blob: 2fd8b8d6e1de9cee82685f1b1c4a403564fb59a9 [file] [log] [blame]
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +00001//===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2//Implementation -==//
Jingyue Wu5da831c2015-04-10 05:03:50 +00003//
Chandler Carruth2946cd72019-01-19 08:50:56 +00004// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5// See https://llvm.org/LICENSE.txt for license information.
6// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Jingyue Wu5da831c2015-04-10 05:03:50 +00007//
8//===----------------------------------------------------------------------===//
9//
Marcello Maggioniab58c742015-09-21 17:58:14 +000010// This file implements divergence analysis which determines whether a branch
11// in a GPU program is divergent.It can help branch optimizations such as jump
Jingyue Wu5da831c2015-04-10 05:03:50 +000012// threading and loop unswitching to make better decisions.
13//
14// GPU programs typically use the SIMD execution model, where multiple threads
15// in the same execution group have to execute in lock-step. Therefore, if the
16// code contains divergent branches (i.e., threads in a group do not agree on
17// which path of the branch to take), the group of threads has to execute all
18// the paths from that branch with different subsets of threads enabled until
19// they converge at the immediately post-dominating BB of the paths.
20//
21// Due to this execution model, some optimizations such as jump
22// threading and loop unswitching can be unfortunately harmful when performed on
23// divergent branches. Therefore, an analysis that computes which branches in a
24// GPU program are divergent can help the compiler to selectively run these
25// optimizations.
26//
27// This file defines divergence analysis which computes a conservative but
28// non-trivial approximation of all divergent branches in a GPU program. It
29// partially implements the approach described in
30//
31// Divergence Analysis
32// Sampaio, Souza, Collange, Pereira
33// TOPLAS '13
34//
35// The divergence analysis identifies the sources of divergence (e.g., special
36// variables that hold the thread ID), and recursively marks variables that are
37// data or sync dependent on a source of divergence as divergent.
38//
39// While data dependency is a well-known concept, the notion of sync dependency
40// is worth more explanation. Sync dependence characterizes the control flow
41// aspect of the propagation of branch divergence. For example,
42//
43// %cond = icmp slt i32 %tid, 10
44// br i1 %cond, label %then, label %else
45// then:
46// br label %merge
47// else:
48// br label %merge
49// merge:
50// %a = phi i32 [ 0, %then ], [ 1, %else ]
51//
52// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53// because %tid is not on its use-def chains, %a is sync dependent on %tid
54// because the branch "br i1 %cond" depends on %tid and affects which value %a
55// is assigned to.
56//
57// The current implementation has the following limitations:
58// 1. intra-procedural. It conservatively considers the arguments of a
59// non-kernel-entry function and the return value of a function call as
60// divergent.
61// 2. memory as black box. It conservatively considers values loaded from
62// generic or local address as divergent. This can be improved by leveraging
63// pointer analysis.
Marcello Maggioniab58c742015-09-21 17:58:14 +000064//
Jingyue Wu5da831c2015-04-10 05:03:50 +000065//===----------------------------------------------------------------------===//
66
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +000067#include "llvm/ADT/PostOrderIterator.h"
68#include "llvm/Analysis/CFG.h"
69#include "llvm/Analysis/DivergenceAnalysis.h"
Nicolai Haehnle35617ed2018-08-30 14:21:36 +000070#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000071#include "llvm/Analysis/Passes.h"
72#include "llvm/Analysis/PostDominators.h"
73#include "llvm/Analysis/TargetTransformInfo.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000074#include "llvm/IR/Dominators.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000075#include "llvm/IR/InstIterator.h"
76#include "llvm/IR/Instructions.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000077#include "llvm/IR/Value.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000078#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000080#include <vector>
Jingyue Wu5da831c2015-04-10 05:03:50 +000081using namespace llvm;
82
Tim Renouff3d82952018-07-13 13:13:30 +000083#define DEBUG_TYPE "divergence"
84
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +000085// transparently use the GPUDivergenceAnalysis
86static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
87 cl::Hidden,
88 cl::desc("turn the LegacyDivergenceAnalysis into "
89 "a wrapper for GPUDivergenceAnalysis"));
90
Jingyue Wu5da831c2015-04-10 05:03:50 +000091namespace {
92
93class DivergencePropagator {
94public:
Marcello Maggioniab58c742015-09-21 17:58:14 +000095 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
Jay Foaddcb75322019-07-29 10:22:09 +000096 PostDominatorTree &PDT, DenseSet<const Value *> &DV,
97 DenseSet<const Use *> &DU)
98 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
Jingyue Wu5da831c2015-04-10 05:03:50 +000099 void populateWithSourcesOfDivergence();
100 void propagate();
101
102private:
103 // A helper function that explores data dependents of V.
104 void exploreDataDependency(Value *V);
105 // A helper function that explores sync dependents of TI.
Chandler Carruth98716622018-10-18 00:36:15 +0000106 void exploreSyncDependency(Instruction *TI);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000107 // Computes the influence region from Start to End. This region includes all
Jingyue Wu3f422282015-12-18 21:44:26 +0000108 // basic blocks on any simple path from Start to End.
Jingyue Wu5da831c2015-04-10 05:03:50 +0000109 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
110 DenseSet<BasicBlock *> &InfluenceRegion);
111 // Finds all users of I that are outside the influence region, and add these
112 // users to Worklist.
113 void findUsersOutsideInfluenceRegion(
114 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
115
116 Function &F;
117 TargetTransformInfo &TTI;
118 DominatorTree &DT;
119 PostDominatorTree &PDT;
120 std::vector<Value *> Worklist; // Stack for DFS.
Marcello Maggioniab58c742015-09-21 17:58:14 +0000121 DenseSet<const Value *> &DV; // Stores all divergent values.
Jay Foaddcb75322019-07-29 10:22:09 +0000122 DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform
123 // values.
Jingyue Wu5da831c2015-04-10 05:03:50 +0000124};
125
126void DivergencePropagator::populateWithSourcesOfDivergence() {
127 Worklist.clear();
128 DV.clear();
Jay Foaddcb75322019-07-29 10:22:09 +0000129 DU.clear();
Nico Rieck78199512015-08-06 19:10:45 +0000130 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000131 if (TTI.isSourceOfDivergence(&I)) {
132 Worklist.push_back(&I);
133 DV.insert(&I);
134 }
135 }
136 for (auto &Arg : F.args()) {
137 if (TTI.isSourceOfDivergence(&Arg)) {
138 Worklist.push_back(&Arg);
139 DV.insert(&Arg);
140 }
141 }
142}
143
Chandler Carruth98716622018-10-18 00:36:15 +0000144void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000145 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
146 // immediate post dominator are divergent. This rule handles if-then-else
147 // patterns. For example,
148 //
149 // if (tid < 5)
150 // a1 = 1;
151 // else
152 // a2 = 2;
153 // a = phi(a1, a2); // sync dependent on (tid < 5)
154 BasicBlock *ThisBB = TI->getParent();
Matt Arsenault790eb1c2016-04-29 06:17:47 +0000155
156 // Unreachable blocks may not be in the dominator tree.
157 if (!DT.isReachableFromEntry(ThisBB))
158 return;
159
Matt Arsenault1af53a92016-05-09 16:57:08 +0000160 // If the function has no exit blocks or doesn't reach any exit blocks, the
161 // post dominator may be null.
162 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
163 if (!ThisNode)
164 return;
165
166 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000167 if (IPostDom == nullptr)
168 return;
169
170 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
171 // A PHINode is uniform if it returns the same value no matter which path is
172 // taken.
Nicolai Haehnle13d90f32016-04-14 17:42:47 +0000173 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000174 Worklist.push_back(&*I);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000175 }
176
177 // Propagation rule 2: if a value defined in a loop is used outside, the user
178 // is sync dependent on the condition of the loop exits that dominate the
179 // user. For example,
180 //
181 // int i = 0;
182 // do {
183 // i++;
184 // if (foo(i)) ... // uniform
185 // } while (i < tid);
186 // if (bar(i)) ... // divergent
187 //
188 // A program may contain unstructured loops. Therefore, we cannot leverage
189 // LoopInfo, which only recognizes natural loops.
190 //
191 // The algorithm used here handles both natural and unstructured loops. Given
192 // a branch TI, we first compute its influence region, the union of all simple
193 // paths from TI to its immediate post dominator (IPostDom). Then, we search
194 // for all the values defined in the influence region but used outside. All
195 // these users are sync dependent on TI.
196 DenseSet<BasicBlock *> InfluenceRegion;
197 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
198 // An insight that can speed up the search process is that all the in-region
199 // values that are used outside must dominate TI. Therefore, instead of
200 // searching every basic blocks in the influence region, we search all the
201 // dominators of TI until it is outside the influence region.
202 BasicBlock *InfluencedBB = ThisBB;
203 while (InfluenceRegion.count(InfluencedBB)) {
Jay Foaddcb75322019-07-29 10:22:09 +0000204 for (auto &I : *InfluencedBB) {
205 if (!DV.count(&I))
206 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
207 }
Jingyue Wu5da831c2015-04-10 05:03:50 +0000208 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
209 if (IDomNode == nullptr)
210 break;
211 InfluencedBB = IDomNode->getBlock();
212 }
213}
214
215void DivergencePropagator::findUsersOutsideInfluenceRegion(
216 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
Jay Foaddcb75322019-07-29 10:22:09 +0000217 for (Use &Use : I.uses()) {
218 Instruction *UserInst = cast<Instruction>(Use.getUser());
Jingyue Wu5da831c2015-04-10 05:03:50 +0000219 if (!InfluenceRegion.count(UserInst->getParent())) {
Jay Foaddcb75322019-07-29 10:22:09 +0000220 DU.insert(&Use);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000221 if (DV.insert(UserInst).second)
222 Worklist.push_back(UserInst);
223 }
224 }
225}
226
Jingyue Wu3f422282015-12-18 21:44:26 +0000227// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
228// to the influence region.
229static void
230addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
231 DenseSet<BasicBlock *> &InfluenceRegion,
232 std::vector<BasicBlock *> &InfluenceStack) {
233 for (BasicBlock *Succ : successors(ThisBB)) {
234 if (Succ != End && InfluenceRegion.insert(Succ).second)
235 InfluenceStack.push_back(Succ);
236 }
237}
238
Jingyue Wu5da831c2015-04-10 05:03:50 +0000239void DivergencePropagator::computeInfluenceRegion(
240 BasicBlock *Start, BasicBlock *End,
241 DenseSet<BasicBlock *> &InfluenceRegion) {
242 assert(PDT.properlyDominates(End, Start) &&
243 "End does not properly dominate Start");
Jingyue Wu3f422282015-12-18 21:44:26 +0000244
245 // The influence region starts from the end of "Start" to the beginning of
246 // "End". Therefore, "Start" should not be in the region unless "Start" is in
247 // a loop that doesn't contain "End".
Jingyue Wu5da831c2015-04-10 05:03:50 +0000248 std::vector<BasicBlock *> InfluenceStack;
Jingyue Wu3f422282015-12-18 21:44:26 +0000249 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000250 while (!InfluenceStack.empty()) {
251 BasicBlock *BB = InfluenceStack.back();
252 InfluenceStack.pop_back();
Jingyue Wu3f422282015-12-18 21:44:26 +0000253 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000254 }
255}
256
257void DivergencePropagator::exploreDataDependency(Value *V) {
258 // Follow def-use chains of V.
259 for (User *U : V->users()) {
260 Instruction *UserInst = cast<Instruction>(U);
Alexander Timofeev0f9c84c2017-06-15 19:33:10 +0000261 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
Jingyue Wu5da831c2015-04-10 05:03:50 +0000262 Worklist.push_back(UserInst);
263 }
264}
265
266void DivergencePropagator::propagate() {
267 // Traverse the dependency graph using DFS.
268 while (!Worklist.empty()) {
269 Value *V = Worklist.back();
270 Worklist.pop_back();
Chandler Carruth98716622018-10-18 00:36:15 +0000271 if (Instruction *I = dyn_cast<Instruction>(V)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000272 // Terminators with less than two successors won't introduce sync
273 // dependency. Ignore them.
Chandler Carruth98716622018-10-18 00:36:15 +0000274 if (I->isTerminator() && I->getNumSuccessors() > 1)
275 exploreSyncDependency(I);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000276 }
277 exploreDataDependency(V);
278 }
279}
280
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000281} // namespace
Jingyue Wu5da831c2015-04-10 05:03:50 +0000282
Marcello Maggioniab58c742015-09-21 17:58:14 +0000283// Register this pass.
Nicolai Haehnle35617ed2018-08-30 14:21:36 +0000284char LegacyDivergenceAnalysis::ID = 0;
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000285INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
286 "Legacy Divergence Analysis", false, true)
Marcello Maggioniab58c742015-09-21 17:58:14 +0000287INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Hongbin Zheng3f978402016-02-25 17:54:07 +0000288INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000289INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
290INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
291 "Legacy Divergence Analysis", false, true)
Marcello Maggioniab58c742015-09-21 17:58:14 +0000292
Nicolai Haehnle35617ed2018-08-30 14:21:36 +0000293FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
294 return new LegacyDivergenceAnalysis();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000295}
296
Nicolai Haehnle35617ed2018-08-30 14:21:36 +0000297void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
Marcello Maggioniab58c742015-09-21 17:58:14 +0000298 AU.addRequired<DominatorTreeWrapperPass>();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000299 AU.addRequired<PostDominatorTreeWrapperPass>();
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000300 if (UseGPUDA)
301 AU.addRequired<LoopInfoWrapperPass>();
Marcello Maggioniab58c742015-09-21 17:58:14 +0000302 AU.setPreservesAll();
303}
304
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000305bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
306 const Function &F) const {
307 if (!UseGPUDA)
308 return false;
309
310 // GPUDivergenceAnalysis requires a reducible CFG.
311 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
312 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
313 RPOTraversal FuncRPOT(&F);
314 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
315 const LoopInfo>(FuncRPOT, LI);
316}
317
Nicolai Haehnle35617ed2018-08-30 14:21:36 +0000318bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000319 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
320 if (TTIWP == nullptr)
321 return false;
322
323 TargetTransformInfo &TTI = TTIWP->getTTI(F);
324 // Fast path: if the target does not have branch divergence, we do not mark
325 // any branch as divergent.
326 if (!TTI.hasBranchDivergence())
327 return false;
328
329 DivergentValues.clear();
Jay Foaddcb75322019-07-29 10:22:09 +0000330 DivergentUses.clear();
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000331 gpuDA = nullptr;
332
333 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000334 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000335
336 if (shouldUseGPUDivergenceAnalysis(F)) {
337 // run the new GPU divergence analysis
338 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
339 gpuDA = llvm::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);
340
341 } else {
342 // run LLVM's existing DivergenceAnalysis
Jay Foaddcb75322019-07-29 10:22:09 +0000343 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000344 DP.populateWithSourcesOfDivergence();
345 DP.propagate();
346 }
347
348 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
349 << ":\n";
350 print(dbgs(), F.getParent()));
351
Jingyue Wu5da831c2015-04-10 05:03:50 +0000352 return false;
353}
354
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000355bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
356 if (gpuDA) {
357 return gpuDA->isDivergent(*V);
358 }
359 return DivergentValues.count(V);
360}
361
Jay Foaddcb75322019-07-29 10:22:09 +0000362bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
363 if (gpuDA) {
364 return gpuDA->isDivergentUse(*U);
365 }
366 return DivergentValues.count(U->get()) || DivergentUses.count(U);
367}
368
Nicolai Haehnle35617ed2018-08-30 14:21:36 +0000369void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000370 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
Jingyue Wu5da831c2015-04-10 05:03:50 +0000371 return;
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000372
Nicolai Haehnle413f86912018-11-30 23:07:49 +0000373 const Function *F = nullptr;
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000374 if (!DivergentValues.empty()) {
375 const Value *FirstDivergentValue = *DivergentValues.begin();
376 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
377 F = Arg->getParent();
378 } else if (const Instruction *I =
379 dyn_cast<Instruction>(FirstDivergentValue)) {
380 F = I->getParent()->getParent();
381 } else {
382 llvm_unreachable("Only arguments and instructions can be divergent");
383 }
384 } else if (gpuDA) {
385 F = &gpuDA->getFunction();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000386 }
Nicolai Haehnle413f86912018-11-30 23:07:49 +0000387 if (!F)
388 return;
Jingyue Wu5da831c2015-04-10 05:03:50 +0000389
390 // Dumps all divergent values in F, arguments and then instructions.
391 for (auto &Arg : F->args()) {
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000392 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
Tim Renouff3d82952018-07-13 13:13:30 +0000393 OS << Arg << "\n";
Jingyue Wu5da831c2015-04-10 05:03:50 +0000394 }
Nico Rieck78199512015-08-06 19:10:45 +0000395 // Iterate instructions using instructions() to ensure a deterministic order.
Tim Renouff3d82952018-07-13 13:13:30 +0000396 for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
397 auto &BB = *BI;
398 OS << "\n " << BB.getName() << ":\n";
399 for (auto &I : BB.instructionsWithoutDebug()) {
Nicolai Haehnle56d0ed22018-11-30 22:55:20 +0000400 OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
Tim Renouff3d82952018-07-13 13:13:30 +0000401 OS << I << "\n";
402 }
Jingyue Wu5da831c2015-04-10 05:03:50 +0000403 }
Tim Renouff3d82952018-07-13 13:13:30 +0000404 OS << "\n";
Jingyue Wu5da831c2015-04-10 05:03:50 +0000405}