 2>; // Less or Equal
142def ICC_GE : ICC_VAL<11>; // Greater or Equal
143def ICC_L : ICC_VAL< 3>; // Less
144def ICC_GU : ICC_VAL<12>; // Greater Unsigned
145def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
146def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
147def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
148def ICC_POS : ICC_VAL<14>; // Positive
149def ICC_NEG : ICC_VAL< 6>; // Negative
150def ICC_VC : ICC_VAL<15>; // Overflow Clear
151def ICC_VS : ICC_VAL< 7>; // Overflow Set
152
153class FCC_VAL<int N> : PatLeaf<(i32 N)>;
154def FCC_U : FCC_VAL<23>; // Unordered
155def FCC_G : FCC_VAL<22>; // Greater
156def FCC_UG : FCC_VAL<21>; // Unordered or Greater
157def FCC_L : FCC_VAL<20>; // Less
158def FCC_UL : FCC_VAL<19>; // Unordered or Less
159def FCC_LG : FCC_VAL<18>; // Less or Greater
160def FCC_NE : FCC_VAL<17>; // Not Equal
161def FCC_E : FCC_VAL<25>; // Equal
162def FCC_UE : FCC_VAL<24>; // Unordered or Equal
163def FCC_GE : FCC_VAL<25>; // Greater or Equal
164def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
165def FCC_LE : FCC_VAL<27>; // Less or Equal
166def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
167def FCC_O : FCC_VAL<29>; // Ordered
168
169
170//===----------------------------------------------------------------------===//
171// Instructions
172//===----------------------------------------------------------------------===//
173
174// Pseudo instructions.
175class Pseudo<dag ops, string asmstr, list<dag> pattern>
176 : InstSP<ops, asmstr, pattern>;
177
178def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
179 "!ADJCALLSTACKDOWN $amt",
180 [(callseq_start imm:$amt)]>;
181def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
182 "!ADJCALLSTACKUP $amt",
183 [(callseq_end imm:$amt)]>;
184def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
185 "!IMPLICIT_DEF $dst",
186 [(set IntRegs:$dst, (undef))]>;
187def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
188 [(set FPRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
190 [(set DFPRegs:$dst, (undef))]>;
191
192// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
193// fpmover pass.
194let Predicates = [HasNoV9] in { // Only emit these in SP mode.
195 def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
196 "!FpMOVD $src, $dst", []>;
197 def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198 "!FpNEGD $src, $dst",
199 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
200 def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
201 "!FpABSD $src, $dst",
202 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
203}
204
205// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
206// scheduler into a branch sequence. This has to handle all permutations of
207// selection between i32/f32/f64 on ICC and FCC.
208let usesCustomDAGSchedInserter = 1, // Expanded by the scheduler.
209 Predicates = [HasNoV9] in { // V9 has conditional moves
210 def SELECT_CC_Int_ICC
211 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
212 "; SELECT_CC_Int_ICC PSEUDO!",
213 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000214 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000215 def SELECT_CC_Int_FCC
216 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
217 "; SELECT_CC_Int_FCC PSEUDO!",
218 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000219 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000220 def SELECT_CC_FP_ICC
221 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
222 "; SELECT_CC_FP_ICC PSEUDO!",
223 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000224 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000225 def SELECT_CC_FP_FCC
226 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
227 "; SELECT_CC_FP_FCC PSEUDO!",
228 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000229 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000230 def SELECT_CC_DFP_ICC
231 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
232 "; SELECT_CC_DFP_ICC PSEUDO!",
233 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000234 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000235 def SELECT_CC_DFP_FCC
236 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
237 "; SELECT_CC_DFP_FCC PSEUDO!",
238 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000239 imm:$Cond))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000240}
241
242
243// Section A.3 - Synthetic Instructions, p. 85
244// special cases of JMPL:
245let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
246 let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
247 def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
248}
249
250// Section B.1 - Load Integer Instructions, p. 90
251def LDSBrr : F3_1<3, 0b001001,
252 (ops IntRegs:$dst, MEMrr:$addr),
253 "ldsb [$addr], $dst",
254 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
255def LDSBri : F3_2<3, 0b001001,
256 (ops IntRegs:$dst, MEMri:$addr),
257 "ldsb [$addr], $dst",
258 [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
259def LDSHrr : F3_1<3, 0b001010,
260 (ops IntRegs:$dst, MEMrr:$addr),
261 "ldsh [$addr], $dst",
262 [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
263def LDSHri : F3_2<3, 0b001010,
264 (ops IntRegs:$dst, MEMri:$addr),
265 "ldsh [$addr], $dst",
266 [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
267def LDUBrr : F3_1<3, 0b000001,
268 (ops IntRegs:$dst, MEMrr:$addr),
269 "ldub [$addr], $dst",
270 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
271def LDUBri : F3_2<3, 0b000001,
272 (ops IntRegs:$dst, MEMri:$addr),
273 "ldub [$addr], $dst",
274 [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
275def LDUHrr : F3_1<3, 0b000010,
276 (ops IntRegs:$dst, MEMrr:$addr),
277 "lduh [$addr], $dst",
278 [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
279def LDUHri : F3_2<3, 0b000010,
280 (ops IntRegs:$dst, MEMri:$addr),
281 "lduh [$addr], $dst",
282 [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
283def LDrr : F3_1<3, 0b000000,
284 (ops IntRegs:$dst, MEMrr:$addr),
285 "ld [$addr], $dst",
286 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
287def LDri : F3_2<3, 0b000000,
288 (ops IntRegs:$dst, MEMri:$addr),
289 "ld [$addr], $dst",
290 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
291
292// Section B.2 - Load Floating-point Instructions, p. 92
293def LDFrr : F3_1<3, 0b100000,
294 (ops FPRegs:$dst, MEMrr:$addr),
295 "ld [$addr], $dst",
296 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
297def LDFri : F3_2<3, 0b100000,
298 (ops FPRegs:$dst, MEMri:$addr),
299 "ld [$addr], $dst",
300 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
301def LDDFrr : F3_1<3, 0b100011,
302 (ops DFPRegs:$dst, MEMrr:$addr),
303 "ldd [$addr], $dst",
304 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
305def LDDFri : F3_2<3, 0b100011,
306 (ops DFPRegs:$dst, MEMri:$addr),
307 "ldd [$addr], $dst",
308 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
309
310// Section B.4 - Store Integer Instructions, p. 95
311def STBrr : F3_1<3, 0b000101,
312 (ops MEMrr:$addr, IntRegs:$src),
313 "stb $src, [$addr]",
314 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
315def STBri : F3_2<3, 0b000101,
316 (ops MEMri:$addr, IntRegs:$src),
317 "stb $src, [$addr]",
318 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
319def STHrr : F3_1<3, 0b000110,
320 (ops MEMrr:$addr, IntRegs:$src),
321 "sth $src, [$addr]",
322 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
323def STHri : F3_2<3, 0b000110,
324 (ops MEMri:$addr, IntRegs:$src),
325 "sth $src, [$addr]",
326 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
327def STrr : F3_1<3, 0b000100,
328 (ops MEMrr:$addr, IntRegs:$src),
329 "st $src, [$addr]",
330 [(store IntRegs:$src, ADDRrr:$addr)]>;
331def STri : F3_2<3, 0b000100,
332 (ops MEMri:$addr, IntRegs:$src),
333 "st $src, [$addr]",
334 [(store IntRegs:$src, ADDRri:$addr)]>;
335
336// Section B.5 - Store Floating-point Instructions, p. 97
337def STFrr : F3_1<3, 0b100100,
338 (ops MEMrr:$addr, FPRegs:$src),
339 "st $src, [$addr]",
340 [(store FPRegs:$src, ADDRrr:$addr)]>;
341def STFri : F3_2<3, 0b100100,
342 (ops MEMri:$addr, FPRegs:$src),
343 "st $src, [$addr]",
344 [(store FPRegs:$src, ADDRri:$addr)]>;
345def STDFrr : F3_1<3, 0b100111,
346 (ops MEMrr:$addr, DFPRegs:$src),
347 "std $src, [$addr]",
348 [(store DFPRegs:$src, ADDRrr:$addr)]>;
349def STDFri : F3_2<3, 0b100111,
350 (ops MEMri:$addr, DFPRegs:$src),
351 "std $src, [$addr]",
352 [(store DFPRegs:$src, ADDRri:$addr)]>;
353
354// Section B.9 - SETHI Instruction, p. 104
355def SETHIi: F2_1<0b100,
356 (ops IntRegs:$dst, i32imm:$src),
357 "sethi $src, $dst",
358 [(set IntRegs:$dst, SETHIimm:$src)]>;
359
360// Section B.10 - NOP Instruction, p. 105
361// (It's a special case of SETHI)
362let rd = 0, imm22 = 0 in
363 def NOP : F2_1<0b100, (ops), "nop", []>;
364
365// Section B.11 - Logical Instructions, p. 106
366def ANDrr : F3_1<2, 0b000001,
367 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
368 "and $b, $c, $dst",
369 [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
370def ANDri : F3_2<2, 0b000001,
371 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
372 "and $b, $c, $dst",
373 [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
374def ANDNrr : F3_1<2, 0b000101,
375 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
376 "andn $b, $c, $dst",
377 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
378def ANDNri : F3_2<2, 0b000101,
379 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
380 "andn $b, $c, $dst", []>;
381def ORrr : F3_1<2, 0b000010,
382 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
383 "or $b, $c, $dst",
384 [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
385def ORri : F3_2<2, 0b000010,
386 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
387 "or $b, $c, $dst",
388 [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
389def ORNrr : F3_1<2, 0b000110,
390 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
391 "orn $b, $c, $dst",
392 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
393def ORNri : F3_2<2, 0b000110,
394 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
395 "orn $b, $c, $dst", []>;
396def XORrr : F3_1<2, 0b000011,
397 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
398 "xor $b, $c, $dst",
399 [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
400def XORri : F3_2<2, 0b000011,
401 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
402 "xor $b, $c, $dst",
403 [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
404def XNORrr : F3_1<2, 0b000111,
405 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
406 "xnor $b, $c, $dst",
407 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
408def XNORri : F3_2<2, 0b000111,
409 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
410 "xnor $b, $c, $dst", []>;
411
412// Section B.12 - Shift Instructions, p. 107
413def SLLrr : F3_1<2, 0b100101,
414 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
415 "sll $b, $c, $dst",
416 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
417def SLLri : F3_2<2, 0b100101,
418 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
419 "sll $b, $c, $dst",
420 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
421def SRLrr : F3_1<2, 0b100110,
422 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
423 "srl $b, $c, $dst",
424 [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
425def SRLri : F3_2<2, 0b100110,
426 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
427 "srl $b, $c, $dst",
428 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
429def SRArr : F3_1<2, 0b100111,
430 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
431 "sra $b, $c, $dst",
432 [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
433def SRAri : F3_2<2, 0b100111,
434 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
435 "sra $b, $c, $dst",
436 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
437
438// Section B.13 - Add Instructions, p. 108
439def ADDrr : F3_1<2, 0b000000,
440 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
441 "add $b, $c, $dst",
442 [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
443def ADDri : F3_2<2, 0b000000,
444 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
445 "add $b, $c, $dst",
446 [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
447def ADDCCrr : F3_1<2, 0b010000,
448 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
449 "addcc $b, $c, $dst", []>;
450def ADDCCri : F3_2<2, 0b010000,
451 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
452 "addcc $b, $c, $dst", []>;
453def ADDXrr : F3_1<2, 0b001000,
454 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
455 "addx $b, $c, $dst", []>;
456def ADDXri : F3_2<2, 0b001000,
457 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
458 "addx $b, $c, $dst", []>;
459
460// Section B.15 - Subtract Instructions, p. 110
461def SUBrr : F3_1<2, 0b000100,
462 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
463 "sub $b, $c, $dst",
464 [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
465def SUBri : F3_2<2, 0b000100,
466 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
467 "sub $b, $c, $dst",
468 [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
469def SUBXrr : F3_1<2, 0b001100,
470 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
471 "subx $b, $c, $dst", []>;
472def SUBXri : F3_2<2, 0b001100,
473 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
474 "subx $b, $c, $dst", []>;
475def SUBCCrr : F3_1<2, 0b010100,
476 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
477 "subcc $b, $c, $dst",
478 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
479def SUBCCri : F3_2<2, 0b010100,
480 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
481 "subcc $b, $c, $dst",
482 [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
483def SUBXCCrr: F3_1<2, 0b011100,
484 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
485 "subxcc $b, $c, $dst", []>;
486
487// Section B.18 - Multiply Instructions, p. 113
488def UMULrr : F3_1<2, 0b001010,
489 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
490 "umul $b, $c, $dst", []>;
491def UMULri : F3_2<2, 0b001010,
492 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
493 "umul $b, $c, $dst", []>;
Chris Lattnerc75d5b02006-02-09 05:06:36 +0000494
Chris Lattner158e1f52006-02-05 05:50:24 +0000495def SMULrr : F3_1<2, 0b001011,
496 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
497 "smul $b, $c, $dst",
498 [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
499def SMULri : F3_2<2, 0b001011,
500 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
501 "smul $b, $c, $dst",
502 [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
503
Chris Lattnerc75d5b02006-02-09 05:06:36 +0000504/*
505//===-------------------------
506// Sparc Example
507defm intinst<id OPC1, id OPC2, bits Opc, string asmstr, SDNode code> {
508 def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
509 [(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
510 def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
511 [(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
512}
513defm intinst_np<id OPC1, id OPC2, bits Opc, string asmstr> {
514 def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
515 []>;
516 def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
517 []>;
518}
519
520def intinstnp< ADDXrr, ADDXri, 0b001000, "addx $b, $c, $dst">;
521def intinst < SUBrr, SUBri, 0b000100, "sub $b, $c, $dst", sub>;
522def intinstnp< SUBXrr, SUBXri, 0b001100, "subx $b, $c, $dst">;
523def intinst <SUBCCrr, SUBCCri, 0b010100, "subcc $b, $c, $dst", SPcmpicc>;
524def intinst < SMULrr, SMULri, 0b001011, "smul $b, $c, $dst", mul>;
525
526//===-------------------------
527// X86 Example
528defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
529 def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
530 asmstr+" {$src2, $dst|$dst, $src2}",
531 [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
532 def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
533 asmstr+" {$src2, $dst|$dst, $src2}",
534 [(set R32:$dst, (X86cmov R32:$src1,
535 (loadi32 addr:$src2), cond))]>, TB;
536}
537
538def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
539def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;
540
541//===-------------------------
542// PPC Example
543
544def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr,
545 SDNode code> {
546 def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
547 asmstr+" $frD, $frB", FPGeneral,
548 [(set F4RC:$frD, (code F4RC:$frB))]>;
549 def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
550 asmstr+" $frD, $frB", FPGeneral,
551 [(set F8RC:$frD, (code F8RC:$frB))]>;
552}
553
554def fpunop< FABSS, FABSD, XForm_26, 63, 63, 264, "fabs", fabs>;
555def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
556def fpunop< FNEGS, FNEGD, XForm_26, 63, 63, 40, "fneg", fneg>;
557*/
558
Chris Lattner158e1f52006-02-05 05:50:24 +0000559// Section B.19 - Divide Instructions, p. 115
560def UDIVrr : F3_1<2, 0b001110,
561 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
562 "udiv $b, $c, $dst", []>;
563def UDIVri : F3_2<2, 0b001110,
564 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
565 "udiv $b, $c, $dst", []>;
566def SDIVrr : F3_1<2, 0b001111,
567 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
568 "sdiv $b, $c, $dst", []>;
569def SDIVri : F3_2<2, 0b001111,
570 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
571 "sdiv $b, $c, $dst", []>;
572
573// Section B.20 - SAVE and RESTORE, p. 117
574def SAVErr : F3_1<2, 0b111100,
575 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
576 "save $b, $c, $dst", []>;
577def SAVEri : F3_2<2, 0b111100,
578 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
579 "save $b, $c, $dst", []>;
580def RESTORErr : F3_1<2, 0b111101,
581 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
582 "restore $b, $c, $dst", []>;
583def RESTOREri : F3_2<2, 0b111101,
584 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
585 "restore $b, $c, $dst", []>;
586
587// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
588
589// conditional branch class:
590class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
591 : F2_2<cc, 0b010, ops, asmstr, pattern> {
592 let isBranch = 1;
593 let isTerminator = 1;
594 let hasDelaySlot = 1;
595 let noResults = 1;
596}
597
598let isBarrier = 1 in
599 def BA : BranchSP<0b1000, (ops brtarget:$dst),
600 "ba $dst",
601 [(br bb:$dst)]>;
602
603// FIXME: the encoding for the JIT should look at the condition field.
604def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
605 "b$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000606 [(SPbricc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000607
608
609// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
610
611// floating-point conditional branch class:
612class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
613 : F2_2<cc, 0b110, ops, asmstr, pattern> {
614 let isBranch = 1;
615 let isTerminator = 1;
616 let hasDelaySlot = 1;
617 let noResults = 1;
618}
619
620// FIXME: the encoding for the JIT should look at the condition field.
621def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
622 "fb$cc $dst",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000623 [(SPbrfcc bb:$dst, imm:$cc)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000624
625
626// Section B.24 - Call and Link Instruction, p. 125
627// This is the only Format 1 instruction
628let Uses = [O0, O1, O2, O3, O4, O5],
629 hasDelaySlot = 1, isCall = 1, noResults = 1,
630 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
631 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
632 def CALL : InstSP<(ops calltarget:$dst),
633 "call $dst", []> {
634 bits<30> disp;
635 let op = 1;
636 let Inst{29-0} = disp;
637 }
638
639 // indirect calls
640 def JMPLrr : F3_1<2, 0b111000,
641 (ops MEMrr:$ptr),
642 "call $ptr",
643 [(call ADDRrr:$ptr)]>;
644 def JMPLri : F3_2<2, 0b111000,
645 (ops MEMri:$ptr),
646 "call $ptr",
647 [(call ADDRri:$ptr)]>;
648}
649
650// Section B.28 - Read State Register Instructions
651def RDY : F3_1<2, 0b101000,
652 (ops IntRegs:$dst),
653 "rd %y, $dst", []>;
654
655// Section B.29 - Write State Register Instructions
656def WRYrr : F3_1<2, 0b110000,
657 (ops IntRegs:$b, IntRegs:$c),
658 "wr $b, $c, %y", []>;
659def WRYri : F3_2<2, 0b110000,
660 (ops IntRegs:$b, i32imm:$c),
661 "wr $b, $c, %y", []>;
662
663// Convert Integer to Floating-point Instructions, p. 141
664def FITOS : F3_3<2, 0b110100, 0b011000100,
665 (ops FPRegs:$dst, FPRegs:$src),
666 "fitos $src, $dst",
667 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
668def FITOD : F3_3<2, 0b110100, 0b011001000,
669 (ops DFPRegs:$dst, FPRegs:$src),
670 "fitod $src, $dst",
671 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
672
673// Convert Floating-point to Integer Instructions, p. 142
674def FSTOI : F3_3<2, 0b110100, 0b011010001,
675 (ops FPRegs:$dst, FPRegs:$src),
676 "fstoi $src, $dst",
677 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
678def FDTOI : F3_3<2, 0b110100, 0b011010010,
679 (ops FPRegs:$dst, DFPRegs:$src),
680 "fdtoi $src, $dst",
681 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
682
683// Convert between Floating-point Formats Instructions, p. 143
684def FSTOD : F3_3<2, 0b110100, 0b011001001,
685 (ops DFPRegs:$dst, FPRegs:$src),
686 "fstod $src, $dst",
687 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
688def FDTOS : F3_3<2, 0b110100, 0b011000110,
689 (ops FPRegs:$dst, DFPRegs:$src),
690 "fdtos $src, $dst",
691 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
692
693// Floating-point Move Instructions, p. 144
694def FMOVS : F3_3<2, 0b110100, 0b000000001,
695 (ops FPRegs:$dst, FPRegs:$src),
696 "fmovs $src, $dst", []>;
697def FNEGS : F3_3<2, 0b110100, 0b000000101,
698 (ops FPRegs:$dst, FPRegs:$src),
699 "fnegs $src, $dst",
700 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
701def FABSS : F3_3<2, 0b110100, 0b000001001,
702 (ops FPRegs:$dst, FPRegs:$src),
703 "fabss $src, $dst",
704 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
705
706
707// Floating-point Square Root Instructions, p.145
708def FSQRTS : F3_3<2, 0b110100, 0b000101001,
709 (ops FPRegs:$dst, FPRegs:$src),
710 "fsqrts $src, $dst",
711 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
712def FSQRTD : F3_3<2, 0b110100, 0b000101010,
713 (ops DFPRegs:$dst, DFPRegs:$src),
714 "fsqrtd $src, $dst",
715 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
716
717
718
719// Floating-point Add and Subtract Instructions, p. 146
720def FADDS : F3_3<2, 0b110100, 0b001000001,
721 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
722 "fadds $src1, $src2, $dst",
723 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
724def FADDD : F3_3<2, 0b110100, 0b001000010,
725 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
726 "faddd $src1, $src2, $dst",
727 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
728def FSUBS : F3_3<2, 0b110100, 0b001000101,
729 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
730 "fsubs $src1, $src2, $dst",
731 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
732def FSUBD : F3_3<2, 0b110100, 0b001000110,
733 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
734 "fsubd $src1, $src2, $dst",
735 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
736
737// Floating-point Multiply and Divide Instructions, p. 147
738def FMULS : F3_3<2, 0b110100, 0b001001001,
739 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
740 "fmuls $src1, $src2, $dst",
741 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
742def FMULD : F3_3<2, 0b110100, 0b001001010,
743 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
744 "fmuld $src1, $src2, $dst",
745 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
746def FSMULD : F3_3<2, 0b110100, 0b001101001,
747 (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
748 "fsmuld $src1, $src2, $dst",
749 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
750 (fextend FPRegs:$src2)))]>;
751def FDIVS : F3_3<2, 0b110100, 0b001001101,
752 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
753 "fdivs $src1, $src2, $dst",
754 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
755def FDIVD : F3_3<2, 0b110100, 0b001001110,
756 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
757 "fdivd $src1, $src2, $dst",
758 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
759
760// Floating-point Compare Instructions, p. 148
761// Note: the 2nd template arg is different for these guys.
762// Note 2: the result of a FCMP is not available until the 2nd cycle
763// after the instr is retired, but there is no interlock. This behavior
764// is modelled with a forced noop after the instruction.
765def FCMPS : F3_3<2, 0b110101, 0b001010001,
766 (ops FPRegs:$src1, FPRegs:$src2),
767 "fcmps $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000768 [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000769def FCMPD : F3_3<2, 0b110101, 0b001010010,
770 (ops DFPRegs:$src1, DFPRegs:$src2),
771 "fcmpd $src1, $src2\n\tnop",
Chris Lattner0c4dea42006-02-10 06:58:25 +0000772 [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000773
774
775//===----------------------------------------------------------------------===//
776// V9 Instructions
777//===----------------------------------------------------------------------===//
778
779// V9 Conditional Moves.
780let Predicates = [HasV9], isTwoAddress = 1 in {
781 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
782 // FIXME: Add instruction encodings for the JIT some day.
783 def MOVICCrr
784 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
785 "mov$cc %icc, $F, $dst",
786 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000787 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000788 def MOVICCri
789 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
790 "mov$cc %icc, $F, $dst",
791 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000792 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000793
794 def MOVFCCrr
795 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
796 "mov$cc %fcc0, $F, $dst",
797 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000798 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000799 def MOVFCCri
800 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
801 "mov$cc %fcc0, $F, $dst",
802 [(set IntRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000803 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000804
805 def FMOVS_ICC
806 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
807 "fmovs$cc %icc, $F, $dst",
808 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000809 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000810 def FMOVD_ICC
811 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
812 "fmovd$cc %icc, $F, $dst",
813 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000814 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000815 def FMOVS_FCC
816 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
817 "fmovs$cc %fcc0, $F, $dst",
818 [(set FPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000819 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000820 def FMOVD_FCC
821 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
822 "fmovd$cc %fcc0, $F, $dst",
823 [(set DFPRegs:$dst,
Chris Lattner0c4dea42006-02-10 06:58:25 +0000824 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
Chris Lattner158e1f52006-02-05 05:50:24 +0000825
826}
827
828// Floating-Point Move Instructions, p. 164 of the V9 manual.
829let Predicates = [HasV9] in {
830 def FMOVD : F3_3<2, 0b110100, 0b000000010,
831 (ops DFPRegs:$dst, DFPRegs:$src),
832 "fmovd $src, $dst", []>;
833 def FNEGD : F3_3<2, 0b110100, 0b000000110,
834 (ops DFPRegs:$dst, DFPRegs:$src),
835 "fnegd $src, $dst",
836 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
837 def FABSD : F3_3<2, 0b110100, 0b000001010,
838 (ops DFPRegs:$dst, DFPRegs:$src),
839 "fabsd $src, $dst",
840 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
841}
842
843// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
844// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
845def POPCrr : F3_1<2, 0b101110,
846 (ops IntRegs:$dst, IntRegs:$src),
847 "popc $src, $dst", []>, Requires<[HasV9]>;
848def : Pat<(ctpop IntRegs:$src),
849 (POPCrr (SLLri IntRegs:$src, 0))>;
850
851//===----------------------------------------------------------------------===//
852// Non-Instruction Patterns
853//===----------------------------------------------------------------------===//
854
855// Small immediates.
856def : Pat<(i32 simm13:$val),
857 (ORri G0, imm:$val)>;
858// Arbitrary immediates.
859def : Pat<(i32 imm:$val),
860 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
861
862// Global addresses, constant pool entries
863def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
864def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
865def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
866def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
867
868// Add reg, lo. This is used when taking the addr of a global/constpool entry.
869def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
870 (ADDri IntRegs:$r, tglobaladdr:$in)>;
871def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
872 (ADDri IntRegs:$r, tconstpool:$in)>;
873
874
875// Calls:
876def : Pat<(call tglobaladdr:$dst),
877 (CALL tglobaladdr:$dst)>;
878def : Pat<(call externalsym:$dst),
879 (CALL externalsym:$dst)>;
880
881def : Pat<(ret), (RETL)>;
882
883// Map integer extload's to zextloads.
884def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
885def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
886def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
887def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
888def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
889def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
890
891// zextload bool -> zextload byte
892def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
893def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
894
895// truncstore bool -> truncstore byte.
896def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1),
897 (STBrr ADDRrr:$addr, IntRegs:$src)>;
898def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1),
899 (STBri ADDRri:$addr, IntRegs:$src)>;