blob: bc3997b857bd168ee52cbb6801d007314906b960 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000061//
62// Using a custom inserter for BRC gives us a chance to convert the BRC
63// and a preceding compare into a single compare-and-branch instruction.
64// The inserter makes no change in cases where a separate branch really
65// is needed.
66multiclass CondBranches<Operand ccmask, string short, string long> {
Richard Sandiford14a44492013-05-22 13:38:45 +000067 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000068 def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
69 def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000070 }
71}
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000072let isCodeGenOnly = 1, usesCustomInserter = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000073 defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
Richard Sandiford6a808f92013-05-14 09:38:07 +000074defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000075
Richard Sandiford312425f2013-05-20 14:23:08 +000076def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000077
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000078// Fused compare-and-branch instructions. As for normal branches,
79// we handle these instructions internally in their raw CRJ-like form,
80// but use assembly macros like CRJE when writing them out.
81//
82// These instructions do not use or clobber the condition codes.
83// We nevertheless pretend that they clobber CC, so that we can lower
84// them to separate comparisons and BRCLs if the branch ends up being
85// out of range.
86multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
87 let isBranch = 1, isTerminator = 1, Defs = [CC] in {
88 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
89 brtarget16:$RI4),
90 "crj"#pos1#"\t$R1, $R2, "#pos2#"$RI4", []>;
91 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
92 brtarget16:$RI4),
93 "cgrj"#pos1#"\t$R1, $R2, "#pos2#"$RI4", []>;
94 }
95}
96let isCodeGenOnly = 1 in
97 defm C : CompareBranches<cond4, "$M3", "">;
98defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
99
100// Define AsmParser mnemonics for each general condition-code mask
101// (integer or floating-point)
102multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
103 let R1 = ccmask in {
104 def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j"#name#"\t$I2", []>;
Richard Sandifordd454ec02013-05-14 09:28:21 +0000105 def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000106 "jg"#name#"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000107 }
108}
Richard Sandiford6a808f92013-05-14 09:38:07 +0000109defm AsmJO : CondExtendedMnemonic<1, "o">;
110defm AsmJH : CondExtendedMnemonic<2, "h">;
111defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
112defm AsmJL : CondExtendedMnemonic<4, "l">;
113defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
114defm AsmJLH : CondExtendedMnemonic<6, "lh">;
115defm AsmJNE : CondExtendedMnemonic<7, "ne">;
116defm AsmJE : CondExtendedMnemonic<8, "e">;
117defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
118defm AsmJHE : CondExtendedMnemonic<10, "he">;
119defm AsmJNL : CondExtendedMnemonic<11, "nl">;
120defm AsmJLE : CondExtendedMnemonic<12, "le">;
121defm AsmJNH : CondExtendedMnemonic<13, "nh">;
122defm AsmJNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000123
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000124// Define AsmParser mnemonics for each integer condition-code mask.
125// This is like the list above, except that condition 3 is not possible
126// and that the low bit of the mask is therefore always 0. This means
127// that each condition has two names. Conditions "o" and "no" are not used.
128//
129// We don't make one of the two names an alias of the other because
130// we need the custom parsing routines to select the correct register class.
131multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
132 let M3 = ccmask in {
133 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
134 brtarget16:$RI4),
135 "crj"##name##"\t$R1, $R2, $RI4", []>;
136 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
137 brtarget16:$RI4),
138 "cgrj"##name##"\t$R1, $R2, $RI4", []>;
139 }
140}
141multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
142 : IntCondExtendedMnemonicA<ccmask, name1> {
143 let isAsmParserOnly = 1 in
144 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
145}
146defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
147defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
148defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
149defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
150defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
151defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
152
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000153def Select32 : SelectWrapper<GR32>;
154def Select64 : SelectWrapper<GR64>;
155
156//===----------------------------------------------------------------------===//
157// Call instructions
158//===----------------------------------------------------------------------===//
159
160// The definitions here are for the call-clobbered registers.
161let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
162 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
163 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000164 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
165 "bras\t%r14, $I2", []>;
166 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
167 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
168 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
169 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000170}
171
172// Define the general form of the call instructions for the asm parser.
173// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000174def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
175 "bras\t$R1, $I2", []>;
176def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
177 "brasl\t$R1, $I2", []>;
178def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
179 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000180
181//===----------------------------------------------------------------------===//
182// Move instructions
183//===----------------------------------------------------------------------===//
184
185// Register moves.
186let neverHasSideEffects = 1 in {
187 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
188 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
189}
190
191// Immediate moves.
192let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
193 // 16-bit sign-extended immediates.
194 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
195 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
196
197 // Other 16-bit immediates.
198 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
199 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
200 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
201 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
202
203 // 32-bit immediates.
204 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
205 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
206 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
207}
208
209// Register loads.
210let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
211 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
212 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
213
214 def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
215 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
216
217 // These instructions are split after register allocation, so we don't
218 // want a custom inserter.
219 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
220 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
221 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
222 }
223}
224
225// Register stores.
226let SimpleBDXStore = 1 in {
227 let isCodeGenOnly = 1 in {
228 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
229 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
230 }
231
232 def STG : StoreRXY<"stg", 0xE324, store, GR64>;
233 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
234
235 // These instructions are split after register allocation, so we don't
236 // want a custom inserter.
237 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
238 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
239 [(store GR128:$src, bdxaddr20only128:$dst)]>;
240 }
241}
242
243// 8-bit immediate stores to 8-bit fields.
244defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
245
246// 16-bit immediate stores to 16-, 32- or 64-bit fields.
247def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
248def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
249def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
250
251//===----------------------------------------------------------------------===//
252// Sign extensions
253//===----------------------------------------------------------------------===//
254
255// 32-bit extensions from registers.
256let neverHasSideEffects = 1 in {
257 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
258 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
259}
260
261// 64-bit extensions from registers.
262let neverHasSideEffects = 1 in {
263 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
264 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
265 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
266}
267
268// Match 32-to-64-bit sign extensions in which the source is already
269// in a 64-bit register.
270def : Pat<(sext_inreg GR64:$src, i32),
271 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
272
273// 32-bit extensions from memory.
274def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
275defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
276def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
277
278// 64-bit extensions from memory.
279def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
280def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
281def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
282def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
283def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
284
285// If the sign of a load-extend operation doesn't matter, use the signed ones.
286// There's not really much to choose between the sign and zero extensions,
287// but LH is more compact than LLH for small offsets.
288def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
289def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
290def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
291
292def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
293def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
294def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
295
296//===----------------------------------------------------------------------===//
297// Zero extensions
298//===----------------------------------------------------------------------===//
299
300// 32-bit extensions from registers.
301let neverHasSideEffects = 1 in {
302 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
303 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
304}
305
306// 64-bit extensions from registers.
307let neverHasSideEffects = 1 in {
308 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
309 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
310 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
311}
312
313// Match 32-to-64-bit zero extensions in which the source is already
314// in a 64-bit register.
315def : Pat<(and GR64:$src, 0xffffffff),
316 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
317
318// 32-bit extensions from memory.
319def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
320def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
321def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
322
323// 64-bit extensions from memory.
324def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
325def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
326def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
327def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
328def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
329
330//===----------------------------------------------------------------------===//
331// Truncations
332//===----------------------------------------------------------------------===//
333
334// Truncations of 64-bit registers to 32-bit registers.
335def : Pat<(i32 (trunc GR64:$src)),
336 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
337
338// Truncations of 32-bit registers to memory.
339let isCodeGenOnly = 1 in {
340 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
341 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
342 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
343}
344
345// Truncations of 64-bit registers to memory.
346defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
347defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
348def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
349defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
350def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
351
352//===----------------------------------------------------------------------===//
353// Multi-register moves
354//===----------------------------------------------------------------------===//
355
356// Multi-register loads.
357def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
358
359// Multi-register stores.
360def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
361
362//===----------------------------------------------------------------------===//
363// Byte swaps
364//===----------------------------------------------------------------------===//
365
366// Byte-swapping register moves.
367let neverHasSideEffects = 1 in {
368 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
369 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
370}
371
372// Byte-swapping loads.
373def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap>, GR32>;
374def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap>, GR64>;
375
376// Byte-swapping stores.
377def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap>, GR32>;
378def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap>, GR64>;
379
380//===----------------------------------------------------------------------===//
381// Load address instructions
382//===----------------------------------------------------------------------===//
383
384// Load BDX-style addresses.
385let neverHasSideEffects = 1, Function = "la" in {
386 let PairType = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000387 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
388 "la\t$R1, $XBD2",
389 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000390 let PairType = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000391 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
392 "lay\t$R1, $XBD2",
393 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000394}
395
396// Load a PC-relative address. There's no version of this instruction
397// with a 16-bit offset, so there's no relaxation.
398let neverHasSideEffects = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000399 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
400 "larl\t$R1, $I2",
401 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000402}
403
404//===----------------------------------------------------------------------===//
405// Negation
406//===----------------------------------------------------------------------===//
407
Richard Sandiford14a44492013-05-22 13:38:45 +0000408let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000409 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
410 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
411 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
412}
413defm : SXU<ineg, LCGFR>;
414
415//===----------------------------------------------------------------------===//
416// Insertion
417//===----------------------------------------------------------------------===//
418
419let isCodeGenOnly = 1 in
420 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
421defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
422
423defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
424defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
425
426defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
427defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
428
429// Insertions of a 16-bit immediate, leaving other bits unaffected.
430// We don't have or_as_insert equivalents of these operations because
431// OI is available instead.
432let isCodeGenOnly = 1 in {
433 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
434 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
435}
436def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
437def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
438def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
439def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
440
441// ...likewise for 32-bit immediates. For GR32s this is a general
442// full-width move. (We use IILF rather than something like LLILF
443// for 32-bit moves because IILF leaves the upper 32 bits of the
444// GR64 unchanged.)
445let isCodeGenOnly = 1 in {
446 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
447}
448def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
449def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
450
451// An alternative model of inserthf, with the first operand being
452// a zero-extended value.
453def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
454 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
455 imm64hf32:$imm)>;
456
457//===----------------------------------------------------------------------===//
458// Addition
459//===----------------------------------------------------------------------===//
460
461// Plain addition.
Richard Sandiford14a44492013-05-22 13:38:45 +0000462let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000463 // Addition of a register.
464 let isCommutable = 1 in {
465 def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
466 def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
467 }
468 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
469
470 // Addition of signed 16-bit immediates.
471 def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
472 def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
473
474 // Addition of signed 32-bit immediates.
475 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
476 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
477
478 // Addition of memory.
479 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
480 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
481 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
482 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
483
484 // Addition to memory.
485 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
486 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
487}
488defm : SXB<add, GR64, AGFR>;
489
490// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000491let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000492 // Addition of a register.
493 let isCommutable = 1 in {
494 def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
495 def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
496 }
497 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
498
499 // Addition of unsigned 32-bit immediates.
500 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
501 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
502
503 // Addition of memory.
504 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
505 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
506 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
507}
508defm : ZXB<addc, GR64, ALGFR>;
509
510// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000511let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000512 // Addition of a register.
513 def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
514 def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
515
516 // Addition of memory.
517 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
518 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
519}
520
521//===----------------------------------------------------------------------===//
522// Subtraction
523//===----------------------------------------------------------------------===//
524
525// Plain substraction. Although immediate forms exist, we use the
526// add-immediate instruction instead.
Richard Sandiford14a44492013-05-22 13:38:45 +0000527let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000528 // Subtraction of a register.
529 def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
530 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
531 def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
532
533 // Subtraction of memory.
Richard Sandifordffd14412013-05-15 15:05:29 +0000534 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000535 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
536 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
537 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
538}
539defm : SXB<sub, GR64, SGFR>;
540
541// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000542let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000543 // Subtraction of a register.
544 def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
545 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
546 def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
547
548 // Subtraction of unsigned 32-bit immediates. These don't match
549 // subc because we prefer addc for constants.
550 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
551 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
552
553 // Subtraction of memory.
554 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
555 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
556 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
557}
558defm : ZXB<subc, GR64, SLGFR>;
559
560// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000561let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000562 // Subtraction of a register.
563 def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
564 def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
565
566 // Subtraction of memory.
567 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
568 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
569}
570
571//===----------------------------------------------------------------------===//
572// AND
573//===----------------------------------------------------------------------===//
574
Richard Sandiford14a44492013-05-22 13:38:45 +0000575let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000576 // ANDs of a register.
577 let isCommutable = 1 in {
578 def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
579 def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
580 }
581
582 // ANDs of a 16-bit immediate, leaving other bits unaffected.
583 let isCodeGenOnly = 1 in {
584 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
585 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
586 }
587 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
588 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
589 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
590 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
591
592 // ANDs of a 32-bit immediate, leaving other bits unaffected.
593 let isCodeGenOnly = 1 in
594 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
595 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
596 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
597
598 // ANDs of memory.
599 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
600 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
601
602 // AND to memory
603 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
604}
605defm : RMWIByte<and, bdaddr12pair, NI>;
606defm : RMWIByte<and, bdaddr20pair, NIY>;
607
608//===----------------------------------------------------------------------===//
609// OR
610//===----------------------------------------------------------------------===//
611
Richard Sandiford14a44492013-05-22 13:38:45 +0000612let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000613 // ORs of a register.
614 let isCommutable = 1 in {
615 def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
616 def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
617 }
618
619 // ORs of a 16-bit immediate, leaving other bits unaffected.
620 let isCodeGenOnly = 1 in {
621 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
622 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
623 }
624 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
625 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
626 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
627 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
628
629 // ORs of a 32-bit immediate, leaving other bits unaffected.
630 let isCodeGenOnly = 1 in
631 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
632 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
633 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
634
635 // ORs of memory.
636 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
637 def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
638
639 // OR to memory
640 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
641}
642defm : RMWIByte<or, bdaddr12pair, OI>;
643defm : RMWIByte<or, bdaddr20pair, OIY>;
644
645//===----------------------------------------------------------------------===//
646// XOR
647//===----------------------------------------------------------------------===//
648
Richard Sandiford14a44492013-05-22 13:38:45 +0000649let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000650 // XORs of a register.
651 let isCommutable = 1 in {
652 def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
653 def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
654 }
655
656 // XORs of a 32-bit immediate, leaving other bits unaffected.
657 let isCodeGenOnly = 1 in
658 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
659 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
660 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
661
662 // XORs of memory.
663 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
664 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
665
666 // XOR to memory
667 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
668}
669defm : RMWIByte<xor, bdaddr12pair, XI>;
670defm : RMWIByte<xor, bdaddr20pair, XIY>;
671
672//===----------------------------------------------------------------------===//
673// Multiplication
674//===----------------------------------------------------------------------===//
675
676// Multiplication of a register.
677let isCommutable = 1 in {
678 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
679 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
680}
681def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
682defm : SXB<mul, GR64, MSGFR>;
683
684// Multiplication of a signed 16-bit immediate.
685def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
686def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
687
688// Multiplication of a signed 32-bit immediate.
689def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
690def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
691
692// Multiplication of memory.
693defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
694defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
695def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
696def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
697
698// Multiplication of a register, producing two results.
699def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
700
701// Multiplication of memory, producing two results.
702def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
703
704//===----------------------------------------------------------------------===//
705// Division and remainder
706//===----------------------------------------------------------------------===//
707
708// Division and remainder, from registers.
709def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
710def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
711def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
712def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
713defm : SXB<z_sdivrem64, GR128, DSGFR>;
714
715// Division and remainder, from memory.
716def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
717def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
718def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
719def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
720
721//===----------------------------------------------------------------------===//
722// Shifts
723//===----------------------------------------------------------------------===//
724
725// Shift left.
726let neverHasSideEffects = 1 in {
727 def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
728 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
729}
730
731// Logical shift right.
732let neverHasSideEffects = 1 in {
733 def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
734 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
735}
736
737// Arithmetic shift right.
Richard Sandiford14a44492013-05-22 13:38:45 +0000738let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000739 def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
740 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
741}
742
743// Rotate left.
744let neverHasSideEffects = 1 in {
745 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
746 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
747}
748
749// Rotate second operand left and inserted selected bits into first operand.
750// These can act like 32-bit operands provided that the constant start and
751// end bits (operands 2 and 3) are in the range [32, 64)
Richard Sandiford14a44492013-05-22 13:38:45 +0000752let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000753 let isCodeGenOnly = 1 in
754 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
755 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
756}
757
758//===----------------------------------------------------------------------===//
759// Comparison
760//===----------------------------------------------------------------------===//
761
762// Signed comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000763let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000764 // Comparison with a register.
765 def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
766 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
767 def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
768
769 // Comparison with a signed 16-bit immediate.
770 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
771 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
772
773 // Comparison with a signed 32-bit immediate.
774 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
775 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
776
777 // Comparison with memory.
778 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
779 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
780 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
781 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
782 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
783 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
784 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
785 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
786 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
787 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
788
789 // Comparison between memory and a signed 16-bit immediate.
790 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
791 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
792 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
793}
794defm : SXB<z_cmp, GR64, CGFR>;
795
796// Unsigned comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000797let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000798 // Comparison with a register.
799 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
800 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
801 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
802
803 // Comparison with a signed 32-bit immediate.
804 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
805 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
806
807 // Comparison with memory.
808 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
809 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
810 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
811 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
812 aligned_zextloadi16>;
813 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
814 aligned_load>;
815 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
816 aligned_zextloadi16>;
817 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
818 aligned_zextloadi32>;
819 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
820 aligned_load>;
821
822 // Comparison between memory and an unsigned 8-bit immediate.
823 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
824
825 // Comparison between memory and an unsigned 16-bit immediate.
826 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
827 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
828 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
829}
830defm : ZXB<z_ucmp, GR64, CLGFR>;
831
832//===----------------------------------------------------------------------===//
833// Atomic operations
834//===----------------------------------------------------------------------===//
835
836def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
837def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
838def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
839
840def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
841def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
842def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
843def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
844def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
845def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
846def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
847def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
848
849def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
850def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
851def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
852
853def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
854def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
855def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
856def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
857def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
858def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
859def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
860def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
861def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
862def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
863def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
864def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
865def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
866
867def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
868def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
869def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
870def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
871def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
872def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
873def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
874def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
875def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
876def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
877def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
878def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
879def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
880
881def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
882def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
883def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
884def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
885def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
886def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
887def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
888
889def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
890def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
891 imm32lh16c>;
892def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
893def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
894 imm32ll16c>;
895def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
896 imm32lh16c>;
897def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
898def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
899def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
900 imm64ll16c>;
901def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
902 imm64lh16c>;
903def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
904 imm64hl16c>;
905def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
906 imm64hh16c>;
907def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
908 imm64lf32c>;
909def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
910 imm64hf32c>;
911
912def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
913def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
914def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
915
916def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
917def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
918def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
919
920def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
921def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
922def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
923
924def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
925def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
926def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
927
928def ATOMIC_CMP_SWAPW
929 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
930 ADDR32:$bitshift, ADDR32:$negbitshift,
931 uimm32:$bitsize),
932 [(set GR32:$dst,
933 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
934 ADDR32:$bitshift, ADDR32:$negbitshift,
935 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +0000936 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000937 let mayLoad = 1;
938 let mayStore = 1;
939 let usesCustomInserter = 1;
940}
941
Richard Sandiford14a44492013-05-22 13:38:45 +0000942let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000943 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
944 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
945}
946
947//===----------------------------------------------------------------------===//
948// Miscellaneous Instructions.
949//===----------------------------------------------------------------------===//
950
951// Read a 32-bit access register into a GR32. As with all GR32 operations,
952// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
953// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +0000954def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
955 "ear\t$R1, $R2",
956 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000957
958// Find leftmost one, AKA count leading zeros. The instruction actually
959// returns a pair of GR64s, the first giving the number of leading zeros
960// and the second giving a copy of the source with the leftmost one bit
961// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +0000962let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000963 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
964}
965def : Pat<(ctlz GR64:$src),
966 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
967
968// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
969def : Pat<(i64 (anyext GR32:$src)),
970 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
971
972// There are no 32-bit equivalents of LLILL and LLILH, so use a full
973// 64-bit move followed by a subreg. This preserves the invariant that
974// all GR32 operations only modify the low 32 bits.
975def : Pat<(i32 imm32ll16:$src),
976 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
977def : Pat<(i32 imm32lh16:$src),
978 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
979
980// Extend GR32s and GR64s to GR128s.
981let usesCustomInserter = 1 in {
982 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
983 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
984 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
985}
986
987//===----------------------------------------------------------------------===//
988// Peepholes.
989//===----------------------------------------------------------------------===//
990
991// Use AL* for GR64 additions of unsigned 32-bit values.
992defm : ZXB<add, GR64, ALGFR>;
993def : Pat<(add GR64:$src1, imm64zx32:$src2),
994 (ALGFI GR64:$src1, imm64zx32:$src2)>;
995def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
996 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
997
998// Use SL* for GR64 subtractions of unsigned 32-bit values.
999defm : ZXB<sub, GR64, SLGFR>;
1000def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1001 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1002def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1003 (SLGF GR64:$src1, bdxaddr20only:$addr)>;