blob: 0e203f4e075dcfb04965d051319637035fd9a6b7 [file] [log] [blame]
Peter Collingbourne9f7ec142016-02-03 02:51:00 +00001//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Peter Collingbourne9f7ec142016-02-03 02:51:00 +00006//
7//===----------------------------------------------------------------------===//
8//
9// Function evaluator for LLVM IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Transforms/Utils/Evaluator.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000014#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000018#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/CallSite.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000021#include "llvm/IR/Constant.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000022#include "llvm/IR/Constants.h"
Craig Topperb5c2bfa2017-03-20 05:08:41 +000023#include "llvm/IR/DataLayout.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000024#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000025#include "llvm/IR/Function.h"
Eugene Leviant6a572b82018-07-10 16:34:23 +000026#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000027#include "llvm/IR/GlobalValue.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000028#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000029#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000031#include "llvm/IR/Instructions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000032#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000033#include "llvm/IR/Intrinsics.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000034#include "llvm/IR/Operator.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000035#include "llvm/IR/Type.h"
36#include "llvm/IR/User.h"
37#include "llvm/IR/Value.h"
38#include "llvm/Support/Casting.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000039#include "llvm/Support/Debug.h"
Peter Collingbourne83cc9812016-02-03 03:16:37 +000040#include "llvm/Support/raw_ostream.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000041#include <iterator>
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000042
43#define DEBUG_TYPE "evaluator"
44
45using namespace llvm;
46
47static inline bool
48isSimpleEnoughValueToCommit(Constant *C,
49 SmallPtrSetImpl<Constant *> &SimpleConstants,
50 const DataLayout &DL);
51
52/// Return true if the specified constant can be handled by the code generator.
53/// We don't want to generate something like:
54/// void *X = &X/42;
55/// because the code generator doesn't have a relocation that can handle that.
56///
57/// This function should be called if C was not found (but just got inserted)
58/// in SimpleConstants to avoid having to rescan the same constants all the
59/// time.
60static bool
61isSimpleEnoughValueToCommitHelper(Constant *C,
62 SmallPtrSetImpl<Constant *> &SimpleConstants,
63 const DataLayout &DL) {
64 // Simple global addresses are supported, do not allow dllimport or
65 // thread-local globals.
66 if (auto *GV = dyn_cast<GlobalValue>(C))
67 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
68
69 // Simple integer, undef, constant aggregate zero, etc are all supported.
70 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
71 return true;
72
73 // Aggregate values are safe if all their elements are.
Duncan P. N. Exon Smith1de3c7e2016-04-05 21:10:45 +000074 if (isa<ConstantAggregate>(C)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000075 for (Value *Op : C->operands())
76 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
77 return false;
78 return true;
79 }
80
81 // We don't know exactly what relocations are allowed in constant expressions,
82 // so we allow &global+constantoffset, which is safe and uniformly supported
83 // across targets.
84 ConstantExpr *CE = cast<ConstantExpr>(C);
85 switch (CE->getOpcode()) {
86 case Instruction::BitCast:
87 // Bitcast is fine if the casted value is fine.
88 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
89
90 case Instruction::IntToPtr:
91 case Instruction::PtrToInt:
92 // int <=> ptr is fine if the int type is the same size as the
93 // pointer type.
94 if (DL.getTypeSizeInBits(CE->getType()) !=
95 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
96 return false;
97 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
98
99 // GEP is fine if it is simple + constant offset.
100 case Instruction::GetElementPtr:
101 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
102 if (!isa<ConstantInt>(CE->getOperand(i)))
103 return false;
104 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
105
106 case Instruction::Add:
107 // We allow simple+cst.
108 if (!isa<ConstantInt>(CE->getOperand(1)))
109 return false;
110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
111 }
112 return false;
113}
114
115static inline bool
116isSimpleEnoughValueToCommit(Constant *C,
117 SmallPtrSetImpl<Constant *> &SimpleConstants,
118 const DataLayout &DL) {
119 // If we already checked this constant, we win.
120 if (!SimpleConstants.insert(C).second)
121 return true;
122 // Check the constant.
123 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
124}
125
126/// Return true if this constant is simple enough for us to understand. In
127/// particular, if it is a cast to anything other than from one pointer type to
128/// another pointer type, we punt. We basically just support direct accesses to
129/// globals and GEP's of globals. This should be kept up to date with
130/// CommitValueTo.
131static bool isSimpleEnoughPointerToCommit(Constant *C) {
132 // Conservatively, avoid aggregate types. This is because we don't
133 // want to worry about them partially overlapping other stores.
134 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
135 return false;
136
137 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
138 // Do not allow weak/*_odr/linkonce linkage or external globals.
139 return GV->hasUniqueInitializer();
140
141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
142 // Handle a constantexpr gep.
143 if (CE->getOpcode() == Instruction::GetElementPtr &&
144 isa<GlobalVariable>(CE->getOperand(0)) &&
145 cast<GEPOperator>(CE)->isInBounds()) {
146 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
147 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
148 // external globals.
149 if (!GV->hasUniqueInitializer())
150 return false;
151
152 // The first index must be zero.
153 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
154 if (!CI || !CI->isZero()) return false;
155
156 // The remaining indices must be compile-time known integers within the
157 // notional bounds of the corresponding static array types.
158 if (!CE->isGEPWithNoNotionalOverIndexing())
159 return false;
160
161 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
162
163 // A constantexpr bitcast from a pointer to another pointer is a no-op,
164 // and we know how to evaluate it by moving the bitcast from the pointer
165 // operand to the value operand.
166 } else if (CE->getOpcode() == Instruction::BitCast &&
167 isa<GlobalVariable>(CE->getOperand(0))) {
168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
169 // external globals.
170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
171 }
172 }
173
174 return false;
175}
176
Robert Lougherd4691332019-04-25 17:00:01 +0000177/// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
178/// type and walk down through the initial elements to obtain additional
179/// pointers to try. Returns the first non-null return value from Func, or
180/// nullptr if the type can't be introspected further.
181static Constant *
182evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
183 const TargetLibraryInfo *TLI,
184 std::function<Constant *(Constant *)> Func) {
185 Constant *Val;
186 while (!(Val = Func(Ptr))) {
187 // If Ty is a struct, we can convert the pointer to the struct
188 // into a pointer to its first member.
189 // FIXME: This could be extended to support arrays as well.
190 Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
191 if (!isa<StructType>(Ty))
192 break;
193
194 IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
195 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
196 Constant *const IdxList[] = {IdxZero, IdxZero};
197
198 Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
199 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
200 Ptr = FoldedPtr;
201 }
202 return Val;
203}
204
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000205static Constant *getInitializer(Constant *C) {
206 auto *GV = dyn_cast<GlobalVariable>(C);
207 return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
208}
209
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000210/// Return the value that would be computed by a load from P after the stores
211/// reflected by 'memory' have been performed. If we can't decide, return null.
212Constant *Evaluator::ComputeLoadResult(Constant *P) {
213 // If this memory location has been recently stored, use the stored value: it
214 // is the most up-to-date.
Robert Lougherd4691332019-04-25 17:00:01 +0000215 auto findMemLoc = [this](Constant *Ptr) {
216 DenseMap<Constant *, Constant *>::const_iterator I =
217 MutatedMemory.find(Ptr);
218 return I != MutatedMemory.end() ? I->second : nullptr;
219 };
220
221 if (Constant *Val = findMemLoc(P))
222 return Val;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000223
224 // Access it.
225 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
226 if (GV->hasDefinitiveInitializer())
227 return GV->getInitializer();
228 return nullptr;
229 }
230
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000231 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
232 switch (CE->getOpcode()) {
233 // Handle a constantexpr getelementptr.
234 case Instruction::GetElementPtr:
235 if (auto *I = getInitializer(CE->getOperand(0)))
236 return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
237 break;
238 // Handle a constantexpr bitcast.
239 case Instruction::BitCast:
Robert Lougherd4691332019-04-25 17:00:01 +0000240 // We're evaluating a load through a pointer that was bitcast to a
241 // different type. See if the "from" pointer has recently been stored.
242 // If it hasn't, we may still be able to find a stored pointer by
243 // introspecting the type.
244 Constant *Val =
245 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
246 if (!Val)
247 Val = getInitializer(CE->getOperand(0));
248 if (Val)
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000249 return ConstantFoldLoadThroughBitcast(
Robert Lougherd4691332019-04-25 17:00:01 +0000250 Val, P->getType()->getPointerElementType(), DL);
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000251 break;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000252 }
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000253 }
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000254
255 return nullptr; // don't know how to evaluate.
256}
257
Eugene Leviant6a572b82018-07-10 16:34:23 +0000258static Function *getFunction(Constant *C) {
259 if (auto *Fn = dyn_cast<Function>(C))
260 return Fn;
261
262 if (auto *Alias = dyn_cast<GlobalAlias>(C))
263 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
264 return Fn;
265 return nullptr;
266}
267
Eugene Leviant6e413442018-07-01 11:02:07 +0000268Function *
269Evaluator::getCalleeWithFormalArgs(CallSite &CS,
270 SmallVector<Constant *, 8> &Formals) {
271 auto *V = CS.getCalledValue();
Eugene Leviant6a572b82018-07-10 16:34:23 +0000272 if (auto *Fn = getFunction(getVal(V)))
Eugene Leviant6e413442018-07-01 11:02:07 +0000273 return getFormalParams(CS, Fn, Formals) ? Fn : nullptr;
274
275 auto *CE = dyn_cast<ConstantExpr>(V);
276 if (!CE || CE->getOpcode() != Instruction::BitCast ||
Eugene Leviant6a572b82018-07-10 16:34:23 +0000277 !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals))
Eugene Leviant6e413442018-07-01 11:02:07 +0000278 return nullptr;
279
280 return dyn_cast<Function>(
281 ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
282}
283
284bool Evaluator::getFormalParams(CallSite &CS, Function *F,
285 SmallVector<Constant *, 8> &Formals) {
Eugene Leviant6a572b82018-07-10 16:34:23 +0000286 if (!F)
287 return false;
288
Eugene Leviant6e413442018-07-01 11:02:07 +0000289 auto *FTy = F->getFunctionType();
290 if (FTy->getNumParams() > CS.getNumArgOperands()) {
291 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
292 return false;
293 }
294
295 auto ArgI = CS.arg_begin();
296 for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
297 ++ParI) {
298 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
299 if (!ArgC) {
300 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
301 return false;
302 }
303 Formals.push_back(ArgC);
304 ++ArgI;
305 }
306 return true;
307}
308
309/// If call expression contains bitcast then we may need to cast
310/// evaluated return value to a type of the call expression.
311Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
312 ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
313 if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
314 return RV;
315
316 if (auto *FT =
317 dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
318 RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
319 if (!RV)
320 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
321 }
322 return RV;
323}
324
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000325/// Evaluate all instructions in block BB, returning true if successful, false
326/// if we can't evaluate it. NewBB returns the next BB that control flows into,
327/// or null upon return.
328bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
329 BasicBlock *&NextBB) {
330 // This is the main evaluation loop.
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000331 while (true) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000332 Constant *InstResult = nullptr;
333
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000334 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000335
336 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
337 if (!SI->isSimple()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000338 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000339 return false; // no volatile/atomic accesses.
340 }
341 Constant *Ptr = getVal(SI->getOperand(1));
David Majnemerd536f232016-07-29 03:27:26 +0000342 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000343 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
David Majnemerd536f232016-07-29 03:27:26 +0000344 Ptr = FoldedPtr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000345 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000346 }
347 if (!isSimpleEnoughPointerToCommit(Ptr)) {
348 // If this is too complex for us to commit, reject it.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000349 LLVM_DEBUG(
350 dbgs() << "Pointer is too complex for us to evaluate store.");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000351 return false;
352 }
353
354 Constant *Val = getVal(SI->getOperand(0));
355
356 // If this might be too difficult for the backend to handle (e.g. the addr
357 // of one global variable divided by another) then we can't commit it.
358 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000359 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
360 << *Val << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000361 return false;
362 }
363
364 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
365 if (CE->getOpcode() == Instruction::BitCast) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000366 LLVM_DEBUG(dbgs()
367 << "Attempting to resolve bitcast on constant ptr.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000368 // If we're evaluating a store through a bitcast, then we need
369 // to pull the bitcast off the pointer type and push it onto the
Robert Lougherd4691332019-04-25 17:00:01 +0000370 // stored value. In order to push the bitcast onto the stored value,
371 // a bitcast from the pointer's element type to Val's type must be
372 // legal. If it's not, we can try introspecting the type to find a
373 // legal conversion.
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000374
Robert Lougherd4691332019-04-25 17:00:01 +0000375 auto castValTy = [&](Constant *P) -> Constant * {
376 Type *Ty = cast<PointerType>(P->getType())->getElementType();
377 if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
378 Ptr = P;
379 return FV;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000380 }
Robert Lougherd4691332019-04-25 17:00:01 +0000381 return nullptr;
382 };
383
384 Constant *NewVal =
385 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
386 if (!NewVal) {
387 LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
388 "evaluate.\n");
389 return false;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000390 }
391
Eugene Leviant6f42a2c2018-03-13 10:19:50 +0000392 Val = NewVal;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000393 LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000394 }
395 }
396
397 MutatedMemory[Ptr] = Val;
398 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
399 InstResult = ConstantExpr::get(BO->getOpcode(),
400 getVal(BO->getOperand(0)),
401 getVal(BO->getOperand(1)));
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000402 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
403 << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000404 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
405 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
406 getVal(CI->getOperand(0)),
407 getVal(CI->getOperand(1)));
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000408 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
409 << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000410 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
411 InstResult = ConstantExpr::getCast(CI->getOpcode(),
412 getVal(CI->getOperand(0)),
413 CI->getType());
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000414 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
415 << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000416 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
417 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
418 getVal(SI->getOperand(1)),
419 getVal(SI->getOperand(2)));
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000420 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
421 << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000422 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
423 InstResult = ConstantExpr::getExtractValue(
424 getVal(EVI->getAggregateOperand()), EVI->getIndices());
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000425 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
426 << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000427 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
428 InstResult = ConstantExpr::getInsertValue(
429 getVal(IVI->getAggregateOperand()),
430 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000431 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
432 << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000433 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
434 Constant *P = getVal(GEP->getOperand(0));
435 SmallVector<Constant*, 8> GEPOps;
436 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
437 i != e; ++i)
438 GEPOps.push_back(getVal(*i));
439 InstResult =
440 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
441 cast<GEPOperator>(GEP)->isInBounds());
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000442 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000443 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000444 if (!LI->isSimple()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000445 LLVM_DEBUG(
446 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000447 return false; // no volatile/atomic accesses.
448 }
449
450 Constant *Ptr = getVal(LI->getOperand(0));
David Majnemerd536f232016-07-29 03:27:26 +0000451 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
452 Ptr = FoldedPtr;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000453 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
454 "folding: "
455 << *Ptr << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000456 }
457 InstResult = ComputeLoadResult(Ptr);
458 if (!InstResult) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000459 LLVM_DEBUG(
460 dbgs() << "Failed to compute load result. Can not evaluate load."
461 "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000462 return false; // Could not evaluate load.
463 }
464
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000465 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000466 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
467 if (AI->isArrayAllocation()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000468 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000469 return false; // Cannot handle array allocs.
470 }
471 Type *Ty = AI->getAllocatedType();
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000472 AllocaTmps.push_back(llvm::make_unique<GlobalVariable>(
473 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
Yaxun Liuea988f12018-05-19 02:58:16 +0000474 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
475 AI->getType()->getPointerAddressSpace()));
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000476 InstResult = AllocaTmps.back().get();
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000477 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000478 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
479 CallSite CS(&*CurInst);
480
481 // Debug info can safely be ignored here.
482 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000483 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000484 ++CurInst;
485 continue;
486 }
487
488 // Cannot handle inline asm.
489 if (isa<InlineAsm>(CS.getCalledValue())) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000490 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000491 return false;
492 }
493
494 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
495 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
496 if (MSI->isVolatile()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000497 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
498 << "intrinsic.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000499 return false;
500 }
501 Constant *Ptr = getVal(MSI->getDest());
502 Constant *Val = getVal(MSI->getValue());
503 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
504 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
505 // This memset is a no-op.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000506 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000507 ++CurInst;
508 continue;
509 }
510 }
511
Vedant Kumarb264d692018-12-21 21:49:40 +0000512 if (II->isLifetimeStartOrEnd()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000513 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000514 ++CurInst;
515 continue;
516 }
517
518 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
519 // We don't insert an entry into Values, as it doesn't have a
520 // meaningful return value.
521 if (!II->use_empty()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000522 LLVM_DEBUG(dbgs()
523 << "Found unused invariant_start. Can't evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000524 return false;
525 }
526 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
527 Value *PtrArg = getVal(II->getArgOperand(1));
528 Value *Ptr = PtrArg->stripPointerCasts();
529 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
530 Type *ElemTy = GV->getValueType();
Craig Topper79ab6432017-07-06 18:39:47 +0000531 if (!Size->isMinusOne() &&
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000532 Size->getValue().getLimitedValue() >=
533 DL.getTypeStoreSize(ElemTy)) {
534 Invariants.insert(GV);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000535 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
536 << *GV << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000537 } else {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000538 LLVM_DEBUG(dbgs()
539 << "Found a global var, but can not treat it as an "
540 "invariant.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000541 }
542 }
543 // Continue even if we do nothing.
544 ++CurInst;
545 continue;
546 } else if (II->getIntrinsicID() == Intrinsic::assume) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000547 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000548 ++CurInst;
549 continue;
Dan Gohman2c74fe92017-11-08 21:59:51 +0000550 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000551 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
Dan Gohman2c74fe92017-11-08 21:59:51 +0000552 ++CurInst;
553 continue;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000554 }
555
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000556 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000557 return false;
558 }
559
560 // Resolve function pointers.
Eugene Leviant6e413442018-07-01 11:02:07 +0000561 SmallVector<Constant *, 8> Formals;
562 Function *Callee = getCalleeWithFormalArgs(CS, Formals);
Sanjoy Das5ce32722016-04-08 00:48:30 +0000563 if (!Callee || Callee->isInterposable()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000564 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000565 return false; // Cannot resolve.
566 }
567
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000568 if (Callee->isDeclaration()) {
569 // If this is a function we can constant fold, do it.
Chandler Carruth751d95f2019-02-11 07:51:44 +0000570 if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()),
571 Callee, Formals, TLI)) {
Eugene Leviant6e413442018-07-01 11:02:07 +0000572 InstResult = castCallResultIfNeeded(CS.getCalledValue(), C);
573 if (!InstResult)
574 return false;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000575 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
576 << *InstResult << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000577 } else {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000578 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000579 return false;
580 }
581 } else {
582 if (Callee->getFunctionType()->isVarArg()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000583 LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000584 return false;
585 }
586
587 Constant *RetVal = nullptr;
588 // Execute the call, if successful, use the return value.
589 ValueStack.emplace_back();
590 if (!EvaluateFunction(Callee, RetVal, Formals)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000591 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000592 return false;
593 }
594 ValueStack.pop_back();
Eugene Leviant6e413442018-07-01 11:02:07 +0000595 InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal);
596 if (RetVal && !InstResult)
597 return false;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000598
599 if (InstResult) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000600 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
601 << *InstResult << "\n\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000602 } else {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000603 LLVM_DEBUG(dbgs()
604 << "Successfully evaluated function. Result: 0\n\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000605 }
606 }
Chandler Carruth9ae926b2018-08-26 09:51:22 +0000607 } else if (CurInst->isTerminator()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000608 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000609
610 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
611 if (BI->isUnconditional()) {
612 NextBB = BI->getSuccessor(0);
613 } else {
614 ConstantInt *Cond =
615 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
616 if (!Cond) return false; // Cannot determine.
617
618 NextBB = BI->getSuccessor(!Cond->getZExtValue());
619 }
620 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
621 ConstantInt *Val =
622 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
623 if (!Val) return false; // Cannot determine.
Chandler Carruth927d8e62017-04-12 07:27:28 +0000624 NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000625 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
626 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
627 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
628 NextBB = BA->getBasicBlock();
629 else
630 return false; // Cannot determine.
631 } else if (isa<ReturnInst>(CurInst)) {
632 NextBB = nullptr;
633 } else {
634 // invoke, unwind, resume, unreachable.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000635 LLVM_DEBUG(dbgs() << "Can not handle terminator.");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000636 return false; // Cannot handle this terminator.
637 }
638
639 // We succeeded at evaluating this block!
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000640 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000641 return true;
642 } else {
643 // Did not know how to evaluate this!
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000644 LLVM_DEBUG(
645 dbgs() << "Failed to evaluate block due to unhandled instruction."
646 "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000647 return false;
648 }
649
650 if (!CurInst->use_empty()) {
David Majnemerd536f232016-07-29 03:27:26 +0000651 if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
652 InstResult = FoldedInstResult;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000653
654 setVal(&*CurInst, InstResult);
655 }
656
657 // If we just processed an invoke, we finished evaluating the block.
658 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
659 NextBB = II->getNormalDest();
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000660 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000661 return true;
662 }
663
664 // Advance program counter.
665 ++CurInst;
666 }
667}
668
669/// Evaluate a call to function F, returning true if successful, false if we
670/// can't evaluate it. ActualArgs contains the formal arguments for the
671/// function.
672bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
673 const SmallVectorImpl<Constant*> &ActualArgs) {
674 // Check to see if this function is already executing (recursion). If so,
675 // bail out. TODO: we might want to accept limited recursion.
David Majnemer0d955d02016-08-11 22:21:41 +0000676 if (is_contained(CallStack, F))
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000677 return false;
678
679 CallStack.push_back(F);
680
681 // Initialize arguments to the incoming values specified.
682 unsigned ArgNo = 0;
683 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
684 ++AI, ++ArgNo)
685 setVal(&*AI, ActualArgs[ArgNo]);
686
687 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
688 // we can only evaluate any one basic block at most once. This set keeps
689 // track of what we have executed so we can detect recursive cases etc.
690 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
691
692 // CurBB - The current basic block we're evaluating.
693 BasicBlock *CurBB = &F->front();
694
695 BasicBlock::iterator CurInst = CurBB->begin();
696
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000697 while (true) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000698 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000699 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000700
701 if (!EvaluateBlock(CurInst, NextBB))
702 return false;
703
704 if (!NextBB) {
705 // Successfully running until there's no next block means that we found
706 // the return. Fill it the return value and pop the call stack.
707 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
708 if (RI->getNumOperands())
709 RetVal = getVal(RI->getOperand(0));
710 CallStack.pop_back();
711 return true;
712 }
713
714 // Okay, we succeeded in evaluating this control flow. See if we have
715 // executed the new block before. If so, we have a looping function,
716 // which we cannot evaluate in reasonable time.
717 if (!ExecutedBlocks.insert(NextBB).second)
718 return false; // looped!
719
720 // Okay, we have never been in this block before. Check to see if there
721 // are any PHI nodes. If so, evaluate them with information about where
722 // we came from.
723 PHINode *PN = nullptr;
724 for (CurInst = NextBB->begin();
725 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
726 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
727
728 // Advance to the next block.
729 CurBB = NextBB;
730 }
731}