blob: bbee26e444dc3ae221bbc663b335296f8296ca4b [file] [log] [blame]
Michael Kruse138a3fb2017-08-04 22:51:23 +00001//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Derive information about array elements between statements ("Zones").
11//
12// The algorithms here work on the scatter space - the image space of the
13// schedule returned by Scop::getSchedule(). We call an element in that space a
14// "timepoint". Timepoints are lexicographically ordered such that we can
15// defined ranges in the scatter space. We use two flavors of such ranges:
16// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
17// space and is directly stored as isl_set.
18//
19// Zones are used to describe the space between timepoints as open sets, i.e.
20// they do not contain the extrema. Using isl rational sets to express these
21// would be overkill. We also cannot store them as the integer timepoints they
22// contain; the (nonempty) zone between 1 and 2 would be empty and
23// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
24// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
25// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
26// Instead, we store the "half-open" integer extrema, including the lower bound,
27// but excluding the upper bound. Examples:
28//
29// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
30// integer points 1 and 2, but not 0 or 3)
31//
32// * { [1] } represents the zone ]0,1[
33//
34// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35//
36// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
37// speaking the integer points never belong to the zone. However, depending an
38// the interpretation, one might want to include them. Part of the
39// interpretation may not be known when the zone is constructed.
40//
41// Reads are assumed to always take place before writes, hence we can think of
42// reads taking place at the beginning of a timepoint and writes at the end.
43//
44// Let's assume that the zone represents the lifetime of a variable. That is,
45// the zone begins with a write that defines the value during its lifetime and
46// ends with the last read of that value. In the following we consider whether a
47// read/write at the beginning/ending of the lifetime zone should be within the
48// zone or outside of it.
49//
50// * A read at the timepoint that starts the live-range loads the previous
51// value. Hence, exclude the timepoint starting the zone.
52//
53// * A write at the timepoint that starts the live-range is not defined whether
54// it occurs before or after the write that starts the lifetime. We do not
55// allow this situation to occur. Hence, we include the timepoint starting the
56// zone to determine whether they are conflicting.
57//
58// * A read at the timepoint that ends the live-range reads the same variable.
59// We include the timepoint at the end of the zone to include that read into
60// the live-range. Doing otherwise would mean that the two reads access
61// different values, which would mean that the value they read are both alive
62// at the same time but occupy the same variable.
63//
64// * A write at the timepoint that ends the live-range starts a new live-range.
65// It must not be included in the live-range of the previous definition.
66//
67// All combinations of reads and writes at the endpoints are possible, but most
68// of the time only the write->read (for instance, a live-range from definition
69// to last use) and read->write (for instance, an unused range from last use to
70// overwrite) and combinations are interesting (half-open ranges). write->write
71// zones might be useful as well in some context to represent
72// output-dependencies.
73//
74// @see convertZoneToTimepoints
75//
76//
77// The code makes use of maps and sets in many different spaces. To not loose
78// track in which space a set or map is expected to be in, variables holding an
79// isl reference are usually annotated in the comments. They roughly follow isl
80// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
81// meaning as follows:
82//
83// * Space[] - An unspecified tuple. Used for function parameters such that the
84// function caller can use it for anything they like.
85//
86// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
87// isl_id_get_name: Stmt_<NameOfBasicBlock>
88// isl_id_get_user: Pointer to ScopStmt
89//
90// * Element[] - An array element as in the range part of
91// MemoryAccess::getAccessRelation()
92// isl_id_get_name: MemRef_<NameOfArrayVariable>
93// isl_id_get_user: Pointer to ScopArrayInfo
94//
95// * Scatter[] - Scatter space or space of timepoints
96// Has no tuple id
97//
98// * Zone[] - Range between timepoints as described above
99// Has no tuple id
100//
101// * ValInst[] - An llvm::Value as defined at a specific timepoint.
102//
103// A ValInst[] itself can be structured as one of:
104//
105// * [] - An unknown value.
106// Always zero dimensions
107// Has no tuple id
108//
109// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
110// runtime content does not depend on the timepoint.
111// Always zero dimensions
112// isl_id_get_name: Val_<NameOfValue>
113// isl_id_get_user: A pointer to an llvm::Value
114//
115// * SCEV[...] - A synthesizable llvm::SCEV Expression.
116// In contrast to a Value[] is has at least one dimension per
117// SCEVAddRecExpr in the SCEV.
118//
119// * [Domain[] -> Value[]] - An llvm::Value that may change during the
120// Scop's execution.
121// The tuple itself has no id, but it wraps a map space holding a
122// statement instance which defines the llvm::Value as the map's domain
123// and llvm::Value itself as range.
124//
125// @see makeValInst()
126//
127// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
128// statement instance to a timepoint, aka a schedule. There is only one scatter
129// space, but most of the time multiple statements are processed in one set.
130// This is why most of the time isl_union_map has to be used.
131//
132// The basic algorithm works as follows:
133// At first we verify that the SCoP is compatible with this technique. For
134// instance, two writes cannot write to the same location at the same statement
135// instance because we cannot determine within the polyhedral model which one
136// comes first. Once this was verified, we compute zones at which an array
137// element is unused. This computation can fail if it takes too long. Then the
138// main algorithm is executed. Because every store potentially trails an unused
139// zone, we start at stores. We search for a scalar (MemoryKind::Value or
140// MemoryKind::PHI) that we can map to the array element overwritten by the
141// store, preferably one that is used by the store or at least the ScopStmt.
142// When it does not conflict with the lifetime of the values in the array
143// element, the map is applied and the unused zone updated as it is now used. We
144// continue to try to map scalars to the array element until there are no more
145// candidates to map. The algorithm is greedy in the sense that the first scalar
146// not conflicting will be mapped. Other scalars processed later that could have
147// fit the same unused zone will be rejected. As such the result depends on the
148// processing order.
149//
150//===----------------------------------------------------------------------===//
151
152#include "polly/ZoneAlgo.h"
153#include "polly/ScopInfo.h"
154#include "polly/Support/GICHelper.h"
155#include "polly/Support/ISLTools.h"
156#include "polly/Support/VirtualInstruction.h"
157
158#define DEBUG_TYPE "polly-zone"
159
160using namespace polly;
161using namespace llvm;
162
163static isl::union_map computeReachingDefinition(isl::union_map Schedule,
164 isl::union_map Writes,
165 bool InclDef, bool InclRedef) {
166 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
167}
168
169/// Compute the reaching definition of a scalar.
170///
171/// Compared to computeReachingDefinition, there is just one element which is
172/// accessed and therefore only a set if instances that accesses that element is
173/// required.
174///
175/// @param Schedule { DomainWrite[] -> Scatter[] }
176/// @param Writes { DomainWrite[] }
177/// @param InclDef Include the timepoint of the definition to the result.
178/// @param InclRedef Include the timepoint of the overwrite into the result.
179///
180/// @return { Scatter[] -> DomainWrite[] }
181static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
182 isl::union_set Writes,
183 bool InclDef,
184 bool InclRedef) {
185
186 // { DomainWrite[] -> Element[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000187 isl::union_map Defs = isl::union_map::from_domain(Writes);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000188
189 // { [Element[] -> Scatter[]] -> DomainWrite[] }
190 auto ReachDefs =
191 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
192
193 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000194 return ReachDefs.curry().range().unwrap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000195}
196
197/// Compute the reaching definition of a scalar.
198///
199/// This overload accepts only a single writing statement as an isl_map,
200/// consequently the result also is only a single isl_map.
201///
202/// @param Schedule { DomainWrite[] -> Scatter[] }
203/// @param Writes { DomainWrite[] }
204/// @param InclDef Include the timepoint of the definition to the result.
205/// @param InclRedef Include the timepoint of the overwrite into the result.
206///
207/// @return { Scatter[] -> DomainWrite[] }
208static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
209 isl::set Writes, bool InclDef,
210 bool InclRedef) {
Tobias Grosser0dd42512017-08-21 14:19:40 +0000211 isl::space DomainSpace = Writes.get_space();
212 isl::space ScatterSpace = getScatterSpace(Schedule);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000213
214 // { Scatter[] -> DomainWrite[] }
Tobias Grosser0dd42512017-08-21 14:19:40 +0000215 isl::union_map UMap = computeScalarReachingDefinition(
216 Schedule, isl::union_set(Writes), InclDef, InclRedef);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000217
Tobias Grosser0dd42512017-08-21 14:19:40 +0000218 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
Michael Kruse138a3fb2017-08-04 22:51:23 +0000219 return singleton(UMap, ResultSpace);
220}
221
222isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
223 return give(isl_union_map_from_domain(Domain.take()));
224}
225
226/// Create a domain-to-unknown value mapping.
227///
228/// @see makeUnknownForDomain(isl::union_set)
229///
230/// @param Domain { Domain[] }
231///
232/// @return { Domain[] -> ValInst[] }
233static isl::map makeUnknownForDomain(isl::set Domain) {
234 return give(isl_map_from_domain(Domain.take()));
235}
236
Michael Kruse70af4f52017-08-07 18:40:29 +0000237/// Return whether @p Map maps to an unknown value.
238///
239/// @param { [] -> ValInst[] }
240static bool isMapToUnknown(const isl::map &Map) {
241 isl::space Space = Map.get_space().range();
242 return Space.has_tuple_id(isl::dim::set).is_false() &&
243 Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
244}
245
Michael Krusece673582017-08-08 17:00:27 +0000246isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000247 isl::union_map Result = isl::union_map::empty(UMap.get_space());
Michael Kruse630fc7b2017-08-09 11:21:40 +0000248 isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
Michael Kruse70af4f52017-08-07 18:40:29 +0000249 if (!isMapToUnknown(Map))
250 Result = Result.add_map(Map);
251 return isl::stat::ok;
252 });
Michael Kruse630fc7b2017-08-09 11:21:40 +0000253 if (Success != isl::stat::ok)
254 return {};
Michael Kruse70af4f52017-08-07 18:40:29 +0000255 return Result;
256}
257
Michael Kruse138a3fb2017-08-04 22:51:23 +0000258static std::string printInstruction(Instruction *Instr,
259 bool IsForDebug = false) {
260 std::string Result;
261 raw_string_ostream OS(Result);
262 Instr->print(OS, IsForDebug);
263 OS.flush();
264 size_t i = 0;
265 while (i < Result.size() && Result[i] == ' ')
266 i += 1;
267 return Result.substr(i);
268}
269
270ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
271 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Tobias Grosser61bd3a42017-08-06 21:42:38 +0000272 Schedule(S->getSchedule()) {
Tobias Grosser31df6f32017-08-06 21:42:25 +0000273 auto Domains = S->getDomains();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000274
275 Schedule =
276 give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
277 ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
278 ScatterSpace = getScatterSpace(Schedule);
279}
280
Tobias Grosser2ef37812017-08-07 22:01:29 +0000281/// Check if all stores in @p Stmt store the very same value.
282///
Michael Kruse8756b3f2017-08-09 09:29:15 +0000283/// This covers a special situation occurring in Polybench's
284/// covariance/correlation (which is typical for algorithms that cover symmetric
285/// matrices):
286///
287/// for (int i = 0; i < n; i += 1)
288/// for (int j = 0; j <= i; j += 1) {
289/// double x = ...;
290/// C[i][j] = x;
291/// C[j][i] = x;
292/// }
293///
294/// For i == j, the same value is written twice to the same element.Double
295/// writes to the same element are not allowed in DeLICM because its algorithm
296/// does not see which of the writes is effective.But if its the same value
297/// anyway, it doesn't matter.
298///
299/// LLVM passes, however, cannot simplify this because the write is necessary
300/// for i != j (unless it would add a condition for one of the writes to occur
301/// only if i != j).
302///
Tobias Grosser2ef37812017-08-07 22:01:29 +0000303/// TODO: In the future we may want to extent this to make the checks
304/// specific to different memory locations.
305static bool onlySameValueWrites(ScopStmt *Stmt) {
306 Value *V = nullptr;
307
308 for (auto *MA : *Stmt) {
309 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
310 !MA->isOriginalArrayKind())
311 continue;
312
313 if (!V) {
314 V = MA->getAccessValue();
315 continue;
316 }
317
318 if (V != MA->getAccessValue())
319 return false;
320 }
321 return true;
322}
323
Michael Kruse138a3fb2017-08-04 22:51:23 +0000324bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
325 auto Stores = makeEmptyUnionMap();
326 auto Loads = makeEmptyUnionMap();
327
328 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
329 // order.
330 for (auto *MA : *Stmt) {
331 if (!MA->isLatestArrayKind())
332 continue;
333
334 auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
335
336 if (MA->isRead()) {
337 // Reject load after store to same location.
338 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
339 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
340 MA->getAccessInstruction());
341 R << "load after store of same element in same statement";
342 R << " (previous stores: " << Stores;
343 R << ", loading: " << AccRel << ")";
344 S->getFunction().getContext().diagnose(R);
345 return false;
346 }
347
348 Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
349
350 continue;
351 }
352
353 if (!isa<StoreInst>(MA->getAccessInstruction())) {
354 DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
355 OptimizationRemarkMissed R(PassName, "UnusualStore",
356 MA->getAccessInstruction());
357 R << "encountered write that is not a StoreInst: "
358 << printInstruction(MA->getAccessInstruction());
359 S->getFunction().getContext().diagnose(R);
360 return false;
361 }
362
363 // In region statements the order is less clear, eg. the load and store
364 // might be in a boxed loop.
365 if (Stmt->isRegionStmt() &&
366 !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
367 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
368 MA->getAccessInstruction());
369 R << "store is in a non-affine subregion";
370 S->getFunction().getContext().diagnose(R);
371 return false;
372 }
373
374 // Do not allow more than one store to the same location.
Michael Krusea9033aa2017-08-09 09:29:09 +0000375 if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
376 !onlySameValueWrites(Stmt)) {
Michael Kruse138a3fb2017-08-04 22:51:23 +0000377 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
378 MA->getAccessInstruction());
Michael Krusea9033aa2017-08-09 09:29:09 +0000379 R << "store after store of same element in same statement";
380 R << " (previous stores: " << Stores;
381 R << ", storing: " << AccRel << ")";
382 S->getFunction().getContext().diagnose(R);
383 return false;
Michael Kruse138a3fb2017-08-04 22:51:23 +0000384 }
385
386 Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
387 }
388
389 return true;
390}
391
392void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
393 assert(MA->isLatestArrayKind());
394 assert(MA->isRead());
Michael Kruse70af4f52017-08-07 18:40:29 +0000395 ScopStmt *Stmt = MA->getStatement();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000396
397 // { DomainRead[] -> Element[] }
398 auto AccRel = getAccessRelationFor(MA);
399 AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
Michael Kruse70af4f52017-08-07 18:40:29 +0000400
401 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
402 // { DomainRead[] -> ValInst[] }
403 isl::map LoadValInst = makeValInst(
404 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
405
406 // { DomainRead[] -> [Element[] -> DomainRead[]] }
407 isl::map IncludeElement =
408 give(isl_map_curry(isl_map_domain_map(AccRel.take())));
409
410 // { [Element[] -> DomainRead[]] -> ValInst[] }
411 isl::map EltLoadValInst =
412 give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
413
414 AllReadValInst = give(
415 isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
416 }
Michael Kruse138a3fb2017-08-04 22:51:23 +0000417}
418
419void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
420 assert(MA->isLatestArrayKind());
421 assert(MA->isWrite());
422 auto *Stmt = MA->getStatement();
423
424 // { Domain[] -> Element[] }
425 auto AccRel = getAccessRelationFor(MA);
426
427 if (MA->isMustWrite())
428 AllMustWrites =
429 give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
430
431 if (MA->isMayWrite())
432 AllMayWrites =
433 give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
434
435 // { Domain[] -> ValInst[] }
436 auto WriteValInstance =
437 makeValInst(MA->getAccessValue(), Stmt,
438 LI->getLoopFor(MA->getAccessInstruction()->getParent()),
439 MA->isMustWrite());
440
441 // { Domain[] -> [Element[] -> Domain[]] }
442 auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
443
444 // { [Element[] -> DomainWrite[]] -> ValInst[] }
445 auto EltWriteValInst = give(
446 isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
447
448 AllWriteValInst = give(
449 isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
450}
451
452isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
453 return give(isl_union_set_empty(ParamSpace.copy()));
454}
455
456isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
457 return give(isl_union_map_empty(ParamSpace.copy()));
458}
459
460bool ZoneAlgorithm::isCompatibleScop() {
461 for (auto &Stmt : *S) {
462 if (!isCompatibleStmt(&Stmt))
463 return false;
464 }
465 return true;
466}
467
468isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000469 isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
470 Stmt->getDomainSpace().release(), ScatterSpace.copy()));
Michael Kruse138a3fb2017-08-04 22:51:23 +0000471 return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
472}
473
474isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
475 return getScatterFor(MA->getStatement());
476}
477
478isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
479 return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
480}
481
482isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
483 auto ResultSpace = give(isl_space_map_from_domain_and_range(
484 isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
485 auto UDomain = give(isl_union_set_from_set(Domain.copy()));
486 auto UResult = getScatterFor(std::move(UDomain));
487 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
488 assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
489 Domain.keep()) == isl_bool_true);
490 return Result;
491}
492
493isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
Tobias Grosserdcf8d692017-08-06 16:39:52 +0000494 return Stmt->getDomain().remove_redundancies();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000495}
496
497isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
498 return getDomainFor(MA->getStatement());
499}
500
501isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
502 auto Domain = getDomainFor(MA);
503 auto AccRel = MA->getLatestAccessRelation();
504 return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
505}
506
507isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
508 auto &Result = ScalarReachDefZone[Stmt];
509 if (Result)
510 return Result;
511
512 auto Domain = getDomainFor(Stmt);
513 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
514 simplify(Result);
515
516 return Result;
517}
518
519isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
520 auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
521 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
522
523 auto StmtResult = getScalarReachingDefinition(Stmt);
524
525 return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
526}
527
528isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
529 return ::makeUnknownForDomain(getDomainFor(Stmt));
530}
531
532isl::id ZoneAlgorithm::makeValueId(Value *V) {
533 if (!V)
534 return nullptr;
535
536 auto &Id = ValueIds[V];
537 if (Id.is_null()) {
538 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
539 std::string(), UseInstructionNames);
540 Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
541 }
542 return Id;
543}
544
545isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
546 auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
547 return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
548 makeValueId(V).take()));
549}
550
551isl::set ZoneAlgorithm::makeValueSet(Value *V) {
552 auto Space = makeValueSpace(V);
553 return give(isl_set_universe(Space.take()));
554}
555
556isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
557 bool IsCertain) {
558 // If the definition/write is conditional, the value at the location could
559 // be either the written value or the old value. Since we cannot know which
560 // one, consider the value to be unknown.
561 if (!IsCertain)
562 return makeUnknownForDomain(UserStmt);
563
564 auto DomainUse = getDomainFor(UserStmt);
565 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
566 switch (VUse.getKind()) {
567 case VirtualUse::Constant:
568 case VirtualUse::Block:
569 case VirtualUse::Hoisted:
570 case VirtualUse::ReadOnly: {
571 // The definition does not depend on the statement which uses it.
572 auto ValSet = makeValueSet(Val);
573 return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
574 }
575
576 case VirtualUse::Synthesizable: {
577 auto *ScevExpr = VUse.getScevExpr();
578 auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
579
580 // Construct the SCEV space.
581 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
582 // expressions, not just all of them.
583 auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
584 const_cast<SCEV *>(ScevExpr)));
585 auto ScevSpace =
586 give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
587 ScevSpace = give(
588 isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
589
590 // { DomainUse[] -> ScevExpr[] }
591 auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
592 UseDomainSpace.copy(), ScevSpace.copy())));
593 return ValInst;
594 }
595
596 case VirtualUse::Intra: {
597 // Definition and use is in the same statement. We do not need to compute
598 // a reaching definition.
599
600 // { llvm::Value }
601 auto ValSet = makeValueSet(Val);
602
603 // { UserDomain[] -> llvm::Value }
604 auto ValInstSet =
605 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
606
607 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
608 auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
609 simplify(Result);
610 return Result;
611 }
612
613 case VirtualUse::Inter: {
614 // The value is defined in a different statement.
615
616 auto *Inst = cast<Instruction>(Val);
617 auto *ValStmt = S->getStmtFor(Inst);
618
619 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
620 // domain. We could use an arbitrary statement, but this could result in
621 // different ValInst[] for the same llvm::Value.
622 if (!ValStmt)
623 return ::makeUnknownForDomain(DomainUse);
624
625 // { DomainDef[] }
626 auto DomainDef = getDomainFor(ValStmt);
627
628 // { Scatter[] -> DomainDef[] }
629 auto ReachDef = getScalarReachingDefinition(DomainDef);
630
631 // { DomainUse[] -> Scatter[] }
632 auto UserSched = getScatterFor(DomainUse);
633
634 // { DomainUse[] -> DomainDef[] }
635 auto UsedInstance =
636 give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
637
638 // { llvm::Value }
639 auto ValSet = makeValueSet(Val);
640
641 // { DomainUse[] -> llvm::Value[] }
642 auto ValInstSet =
643 give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
644
645 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
646 auto Result =
647 give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
648
649 simplify(Result);
650 return Result;
651 }
652 }
653 llvm_unreachable("Unhandled use type");
654}
655
656void ZoneAlgorithm::computeCommon() {
657 AllReads = makeEmptyUnionMap();
658 AllMayWrites = makeEmptyUnionMap();
659 AllMustWrites = makeEmptyUnionMap();
660 AllWriteValInst = makeEmptyUnionMap();
Michael Kruse70af4f52017-08-07 18:40:29 +0000661 AllReadValInst = makeEmptyUnionMap();
Michael Kruse138a3fb2017-08-04 22:51:23 +0000662
663 for (auto &Stmt : *S) {
664 for (auto *MA : Stmt) {
665 if (!MA->isLatestArrayKind())
666 continue;
667
668 if (MA->isRead())
669 addArrayReadAccess(MA);
670
671 if (MA->isWrite())
672 addArrayWriteAccess(MA);
673 }
674 }
675
676 // { DomainWrite[] -> Element[] }
Michael Kruse70af4f52017-08-07 18:40:29 +0000677 AllWrites =
Michael Kruse138a3fb2017-08-04 22:51:23 +0000678 give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
679
680 // { [Element[] -> Zone[]] -> DomainWrite[] }
681 WriteReachDefZone =
682 computeReachingDefinition(Schedule, AllWrites, false, true);
683 simplify(WriteReachDefZone);
684}
685
686void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
687 OS.indent(Indent) << "After accesses {\n";
688 for (auto &Stmt : *S) {
689 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
690 for (auto *MA : Stmt)
691 MA->print(OS);
692 }
693 OS.indent(Indent) << "}\n";
694}
Michael Kruse70af4f52017-08-07 18:40:29 +0000695
696isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
697 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
698 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
699
700 // { [Element[] -> DomainWrite[]] -> ValInst[] }
701 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
702
703 // { [Element[] -> Zone[]] -> ValInst[] }
704 return EltReachdDef.apply_range(AllKnownWriteValInst);
705}
706
707isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
708 // { Element[] }
709 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
710
711 // { Element[] -> Scatter[] }
712 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
713 AllAccessedElts, isl::set::universe(ScatterSpace));
714
715 // This assumes there are no "holes" in
716 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
717 // before the first write or that are not written at all.
718 // { Element[] -> Scatter[] }
719 isl::union_set NonReachDef =
720 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
721
722 // { [Element[] -> Zone[]] -> ReachDefId[] }
723 isl::union_map DefZone =
724 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
725
726 // { [Element[] -> Scatter[]] -> Element[] }
727 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
728
729 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
730 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
731
732 // { Element[] -> [Zone[] -> ReachDefId[]] }
733 isl::union_map EltDefZone = DefZone.curry();
734
735 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
736 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
737
738 // { [Element[] -> Scatter[]] -> DomainRead[] }
739 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
740
741 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
742 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
743
744 // { [Element[] -> Scatter[]] -> ValInst[] }
745 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
746
747 // { [Element[] -> ReachDefId[]] -> ValInst[] }
748 isl::union_map DefidKnown =
749 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
750
751 // { [Element[] -> Zone[]] -> ValInst[] }
752 return DefZoneEltDefId.apply_range(DefidKnown);
753}
754
755isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
756 bool FromRead) const {
757 isl::union_map Result = makeEmptyUnionMap();
758
759 if (FromWrite)
760 Result = Result.unite(computeKnownFromMustWrites());
761
762 if (FromRead)
763 Result = Result.unite(computeKnownFromLoad());
764
765 simplify(Result);
766 return Result;
767}