blob: 7f850d6830e1506eddd0ac707bf465e09ce4292d [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000020 return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000021}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000025 return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000026}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction. This expands to code that looks like this:
33// call $next_inst
34// popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000046def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000047 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000048 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000049 Requires<[NotLP64]>;
50def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[NotLP64]>;
54}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000055def : Pat<(X86callseq_start timm:$amt1),
56 (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000058
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
Michael Kuperstein13fbd452015-02-01 16:56:04 +000065def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000066 "#ADJCALLSTACKDOWN",
Michael Kuperstein13fbd452015-02-01 16:56:04 +000067 []>,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000068 Requires<[IsLP64]>;
69def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70 "#ADJCALLSTACKUP",
71 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72 Requires<[IsLP64]>;
73}
Michael Kuperstein13fbd452015-02-01 16:56:04 +000074def : Pat<(X86callseq_start timm:$amt1),
75 (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000076
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81 (outs),
82 (ins GR8:$al,
83 i64imm:$regsavefi, i64imm:$offset,
84 variable_ops),
85 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86 [(X86vastart_save_xmm_regs GR8:$al,
87 imm:$regsavefi,
88 imm:$offset),
89 (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95 (outs GR64:$dst),
96 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98 [(set GR64:$dst,
99 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100 (implicit EFLAGS)]>;
101
102// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
103// targets. These calls are needed to probe the stack when allocating more than
104// 4k bytes in one go. Touching the stack at 4K increments is necessary to
105// ensure that the guard pages used by the OS virtual memory manager are
106// allocated in correct sequence.
107// The main point of having separate instruction are extra unmodelled effects
108// (compared to ordinary calls) like stack pointer change.
109
110let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
111 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
112 "# dynamic stack allocation",
113 [(X86WinAlloca)]>;
114
115// When using segmented stacks these are lowered into instructions which first
116// check if the current stacklet has enough free memory. If it does, memory is
117// allocated by bumping the stack pointer. Otherwise memory is allocated from
118// the heap.
119
120let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
121def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
122 "# variable sized alloca for segmented stacks",
123 [(set GR32:$dst,
124 (X86SegAlloca GR32:$size))]>,
125 Requires<[NotLP64]>;
126
127let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
128def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
129 "# variable sized alloca for segmented stacks",
130 [(set GR64:$dst,
131 (X86SegAlloca GR64:$size))]>,
132 Requires<[In64BitMode]>;
133}
134
135// The MSVC runtime contains an _ftol2 routine for converting floating-point
136// to integer values. It has a strange calling convention: the input is
137// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
138// used as a temporary register. No other registers (aside from flags) are
139// touched.
140// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
141// variant is unnecessary.
142
143let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
144 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
145 "# win32 fptoui",
146 [(X86WinFTOL RFP32:$src)]>,
147 Requires<[Not64BitMode]>;
148
149 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
150 "# win32 fptoui",
151 [(X86WinFTOL RFP64:$src)]>,
152 Requires<[Not64BitMode]>;
153}
154
155//===----------------------------------------------------------------------===//
156// EH Pseudo Instructions
157//
158let SchedRW = [WriteSystem] in {
159let isTerminator = 1, isReturn = 1, isBarrier = 1,
160 hasCtrlDep = 1, isCodeGenOnly = 1 in {
161def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
162 "ret\t#eh_return, addr: $addr",
163 [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
164
165}
166
167let isTerminator = 1, isReturn = 1, isBarrier = 1,
168 hasCtrlDep = 1, isCodeGenOnly = 1 in {
169def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
170 "ret\t#eh_return, addr: $addr",
171 [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
172
173}
174
175let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
176 usesCustomInserter = 1 in {
177 def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
178 "#EH_SJLJ_SETJMP32",
179 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180 Requires<[Not64BitMode]>;
181 def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
182 "#EH_SJLJ_SETJMP64",
183 [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
184 Requires<[In64BitMode]>;
185 let isTerminator = 1 in {
186 def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
187 "#EH_SJLJ_LONGJMP32",
188 [(X86eh_sjlj_longjmp addr:$buf)]>,
189 Requires<[Not64BitMode]>;
190 def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
191 "#EH_SJLJ_LONGJMP64",
192 [(X86eh_sjlj_longjmp addr:$buf)]>,
193 Requires<[In64BitMode]>;
194 }
195}
196} // SchedRW
197
198let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
199 def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
200 "#EH_SjLj_Setup\t$dst", []>;
201}
202
203//===----------------------------------------------------------------------===//
204// Pseudo instructions used by unwind info.
205//
206let isPseudo = 1 in {
207 def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
208 "#SEH_PushReg $reg", []>;
209 def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
210 "#SEH_SaveReg $reg, $dst", []>;
211 def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
212 "#SEH_SaveXMM $reg, $dst", []>;
213 def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
214 "#SEH_StackAlloc $size", []>;
215 def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
216 "#SEH_SetFrame $reg, $offset", []>;
217 def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
218 "#SEH_PushFrame $mode", []>;
219 def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
220 "#SEH_EndPrologue", []>;
221 def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
222 "#SEH_Epilogue", []>;
223}
224
225//===----------------------------------------------------------------------===//
226// Pseudo instructions used by segmented stacks.
227//
228
229// This is lowered into a RET instruction by MCInstLower. We need
230// this so that we don't have to have a MachineBasicBlock which ends
231// with a RET and also has successors.
232let isPseudo = 1 in {
233def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
234 "", []>;
235
236// This instruction is lowered to a RET followed by a MOV. The two
237// instructions are not generated on a higher level since then the
238// verifier sees a MachineBasicBlock ending with a non-terminator.
239def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
240 "", []>;
241}
242
243//===----------------------------------------------------------------------===//
244// Alias Instructions
245//===----------------------------------------------------------------------===//
246
247// Alias instruction mapping movr0 to xor.
248// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
249let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
250 isPseudo = 1 in
251def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
252 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
253
254// Other widths can also make use of the 32-bit xor, which may have a smaller
255// encoding and avoid partial register updates.
256def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
257def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
258def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
259 let AddedComplexity = 20;
260}
261
262// Materialize i64 constant where top 32-bits are zero. This could theoretically
263// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
264// that would make it more difficult to rematerialize.
265let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
266 isCodeGenOnly = 1, hasSideEffects = 0 in
267def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
268 "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
269
270// This 64-bit pseudo-move can be used for both a 64-bit constant that is
271// actually the zero-extension of a 32-bit constant, and for labels in the
272// x86-64 small code model.
273def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
274
275let AddedComplexity = 1 in
276def : Pat<(i64 mov64imm32:$src),
277 (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
278
279// Use sbb to materialize carry bit.
280let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
281// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
282// However, Pat<> can't replicate the destination reg into the inputs of the
283// result.
284def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
285 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
287 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
288def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
289 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
290def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
291 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
292} // isCodeGenOnly
293
294
295def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
296 (SETB_C16r)>;
297def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
298 (SETB_C32r)>;
299def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
300 (SETB_C64r)>;
301
302def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
303 (SETB_C16r)>;
304def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
305 (SETB_C32r)>;
306def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
307 (SETB_C64r)>;
308
309// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
310// will be eliminated and that the sbb can be extended up to a wider type. When
311// this happens, it is great. However, if we are left with an 8-bit sbb and an
312// and, we might as well just match it as a setb.
313def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
314 (SETBr)>;
315
316// (add OP, SETB) -> (adc OP, 0)
317def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
318 (ADC8ri GR8:$op, 0)>;
319def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
320 (ADC32ri8 GR32:$op, 0)>;
321def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
322 (ADC64ri8 GR64:$op, 0)>;
323
324// (sub OP, SETB) -> (sbb OP, 0)
325def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
326 (SBB8ri GR8:$op, 0)>;
327def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
328 (SBB32ri8 GR32:$op, 0)>;
329def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
330 (SBB64ri8 GR64:$op, 0)>;
331
332// (sub OP, SETCC_CARRY) -> (adc OP, 0)
333def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
334 (ADC8ri GR8:$op, 0)>;
335def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
336 (ADC32ri8 GR32:$op, 0)>;
337def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
338 (ADC64ri8 GR64:$op, 0)>;
339
340//===----------------------------------------------------------------------===//
341// String Pseudo Instructions
342//
343let SchedRW = [WriteMicrocoded] in {
344let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
345def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
346 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
347 Requires<[Not64BitMode]>;
348def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
349 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
350 Requires<[Not64BitMode]>;
351def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
352 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
353 Requires<[Not64BitMode]>;
354}
355
356let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
357def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
358 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
359 Requires<[In64BitMode]>;
360def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
361 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
362 Requires<[In64BitMode]>;
363def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
364 [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
365 Requires<[In64BitMode]>;
366def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
367 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
368 Requires<[In64BitMode]>;
369}
370
371// FIXME: Should use "(X86rep_stos AL)" as the pattern.
372let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
373 let Uses = [AL,ECX,EDI] in
374 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
375 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
376 Requires<[Not64BitMode]>;
377 let Uses = [AX,ECX,EDI] in
378 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
379 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
380 Requires<[Not64BitMode]>;
381 let Uses = [EAX,ECX,EDI] in
382 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
383 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
384 Requires<[Not64BitMode]>;
385}
386
387let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
388 let Uses = [AL,RCX,RDI] in
389 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
390 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
391 Requires<[In64BitMode]>;
392 let Uses = [AX,RCX,RDI] in
393 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
394 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
395 Requires<[In64BitMode]>;
396 let Uses = [RAX,RCX,RDI] in
397 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
398 [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
399 Requires<[In64BitMode]>;
400
401 let Uses = [RAX,RCX,RDI] in
402 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
403 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
404 Requires<[In64BitMode]>;
405}
406} // SchedRW
407
408//===----------------------------------------------------------------------===//
409// Thread Local Storage Instructions
410//
411
412// ELF TLS Support
413// All calls clobber the non-callee saved registers. ESP is marked as
414// a use to prevent stack-pointer assignments that appear immediately
415// before calls from potentially appearing dead.
416let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
417 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
418 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
419 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
420 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
421 Uses = [ESP] in {
422def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
423 "# TLS_addr32",
424 [(X86tlsaddr tls32addr:$sym)]>,
425 Requires<[Not64BitMode]>;
426def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
427 "# TLS_base_addr32",
428 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
429 Requires<[Not64BitMode]>;
430}
431
432// All calls clobber the non-callee saved registers. RSP is marked as
433// a use to prevent stack-pointer assignments that appear immediately
434// before calls from potentially appearing dead.
435let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
436 FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
437 ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
438 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
439 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
440 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
441 Uses = [RSP] in {
442def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
443 "# TLS_addr64",
444 [(X86tlsaddr tls64addr:$sym)]>,
445 Requires<[In64BitMode]>;
446def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
447 "# TLS_base_addr64",
448 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
449 Requires<[In64BitMode]>;
450}
451
452// Darwin TLS Support
453// For i386, the address of the thunk is passed on the stack, on return the
454// address of the variable is in %eax. %ecx is trashed during the function
455// call. All other registers are preserved.
456let Defs = [EAX, ECX, EFLAGS],
457 Uses = [ESP],
458 usesCustomInserter = 1 in
459def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
460 "# TLSCall_32",
461 [(X86TLSCall addr:$sym)]>,
462 Requires<[Not64BitMode]>;
463
464// For x86_64, the address of the thunk is passed in %rdi, on return
465// the address of the variable is in %rax. All other registers are preserved.
466let Defs = [RAX, EFLAGS],
467 Uses = [RSP, RDI],
468 usesCustomInserter = 1 in
469def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
470 "# TLSCall_64",
471 [(X86TLSCall addr:$sym)]>,
472 Requires<[In64BitMode]>;
473
474
475//===----------------------------------------------------------------------===//
476// Conditional Move Pseudo Instructions
477
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000478// CMOV* - Used to implement the SELECT DAG operation. Expanded after
479// instruction selection into a branch sequence.
480multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
481 def CMOV#NAME : I<0, Pseudo,
482 (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
483 "#CMOV_"#NAME#" PSEUDO!",
484 [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
485 EFLAGS)))]>;
486}
487
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000488let usesCustomInserter = 1, Uses = [EFLAGS] in {
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000489 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
490 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
491 // however that requires promoting the operands, and can induce additional
492 // i8 register pressure.
493 defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000494
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000495 let Predicates = [NoCMov] in {
496 defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
497 defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
498 } // Predicates = [NoCMov]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000499
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000500 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
501 // SSE1/SSE2.
502 let Predicates = [FPStackf32] in
503 defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000504
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000505 let Predicates = [FPStackf64] in
506 defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
507
508 defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
509
510 defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
511 defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
512 defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
513 defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
514 defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
515 defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
516 defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
517 defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
518 defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
519 defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
520 defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
Elena Demikhovskyc1ac5d72015-05-12 09:36:52 +0000521 defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
522 defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
523 defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
524 defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
Ahmed Bougacha8f2b4f02015-02-14 01:36:53 +0000525} // usesCustomInserter = 1, Uses = [EFLAGS]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000526
527//===----------------------------------------------------------------------===//
528// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
529//===----------------------------------------------------------------------===//
530
531// FIXME: Use normal instructions and add lock prefix dynamically.
532
533// Memory barriers
534
535// TODO: Get this to fold the constant into the instruction.
536let isCodeGenOnly = 1, Defs = [EFLAGS] in
537def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
538 "or{l}\t{$zero, $dst|$dst, $zero}",
539 [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
540 Sched<[WriteALULd, WriteRMW]>;
541
542let hasSideEffects = 1 in
543def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
544 "#MEMBARRIER",
545 [(X86MemBarrier)]>, Sched<[WriteLoad]>;
546
547// RegOpc corresponds to the mr version of the instruction
548// ImmOpc corresponds to the mi version of the instruction
549// ImmOpc8 corresponds to the mi8 version of the instruction
550// ImmMod corresponds to the instruction format of the mi and mi8 versions
551multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
552 Format ImmMod, string mnemonic> {
553let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
554 SchedRW = [WriteALULd, WriteRMW] in {
555
556def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
557 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
558 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
559 !strconcat(mnemonic, "{b}\t",
560 "{$src2, $dst|$dst, $src2}"),
561 [], IIC_ALU_NONMEM>, LOCK;
562def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
563 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
564 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
565 !strconcat(mnemonic, "{w}\t",
566 "{$src2, $dst|$dst, $src2}"),
567 [], IIC_ALU_NONMEM>, OpSize16, LOCK;
568def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
569 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
570 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
571 !strconcat(mnemonic, "{l}\t",
572 "{$src2, $dst|$dst, $src2}"),
573 [], IIC_ALU_NONMEM>, OpSize32, LOCK;
574def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
575 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
576 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
577 !strconcat(mnemonic, "{q}\t",
578 "{$src2, $dst|$dst, $src2}"),
579 [], IIC_ALU_NONMEM>, LOCK;
580
581def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
582 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
583 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
584 !strconcat(mnemonic, "{b}\t",
585 "{$src2, $dst|$dst, $src2}"),
586 [], IIC_ALU_MEM>, LOCK;
587
588def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
589 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
590 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
591 !strconcat(mnemonic, "{w}\t",
592 "{$src2, $dst|$dst, $src2}"),
593 [], IIC_ALU_MEM>, OpSize16, LOCK;
594
595def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
596 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
597 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
598 !strconcat(mnemonic, "{l}\t",
599 "{$src2, $dst|$dst, $src2}"),
600 [], IIC_ALU_MEM>, OpSize32, LOCK;
601
602def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
603 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
604 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
605 !strconcat(mnemonic, "{q}\t",
606 "{$src2, $dst|$dst, $src2}"),
607 [], IIC_ALU_MEM>, LOCK;
608
609def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
610 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
611 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
612 !strconcat(mnemonic, "{w}\t",
613 "{$src2, $dst|$dst, $src2}"),
614 [], IIC_ALU_MEM>, OpSize16, LOCK;
615def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
616 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
617 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
618 !strconcat(mnemonic, "{l}\t",
619 "{$src2, $dst|$dst, $src2}"),
620 [], IIC_ALU_MEM>, OpSize32, LOCK;
621def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
622 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
623 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
624 !strconcat(mnemonic, "{q}\t",
625 "{$src2, $dst|$dst, $src2}"),
626 [], IIC_ALU_MEM>, LOCK;
627
628}
629
630}
631
632defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
633defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
634defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
635defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
636defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
637
638// Optimized codegen when the non-memory output is not used.
639multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
640 string mnemonic> {
641let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
642 SchedRW = [WriteALULd, WriteRMW] in {
643
644def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
645 !strconcat(mnemonic, "{b}\t$dst"),
646 [], IIC_UNARY_MEM>, LOCK;
647def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
648 !strconcat(mnemonic, "{w}\t$dst"),
649 [], IIC_UNARY_MEM>, OpSize16, LOCK;
650def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
651 !strconcat(mnemonic, "{l}\t$dst"),
652 [], IIC_UNARY_MEM>, OpSize32, LOCK;
653def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
654 !strconcat(mnemonic, "{q}\t$dst"),
655 [], IIC_UNARY_MEM>, LOCK;
656}
657}
658
659defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
660defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
661
662// Atomic compare and swap.
663multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
664 SDPatternOperator frag, X86MemOperand x86memop,
665 InstrItinClass itin> {
666let isCodeGenOnly = 1 in {
667 def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
668 !strconcat(mnemonic, "\t$ptr"),
669 [(frag addr:$ptr)], itin>, TB, LOCK;
670}
671}
672
673multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
674 string mnemonic, SDPatternOperator frag,
675 InstrItinClass itin8, InstrItinClass itin> {
676let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
677 let Defs = [AL, EFLAGS], Uses = [AL] in
678 def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
679 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
680 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
681 let Defs = [AX, EFLAGS], Uses = [AX] in
682 def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
683 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
684 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
685 let Defs = [EAX, EFLAGS], Uses = [EAX] in
686 def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
687 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
688 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
689 let Defs = [RAX, EFLAGS], Uses = [RAX] in
690 def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
691 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
692 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
693}
694}
695
696let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
697 SchedRW = [WriteALULd, WriteRMW] in {
698defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
699 X86cas8, i64mem,
700 IIC_CMPX_LOCK_8B>;
701}
702
703let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
704 Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
705defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
706 X86cas16, i128mem,
707 IIC_CMPX_LOCK_16B>, REX_W;
708}
709
710defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
711 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
712
713// Atomic exchange and add
714multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
715 string frag,
716 InstrItinClass itin8, InstrItinClass itin> {
717 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
718 SchedRW = [WriteALULd, WriteRMW] in {
719 def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
720 (ins GR8:$val, i8mem:$ptr),
721 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
722 [(set GR8:$dst,
723 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
724 itin8>;
725 def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
726 (ins GR16:$val, i16mem:$ptr),
727 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
728 [(set
729 GR16:$dst,
730 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
731 itin>, OpSize16;
732 def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
733 (ins GR32:$val, i32mem:$ptr),
734 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
735 [(set
736 GR32:$dst,
737 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
738 itin>, OpSize32;
739 def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
740 (ins GR64:$val, i64mem:$ptr),
741 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
742 [(set
743 GR64:$dst,
744 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
745 itin>;
746 }
747}
748
749defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
750 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
751 TB, LOCK;
752
753/* The following multiclass tries to make sure that in code like
754 * x.store (immediate op x.load(acquire), release)
755 * an operation directly on memory is generated instead of wasting a register.
756 * It is not automatic as atomic_store/load are only lowered to MOV instructions
757 * extremely late to prevent them from being accidentally reordered in the backend
758 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
759 */
760multiclass RELEASE_BINOP_MI<string op> {
761 def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
762 "#RELEASE_BINOP PSEUDO!",
763 [(atomic_store_8 addr:$dst, (!cast<PatFrag>(op)
764 (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
765 // NAME#16 is not generated as 16-bit arithmetic instructions are considered
766 // costly and avoided as far as possible by this backend anyway
767 def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
768 "#RELEASE_BINOP PSEUDO!",
769 [(atomic_store_32 addr:$dst, (!cast<PatFrag>(op)
770 (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
771 def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
772 "#RELEASE_BINOP PSEUDO!",
773 [(atomic_store_64 addr:$dst, (!cast<PatFrag>(op)
774 (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
775}
776defm RELEASE_ADD : RELEASE_BINOP_MI<"add">;
777defm RELEASE_AND : RELEASE_BINOP_MI<"and">;
778defm RELEASE_OR : RELEASE_BINOP_MI<"or">;
779defm RELEASE_XOR : RELEASE_BINOP_MI<"xor">;
780// Note: we don't deal with sub, because substractions of constants are
781// optimized into additions before this code can run
782
783multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
784 def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
785 "#RELEASE_UNOP PSEUDO!",
786 [(atomic_store_8 addr:$dst, dag8)]>;
787 def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
788 "#RELEASE_UNOP PSEUDO!",
789 [(atomic_store_16 addr:$dst, dag16)]>;
790 def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
791 "#RELEASE_UNOP PSEUDO!",
792 [(atomic_store_32 addr:$dst, dag32)]>;
793 def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
794 "#RELEASE_UNOP PSEUDO!",
795 [(atomic_store_64 addr:$dst, dag64)]>;
796}
797
798defm RELEASE_INC : RELEASE_UNOP<
799 (add (atomic_load_8 addr:$dst), (i8 1)),
800 (add (atomic_load_16 addr:$dst), (i16 1)),
801 (add (atomic_load_32 addr:$dst), (i32 1)),
802 (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
803defm RELEASE_DEC : RELEASE_UNOP<
804 (add (atomic_load_8 addr:$dst), (i8 -1)),
805 (add (atomic_load_16 addr:$dst), (i16 -1)),
806 (add (atomic_load_32 addr:$dst), (i32 -1)),
807 (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
808/*
809TODO: These don't work because the type inference of TableGen fails.
810TODO: find a way to fix it.
811defm RELEASE_NEG : RELEASE_UNOP<
812 (ineg (atomic_load_8 addr:$dst)),
813 (ineg (atomic_load_16 addr:$dst)),
814 (ineg (atomic_load_32 addr:$dst)),
815 (ineg (atomic_load_64 addr:$dst))>;
816defm RELEASE_NOT : RELEASE_UNOP<
817 (not (atomic_load_8 addr:$dst)),
818 (not (atomic_load_16 addr:$dst)),
819 (not (atomic_load_32 addr:$dst)),
820 (not (atomic_load_64 addr:$dst))>;
821*/
822
823def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
824 "#RELEASE_MOV PSEUDO !",
825 [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
826def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
827 "#RELEASE_MOV PSEUDO !",
828 [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
829def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
830 "#RELEASE_MOV PSEUDO !",
831 [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
832def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
833 "#RELEASE_MOV PSEUDO !",
834 [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
835
836def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
837 "#RELEASE_MOV PSEUDO!",
838 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
839def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
840 "#RELEASE_MOV PSEUDO!",
841 [(atomic_store_16 addr:$dst, GR16:$src)]>;
842def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
843 "#RELEASE_MOV PSEUDO!",
844 [(atomic_store_32 addr:$dst, GR32:$src)]>;
845def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
846 "#RELEASE_MOV PSEUDO!",
847 [(atomic_store_64 addr:$dst, GR64:$src)]>;
848
849def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
850 "#ACQUIRE_MOV PSEUDO!",
851 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
852def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
853 "#ACQUIRE_MOV PSEUDO!",
854 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
855def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
856 "#ACQUIRE_MOV PSEUDO!",
857 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
858def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
859 "#ACQUIRE_MOV PSEUDO!",
860 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000861
862//===----------------------------------------------------------------------===//
863// DAG Pattern Matching Rules
864//===----------------------------------------------------------------------===//
865
866// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
867def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
868def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
869def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
870def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
871def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000872def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000873def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
874
875def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
876 (ADD32ri GR32:$src1, tconstpool:$src2)>;
877def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
878 (ADD32ri GR32:$src1, tjumptable:$src2)>;
879def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
880 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
881def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
882 (ADD32ri GR32:$src1, texternalsym:$src2)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000883def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
884 (ADD32ri GR32:$src1, mcsym:$src2)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000885def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
886 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
887
888def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
889 (MOV32mi addr:$dst, tglobaladdr:$src)>;
890def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
891 (MOV32mi addr:$dst, texternalsym:$src)>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000892def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
893 (MOV32mi addr:$dst, mcsym:$src)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000894def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
895 (MOV32mi addr:$dst, tblockaddress:$src)>;
896
897// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
898// code model mode, should use 'movabs'. FIXME: This is really a hack, the
899// 'movabs' predicate should handle this sort of thing.
900def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
901 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
902def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
903 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
904def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
905 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
906def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
907 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000908def : Pat<(i64 (X86Wrapper mcsym:$dst)),
909 (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000910def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
911 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
912
913// In kernel code model, we can get the address of a label
914// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
915// the MOV64ri32 should accept these.
916def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
917 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
918def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
919 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
920def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
921 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
922def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
923 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000924def : Pat<(i64 (X86Wrapper mcsym:$dst)),
925 (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000926def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
927 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
928
929// If we have small model and -static mode, it is safe to store global addresses
930// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
931// for MOV64mi32 should handle this sort of thing.
932def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
933 (MOV64mi32 addr:$dst, tconstpool:$src)>,
934 Requires<[NearData, IsStatic]>;
935def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
936 (MOV64mi32 addr:$dst, tjumptable:$src)>,
937 Requires<[NearData, IsStatic]>;
938def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
939 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
940 Requires<[NearData, IsStatic]>;
941def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
942 (MOV64mi32 addr:$dst, texternalsym:$src)>,
943 Requires<[NearData, IsStatic]>;
Rafael Espindola36b718f2015-06-22 17:46:53 +0000944def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
945 (MOV64mi32 addr:$dst, mcsym:$src)>,
946 Requires<[NearData, IsStatic]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000947def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
948 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
949 Requires<[NearData, IsStatic]>;
950
Rafael Espindola36b718f2015-06-22 17:46:53 +0000951def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
952def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000953
954// Calls
955
956// tls has some funny stuff here...
957// This corresponds to movabs $foo@tpoff, %rax
958def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
959 (MOV64ri32 tglobaltlsaddr :$dst)>;
960// This corresponds to add $foo@tpoff, %rax
961def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
962 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
963
964
965// Direct PC relative function call for small code model. 32-bit displacement
966// sign extended to 64-bit.
967def : Pat<(X86call (i64 tglobaladdr:$dst)),
968 (CALL64pcrel32 tglobaladdr:$dst)>;
969def : Pat<(X86call (i64 texternalsym:$dst)),
970 (CALL64pcrel32 texternalsym:$dst)>;
971
972// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
973// can never use callee-saved registers. That is the purpose of the GR64_TC
974// register classes.
975//
976// The only volatile register that is never used by the calling convention is
977// %r11. This happens when calling a vararg function with 6 arguments.
978//
979// Match an X86tcret that uses less than 7 volatile registers.
980def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
981 (X86tcret node:$ptr, node:$off), [{
982 // X86tcret args: (*chain, ptr, imm, regs..., glue)
983 unsigned NumRegs = 0;
984 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
985 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
986 return false;
987 return true;
988}]>;
989
990def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
991 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
992 Requires<[Not64BitMode]>;
993
994// FIXME: This is disabled for 32-bit PIC mode because the global base
995// register which is part of the address mode may be assigned a
996// callee-saved register.
997def : Pat<(X86tcret (load addr:$dst), imm:$off),
998 (TCRETURNmi addr:$dst, imm:$off)>,
999 Requires<[Not64BitMode, IsNotPIC]>;
1000
1001def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1002 (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1003 Requires<[NotLP64]>;
1004
1005def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1006 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1007 Requires<[NotLP64]>;
1008
1009def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1010 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1011 Requires<[In64BitMode]>;
1012
1013// Don't fold loads into X86tcret requiring more than 6 regs.
1014// There wouldn't be enough scratch registers for base+index.
1015def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1016 (TCRETURNmi64 addr:$dst, imm:$off)>,
1017 Requires<[In64BitMode]>;
1018
1019def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1020 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1021 Requires<[IsLP64]>;
1022
1023def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1024 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1025 Requires<[IsLP64]>;
1026
1027// Normal calls, with various flavors of addresses.
1028def : Pat<(X86call (i32 tglobaladdr:$dst)),
1029 (CALLpcrel32 tglobaladdr:$dst)>;
1030def : Pat<(X86call (i32 texternalsym:$dst)),
1031 (CALLpcrel32 texternalsym:$dst)>;
1032def : Pat<(X86call (i32 imm:$dst)),
1033 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1034
1035// Comparisons.
1036
1037// TEST R,R is smaller than CMP R,0
1038def : Pat<(X86cmp GR8:$src1, 0),
1039 (TEST8rr GR8:$src1, GR8:$src1)>;
1040def : Pat<(X86cmp GR16:$src1, 0),
1041 (TEST16rr GR16:$src1, GR16:$src1)>;
1042def : Pat<(X86cmp GR32:$src1, 0),
1043 (TEST32rr GR32:$src1, GR32:$src1)>;
1044def : Pat<(X86cmp GR64:$src1, 0),
1045 (TEST64rr GR64:$src1, GR64:$src1)>;
1046
1047// Conditional moves with folded loads with operands swapped and conditions
1048// inverted.
1049multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1050 Instruction Inst64> {
1051 let Predicates = [HasCMov] in {
1052 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1053 (Inst16 GR16:$src2, addr:$src1)>;
1054 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1055 (Inst32 GR32:$src2, addr:$src1)>;
1056 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1057 (Inst64 GR64:$src2, addr:$src1)>;
1058 }
1059}
1060
1061defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1062defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1063defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1064defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1065defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1066defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1067defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1068defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1069defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1070defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1071defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1072defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1073defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1074defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1075defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1076defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1077
1078// zextload bool -> zextload byte
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001079def : Pat<(zextloadi8i1 addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
1080def : Pat<(zextloadi16i1 addr:$src), (AND16ri (MOVZX16rm8 addr:$src), (i16 1))>;
1081def : Pat<(zextloadi32i1 addr:$src), (AND32ri (MOVZX32rm8 addr:$src), (i32 1))>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001082def : Pat<(zextloadi64i1 addr:$src),
Elena Demikhovskyf61727d2015-05-20 14:32:03 +00001083 (SUBREG_TO_REG (i64 0),
1084 (AND32ri (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001085
1086// extload bool -> extload byte
1087// When extloading from 16-bit and smaller memory locations into 64-bit
1088// registers, use zero-extending loads so that the entire 64-bit register is
1089// defined, avoiding partial-register updates.
1090
1091def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1092def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1093def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1094def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1095def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1096def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1097
1098// For other extloads, use subregs, since the high contents of the register are
1099// defined after an extload.
1100def : Pat<(extloadi64i1 addr:$src),
1101 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1102def : Pat<(extloadi64i8 addr:$src),
1103 (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1104def : Pat<(extloadi64i16 addr:$src),
1105 (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1106def : Pat<(extloadi64i32 addr:$src),
1107 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1108
1109// anyext. Define these to do an explicit zero-extend to
1110// avoid partial-register updates.
1111def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1112 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1113def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1114
1115// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1116def : Pat<(i32 (anyext GR16:$src)),
1117 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1118
1119def : Pat<(i64 (anyext GR8 :$src)),
1120 (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
1121def : Pat<(i64 (anyext GR16:$src)),
1122 (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1123def : Pat<(i64 (anyext GR32:$src)),
1124 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1125
1126
1127// Any instruction that defines a 32-bit result leaves the high half of the
1128// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1129// be copying from a truncate. And x86's cmov doesn't do anything if the
1130// condition is false. But any other 32-bit operation will zero-extend
1131// up to 64 bits.
1132def def32 : PatLeaf<(i32 GR32:$src), [{
1133 return N->getOpcode() != ISD::TRUNCATE &&
1134 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1135 N->getOpcode() != ISD::CopyFromReg &&
1136 N->getOpcode() != ISD::AssertSext &&
1137 N->getOpcode() != X86ISD::CMOV;
1138}]>;
1139
1140// In the case of a 32-bit def that is known to implicitly zero-extend,
1141// we can use a SUBREG_TO_REG.
1142def : Pat<(i64 (zext def32:$src)),
1143 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1144
1145//===----------------------------------------------------------------------===//
1146// Pattern match OR as ADD
1147//===----------------------------------------------------------------------===//
1148
1149// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1150// 3-addressified into an LEA instruction to avoid copies. However, we also
1151// want to finally emit these instructions as an or at the end of the code
1152// generator to make the generated code easier to read. To do this, we select
1153// into "disjoint bits" pseudo ops.
1154
1155// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1156def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1157 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1158 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1159
1160 APInt KnownZero0, KnownOne0;
1161 CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1162 APInt KnownZero1, KnownOne1;
1163 CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1164 return (~KnownZero0 & ~KnownZero1) == 0;
1165}]>;
1166
1167
1168// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1169// Try this before the selecting to OR.
1170let AddedComplexity = 5, SchedRW = [WriteALU] in {
1171
1172let isConvertibleToThreeAddress = 1,
1173 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1174let isCommutable = 1 in {
1175def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1176 "", // orw/addw REG, REG
1177 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1178def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1179 "", // orl/addl REG, REG
1180 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1181def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1182 "", // orq/addq REG, REG
1183 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1184} // isCommutable
1185
1186// NOTE: These are order specific, we want the ri8 forms to be listed
1187// first so that they are slightly preferred to the ri forms.
1188
1189def ADD16ri8_DB : I<0, Pseudo,
1190 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1191 "", // orw/addw REG, imm8
1192 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1193def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1194 "", // orw/addw REG, imm
1195 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1196
1197def ADD32ri8_DB : I<0, Pseudo,
1198 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1199 "", // orl/addl REG, imm8
1200 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1201def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1202 "", // orl/addl REG, imm
1203 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1204
1205
1206def ADD64ri8_DB : I<0, Pseudo,
1207 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1208 "", // orq/addq REG, imm8
1209 [(set GR64:$dst, (or_is_add GR64:$src1,
1210 i64immSExt8:$src2))]>;
1211def ADD64ri32_DB : I<0, Pseudo,
1212 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1213 "", // orq/addq REG, imm
1214 [(set GR64:$dst, (or_is_add GR64:$src1,
1215 i64immSExt32:$src2))]>;
1216}
1217} // AddedComplexity, SchedRW
1218
1219
1220//===----------------------------------------------------------------------===//
1221// Some peepholes
1222//===----------------------------------------------------------------------===//
1223
1224// Odd encoding trick: -128 fits into an 8-bit immediate field while
1225// +128 doesn't, so in this special case use a sub instead of an add.
1226def : Pat<(add GR16:$src1, 128),
1227 (SUB16ri8 GR16:$src1, -128)>;
1228def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1229 (SUB16mi8 addr:$dst, -128)>;
1230
1231def : Pat<(add GR32:$src1, 128),
1232 (SUB32ri8 GR32:$src1, -128)>;
1233def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1234 (SUB32mi8 addr:$dst, -128)>;
1235
1236def : Pat<(add GR64:$src1, 128),
1237 (SUB64ri8 GR64:$src1, -128)>;
1238def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1239 (SUB64mi8 addr:$dst, -128)>;
1240
1241// The same trick applies for 32-bit immediate fields in 64-bit
1242// instructions.
1243def : Pat<(add GR64:$src1, 0x0000000080000000),
1244 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1245def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1246 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1247
1248// To avoid needing to materialize an immediate in a register, use a 32-bit and
1249// with implicit zero-extension instead of a 64-bit and if the immediate has at
1250// least 32 bits of leading zeros. If in addition the last 32 bits can be
1251// represented with a sign extension of a 8 bit constant, use that.
Craig Topper3d441782015-04-04 02:31:43 +00001252// This can also reduce instruction size by eliminating the need for the REX
1253// prefix.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001254
Craig Topper7ea899a2015-04-04 04:22:12 +00001255// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1256let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001257def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1258 (SUBREG_TO_REG
1259 (i64 0),
1260 (AND32ri8
1261 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1262 (i32 (GetLo8XForm imm:$imm))),
1263 sub_32bit)>;
1264
1265def : Pat<(and GR64:$src, i64immZExt32:$imm),
1266 (SUBREG_TO_REG
1267 (i64 0),
1268 (AND32ri
1269 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1270 (i32 (GetLo32XForm imm:$imm))),
1271 sub_32bit)>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001272} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001273
1274
Craig Topper7ea899a2015-04-04 04:22:12 +00001275// AddedComplexity is needed due to the increased complexity on the
1276// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1277// the MOVZX patterns keeps thems together in DAGIsel tables.
1278let AddedComplexity = 1 in {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001279// r & (2^16-1) ==> movz
1280def : Pat<(and GR32:$src1, 0xffff),
1281 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1282// r & (2^8-1) ==> movz
1283def : Pat<(and GR32:$src1, 0xff),
1284 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1285 GR32_ABCD)),
1286 sub_8bit))>,
1287 Requires<[Not64BitMode]>;
1288// r & (2^8-1) ==> movz
1289def : Pat<(and GR16:$src1, 0xff),
1290 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1291 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1292 sub_16bit)>,
1293 Requires<[Not64BitMode]>;
1294
1295// r & (2^32-1) ==> movz
1296def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1297 (SUBREG_TO_REG (i64 0),
1298 (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1299 sub_32bit)>;
1300// r & (2^16-1) ==> movz
Craig Topper9012028732015-04-04 02:08:20 +00001301let AddedComplexity = 1 in // Give priority over i64immZExt32.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001302def : Pat<(and GR64:$src, 0xffff),
1303 (SUBREG_TO_REG (i64 0),
1304 (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1305 sub_32bit)>;
1306// r & (2^8-1) ==> movz
1307def : Pat<(and GR64:$src, 0xff),
1308 (SUBREG_TO_REG (i64 0),
1309 (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1310 sub_32bit)>;
1311// r & (2^8-1) ==> movz
1312def : Pat<(and GR32:$src1, 0xff),
1313 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1314 Requires<[In64BitMode]>;
1315// r & (2^8-1) ==> movz
1316def : Pat<(and GR16:$src1, 0xff),
1317 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1318 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1319 Requires<[In64BitMode]>;
Craig Topper7ea899a2015-04-04 04:22:12 +00001320} // AddedComplexity = 1
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001321
1322
1323// sext_inreg patterns
1324def : Pat<(sext_inreg GR32:$src, i16),
1325 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1326def : Pat<(sext_inreg GR32:$src, i8),
1327 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1328 GR32_ABCD)),
1329 sub_8bit))>,
1330 Requires<[Not64BitMode]>;
1331
1332def : Pat<(sext_inreg GR16:$src, i8),
1333 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1334 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1335 sub_16bit)>,
1336 Requires<[Not64BitMode]>;
1337
1338def : Pat<(sext_inreg GR64:$src, i32),
1339 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1340def : Pat<(sext_inreg GR64:$src, i16),
1341 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1342def : Pat<(sext_inreg GR64:$src, i8),
1343 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1344def : Pat<(sext_inreg GR32:$src, i8),
1345 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1346 Requires<[In64BitMode]>;
1347def : Pat<(sext_inreg GR16:$src, i8),
1348 (EXTRACT_SUBREG (MOVSX32rr8
1349 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1350 Requires<[In64BitMode]>;
1351
1352// sext, sext_load, zext, zext_load
1353def: Pat<(i16 (sext GR8:$src)),
1354 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1355def: Pat<(sextloadi16i8 addr:$src),
1356 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1357def: Pat<(i16 (zext GR8:$src)),
1358 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1359def: Pat<(zextloadi16i8 addr:$src),
1360 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1361
1362// trunc patterns
1363def : Pat<(i16 (trunc GR32:$src)),
1364 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1365def : Pat<(i8 (trunc GR32:$src)),
1366 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1367 sub_8bit)>,
1368 Requires<[Not64BitMode]>;
1369def : Pat<(i8 (trunc GR16:$src)),
1370 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1371 sub_8bit)>,
1372 Requires<[Not64BitMode]>;
1373def : Pat<(i32 (trunc GR64:$src)),
1374 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1375def : Pat<(i16 (trunc GR64:$src)),
1376 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1377def : Pat<(i8 (trunc GR64:$src)),
1378 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1379def : Pat<(i8 (trunc GR32:$src)),
1380 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1381 Requires<[In64BitMode]>;
1382def : Pat<(i8 (trunc GR16:$src)),
1383 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1384 Requires<[In64BitMode]>;
1385
1386// h-register tricks
1387def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1388 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1389 sub_8bit_hi)>,
1390 Requires<[Not64BitMode]>;
1391def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1392 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1393 sub_8bit_hi)>,
1394 Requires<[Not64BitMode]>;
1395def : Pat<(srl GR16:$src, (i8 8)),
1396 (EXTRACT_SUBREG
1397 (MOVZX32rr8
1398 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1399 sub_8bit_hi)),
1400 sub_16bit)>,
1401 Requires<[Not64BitMode]>;
1402def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1403 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1404 GR16_ABCD)),
1405 sub_8bit_hi))>,
1406 Requires<[Not64BitMode]>;
1407def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1408 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1409 GR16_ABCD)),
1410 sub_8bit_hi))>,
1411 Requires<[Not64BitMode]>;
1412def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1413 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1414 GR32_ABCD)),
1415 sub_8bit_hi))>,
1416 Requires<[Not64BitMode]>;
1417def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1418 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1419 GR32_ABCD)),
1420 sub_8bit_hi))>,
1421 Requires<[Not64BitMode]>;
1422
1423// h-register tricks.
1424// For now, be conservative on x86-64 and use an h-register extract only if the
1425// value is immediately zero-extended or stored, which are somewhat common
1426// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1427// from being allocated in the same instruction as the h register, as there's
1428// currently no way to describe this requirement to the register allocator.
1429
1430// h-register extract and zero-extend.
1431def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1432 (SUBREG_TO_REG
1433 (i64 0),
1434 (MOVZX32_NOREXrr8
1435 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1436 sub_8bit_hi)),
1437 sub_32bit)>;
1438def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1439 (MOVZX32_NOREXrr8
1440 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1441 sub_8bit_hi))>,
1442 Requires<[In64BitMode]>;
1443def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1444 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1445 GR32_ABCD)),
1446 sub_8bit_hi))>,
1447 Requires<[In64BitMode]>;
1448def : Pat<(srl GR16:$src, (i8 8)),
1449 (EXTRACT_SUBREG
1450 (MOVZX32_NOREXrr8
1451 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1452 sub_8bit_hi)),
1453 sub_16bit)>,
1454 Requires<[In64BitMode]>;
1455def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1456 (MOVZX32_NOREXrr8
1457 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1458 sub_8bit_hi))>,
1459 Requires<[In64BitMode]>;
1460def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1461 (MOVZX32_NOREXrr8
1462 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1463 sub_8bit_hi))>,
1464 Requires<[In64BitMode]>;
1465def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1466 (SUBREG_TO_REG
1467 (i64 0),
1468 (MOVZX32_NOREXrr8
1469 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1470 sub_8bit_hi)),
1471 sub_32bit)>;
1472def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1473 (SUBREG_TO_REG
1474 (i64 0),
1475 (MOVZX32_NOREXrr8
1476 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1477 sub_8bit_hi)),
1478 sub_32bit)>;
1479
1480// h-register extract and store.
1481def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1482 (MOV8mr_NOREX
1483 addr:$dst,
1484 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1485 sub_8bit_hi))>;
1486def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1487 (MOV8mr_NOREX
1488 addr:$dst,
1489 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1490 sub_8bit_hi))>,
1491 Requires<[In64BitMode]>;
1492def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1493 (MOV8mr_NOREX
1494 addr:$dst,
1495 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1496 sub_8bit_hi))>,
1497 Requires<[In64BitMode]>;
1498
1499
1500// (shl x, 1) ==> (add x, x)
1501// Note that if x is undef (immediate or otherwise), we could theoretically
1502// end up with the two uses of x getting different values, producing a result
1503// where the least significant bit is not 0. However, the probability of this
1504// happening is considered low enough that this is officially not a
1505// "real problem".
1506def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1507def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1508def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1509def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1510
1511// Helper imms that check if a mask doesn't change significant shift bits.
Benjamin Kramer5f6a9072015-02-12 15:35:40 +00001512def immShift32 : ImmLeaf<i8, [{
1513 return countTrailingOnes<uint64_t>(Imm) >= 5;
1514}]>;
1515def immShift64 : ImmLeaf<i8, [{
1516 return countTrailingOnes<uint64_t>(Imm) >= 6;
1517}]>;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001518
1519// Shift amount is implicitly masked.
1520multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1521 // (shift x (and y, 31)) ==> (shift x, y)
1522 def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1523 (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1524 def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1525 (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1526 def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1527 (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1528 def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1529 (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1530 def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1531 (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1532 def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1533 (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1534
1535 // (shift x (and y, 63)) ==> (shift x, y)
1536 def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1537 (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1538 def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1539 (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1540}
1541
1542defm : MaskedShiftAmountPats<shl, "SHL">;
1543defm : MaskedShiftAmountPats<srl, "SHR">;
1544defm : MaskedShiftAmountPats<sra, "SAR">;
1545defm : MaskedShiftAmountPats<rotl, "ROL">;
1546defm : MaskedShiftAmountPats<rotr, "ROR">;
1547
1548// (anyext (setcc_carry)) -> (setcc_carry)
1549def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1550 (SETB_C16r)>;
1551def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1552 (SETB_C32r)>;
1553def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1554 (SETB_C32r)>;
1555
1556
1557
1558
1559//===----------------------------------------------------------------------===//
1560// EFLAGS-defining Patterns
1561//===----------------------------------------------------------------------===//
1562
1563// add reg, reg
1564def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1565def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1566def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1567
1568// add reg, mem
1569def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1570 (ADD8rm GR8:$src1, addr:$src2)>;
1571def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1572 (ADD16rm GR16:$src1, addr:$src2)>;
1573def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1574 (ADD32rm GR32:$src1, addr:$src2)>;
1575
1576// add reg, imm
1577def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1578def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1579def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1580def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1581 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1582def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1583 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1584
1585// sub reg, reg
1586def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1587def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1588def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1589
1590// sub reg, mem
1591def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1592 (SUB8rm GR8:$src1, addr:$src2)>;
1593def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1594 (SUB16rm GR16:$src1, addr:$src2)>;
1595def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1596 (SUB32rm GR32:$src1, addr:$src2)>;
1597
1598// sub reg, imm
1599def : Pat<(sub GR8:$src1, imm:$src2),
1600 (SUB8ri GR8:$src1, imm:$src2)>;
1601def : Pat<(sub GR16:$src1, imm:$src2),
1602 (SUB16ri GR16:$src1, imm:$src2)>;
1603def : Pat<(sub GR32:$src1, imm:$src2),
1604 (SUB32ri GR32:$src1, imm:$src2)>;
1605def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1606 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1607def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1608 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1609
1610// sub 0, reg
1611def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1612def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1613def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1614def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1615
1616// mul reg, reg
1617def : Pat<(mul GR16:$src1, GR16:$src2),
1618 (IMUL16rr GR16:$src1, GR16:$src2)>;
1619def : Pat<(mul GR32:$src1, GR32:$src2),
1620 (IMUL32rr GR32:$src1, GR32:$src2)>;
1621
1622// mul reg, mem
1623def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1624 (IMUL16rm GR16:$src1, addr:$src2)>;
1625def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1626 (IMUL32rm GR32:$src1, addr:$src2)>;
1627
1628// mul reg, imm
1629def : Pat<(mul GR16:$src1, imm:$src2),
1630 (IMUL16rri GR16:$src1, imm:$src2)>;
1631def : Pat<(mul GR32:$src1, imm:$src2),
1632 (IMUL32rri GR32:$src1, imm:$src2)>;
1633def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1634 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1635def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1636 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1637
1638// reg = mul mem, imm
1639def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1640 (IMUL16rmi addr:$src1, imm:$src2)>;
1641def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1642 (IMUL32rmi addr:$src1, imm:$src2)>;
1643def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1644 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1645def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1646 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1647
1648// Patterns for nodes that do not produce flags, for instructions that do.
1649
1650// addition
1651def : Pat<(add GR64:$src1, GR64:$src2),
1652 (ADD64rr GR64:$src1, GR64:$src2)>;
1653def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1654 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1655def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1656 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1657def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1658 (ADD64rm GR64:$src1, addr:$src2)>;
1659
1660// subtraction
1661def : Pat<(sub GR64:$src1, GR64:$src2),
1662 (SUB64rr GR64:$src1, GR64:$src2)>;
1663def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1664 (SUB64rm GR64:$src1, addr:$src2)>;
1665def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1666 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1667def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1668 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1669
1670// Multiply
1671def : Pat<(mul GR64:$src1, GR64:$src2),
1672 (IMUL64rr GR64:$src1, GR64:$src2)>;
1673def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1674 (IMUL64rm GR64:$src1, addr:$src2)>;
1675def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1676 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1677def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1678 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1679def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1680 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1681def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1682 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1683
1684// Increment/Decrement reg.
1685// Do not make INC/DEC if it is slow
1686let Predicates = [NotSlowIncDec] in {
1687 def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
1688 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
1689 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
1690 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1691 def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
1692 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1693 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1694 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1695}
1696
1697// or reg/reg.
1698def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1699def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1700def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1701def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1702
1703// or reg/mem
1704def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1705 (OR8rm GR8:$src1, addr:$src2)>;
1706def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1707 (OR16rm GR16:$src1, addr:$src2)>;
1708def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1709 (OR32rm GR32:$src1, addr:$src2)>;
1710def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1711 (OR64rm GR64:$src1, addr:$src2)>;
1712
1713// or reg/imm
1714def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1715def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1716def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1717def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1718 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1719def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1720 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1721def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1722 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1723def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1724 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1725
1726// xor reg/reg
1727def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1728def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1729def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1730def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1731
1732// xor reg/mem
1733def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1734 (XOR8rm GR8:$src1, addr:$src2)>;
1735def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1736 (XOR16rm GR16:$src1, addr:$src2)>;
1737def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1738 (XOR32rm GR32:$src1, addr:$src2)>;
1739def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1740 (XOR64rm GR64:$src1, addr:$src2)>;
1741
1742// xor reg/imm
1743def : Pat<(xor GR8:$src1, imm:$src2),
1744 (XOR8ri GR8:$src1, imm:$src2)>;
1745def : Pat<(xor GR16:$src1, imm:$src2),
1746 (XOR16ri GR16:$src1, imm:$src2)>;
1747def : Pat<(xor GR32:$src1, imm:$src2),
1748 (XOR32ri GR32:$src1, imm:$src2)>;
1749def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1750 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1751def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1752 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1753def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1754 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1755def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1756 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1757
1758// and reg/reg
1759def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1760def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1761def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1762def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1763
1764// and reg/mem
1765def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1766 (AND8rm GR8:$src1, addr:$src2)>;
1767def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1768 (AND16rm GR16:$src1, addr:$src2)>;
1769def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1770 (AND32rm GR32:$src1, addr:$src2)>;
1771def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1772 (AND64rm GR64:$src1, addr:$src2)>;
1773
1774// and reg/imm
1775def : Pat<(and GR8:$src1, imm:$src2),
1776 (AND8ri GR8:$src1, imm:$src2)>;
1777def : Pat<(and GR16:$src1, imm:$src2),
1778 (AND16ri GR16:$src1, imm:$src2)>;
1779def : Pat<(and GR32:$src1, imm:$src2),
1780 (AND32ri GR32:$src1, imm:$src2)>;
1781def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1782 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1783def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1784 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1785def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1786 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1787def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1788 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1789
1790// Bit scan instruction patterns to match explicit zero-undef behavior.
1791def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1792def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1793def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1794def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1795def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1796def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1797
1798// When HasMOVBE is enabled it is possible to get a non-legalized
1799// register-register 16 bit bswap. This maps it to a ROL instruction.
1800let Predicates = [HasMOVBE] in {
1801 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1802}