blob: 083e80de7e8fadd220fc0fef7d9feef0cd16a7e6 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
135// The MSVC runtime contains an _ftol2 routine for converting floating-point
136// to integer values. It has a strange calling convention: the input is
137// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
138// used as a temporary register. No other registers (aside from flags) are
139// touched.
140// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
141// variant is unnecessary.
142
143let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
144 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
145 "# win32 fptoui",
146 [(X86WinFTOL RFP32:$src)]>,
147 Requires<[Not64BitMode]>;
148
149 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
150 "# win32 fptoui",
151 [(X86WinFTOL RFP64:$src)]>,
152 Requires<[Not64BitMode]>;
153}
154
155//===----------------------------------------------------------------------===//
156// EH Pseudo Instructions
157//
158let SchedRW = [WriteSystem] in {
159let isTerminator = 1, isReturn = 1, isBarrier = 1,
160 hasCtrlDep = 1, isCodeGenOnly = 1 in {
161def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
162 "ret\t#eh_return, addr: $addr",
163 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
164
165}
166
167let isTerminator = 1, isReturn = 1, isBarrier = 1,
168 hasCtrlDep = 1, isCodeGenOnly = 1 in {
169def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
170 "ret\t#eh_return, addr: $addr",
171 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
172
173}
174
175let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
176 usesCustomInserter = 1 in {
177 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
178 "#EH_SJLJ_SETJMP32",
179 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180 Requires<[Not64BitMode]>;
181 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
182 "#EH_SJLJ_SETJMP64",
183 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
184 Requires<[In64BitMode]>;
185 let isTerminator = 1 in {
186 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
187 "#EH_SJLJ_LONGJMP32",
188 [(X86eh_sjlj_longjmp addr:$buf)]>,
189 Requires<[Not64BitMode]>;
190 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
191 "#EH_SJLJ_LONGJMP64",
192 [(X86eh_sjlj_longjmp addr:$buf)]>,
193 Requires<[In64BitMode]>;
194 }
195}
196} // SchedRW
197
198let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
199 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
200 "#EH_SjLj_Setup\t$dst", []>;
201}
202
203//===----------------------------------------------------------------------===//
204// Pseudo instructions used by unwind info.
205//
206let isPseudo = 1 in {
207 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
208 "#SEH_PushReg $reg", []>;
209 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
210 "#SEH_SaveReg $reg, $dst", []>;
211 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
212 "#SEH_SaveXMM $reg, $dst", []>;
213 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
214 "#SEH_StackAlloc $size", []>;
215 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
216 "#SEH_SetFrame $reg, $offset", []>;
217 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
218 "#SEH_PushFrame $mode", []>;
219 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
220 "#SEH_EndPrologue", []>;
221 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
222 "#SEH_Epilogue", []>;
223}
224
225//===----------------------------------------------------------------------===//
226// Pseudo instructions used by segmented stacks.
227//
228
229// This is lowered into a RET instruction by MCInstLower. We need
230// this so that we don't have to have a MachineBasicBlock which ends
231// with a RET and also has successors.
232let isPseudo = 1 in {
233def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
234 "", []>;
235
236// This instruction is lowered to a RET followed by a MOV. The two
237// instructions are not generated on a higher level since then the
238// verifier sees a MachineBasicBlock ending with a non-terminator.
239def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
240 "", []>;
241}
242
243//===----------------------------------------------------------------------===//
244// Alias Instructions
245//===----------------------------------------------------------------------===//
246
247// Alias instruction mapping movr0 to xor.
248// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
249let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
250 isPseudo = 1 in
251def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
252 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
253
254// Other widths can also make use of the 32-bit xor, which may have a smaller
255// encoding and avoid partial register updates.
256def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
257def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
258def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
259 let AddedComplexity = 20;
260}
261
262// Materialize i64 constant where top 32-bits are zero. This could theoretically
263// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
264// that would make it more difficult to rematerialize.
265let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
266 isCodeGenOnly = 1, hasSideEffects = 0 in
267def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
268 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
269
270// This 64-bit pseudo-move can be used for both a 64-bit constant that is
271// actually the zero-extension of a 32-bit constant, and for labels in the
272// x86-64 small code model.
273def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
274
275let AddedComplexity = 1 in
276def : Pat<(i64 mov64imm32:$src),
277 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
278
279// Use sbb to materialize carry bit.
280let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
281// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
282// However, Pat<> can't replicate the destination reg into the inputs of the
283// result.
284def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
285 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
287 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
288def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
289 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
290def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
291 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
292} // isCodeGenOnly
293
294
295def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
296 (SETB_C16r)>;
297def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
298 (SETB_C32r)>;
299def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
300 (SETB_C64r)>;
301
302def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303 (SETB_C16r)>;
304def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
305 (SETB_C32r)>;
306def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
307 (SETB_C64r)>;
308
309// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
310// will be eliminated and that the sbb can be extended up to a wider type. When
311// this happens, it is great. However, if we are left with an 8-bit sbb and an
312// and, we might as well just match it as a setb.
313def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
314 (SETBr)>;
315
316// (add OP, SETB) -> (adc OP, 0)
317def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
318 (ADC8ri GR8:$op, 0)>;
319def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
320 (ADC32ri8 GR32:$op, 0)>;
321def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
322 (ADC64ri8 GR64:$op, 0)>;
323
324// (sub OP, SETB) -> (sbb OP, 0)
325def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
326 (SBB8ri GR8:$op, 0)>;
327def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
328 (SBB32ri8 GR32:$op, 0)>;
329def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
330 (SBB64ri8 GR64:$op, 0)>;
331
332// (sub OP, SETCC_CARRY) -> (adc OP, 0)
333def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
334 (ADC8ri GR8:$op, 0)>;
335def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
336 (ADC32ri8 GR32:$op, 0)>;
337def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
338 (ADC64ri8 GR64:$op, 0)>;
339
340//===----------------------------------------------------------------------===//
341// String Pseudo Instructions
342//
343let SchedRW = [WriteMicrocoded] in {
344let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
345def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
346 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
347 Requires<[Not64BitMode]>;
348def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
349 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
350 Requires<[Not64BitMode]>;
351def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
352 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
353 Requires<[Not64BitMode]>;
354}
355
356let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
357def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
358 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
359 Requires<[In64BitMode]>;
360def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
361 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
362 Requires<[In64BitMode]>;
363def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
364 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
365 Requires<[In64BitMode]>;
366def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
367 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
368 Requires<[In64BitMode]>;
369}
370
371// FIXME: Should use "(X86rep_stos AL)" as the pattern.
372let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
373 let Uses = [AL,ECX,EDI] in
374 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
375 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
376 Requires<[Not64BitMode]>;
377 let Uses = [AX,ECX,EDI] in
378 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
379 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
380 Requires<[Not64BitMode]>;
381 let Uses = [EAX,ECX,EDI] in
382 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
383 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
384 Requires<[Not64BitMode]>;
385}
386
387let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
388 let Uses = [AL,RCX,RDI] in
389 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
390 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392 let Uses = [AX,RCX,RDI] in
393 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
394 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
395 Requires<[In64BitMode]>;
396 let Uses = [RAX,RCX,RDI] in
397 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
398 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
399 Requires<[In64BitMode]>;
400
401 let Uses = [RAX,RCX,RDI] in
402 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
403 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
404 Requires<[In64BitMode]>;
405}
406} // SchedRW
407
408//===----------------------------------------------------------------------===//
409// Thread Local Storage Instructions
410//
411
412// ELF TLS Support
413// All calls clobber the non-callee saved registers. ESP is marked as
414// a use to prevent stack-pointer assignments that appear immediately
415// before calls from potentially appearing dead.
416let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
417 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
418 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
419 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
420 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
421 Uses = [ESP] in {
422def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
423 "# TLS_addr32",
424 [(X86tlsaddr tls32addr:$sym)]>,
425 Requires<[Not64BitMode]>;
426def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
427 "# TLS_base_addr32",
428 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
429 Requires<[Not64BitMode]>;
430}
431
432// All calls clobber the non-callee saved registers. RSP is marked as
433// a use to prevent stack-pointer assignments that appear immediately
434// before calls from potentially appearing dead.
435let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
436 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
437 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
438 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
439 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
440 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
441 Uses = [RSP] in {
442def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443 "# TLS_addr64",
444 [(X86tlsaddr tls64addr:$sym)]>,
445 Requires<[In64BitMode]>;
446def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
447 "# TLS_base_addr64",
448 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
449 Requires<[In64BitMode]>;
450}
451
452// Darwin TLS Support
453// For i386, the address of the thunk is passed on the stack, on return the
454// address of the variable is in %eax. %ecx is trashed during the function
455// call. All other registers are preserved.
456let Defs = [EAX, ECX, EFLAGS],
457 Uses = [ESP],
458 usesCustomInserter = 1 in
459def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
460 "# TLSCall_32",
461 [(X86TLSCall addr:$sym)]>,
462 Requires<[Not64BitMode]>;
463
464// For x86_64, the address of the thunk is passed in %rdi, on return
465// the address of the variable is in %rax. All other registers are preserved.
466let Defs = [RAX, EFLAGS],
467 Uses = [RSP, RDI],
468 usesCustomInserter = 1 in
469def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
470 "# TLSCall_64",
471 [(X86TLSCall addr:$sym)]>,
472 Requires<[In64BitMode]>;
473
474
475//===----------------------------------------------------------------------===//
476// Conditional Move Pseudo Instructions
477
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000478// CMOV* - Used to implement the SELECT DAG operation. Expanded after
479// instruction selection into a branch sequence.
480multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
481 def CMOV#NAME : I<0, Pseudo,
482 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
483 "#CMOV_"#NAME#" PSEUDO!",
484 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
485 EFLAGS)))]>;
486}
487
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000488let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000489 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
490 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
491 // however that requires promoting the operands, and can induce additional
492 // i8 register pressure.
493 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000494
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000495 let Predicates = [NoCMov] in {
496 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
497 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
498 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000499
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000500 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
501 // SSE1/SSE2.
502 let Predicates = [FPStackf32] in
503 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000504
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000505 let Predicates = [FPStackf64] in
506 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
507
508 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
509
510 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
511 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
512 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
513 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
514 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
515 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
516 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
517 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
518 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
519 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
520 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000521 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
522 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
523 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
524 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000525} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000526
527//===----------------------------------------------------------------------===//
528// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
529//===----------------------------------------------------------------------===//
530
531// FIXME: Use normal instructions and add lock prefix dynamically.
532
533// Memory barriers
534
535// TODO: Get this to fold the constant into the instruction.
536let isCodeGenOnly = 1, Defs = [EFLAGS] in
537def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
538 "or{l}\t{$zero, $dst|$dst, $zero}",
539 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
540 Sched<[WriteALULd, WriteRMW]>;
541
542let hasSideEffects = 1 in
543def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
544 "#MEMBARRIER",
545 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
546
547// RegOpc corresponds to the mr version of the instruction
548// ImmOpc corresponds to the mi version of the instruction
549// ImmOpc8 corresponds to the mi8 version of the instruction
550// ImmMod corresponds to the instruction format of the mi and mi8 versions
551multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
552 Format ImmMod, string mnemonic> {
553let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
554 SchedRW = [WriteALULd, WriteRMW] in {
555
556def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
557 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
558 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
559 !strconcat(mnemonic, "{b}\t",
560 "{$src2, $dst|$dst, $src2}"),
561 [], IIC_ALU_NONMEM>, LOCK;
562def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
563 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
564 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
565 !strconcat(mnemonic, "{w}\t",
566 "{$src2, $dst|$dst, $src2}"),
567 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
568def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
569 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
570 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
571 !strconcat(mnemonic, "{l}\t",
572 "{$src2, $dst|$dst, $src2}"),
573 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
574def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
575 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
576 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
577 !strconcat(mnemonic, "{q}\t",
578 "{$src2, $dst|$dst, $src2}"),
579 [], IIC_ALU_NONMEM>, LOCK;
580
581def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
582 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
583 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
584 !strconcat(mnemonic, "{b}\t",
585 "{$src2, $dst|$dst, $src2}"),
586 [], IIC_ALU_MEM>, LOCK;
587
588def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
589 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
590 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
591 !strconcat(mnemonic, "{w}\t",
592 "{$src2, $dst|$dst, $src2}"),
593 [], IIC_ALU_MEM>, OpSize16, LOCK;
594
595def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
596 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
597 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
598 !strconcat(mnemonic, "{l}\t",
599 "{$src2, $dst|$dst, $src2}"),
600 [], IIC_ALU_MEM>, OpSize32, LOCK;
601
602def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
603 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
604 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
605 !strconcat(mnemonic, "{q}\t",
606 "{$src2, $dst|$dst, $src2}"),
607 [], IIC_ALU_MEM>, LOCK;
608
609def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
610 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
611 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
612 !strconcat(mnemonic, "{w}\t",
613 "{$src2, $dst|$dst, $src2}"),
614 [], IIC_ALU_MEM>, OpSize16, LOCK;
615def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
616 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
617 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
618 !strconcat(mnemonic, "{l}\t",
619 "{$src2, $dst|$dst, $src2}"),
620 [], IIC_ALU_MEM>, OpSize32, LOCK;
621def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
622 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
623 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
624 !strconcat(mnemonic, "{q}\t",
625 "{$src2, $dst|$dst, $src2}"),
626 [], IIC_ALU_MEM>, LOCK;
627
628}
629
630}
631
632defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
633defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
634defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
635defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
636defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
637
638// Optimized codegen when the non-memory output is not used.
639multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
640 string mnemonic> {
641let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
642 SchedRW = [WriteALULd, WriteRMW] in {
643
644def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
645 !strconcat(mnemonic, "{b}\t$dst"),
646 [], IIC_UNARY_MEM>, LOCK;
647def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
648 !strconcat(mnemonic, "{w}\t$dst"),
649 [], IIC_UNARY_MEM>, OpSize16, LOCK;
650def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
651 !strconcat(mnemonic, "{l}\t$dst"),
652 [], IIC_UNARY_MEM>, OpSize32, LOCK;
653def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
654 !strconcat(mnemonic, "{q}\t$dst"),
655 [], IIC_UNARY_MEM>, LOCK;
656}
657}
658
659defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
660defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
661
662// Atomic compare and swap.
663multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
664 SDPatternOperator frag, X86MemOperand x86memop,
665 InstrItinClass itin> {
666let isCodeGenOnly = 1 in {
667 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
668 !strconcat(mnemonic, "\t$ptr"),
669 [(frag addr:$ptr)], itin>, TB, LOCK;
670}
671}
672
673multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
674 string mnemonic, SDPatternOperator frag,
675 InstrItinClass itin8, InstrItinClass itin> {
676let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
677 let Defs = [AL, EFLAGS], Uses = [AL] in
678 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
679 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
680 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
681 let Defs = [AX, EFLAGS], Uses = [AX] in
682 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
683 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
684 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
685 let Defs = [EAX, EFLAGS], Uses = [EAX] in
686 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
687 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
688 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
689 let Defs = [RAX, EFLAGS], Uses = [RAX] in
690 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
691 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
692 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
693}
694}
695
696let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
697 SchedRW = [WriteALULd, WriteRMW] in {
698defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
699 X86cas8, i64mem,
700 IIC_CMPX_LOCK_8B>;
701}
702
703let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
704 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
705defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
706 X86cas16, i128mem,
707 IIC_CMPX_LOCK_16B>, REX_W;
708}
709
710defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
711 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
712
713// Atomic exchange and add
714multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
715 string frag,
716 InstrItinClass itin8, InstrItinClass itin> {
717 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
718 SchedRW = [WriteALULd, WriteRMW] in {
719 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
720 (ins GR8:$val, i8mem:$ptr),
721 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
722 [(set GR8:$dst,
723 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
724 itin8>;
725 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
726 (ins GR16:$val, i16mem:$ptr),
727 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
728 [(set
729 GR16:$dst,
730 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
731 itin>, OpSize16;
732 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
733 (ins GR32:$val, i32mem:$ptr),
734 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
735 [(set
736 GR32:$dst,
737 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
738 itin>, OpSize32;
739 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
740 (ins GR64:$val, i64mem:$ptr),
741 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
742 [(set
743 GR64:$dst,
744 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
745 itin>;
746 }
747}
748
749defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
750 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
751 TB, LOCK;
752
753/* The following multiclass tries to make sure that in code like
754 * x.store (immediate op x.load(acquire), release)
JF Bastien86620832015-08-05 21:04:59 +0000755 * and
756 * x.store (register op x.load(acquire), release)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000757 * an operation directly on memory is generated instead of wasting a register.
758 * It is not automatic as atomic_store/load are only lowered to MOV instructions
759 * extremely late to prevent them from being accidentally reordered in the backend
760 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
761 */
762multiclass RELEASE_BINOP_MI<string op> {
763 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000764 "#BINOP "#NAME#"8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000765 [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
766 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000767 def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
768 "#BINOP "#NAME#"8mr PSEUDO!",
769 [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
770 (atomic_load_8 addr:$dst), GR8:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000771 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
772 // costly and avoided as far as possible by this backend anyway
773 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000774 "#BINOP "#NAME#"32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000775 [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
776 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000777 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
778 "#BINOP "#NAME#"32mr PSEUDO!",
779 [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
780 (atomic_load_32 addr:$dst), GR32:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000781 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000782 "#BINOP "#NAME#"64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000783 [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
784 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
JF Bastien86620832015-08-05 21:04:59 +0000785 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
786 "#BINOP "#NAME#"64mr PSEUDO!",
787 [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
788 (atomic_load_64 addr:$dst), GR64:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000789}
790defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
791defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
792defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
793defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
794// Note: we don't deal with sub, because substractions of constants are
795// optimized into additions before this code can run
796
JF Bastien86620832015-08-05 21:04:59 +0000797// Same as above, but for floating-point.
798// FIXME: imm version.
799// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
800// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
801let usesCustomInserter = 1 in {
802multiclass RELEASE_FP_BINOP_MI<string op> {
803 def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
804 "#BINOP "#NAME#"32mr PSEUDO!",
805 [(atomic_store_32 addr:$dst,
806 (i32 (bitconvert (!cast<PatFrag>(op)
807 (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
808 FR32:$src))))]>, Requires<[HasSSE1]>;
809 def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
810 "#BINOP "#NAME#"64mr PSEUDO!",
811 [(atomic_store_64 addr:$dst,
812 (i64 (bitconvert (!cast<PatFrag>(op)
813 (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
814 FR64:$src))))]>, Requires<[HasSSE2]>;
815}
816defm RELEASE_FADD : RELEASE_FP_BINOP_MI<"fadd">;
817// FIXME: Add fsub, fmul, fdiv, ...
818}
819
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000820multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
821 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000822 "#UNOP "#NAME#"8m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000823 [(atomic_store_8 addr:$dst, dag8)]>;
824 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000825 "#UNOP "#NAME#"16m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000826 [(atomic_store_16 addr:$dst, dag16)]>;
827 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000828 "#UNOP "#NAME#"32m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000829 [(atomic_store_32 addr:$dst, dag32)]>;
830 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
JF Bastien86620832015-08-05 21:04:59 +0000831 "#UNOP "#NAME#"64m PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000832 [(atomic_store_64 addr:$dst, dag64)]>;
833}
834
835defm RELEASE_INC : RELEASE_UNOP<
836 (add (atomic_load_8 addr:$dst), (i8 1)),
837 (add (atomic_load_16 addr:$dst), (i16 1)),
838 (add (atomic_load_32 addr:$dst), (i32 1)),
839 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
840defm RELEASE_DEC : RELEASE_UNOP<
841 (add (atomic_load_8 addr:$dst), (i8 -1)),
842 (add (atomic_load_16 addr:$dst), (i16 -1)),
843 (add (atomic_load_32 addr:$dst), (i32 -1)),
844 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
845/*
846TODO: These don't work because the type inference of TableGen fails.
847TODO: find a way to fix it.
848defm RELEASE_NEG : RELEASE_UNOP<
849 (ineg (atomic_load_8 addr:$dst)),
850 (ineg (atomic_load_16 addr:$dst)),
851 (ineg (atomic_load_32 addr:$dst)),
852 (ineg (atomic_load_64 addr:$dst))>;
853defm RELEASE_NOT : RELEASE_UNOP<
854 (not (atomic_load_8 addr:$dst)),
855 (not (atomic_load_16 addr:$dst)),
856 (not (atomic_load_32 addr:$dst)),
857 (not (atomic_load_64 addr:$dst))>;
858*/
859
860def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000861 "#RELEASE_MOV8mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000862 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
863def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000864 "#RELEASE_MOV16mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000865 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
866def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000867 "#RELEASE_MOV32mi PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000868 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
869def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
JF Bastien86620832015-08-05 21:04:59 +0000870 "#RELEASE_MOV64mi32 PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000871 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
872
873def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
JF Bastien86620832015-08-05 21:04:59 +0000874 "#RELEASE_MOV8mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000875 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
876def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
JF Bastien86620832015-08-05 21:04:59 +0000877 "#RELEASE_MOV16mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000878 [(atomic_store_16 addr:$dst, GR16:$src)]>;
879def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
JF Bastien86620832015-08-05 21:04:59 +0000880 "#RELEASE_MOV32mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000881 [(atomic_store_32 addr:$dst, GR32:$src)]>;
882def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
JF Bastien86620832015-08-05 21:04:59 +0000883 "#RELEASE_MOV64mr PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000884 [(atomic_store_64 addr:$dst, GR64:$src)]>;
885
886def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
JF Bastien86620832015-08-05 21:04:59 +0000887 "#ACQUIRE_MOV8rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000888 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
889def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000890 "#ACQUIRE_MOV16rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000891 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
892def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000893 "#ACQUIRE_MOV32rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000894 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
895def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
JF Bastien86620832015-08-05 21:04:59 +0000896 "#ACQUIRE_MOV64rm PSEUDO!",
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000897 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000898
899//===----------------------------------------------------------------------===//
900// DAG Pattern Matching Rules
901//===----------------------------------------------------------------------===//
902
903// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
904def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
905def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
906def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
907def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
908def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000909def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000910def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
911
912def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
913 (ADD32ri GR32:$src1, tconstpool:$src2)>;
914def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
915 (ADD32ri GR32:$src1, tjumptable:$src2)>;
916def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
917 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
918def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
919 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000920def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
921 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000922def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
923 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
924
925def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
926 (MOV32mi addr:$dst, tglobaladdr:$src)>;
927def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
928 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000929def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
930 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000931def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
932 (MOV32mi addr:$dst, tblockaddress:$src)>;
933
934// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
935// code model mode, should use 'movabs'. FIXME: This is really a hack, the
936// 'movabs' predicate should handle this sort of thing.
937def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
938 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
939def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
940 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
941def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
942 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
943def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
944 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000945def : Pat<(i64 (X86Wrapper mcsym:$dst)),
946 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000947def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
948 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
949
950// In kernel code model, we can get the address of a label
951// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
952// the MOV64ri32 should accept these.
953def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
954 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
955def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
956 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
957def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
958 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
959def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
960 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000961def : Pat<(i64 (X86Wrapper mcsym:$dst)),
962 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000963def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
964 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
965
966// If we have small model and -static mode, it is safe to store global addresses
967// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
968// for MOV64mi32 should handle this sort of thing.
969def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
970 (MOV64mi32 addr:$dst, tconstpool:$src)>,
971 Requires<[NearData, IsStatic]>;
972def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
973 (MOV64mi32 addr:$dst, tjumptable:$src)>,
974 Requires<[NearData, IsStatic]>;
975def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
976 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
977 Requires<[NearData, IsStatic]>;
978def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
979 (MOV64mi32 addr:$dst, texternalsym:$src)>,
980 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000981def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
982 (MOV64mi32 addr:$dst, mcsym:$src)>,
983 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000984def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
985 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
986 Requires<[NearData, IsStatic]>;
987
Rafael Espindola36b718f2015-06-22 17:46:53 +0000988def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
989def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000990
991// Calls
992
993// tls has some funny stuff here...
994// This corresponds to movabs $foo@tpoff, %rax
995def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
996 (MOV64ri32 tglobaltlsaddr :$dst)>;
997// This corresponds to add $foo@tpoff, %rax
998def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
999 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1000
1001
1002// Direct PC relative function call for small code model. 32-bit displacement
1003// sign extended to 64-bit.
1004def : Pat<(X86call (i64 tglobaladdr:$dst)),
1005 (CALL64pcrel32 tglobaladdr:$dst)>;
1006def : Pat<(X86call (i64 texternalsym:$dst)),
1007 (CALL64pcrel32 texternalsym:$dst)>;
1008
1009// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1010// can never use callee-saved registers. That is the purpose of the GR64_TC
1011// register classes.
1012//
1013// The only volatile register that is never used by the calling convention is
1014// %r11. This happens when calling a vararg function with 6 arguments.
1015//
1016// Match an X86tcret that uses less than 7 volatile registers.
1017def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1018 (X86tcret node:$ptr, node:$off), [{
1019 // X86tcret args: (*chain, ptr, imm, regs..., glue)
1020 unsigned NumRegs = 0;
1021 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1022 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1023 return false;
1024 return true;
1025}]>;
1026
1027def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1028 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1029 Requires<[Not64BitMode]>;
1030
1031// FIXME: This is disabled for 32-bit PIC mode because the global base
1032// register which is part of the address mode may be assigned a
1033// callee-saved register.
1034def : Pat<(X86tcret (load addr:$dst), imm:$off),
1035 (TCRETURNmi addr:$dst, imm:$off)>,
1036 Requires<[Not64BitMode, IsNotPIC]>;
1037
1038def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1039 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1040 Requires<[NotLP64]>;
1041
1042def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1043 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1044 Requires<[NotLP64]>;
1045
1046def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1047 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1048 Requires<[In64BitMode]>;
1049
1050// Don't fold loads into X86tcret requiring more than 6 regs.
1051// There wouldn't be enough scratch registers for base+index.
1052def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1053 (TCRETURNmi64 addr:$dst, imm:$off)>,
1054 Requires<[In64BitMode]>;
1055
1056def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1057 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1058 Requires<[IsLP64]>;
1059
1060def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1061 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1062 Requires<[IsLP64]>;
1063
1064// Normal calls, with various flavors of addresses.
1065def : Pat<(X86call (i32 tglobaladdr:$dst)),
1066 (CALLpcrel32 tglobaladdr:$dst)>;
1067def : Pat<(X86call (i32 texternalsym:$dst)),
1068 (CALLpcrel32 texternalsym:$dst)>;
1069def : Pat<(X86call (i32 imm:$dst)),
1070 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1071
1072// Comparisons.
1073
1074// TEST R,R is smaller than CMP R,0
1075def : Pat<(X86cmp GR8:$src1, 0),
1076 (TEST8rr GR8:$src1, GR8:$src1)>;
1077def : Pat<(X86cmp GR16:$src1, 0),
1078 (TEST16rr GR16:$src1, GR16:$src1)>;
1079def : Pat<(X86cmp GR32:$src1, 0),
1080 (TEST32rr GR32:$src1, GR32:$src1)>;
1081def : Pat<(X86cmp GR64:$src1, 0),
1082 (TEST64rr GR64:$src1, GR64:$src1)>;
1083
1084// Conditional moves with folded loads with operands swapped and conditions
1085// inverted.
1086multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1087 Instruction Inst64> {
1088 let Predicates = [HasCMov] in {
1089 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1090 (Inst16 GR16:$src2, addr:$src1)>;
1091 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1092 (Inst32 GR32:$src2, addr:$src1)>;
1093 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1094 (Inst64 GR64:$src2, addr:$src1)>;
1095 }
1096}
1097
1098defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1099defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1100defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1101defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1102defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1103defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1104defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1105defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1106defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1107defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1108defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1109defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1110defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1111defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1112defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1113defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1114
1115// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001116def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
Rafael Espindola494a3812015-07-17 00:57:52 +00001117def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
1118def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001119def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001120 (SUBREG_TO_REG (i64 0),
Rafael Espindola494a3812015-07-17 00:57:52 +00001121 (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001122
1123// extload bool -> extload byte
1124// When extloading from 16-bit and smaller memory locations into 64-bit
1125// registers, use zero-extending loads so that the entire 64-bit register is
1126// defined, avoiding partial-register updates.
1127
1128def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1129def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1130def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1131def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1132def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1133def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1134
1135// For other extloads, use subregs, since the high contents of the register are
1136// defined after an extload.
1137def : Pat<(extloadi64i1 addr:$src),
1138 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1139def : Pat<(extloadi64i8 addr:$src),
1140 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1141def : Pat<(extloadi64i16 addr:$src),
1142 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1143def : Pat<(extloadi64i32 addr:$src),
1144 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1145
1146// anyext. Define these to do an explicit zero-extend to
1147// avoid partial-register updates.
1148def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1149 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1150def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1151
1152// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1153def : Pat<(i32 (anyext GR16:$src)),
1154 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1155
1156def : Pat<(i64 (anyext GR8 :$src)),
1157 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1158def : Pat<(i64 (anyext GR16:$src)),
1159 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1160def : Pat<(i64 (anyext GR32:$src)),
1161 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1162
1163
1164// Any instruction that defines a 32-bit result leaves the high half of the
1165// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1166// be copying from a truncate. And x86's cmov doesn't do anything if the
1167// condition is false. But any other 32-bit operation will zero-extend
1168// up to 64 bits.
1169def def32 : PatLeaf<(i32 GR32:$src), [{
1170 return N->getOpcode() != ISD::TRUNCATE &&
1171 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1172 N->getOpcode() != ISD::CopyFromReg &&
1173 N->getOpcode() != ISD::AssertSext &&
1174 N->getOpcode() != X86ISD::CMOV;
1175}]>;
1176
1177// In the case of a 32-bit def that is known to implicitly zero-extend,
1178// we can use a SUBREG_TO_REG.
1179def : Pat<(i64 (zext def32:$src)),
1180 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1181
1182//===----------------------------------------------------------------------===//
1183// Pattern match OR as ADD
1184//===----------------------------------------------------------------------===//
1185
1186// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1187// 3-addressified into an LEA instruction to avoid copies. However, we also
1188// want to finally emit these instructions as an or at the end of the code
1189// generator to make the generated code easier to read. To do this, we select
1190// into "disjoint bits" pseudo ops.
1191
1192// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1193def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1194 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1195 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1196
1197 APInt KnownZero0, KnownOne0;
1198 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1199 APInt KnownZero1, KnownOne1;
1200 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1201 return (~KnownZero0 & ~KnownZero1) == 0;
1202}]>;
1203
1204
1205// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1206// Try this before the selecting to OR.
1207let AddedComplexity = 5, SchedRW = [WriteALU] in {
1208
1209let isConvertibleToThreeAddress = 1,
1210 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1211let isCommutable = 1 in {
1212def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1213 "", // orw/addw REG, REG
1214 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1215def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1216 "", // orl/addl REG, REG
1217 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1218def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1219 "", // orq/addq REG, REG
1220 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1221} // isCommutable
1222
1223// NOTE: These are order specific, we want the ri8 forms to be listed
1224// first so that they are slightly preferred to the ri forms.
1225
1226def ADD16ri8_DB : I<0, Pseudo,
1227 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1228 "", // orw/addw REG, imm8
1229 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1230def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1231 "", // orw/addw REG, imm
1232 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1233
1234def ADD32ri8_DB : I<0, Pseudo,
1235 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1236 "", // orl/addl REG, imm8
1237 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1238def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1239 "", // orl/addl REG, imm
1240 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1241
1242
1243def ADD64ri8_DB : I<0, Pseudo,
1244 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1245 "", // orq/addq REG, imm8
1246 [(set GR64:$dst, (or_is_add GR64:$src1,
1247 i64immSExt8:$src2))]>;
1248def ADD64ri32_DB : I<0, Pseudo,
1249 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1250 "", // orq/addq REG, imm
1251 [(set GR64:$dst, (or_is_add GR64:$src1,
1252 i64immSExt32:$src2))]>;
1253}
1254} // AddedComplexity, SchedRW
1255
1256
1257//===----------------------------------------------------------------------===//
1258// Some peepholes
1259//===----------------------------------------------------------------------===//
1260
1261// Odd encoding trick: -128 fits into an 8-bit immediate field while
1262// +128 doesn't, so in this special case use a sub instead of an add.
1263def : Pat<(add GR16:$src1, 128),
1264 (SUB16ri8 GR16:$src1, -128)>;
1265def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1266 (SUB16mi8 addr:$dst, -128)>;
1267
1268def : Pat<(add GR32:$src1, 128),
1269 (SUB32ri8 GR32:$src1, -128)>;
1270def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1271 (SUB32mi8 addr:$dst, -128)>;
1272
1273def : Pat<(add GR64:$src1, 128),
1274 (SUB64ri8 GR64:$src1, -128)>;
1275def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1276 (SUB64mi8 addr:$dst, -128)>;
1277
1278// The same trick applies for 32-bit immediate fields in 64-bit
1279// instructions.
1280def : Pat<(add GR64:$src1, 0x0000000080000000),
1281 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1282def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1283 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1284
1285// To avoid needing to materialize an immediate in a register, use a 32-bit and
1286// with implicit zero-extension instead of a 64-bit and if the immediate has at
1287// least 32 bits of leading zeros. If in addition the last 32 bits can be
1288// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001289// This can also reduce instruction size by eliminating the need for the REX
1290// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001291
Craig Topper7ea899a2015-04-04 04:22:12 +00001292// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1293let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001294def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1295 (SUBREG_TO_REG
1296 (i64 0),
1297 (AND32ri8
1298 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1299 (i32 (GetLo8XForm imm:$imm))),
1300 sub_32bit)>;
1301
1302def : Pat<(and GR64:$src, i64immZExt32:$imm),
1303 (SUBREG_TO_REG
1304 (i64 0),
1305 (AND32ri
1306 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1307 (i32 (GetLo32XForm imm:$imm))),
1308 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001309} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001310
1311
Craig Topper7ea899a2015-04-04 04:22:12 +00001312// AddedComplexity is needed due to the increased complexity on the
1313// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1314// the MOVZX patterns keeps thems together in DAGIsel tables.
1315let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001316// r & (2^16-1) ==> movz
1317def : Pat<(and GR32:$src1, 0xffff),
1318 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1319// r & (2^8-1) ==> movz
1320def : Pat<(and GR32:$src1, 0xff),
1321 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1322 GR32_ABCD)),
1323 sub_8bit))>,
1324 Requires<[Not64BitMode]>;
1325// r & (2^8-1) ==> movz
1326def : Pat<(and GR16:$src1, 0xff),
1327 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1328 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1329 sub_16bit)>,
1330 Requires<[Not64BitMode]>;
1331
1332// r & (2^32-1) ==> movz
1333def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1334 (SUBREG_TO_REG (i64 0),
1335 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1336 sub_32bit)>;
1337// r & (2^16-1) ==> movz
Craig Topper9012028732015-04-04 02:08:20 +00001338let AddedComplexity = 1 in // Give priority over i64immZExt32.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001339def : Pat<(and GR64:$src, 0xffff),
1340 (SUBREG_TO_REG (i64 0),
1341 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1342 sub_32bit)>;
1343// r & (2^8-1) ==> movz
1344def : Pat<(and GR64:$src, 0xff),
1345 (SUBREG_TO_REG (i64 0),
1346 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1347 sub_32bit)>;
1348// r & (2^8-1) ==> movz
1349def : Pat<(and GR32:$src1, 0xff),
1350 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1351 Requires<[In64BitMode]>;
1352// r & (2^8-1) ==> movz
1353def : Pat<(and GR16:$src1, 0xff),
1354 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1355 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1356 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001357} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001358
1359
1360// sext_inreg patterns
1361def : Pat<(sext_inreg GR32:$src, i16),
1362 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1363def : Pat<(sext_inreg GR32:$src, i8),
1364 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1365 GR32_ABCD)),
1366 sub_8bit))>,
1367 Requires<[Not64BitMode]>;
1368
1369def : Pat<(sext_inreg GR16:$src, i8),
1370 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1371 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1372 sub_16bit)>,
1373 Requires<[Not64BitMode]>;
1374
1375def : Pat<(sext_inreg GR64:$src, i32),
1376 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1377def : Pat<(sext_inreg GR64:$src, i16),
1378 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1379def : Pat<(sext_inreg GR64:$src, i8),
1380 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1381def : Pat<(sext_inreg GR32:$src, i8),
1382 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1383 Requires<[In64BitMode]>;
1384def : Pat<(sext_inreg GR16:$src, i8),
1385 (EXTRACT_SUBREG (MOVSX32rr8
1386 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1387 Requires<[In64BitMode]>;
1388
1389// sext, sext_load, zext, zext_load
1390def: Pat<(i16 (sext GR8:$src)),
1391 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1392def: Pat<(sextloadi16i8 addr:$src),
1393 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1394def: Pat<(i16 (zext GR8:$src)),
1395 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1396def: Pat<(zextloadi16i8 addr:$src),
1397 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1398
1399// trunc patterns
1400def : Pat<(i16 (trunc GR32:$src)),
1401 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1402def : Pat<(i8 (trunc GR32:$src)),
1403 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1404 sub_8bit)>,
1405 Requires<[Not64BitMode]>;
1406def : Pat<(i8 (trunc GR16:$src)),
1407 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1408 sub_8bit)>,
1409 Requires<[Not64BitMode]>;
1410def : Pat<(i32 (trunc GR64:$src)),
1411 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1412def : Pat<(i16 (trunc GR64:$src)),
1413 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1414def : Pat<(i8 (trunc GR64:$src)),
1415 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1416def : Pat<(i8 (trunc GR32:$src)),
1417 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1418 Requires<[In64BitMode]>;
1419def : Pat<(i8 (trunc GR16:$src)),
1420 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1421 Requires<[In64BitMode]>;
1422
1423// h-register tricks
1424def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1425 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1426 sub_8bit_hi)>,
1427 Requires<[Not64BitMode]>;
1428def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1429 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1430 sub_8bit_hi)>,
1431 Requires<[Not64BitMode]>;
1432def : Pat<(srl GR16:$src, (i8 8)),
1433 (EXTRACT_SUBREG
1434 (MOVZX32rr8
1435 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1436 sub_8bit_hi)),
1437 sub_16bit)>,
1438 Requires<[Not64BitMode]>;
1439def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1440 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1441 GR16_ABCD)),
1442 sub_8bit_hi))>,
1443 Requires<[Not64BitMode]>;
1444def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1445 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1446 GR16_ABCD)),
1447 sub_8bit_hi))>,
1448 Requires<[Not64BitMode]>;
1449def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1450 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1451 GR32_ABCD)),
1452 sub_8bit_hi))>,
1453 Requires<[Not64BitMode]>;
1454def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1455 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1456 GR32_ABCD)),
1457 sub_8bit_hi))>,
1458 Requires<[Not64BitMode]>;
1459
1460// h-register tricks.
1461// For now, be conservative on x86-64 and use an h-register extract only if the
1462// value is immediately zero-extended or stored, which are somewhat common
1463// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1464// from being allocated in the same instruction as the h register, as there's
1465// currently no way to describe this requirement to the register allocator.
1466
1467// h-register extract and zero-extend.
1468def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1469 (SUBREG_TO_REG
1470 (i64 0),
1471 (MOVZX32_NOREXrr8
1472 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1473 sub_8bit_hi)),
1474 sub_32bit)>;
1475def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1476 (MOVZX32_NOREXrr8
1477 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1478 sub_8bit_hi))>,
1479 Requires<[In64BitMode]>;
1480def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1481 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1482 GR32_ABCD)),
1483 sub_8bit_hi))>,
1484 Requires<[In64BitMode]>;
1485def : Pat<(srl GR16:$src, (i8 8)),
1486 (EXTRACT_SUBREG
1487 (MOVZX32_NOREXrr8
1488 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1489 sub_8bit_hi)),
1490 sub_16bit)>,
1491 Requires<[In64BitMode]>;
1492def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1493 (MOVZX32_NOREXrr8
1494 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1495 sub_8bit_hi))>,
1496 Requires<[In64BitMode]>;
1497def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1498 (MOVZX32_NOREXrr8
1499 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1500 sub_8bit_hi))>,
1501 Requires<[In64BitMode]>;
1502def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1503 (SUBREG_TO_REG
1504 (i64 0),
1505 (MOVZX32_NOREXrr8
1506 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1507 sub_8bit_hi)),
1508 sub_32bit)>;
1509def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1510 (SUBREG_TO_REG
1511 (i64 0),
1512 (MOVZX32_NOREXrr8
1513 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1514 sub_8bit_hi)),
1515 sub_32bit)>;
1516
1517// h-register extract and store.
1518def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1519 (MOV8mr_NOREX
1520 addr:$dst,
1521 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1522 sub_8bit_hi))>;
1523def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1524 (MOV8mr_NOREX
1525 addr:$dst,
1526 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1527 sub_8bit_hi))>,
1528 Requires<[In64BitMode]>;
1529def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1530 (MOV8mr_NOREX
1531 addr:$dst,
1532 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1533 sub_8bit_hi))>,
1534 Requires<[In64BitMode]>;
1535
1536
1537// (shl x, 1) ==> (add x, x)
1538// Note that if x is undef (immediate or otherwise), we could theoretically
1539// end up with the two uses of x getting different values, producing a result
1540// where the least significant bit is not 0. However, the probability of this
1541// happening is considered low enough that this is officially not a
1542// "real problem".
1543def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1544def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1545def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1546def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1547
1548// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001549def immShift32 : ImmLeaf<i8, [{
1550 return countTrailingOnes<uint64_t>(Imm) >= 5;
1551}]>;
1552def immShift64 : ImmLeaf<i8, [{
1553 return countTrailingOnes<uint64_t>(Imm) >= 6;
1554}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001555
1556// Shift amount is implicitly masked.
1557multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1558 // (shift x (and y, 31)) ==> (shift x, y)
1559 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1560 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1561 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1562 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1563 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1564 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1565 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1566 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1567 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1568 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1569 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1570 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1571
1572 // (shift x (and y, 63)) ==> (shift x, y)
1573 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1574 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1575 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1576 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1577}
1578
1579defm : MaskedShiftAmountPats<shl, "SHL">;
1580defm : MaskedShiftAmountPats<srl, "SHR">;
1581defm : MaskedShiftAmountPats<sra, "SAR">;
1582defm : MaskedShiftAmountPats<rotl, "ROL">;
1583defm : MaskedShiftAmountPats<rotr, "ROR">;
1584
1585// (anyext (setcc_carry)) -> (setcc_carry)
1586def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1587 (SETB_C16r)>;
1588def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1589 (SETB_C32r)>;
1590def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1591 (SETB_C32r)>;
1592
1593
1594
1595
1596//===----------------------------------------------------------------------===//
1597// EFLAGS-defining Patterns
1598//===----------------------------------------------------------------------===//
1599
1600// add reg, reg
1601def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1602def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1603def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1604
1605// add reg, mem
1606def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1607 (ADD8rm GR8:$src1, addr:$src2)>;
1608def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1609 (ADD16rm GR16:$src1, addr:$src2)>;
1610def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1611 (ADD32rm GR32:$src1, addr:$src2)>;
1612
1613// add reg, imm
1614def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1615def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1616def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1617def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1618 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1619def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1620 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1621
1622// sub reg, reg
1623def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1624def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1625def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1626
1627// sub reg, mem
1628def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1629 (SUB8rm GR8:$src1, addr:$src2)>;
1630def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1631 (SUB16rm GR16:$src1, addr:$src2)>;
1632def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1633 (SUB32rm GR32:$src1, addr:$src2)>;
1634
1635// sub reg, imm
1636def : Pat<(sub GR8:$src1, imm:$src2),
1637 (SUB8ri GR8:$src1, imm:$src2)>;
1638def : Pat<(sub GR16:$src1, imm:$src2),
1639 (SUB16ri GR16:$src1, imm:$src2)>;
1640def : Pat<(sub GR32:$src1, imm:$src2),
1641 (SUB32ri GR32:$src1, imm:$src2)>;
1642def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1643 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1644def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1645 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1646
1647// sub 0, reg
1648def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1649def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1650def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1651def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1652
1653// mul reg, reg
1654def : Pat<(mul GR16:$src1, GR16:$src2),
1655 (IMUL16rr GR16:$src1, GR16:$src2)>;
1656def : Pat<(mul GR32:$src1, GR32:$src2),
1657 (IMUL32rr GR32:$src1, GR32:$src2)>;
1658
1659// mul reg, mem
1660def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1661 (IMUL16rm GR16:$src1, addr:$src2)>;
1662def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1663 (IMUL32rm GR32:$src1, addr:$src2)>;
1664
1665// mul reg, imm
1666def : Pat<(mul GR16:$src1, imm:$src2),
1667 (IMUL16rri GR16:$src1, imm:$src2)>;
1668def : Pat<(mul GR32:$src1, imm:$src2),
1669 (IMUL32rri GR32:$src1, imm:$src2)>;
1670def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1671 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1672def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1673 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1674
1675// reg = mul mem, imm
1676def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1677 (IMUL16rmi addr:$src1, imm:$src2)>;
1678def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1679 (IMUL32rmi addr:$src1, imm:$src2)>;
1680def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1681 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1682def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1683 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1684
1685// Patterns for nodes that do not produce flags, for instructions that do.
1686
1687// addition
1688def : Pat<(add GR64:$src1, GR64:$src2),
1689 (ADD64rr GR64:$src1, GR64:$src2)>;
1690def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1691 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1692def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1693 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1694def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1695 (ADD64rm GR64:$src1, addr:$src2)>;
1696
1697// subtraction
1698def : Pat<(sub GR64:$src1, GR64:$src2),
1699 (SUB64rr GR64:$src1, GR64:$src2)>;
1700def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1701 (SUB64rm GR64:$src1, addr:$src2)>;
1702def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1703 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1704def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1705 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1706
1707// Multiply
1708def : Pat<(mul GR64:$src1, GR64:$src2),
1709 (IMUL64rr GR64:$src1, GR64:$src2)>;
1710def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1711 (IMUL64rm GR64:$src1, addr:$src2)>;
1712def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1713 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1714def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1715 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1716def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1717 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1718def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1719 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1720
1721// Increment/Decrement reg.
1722// Do not make INC/DEC if it is slow
1723let Predicates = [NotSlowIncDec] in {
1724 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1725 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1726 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1727 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1728 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1729 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1730 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1731 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1732}
1733
1734// or reg/reg.
1735def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1736def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1737def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1738def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1739
1740// or reg/mem
1741def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1742 (OR8rm GR8:$src1, addr:$src2)>;
1743def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1744 (OR16rm GR16:$src1, addr:$src2)>;
1745def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1746 (OR32rm GR32:$src1, addr:$src2)>;
1747def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1748 (OR64rm GR64:$src1, addr:$src2)>;
1749
1750// or reg/imm
1751def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1752def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1753def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1754def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1755 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1756def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1757 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1758def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1759 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1760def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1761 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1762
1763// xor reg/reg
1764def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1765def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1766def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1767def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1768
1769// xor reg/mem
1770def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1771 (XOR8rm GR8:$src1, addr:$src2)>;
1772def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1773 (XOR16rm GR16:$src1, addr:$src2)>;
1774def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1775 (XOR32rm GR32:$src1, addr:$src2)>;
1776def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1777 (XOR64rm GR64:$src1, addr:$src2)>;
1778
1779// xor reg/imm
1780def : Pat<(xor GR8:$src1, imm:$src2),
1781 (XOR8ri GR8:$src1, imm:$src2)>;
1782def : Pat<(xor GR16:$src1, imm:$src2),
1783 (XOR16ri GR16:$src1, imm:$src2)>;
1784def : Pat<(xor GR32:$src1, imm:$src2),
1785 (XOR32ri GR32:$src1, imm:$src2)>;
1786def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1787 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1788def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1789 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1790def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1791 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1792def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1793 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1794
1795// and reg/reg
1796def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1797def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1798def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1799def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1800
1801// and reg/mem
1802def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1803 (AND8rm GR8:$src1, addr:$src2)>;
1804def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1805 (AND16rm GR16:$src1, addr:$src2)>;
1806def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1807 (AND32rm GR32:$src1, addr:$src2)>;
1808def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1809 (AND64rm GR64:$src1, addr:$src2)>;
1810
1811// and reg/imm
1812def : Pat<(and GR8:$src1, imm:$src2),
1813 (AND8ri GR8:$src1, imm:$src2)>;
1814def : Pat<(and GR16:$src1, imm:$src2),
1815 (AND16ri GR16:$src1, imm:$src2)>;
1816def : Pat<(and GR32:$src1, imm:$src2),
1817 (AND32ri GR32:$src1, imm:$src2)>;
1818def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1819 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1820def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1821 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1822def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1823 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1824def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1825 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1826
1827// Bit scan instruction patterns to match explicit zero-undef behavior.
1828def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1829def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1830def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1831def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1832def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1833def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1834
1835// When HasMOVBE is enabled it is possible to get a non-legalized
1836// register-register 16 bit bswap. This maps it to a ROL instruction.
1837let Predicates = [HasMOVBE] in {
1838 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1839}