blob: f5f1874c9303df44c0be4ddac912cb1fbba09886 [file] [log] [blame]
Marcello Maggioniab58c742015-09-21 17:58:14 +00001//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
Jingyue Wu5da831c2015-04-10 05:03:50 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Marcello Maggioniab58c742015-09-21 17:58:14 +000010// This file implements divergence analysis which determines whether a branch
11// in a GPU program is divergent.It can help branch optimizations such as jump
Jingyue Wu5da831c2015-04-10 05:03:50 +000012// threading and loop unswitching to make better decisions.
13//
14// GPU programs typically use the SIMD execution model, where multiple threads
15// in the same execution group have to execute in lock-step. Therefore, if the
16// code contains divergent branches (i.e., threads in a group do not agree on
17// which path of the branch to take), the group of threads has to execute all
18// the paths from that branch with different subsets of threads enabled until
19// they converge at the immediately post-dominating BB of the paths.
20//
21// Due to this execution model, some optimizations such as jump
22// threading and loop unswitching can be unfortunately harmful when performed on
23// divergent branches. Therefore, an analysis that computes which branches in a
24// GPU program are divergent can help the compiler to selectively run these
25// optimizations.
26//
27// This file defines divergence analysis which computes a conservative but
28// non-trivial approximation of all divergent branches in a GPU program. It
29// partially implements the approach described in
30//
31// Divergence Analysis
32// Sampaio, Souza, Collange, Pereira
33// TOPLAS '13
34//
35// The divergence analysis identifies the sources of divergence (e.g., special
36// variables that hold the thread ID), and recursively marks variables that are
37// data or sync dependent on a source of divergence as divergent.
38//
39// While data dependency is a well-known concept, the notion of sync dependency
40// is worth more explanation. Sync dependence characterizes the control flow
41// aspect of the propagation of branch divergence. For example,
42//
43// %cond = icmp slt i32 %tid, 10
44// br i1 %cond, label %then, label %else
45// then:
46// br label %merge
47// else:
48// br label %merge
49// merge:
50// %a = phi i32 [ 0, %then ], [ 1, %else ]
51//
52// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53// because %tid is not on its use-def chains, %a is sync dependent on %tid
54// because the branch "br i1 %cond" depends on %tid and affects which value %a
55// is assigned to.
56//
57// The current implementation has the following limitations:
58// 1. intra-procedural. It conservatively considers the arguments of a
59// non-kernel-entry function and the return value of a function call as
60// divergent.
61// 2. memory as black box. It conservatively considers values loaded from
62// generic or local address as divergent. This can be improved by leveraging
63// pointer analysis.
Marcello Maggioniab58c742015-09-21 17:58:14 +000064//
Jingyue Wu5da831c2015-04-10 05:03:50 +000065//===----------------------------------------------------------------------===//
66
Marcello Maggioniab58c742015-09-21 17:58:14 +000067#include "llvm/Analysis/DivergenceAnalysis.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000068#include "llvm/Analysis/Passes.h"
69#include "llvm/Analysis/PostDominators.h"
70#include "llvm/Analysis/TargetTransformInfo.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000071#include "llvm/IR/Dominators.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000072#include "llvm/IR/InstIterator.h"
73#include "llvm/IR/Instructions.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000074#include "llvm/IR/Value.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000075#include "llvm/Support/Debug.h"
76#include "llvm/Support/raw_ostream.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000077#include <vector>
Jingyue Wu5da831c2015-04-10 05:03:50 +000078using namespace llvm;
79
Tim Renouff3d82952018-07-13 13:13:30 +000080#define DEBUG_TYPE "divergence"
81
Jingyue Wu5da831c2015-04-10 05:03:50 +000082namespace {
83
84class DivergencePropagator {
85public:
Marcello Maggioniab58c742015-09-21 17:58:14 +000086 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
87 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
Jingyue Wu5da831c2015-04-10 05:03:50 +000088 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
89 void populateWithSourcesOfDivergence();
90 void propagate();
91
92private:
93 // A helper function that explores data dependents of V.
94 void exploreDataDependency(Value *V);
95 // A helper function that explores sync dependents of TI.
96 void exploreSyncDependency(TerminatorInst *TI);
97 // Computes the influence region from Start to End. This region includes all
Jingyue Wu3f422282015-12-18 21:44:26 +000098 // basic blocks on any simple path from Start to End.
Jingyue Wu5da831c2015-04-10 05:03:50 +000099 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
100 DenseSet<BasicBlock *> &InfluenceRegion);
101 // Finds all users of I that are outside the influence region, and add these
102 // users to Worklist.
103 void findUsersOutsideInfluenceRegion(
104 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
105
106 Function &F;
107 TargetTransformInfo &TTI;
108 DominatorTree &DT;
109 PostDominatorTree &PDT;
110 std::vector<Value *> Worklist; // Stack for DFS.
Marcello Maggioniab58c742015-09-21 17:58:14 +0000111 DenseSet<const Value *> &DV; // Stores all divergent values.
Jingyue Wu5da831c2015-04-10 05:03:50 +0000112};
113
114void DivergencePropagator::populateWithSourcesOfDivergence() {
115 Worklist.clear();
116 DV.clear();
Nico Rieck78199512015-08-06 19:10:45 +0000117 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000118 if (TTI.isSourceOfDivergence(&I)) {
119 Worklist.push_back(&I);
120 DV.insert(&I);
121 }
122 }
123 for (auto &Arg : F.args()) {
124 if (TTI.isSourceOfDivergence(&Arg)) {
125 Worklist.push_back(&Arg);
126 DV.insert(&Arg);
127 }
128 }
129}
130
131void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
132 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
133 // immediate post dominator are divergent. This rule handles if-then-else
134 // patterns. For example,
135 //
136 // if (tid < 5)
137 // a1 = 1;
138 // else
139 // a2 = 2;
140 // a = phi(a1, a2); // sync dependent on (tid < 5)
141 BasicBlock *ThisBB = TI->getParent();
Matt Arsenault790eb1c2016-04-29 06:17:47 +0000142
143 // Unreachable blocks may not be in the dominator tree.
144 if (!DT.isReachableFromEntry(ThisBB))
145 return;
146
Matt Arsenault1af53a92016-05-09 16:57:08 +0000147 // If the function has no exit blocks or doesn't reach any exit blocks, the
148 // post dominator may be null.
149 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
150 if (!ThisNode)
151 return;
152
153 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000154 if (IPostDom == nullptr)
155 return;
156
157 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
158 // A PHINode is uniform if it returns the same value no matter which path is
159 // taken.
Nicolai Haehnle13d90f32016-04-14 17:42:47 +0000160 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000161 Worklist.push_back(&*I);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000162 }
163
164 // Propagation rule 2: if a value defined in a loop is used outside, the user
165 // is sync dependent on the condition of the loop exits that dominate the
166 // user. For example,
167 //
168 // int i = 0;
169 // do {
170 // i++;
171 // if (foo(i)) ... // uniform
172 // } while (i < tid);
173 // if (bar(i)) ... // divergent
174 //
175 // A program may contain unstructured loops. Therefore, we cannot leverage
176 // LoopInfo, which only recognizes natural loops.
177 //
178 // The algorithm used here handles both natural and unstructured loops. Given
179 // a branch TI, we first compute its influence region, the union of all simple
180 // paths from TI to its immediate post dominator (IPostDom). Then, we search
181 // for all the values defined in the influence region but used outside. All
182 // these users are sync dependent on TI.
183 DenseSet<BasicBlock *> InfluenceRegion;
184 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
185 // An insight that can speed up the search process is that all the in-region
186 // values that are used outside must dominate TI. Therefore, instead of
187 // searching every basic blocks in the influence region, we search all the
188 // dominators of TI until it is outside the influence region.
189 BasicBlock *InfluencedBB = ThisBB;
190 while (InfluenceRegion.count(InfluencedBB)) {
191 for (auto &I : *InfluencedBB)
192 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
193 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
194 if (IDomNode == nullptr)
195 break;
196 InfluencedBB = IDomNode->getBlock();
197 }
198}
199
200void DivergencePropagator::findUsersOutsideInfluenceRegion(
201 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
202 for (User *U : I.users()) {
203 Instruction *UserInst = cast<Instruction>(U);
204 if (!InfluenceRegion.count(UserInst->getParent())) {
205 if (DV.insert(UserInst).second)
206 Worklist.push_back(UserInst);
207 }
208 }
209}
210
Jingyue Wu3f422282015-12-18 21:44:26 +0000211// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
212// to the influence region.
213static void
214addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
215 DenseSet<BasicBlock *> &InfluenceRegion,
216 std::vector<BasicBlock *> &InfluenceStack) {
217 for (BasicBlock *Succ : successors(ThisBB)) {
218 if (Succ != End && InfluenceRegion.insert(Succ).second)
219 InfluenceStack.push_back(Succ);
220 }
221}
222
Jingyue Wu5da831c2015-04-10 05:03:50 +0000223void DivergencePropagator::computeInfluenceRegion(
224 BasicBlock *Start, BasicBlock *End,
225 DenseSet<BasicBlock *> &InfluenceRegion) {
226 assert(PDT.properlyDominates(End, Start) &&
227 "End does not properly dominate Start");
Jingyue Wu3f422282015-12-18 21:44:26 +0000228
229 // The influence region starts from the end of "Start" to the beginning of
230 // "End". Therefore, "Start" should not be in the region unless "Start" is in
231 // a loop that doesn't contain "End".
Jingyue Wu5da831c2015-04-10 05:03:50 +0000232 std::vector<BasicBlock *> InfluenceStack;
Jingyue Wu3f422282015-12-18 21:44:26 +0000233 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000234 while (!InfluenceStack.empty()) {
235 BasicBlock *BB = InfluenceStack.back();
236 InfluenceStack.pop_back();
Jingyue Wu3f422282015-12-18 21:44:26 +0000237 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000238 }
239}
240
241void DivergencePropagator::exploreDataDependency(Value *V) {
242 // Follow def-use chains of V.
243 for (User *U : V->users()) {
244 Instruction *UserInst = cast<Instruction>(U);
Alexander Timofeev0f9c84c2017-06-15 19:33:10 +0000245 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
Jingyue Wu5da831c2015-04-10 05:03:50 +0000246 Worklist.push_back(UserInst);
247 }
248}
249
250void DivergencePropagator::propagate() {
251 // Traverse the dependency graph using DFS.
252 while (!Worklist.empty()) {
253 Value *V = Worklist.back();
254 Worklist.pop_back();
255 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
256 // Terminators with less than two successors won't introduce sync
257 // dependency. Ignore them.
258 if (TI->getNumSuccessors() > 1)
259 exploreSyncDependency(TI);
260 }
261 exploreDataDependency(V);
262 }
263}
264
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000265} /// end namespace anonymous
Jingyue Wu5da831c2015-04-10 05:03:50 +0000266
Marcello Maggioniab58c742015-09-21 17:58:14 +0000267// Register this pass.
268char DivergenceAnalysis::ID = 0;
269INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
270 false, true)
271INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Hongbin Zheng3f978402016-02-25 17:54:07 +0000272INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
Marcello Maggioniab58c742015-09-21 17:58:14 +0000273INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
274 false, true)
275
Jingyue Wu5da831c2015-04-10 05:03:50 +0000276FunctionPass *llvm::createDivergenceAnalysisPass() {
277 return new DivergenceAnalysis();
278}
279
Marcello Maggioniab58c742015-09-21 17:58:14 +0000280void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
281 AU.addRequired<DominatorTreeWrapperPass>();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000282 AU.addRequired<PostDominatorTreeWrapperPass>();
Marcello Maggioniab58c742015-09-21 17:58:14 +0000283 AU.setPreservesAll();
284}
285
Jingyue Wu5da831c2015-04-10 05:03:50 +0000286bool DivergenceAnalysis::runOnFunction(Function &F) {
287 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
288 if (TTIWP == nullptr)
289 return false;
290
291 TargetTransformInfo &TTI = TTIWP->getTTI(F);
292 // Fast path: if the target does not have branch divergence, we do not mark
293 // any branch as divergent.
294 if (!TTI.hasBranchDivergence())
295 return false;
296
297 DivergentValues.clear();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000298 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000299 DivergencePropagator DP(F, TTI,
300 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
Hongbin Zheng3f978402016-02-25 17:54:07 +0000301 PDT, DivergentValues);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000302 DP.populateWithSourcesOfDivergence();
303 DP.propagate();
Tim Renouff3d82952018-07-13 13:13:30 +0000304 LLVM_DEBUG(
305 dbgs() << "\nAfter divergence analysis on " << F.getName() << ":\n";
306 print(dbgs(), F.getParent())
307 );
Jingyue Wu5da831c2015-04-10 05:03:50 +0000308 return false;
309}
310
311void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
312 if (DivergentValues.empty())
313 return;
314 const Value *FirstDivergentValue = *DivergentValues.begin();
315 const Function *F;
316 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
317 F = Arg->getParent();
318 } else if (const Instruction *I =
319 dyn_cast<Instruction>(FirstDivergentValue)) {
320 F = I->getParent()->getParent();
321 } else {
322 llvm_unreachable("Only arguments and instructions can be divergent");
323 }
324
325 // Dumps all divergent values in F, arguments and then instructions.
326 for (auto &Arg : F->args()) {
Tim Renouff3d82952018-07-13 13:13:30 +0000327 OS << (DivergentValues.count(&Arg) ? "DIVERGENT: " : " ");
328 OS << Arg << "\n";
Jingyue Wu5da831c2015-04-10 05:03:50 +0000329 }
Nico Rieck78199512015-08-06 19:10:45 +0000330 // Iterate instructions using instructions() to ensure a deterministic order.
Tim Renouff3d82952018-07-13 13:13:30 +0000331 for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
332 auto &BB = *BI;
333 OS << "\n " << BB.getName() << ":\n";
334 for (auto &I : BB.instructionsWithoutDebug()) {
335 OS << (DivergentValues.count(&I) ? "DIVERGENT: " : " ");
336 OS << I << "\n";
337 }
Jingyue Wu5da831c2015-04-10 05:03:50 +0000338 }
Tim Renouff3d82952018-07-13 13:13:30 +0000339 OS << "\n";
Jingyue Wu5da831c2015-04-10 05:03:50 +0000340}