blob: 9889930ea5fca64d20425e47ae33fc9c54efe2f0 [file] [log] [blame]
Chris Lattner2188e402010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carrutha9174582015-01-22 05:25:13 +000014#include "InstCombineInternal.h"
Matt Arsenault55e73122015-01-06 15:50:59 +000015#include "llvm/ADT/APSInt.h"
Silviu Barangaf29dfd32016-01-15 15:52:05 +000016#include "llvm/ADT/SetVector.h"
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +000017#include "llvm/ADT/Statistic.h"
Eli Friedman911e12f2011-07-20 21:57:23 +000018#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner2188e402010-01-04 07:37:31 +000019#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/MemoryBuiltins.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000021#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/VectorUtils.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/DataLayout.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000027#include "llvm/IR/PatternMatch.h"
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +000028#include "llvm/Support/Debug.h"
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +000029
Chris Lattner2188e402010-01-04 07:37:31 +000030using namespace llvm;
31using namespace PatternMatch;
32
Chandler Carruth964daaa2014-04-22 02:55:47 +000033#define DEBUG_TYPE "instcombine"
34
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +000035// How many times is a select replaced by one of its operands?
36STATISTIC(NumSel, "Number of select opts");
37
Chris Lattner98457102011-02-10 05:23:05 +000038
Sanjay Pateld93c4c02016-09-15 18:22:25 +000039static ConstantInt *extractElement(Constant *V, Constant *Idx) {
Chris Lattner2188e402010-01-04 07:37:31 +000040 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41}
42
Sanjay Pateld93c4c02016-09-15 18:22:25 +000043static bool hasAddOverflow(ConstantInt *Result,
Chris Lattner2188e402010-01-04 07:37:31 +000044 ConstantInt *In1, ConstantInt *In2,
45 bool IsSigned) {
Chris Lattnerb1a15122011-07-15 06:08:15 +000046 if (!IsSigned)
Chris Lattner2188e402010-01-04 07:37:31 +000047 return Result->getValue().ult(In1->getValue());
Chris Lattnerb1a15122011-07-15 06:08:15 +000048
49 if (In2->isNegative())
50 return Result->getValue().sgt(In1->getValue());
51 return Result->getValue().slt(In1->getValue());
Chris Lattner2188e402010-01-04 07:37:31 +000052}
53
Sanjay Patel5f0217f2016-06-05 16:46:18 +000054/// Compute Result = In1+In2, returning true if the result overflowed for this
55/// type.
Sanjay Pateld93c4c02016-09-15 18:22:25 +000056static bool addWithOverflow(Constant *&Result, Constant *In1,
Chris Lattner2188e402010-01-04 07:37:31 +000057 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
59
Chris Lattner229907c2011-07-18 04:54:35 +000060 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner2188e402010-01-04 07:37:31 +000061 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
Sanjay Pateld93c4c02016-09-15 18:22:25 +000063 if (hasAddOverflow(extractElement(Result, Idx),
64 extractElement(In1, Idx),
65 extractElement(In2, Idx),
Chris Lattner2188e402010-01-04 07:37:31 +000066 IsSigned))
67 return true;
68 }
69 return false;
70 }
71
Sanjay Pateld93c4c02016-09-15 18:22:25 +000072 return hasAddOverflow(cast<ConstantInt>(Result),
Chris Lattner2188e402010-01-04 07:37:31 +000073 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
75}
76
Sanjay Pateld93c4c02016-09-15 18:22:25 +000077static bool hasSubOverflow(ConstantInt *Result,
Chris Lattner2188e402010-01-04 07:37:31 +000078 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
Chris Lattnerb1a15122011-07-15 06:08:15 +000080 if (!IsSigned)
Chris Lattner2188e402010-01-04 07:37:31 +000081 return Result->getValue().ugt(In1->getValue());
Jim Grosbach129c52a2011-09-30 18:09:53 +000082
Chris Lattnerb1a15122011-07-15 06:08:15 +000083 if (In2->isNegative())
84 return Result->getValue().slt(In1->getValue());
85
86 return Result->getValue().sgt(In1->getValue());
Chris Lattner2188e402010-01-04 07:37:31 +000087}
88
Sanjay Patel5f0217f2016-06-05 16:46:18 +000089/// Compute Result = In1-In2, returning true if the result overflowed for this
90/// type.
Sanjay Pateld93c4c02016-09-15 18:22:25 +000091static bool subWithOverflow(Constant *&Result, Constant *In1,
Chris Lattner2188e402010-01-04 07:37:31 +000092 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
94
Chris Lattner229907c2011-07-18 04:54:35 +000095 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
Chris Lattner2188e402010-01-04 07:37:31 +000096 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
Sanjay Pateld93c4c02016-09-15 18:22:25 +000098 if (hasSubOverflow(extractElement(Result, Idx),
99 extractElement(In1, Idx),
100 extractElement(In2, Idx),
Chris Lattner2188e402010-01-04 07:37:31 +0000101 IsSigned))
102 return true;
103 }
104 return false;
105 }
106
Sanjay Pateld93c4c02016-09-15 18:22:25 +0000107 return hasSubOverflow(cast<ConstantInt>(Result),
Chris Lattner2188e402010-01-04 07:37:31 +0000108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
110}
111
Balaram Makam569eaec2016-05-04 21:32:14 +0000112/// Given an icmp instruction, return true if any use of this comparison is a
113/// branch on sign bit comparison.
114static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
115 for (auto *U : I.users())
116 if (isa<BranchInst>(U))
117 return isSignBit;
118 return false;
119}
120
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000121/// Given an exploded icmp instruction, return true if the comparison only
122/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
123/// result of the comparison is true when the input value is signed.
Sanjay Patel79263662016-08-21 15:07:45 +0000124static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
Chris Lattner2188e402010-01-04 07:37:31 +0000125 bool &TrueIfSigned) {
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000126 switch (Pred) {
Chris Lattner2188e402010-01-04 07:37:31 +0000127 case ICmpInst::ICMP_SLT: // True if LHS s< 0
128 TrueIfSigned = true;
Sanjay Patel79263662016-08-21 15:07:45 +0000129 return RHS == 0;
Chris Lattner2188e402010-01-04 07:37:31 +0000130 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
131 TrueIfSigned = true;
Sanjay Patel79263662016-08-21 15:07:45 +0000132 return RHS.isAllOnesValue();
Chris Lattner2188e402010-01-04 07:37:31 +0000133 case ICmpInst::ICMP_SGT: // True if LHS s> -1
134 TrueIfSigned = false;
Sanjay Patel79263662016-08-21 15:07:45 +0000135 return RHS.isAllOnesValue();
Chris Lattner2188e402010-01-04 07:37:31 +0000136 case ICmpInst::ICMP_UGT:
137 // True if LHS u> RHS and RHS == high-bit-mask - 1
138 TrueIfSigned = true;
Sanjay Patel79263662016-08-21 15:07:45 +0000139 return RHS.isMaxSignedValue();
Jim Grosbach129c52a2011-09-30 18:09:53 +0000140 case ICmpInst::ICMP_UGE:
Chris Lattner2188e402010-01-04 07:37:31 +0000141 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
142 TrueIfSigned = true;
Sanjay Patel79263662016-08-21 15:07:45 +0000143 return RHS.isSignBit();
Chris Lattner2188e402010-01-04 07:37:31 +0000144 default:
145 return false;
146 }
147}
148
Arnaud A. de Grandmaison3ee88e82013-03-25 11:47:38 +0000149/// Returns true if the exploded icmp can be expressed as a signed comparison
150/// to zero and updates the predicate accordingly.
151/// The signedness of the comparison is preserved.
Sanjay Patel5b112842016-08-18 14:59:14 +0000152/// TODO: Refactor with decomposeBitTestICmp()?
153static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000154 if (!ICmpInst::isSigned(Pred))
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000155 return false;
156
Sanjay Patel5b112842016-08-18 14:59:14 +0000157 if (C == 0)
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000158 return ICmpInst::isRelational(Pred);
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000159
Sanjay Patel5b112842016-08-18 14:59:14 +0000160 if (C == 1) {
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000161 if (Pred == ICmpInst::ICMP_SLT) {
162 Pred = ICmpInst::ICMP_SLE;
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000163 return true;
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000164 }
Sanjay Patel5b112842016-08-18 14:59:14 +0000165 } else if (C.isAllOnesValue()) {
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000166 if (Pred == ICmpInst::ICMP_SGT) {
167 Pred = ICmpInst::ICMP_SGE;
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000168 return true;
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000169 }
Arnaud A. de Grandmaison3ee88e82013-03-25 11:47:38 +0000170 }
Arnaud A. de Grandmaison9c383d62013-03-25 09:48:49 +0000171
172 return false;
173}
174
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000175/// Given a signed integer type and a set of known zero and one bits, compute
176/// the maximum and minimum values that could have the specified known zero and
177/// known one bits, returning them in Min/Max.
Sanjay Pateld93c4c02016-09-15 18:22:25 +0000178static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000179 const APInt &KnownOne,
180 APInt &Min, APInt &Max) {
Chris Lattner2188e402010-01-04 07:37:31 +0000181 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
182 KnownZero.getBitWidth() == Min.getBitWidth() &&
183 KnownZero.getBitWidth() == Max.getBitWidth() &&
184 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
185 APInt UnknownBits = ~(KnownZero|KnownOne);
186
187 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
188 // bit if it is unknown.
189 Min = KnownOne;
190 Max = KnownOne|UnknownBits;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000191
Chris Lattner2188e402010-01-04 07:37:31 +0000192 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad25a5e4c2010-12-01 08:53:58 +0000193 Min.setBit(Min.getBitWidth()-1);
194 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner2188e402010-01-04 07:37:31 +0000195 }
196}
197
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000198/// Given an unsigned integer type and a set of known zero and one bits, compute
199/// the maximum and minimum values that could have the specified known zero and
200/// known one bits, returning them in Min/Max.
Sanjay Pateld93c4c02016-09-15 18:22:25 +0000201static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
Chris Lattner2188e402010-01-04 07:37:31 +0000202 const APInt &KnownOne,
203 APInt &Min, APInt &Max) {
204 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205 KnownZero.getBitWidth() == Min.getBitWidth() &&
206 KnownZero.getBitWidth() == Max.getBitWidth() &&
207 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208 APInt UnknownBits = ~(KnownZero|KnownOne);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000209
Chris Lattner2188e402010-01-04 07:37:31 +0000210 // The minimum value is when the unknown bits are all zeros.
211 Min = KnownOne;
212 // The maximum value is when the unknown bits are all ones.
213 Max = KnownOne|UnknownBits;
214}
215
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000216/// This is called when we see this pattern:
Chris Lattner2188e402010-01-04 07:37:31 +0000217/// cmp pred (load (gep GV, ...)), cmpcst
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000218/// where GV is a global variable with a constant initializer. Try to simplify
219/// this into some simple computation that does not need the load. For example
Chris Lattner2188e402010-01-04 07:37:31 +0000220/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
221///
222/// If AndCst is non-null, then the loaded value is masked with that constant
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000223/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Sanjay Patel43395062016-07-21 18:07:40 +0000224Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
225 GlobalVariable *GV,
226 CmpInst &ICI,
227 ConstantInt *AndCst) {
Chris Lattnerfe741762012-01-31 02:55:06 +0000228 Constant *Init = GV->getInitializer();
229 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
Craig Topperf40110f2014-04-25 05:29:35 +0000230 return nullptr;
Jim Grosbachbdbd7342013-04-05 21:20:12 +0000231
Chris Lattnerfe741762012-01-31 02:55:06 +0000232 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
Craig Topperf40110f2014-04-25 05:29:35 +0000233 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
Jim Grosbach129c52a2011-09-30 18:09:53 +0000234
Chris Lattner2188e402010-01-04 07:37:31 +0000235 // There are many forms of this optimization we can handle, for now, just do
236 // the simple index into a single-dimensional array.
237 //
238 // Require: GEP GV, 0, i {{, constant indices}}
239 if (GEP->getNumOperands() < 3 ||
240 !isa<ConstantInt>(GEP->getOperand(1)) ||
241 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
242 isa<Constant>(GEP->getOperand(2)))
Craig Topperf40110f2014-04-25 05:29:35 +0000243 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +0000244
245 // Check that indices after the variable are constants and in-range for the
246 // type they index. Collect the indices. This is typically for arrays of
247 // structs.
248 SmallVector<unsigned, 4> LaterIndices;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000249
Chris Lattnerfe741762012-01-31 02:55:06 +0000250 Type *EltTy = Init->getType()->getArrayElementType();
Chris Lattner2188e402010-01-04 07:37:31 +0000251 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
252 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
Craig Topperf40110f2014-04-25 05:29:35 +0000253 if (!Idx) return nullptr; // Variable index.
Jim Grosbach129c52a2011-09-30 18:09:53 +0000254
Chris Lattner2188e402010-01-04 07:37:31 +0000255 uint64_t IdxVal = Idx->getZExtValue();
Craig Topperf40110f2014-04-25 05:29:35 +0000256 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
Jim Grosbach129c52a2011-09-30 18:09:53 +0000257
Chris Lattner229907c2011-07-18 04:54:35 +0000258 if (StructType *STy = dyn_cast<StructType>(EltTy))
Chris Lattner2188e402010-01-04 07:37:31 +0000259 EltTy = STy->getElementType(IdxVal);
Chris Lattner229907c2011-07-18 04:54:35 +0000260 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
Craig Topperf40110f2014-04-25 05:29:35 +0000261 if (IdxVal >= ATy->getNumElements()) return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +0000262 EltTy = ATy->getElementType();
263 } else {
Craig Topperf40110f2014-04-25 05:29:35 +0000264 return nullptr; // Unknown type.
Chris Lattner2188e402010-01-04 07:37:31 +0000265 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000266
Chris Lattner2188e402010-01-04 07:37:31 +0000267 LaterIndices.push_back(IdxVal);
268 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000269
Chris Lattner2188e402010-01-04 07:37:31 +0000270 enum { Overdefined = -3, Undefined = -2 };
271
272 // Variables for our state machines.
Jim Grosbach129c52a2011-09-30 18:09:53 +0000273
Chris Lattner2188e402010-01-04 07:37:31 +0000274 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
275 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
276 // and 87 is the second (and last) index. FirstTrueElement is -2 when
277 // undefined, otherwise set to the first true element. SecondTrueElement is
278 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
279 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
280
281 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
282 // form "i != 47 & i != 87". Same state transitions as for true elements.
283 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000284
Chris Lattner2188e402010-01-04 07:37:31 +0000285 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
286 /// define a state machine that triggers for ranges of values that the index
287 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
288 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
289 /// index in the range (inclusive). We use -2 for undefined here because we
290 /// use relative comparisons and don't want 0-1 to match -1.
291 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000292
Chris Lattner2188e402010-01-04 07:37:31 +0000293 // MagicBitvector - This is a magic bitvector where we set a bit if the
294 // comparison is true for element 'i'. If there are 64 elements or less in
295 // the array, this will fully represent all the comparison results.
296 uint64_t MagicBitvector = 0;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000297
Chris Lattner2188e402010-01-04 07:37:31 +0000298 // Scan the array and see if one of our patterns matches.
299 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
Chris Lattnerfe741762012-01-31 02:55:06 +0000300 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
301 Constant *Elt = Init->getAggregateElement(i);
Craig Topperf40110f2014-04-25 05:29:35 +0000302 if (!Elt) return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000303
Chris Lattner2188e402010-01-04 07:37:31 +0000304 // If this is indexing an array of structures, get the structure element.
305 if (!LaterIndices.empty())
Jay Foad57aa6362011-07-13 10:26:04 +0000306 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000307
Chris Lattner2188e402010-01-04 07:37:31 +0000308 // If the element is masked, handle it.
309 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000310
Chris Lattner2188e402010-01-04 07:37:31 +0000311 // Find out if the comparison would be true or false for the i'th element.
312 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
Justin Bogner99798402016-08-05 01:06:44 +0000313 CompareRHS, DL, &TLI);
Chris Lattner2188e402010-01-04 07:37:31 +0000314 // If the result is undef for this element, ignore it.
315 if (isa<UndefValue>(C)) {
316 // Extend range state machines to cover this element in case there is an
317 // undef in the middle of the range.
318 if (TrueRangeEnd == (int)i-1)
319 TrueRangeEnd = i;
320 if (FalseRangeEnd == (int)i-1)
321 FalseRangeEnd = i;
322 continue;
323 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000324
Chris Lattner2188e402010-01-04 07:37:31 +0000325 // If we can't compute the result for any of the elements, we have to give
326 // up evaluating the entire conditional.
Craig Topperf40110f2014-04-25 05:29:35 +0000327 if (!isa<ConstantInt>(C)) return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000328
Chris Lattner2188e402010-01-04 07:37:31 +0000329 // Otherwise, we know if the comparison is true or false for this element,
330 // update our state machines.
331 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
Jim Grosbach129c52a2011-09-30 18:09:53 +0000332
Chris Lattner2188e402010-01-04 07:37:31 +0000333 // State machine for single/double/range index comparison.
334 if (IsTrueForElt) {
335 // Update the TrueElement state machine.
336 if (FirstTrueElement == Undefined)
337 FirstTrueElement = TrueRangeEnd = i; // First true element.
338 else {
339 // Update double-compare state machine.
340 if (SecondTrueElement == Undefined)
341 SecondTrueElement = i;
342 else
343 SecondTrueElement = Overdefined;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000344
Chris Lattner2188e402010-01-04 07:37:31 +0000345 // Update range state machine.
346 if (TrueRangeEnd == (int)i-1)
347 TrueRangeEnd = i;
348 else
349 TrueRangeEnd = Overdefined;
350 }
351 } else {
352 // Update the FalseElement state machine.
353 if (FirstFalseElement == Undefined)
354 FirstFalseElement = FalseRangeEnd = i; // First false element.
355 else {
356 // Update double-compare state machine.
357 if (SecondFalseElement == Undefined)
358 SecondFalseElement = i;
359 else
360 SecondFalseElement = Overdefined;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000361
Chris Lattner2188e402010-01-04 07:37:31 +0000362 // Update range state machine.
363 if (FalseRangeEnd == (int)i-1)
364 FalseRangeEnd = i;
365 else
366 FalseRangeEnd = Overdefined;
367 }
368 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000369
Chris Lattner2188e402010-01-04 07:37:31 +0000370 // If this element is in range, update our magic bitvector.
371 if (i < 64 && IsTrueForElt)
372 MagicBitvector |= 1ULL << i;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000373
Chris Lattner2188e402010-01-04 07:37:31 +0000374 // If all of our states become overdefined, bail out early. Since the
375 // predicate is expensive, only check it every 8 elements. This is only
376 // really useful for really huge arrays.
377 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379 FalseRangeEnd == Overdefined)
Craig Topperf40110f2014-04-25 05:29:35 +0000380 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +0000381 }
382
383 // Now that we've scanned the entire array, emit our new comparison(s). We
384 // order the state machines in complexity of the generated code.
385 Value *Idx = GEP->getOperand(2);
386
Matt Arsenault5aeae182013-08-19 21:40:31 +0000387 // If the index is larger than the pointer size of the target, truncate the
388 // index down like the GEP would do implicitly. We don't have to do this for
389 // an inbounds GEP because the index can't be out of range.
Matt Arsenault84680622013-09-30 21:11:01 +0000390 if (!GEP->isInBounds()) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000391 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
Matt Arsenault84680622013-09-30 21:11:01 +0000392 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394 Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395 }
Matt Arsenault5aeae182013-08-19 21:40:31 +0000396
Chris Lattner2188e402010-01-04 07:37:31 +0000397 // If the comparison is only true for one or two elements, emit direct
398 // comparisons.
399 if (SecondTrueElement != Overdefined) {
400 // None true -> false.
401 if (FirstTrueElement == Undefined)
Sanjay Patel4b198802016-02-01 22:23:39 +0000402 return replaceInstUsesWith(ICI, Builder->getFalse());
Jim Grosbach129c52a2011-09-30 18:09:53 +0000403
Chris Lattner2188e402010-01-04 07:37:31 +0000404 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000405
Chris Lattner2188e402010-01-04 07:37:31 +0000406 // True for one element -> 'i == 47'.
407 if (SecondTrueElement == Undefined)
408 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000409
Chris Lattner2188e402010-01-04 07:37:31 +0000410 // True for two elements -> 'i == 47 | i == 72'.
411 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414 return BinaryOperator::CreateOr(C1, C2);
415 }
416
417 // If the comparison is only false for one or two elements, emit direct
418 // comparisons.
419 if (SecondFalseElement != Overdefined) {
420 // None false -> true.
421 if (FirstFalseElement == Undefined)
Sanjay Patel4b198802016-02-01 22:23:39 +0000422 return replaceInstUsesWith(ICI, Builder->getTrue());
Jim Grosbach129c52a2011-09-30 18:09:53 +0000423
Chris Lattner2188e402010-01-04 07:37:31 +0000424 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425
426 // False for one element -> 'i != 47'.
427 if (SecondFalseElement == Undefined)
428 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000429
Chris Lattner2188e402010-01-04 07:37:31 +0000430 // False for two elements -> 'i != 47 & i != 72'.
431 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434 return BinaryOperator::CreateAnd(C1, C2);
435 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000436
Chris Lattner2188e402010-01-04 07:37:31 +0000437 // If the comparison can be replaced with a range comparison for the elements
438 // where it is true, emit the range check.
439 if (TrueRangeEnd != Overdefined) {
440 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
Jim Grosbach129c52a2011-09-30 18:09:53 +0000441
Chris Lattner2188e402010-01-04 07:37:31 +0000442 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443 if (FirstTrueElement) {
444 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445 Idx = Builder->CreateAdd(Idx, Offs);
446 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000447
Chris Lattner2188e402010-01-04 07:37:31 +0000448 Value *End = ConstantInt::get(Idx->getType(),
449 TrueRangeEnd-FirstTrueElement+1);
450 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000452
Chris Lattner2188e402010-01-04 07:37:31 +0000453 // False range check.
454 if (FalseRangeEnd != Overdefined) {
455 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457 if (FirstFalseElement) {
458 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459 Idx = Builder->CreateAdd(Idx, Offs);
460 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000461
Chris Lattner2188e402010-01-04 07:37:31 +0000462 Value *End = ConstantInt::get(Idx->getType(),
463 FalseRangeEnd-FirstFalseElement);
464 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000466
Arnaud A. de Grandmaisonf364bc62013-03-22 08:25:01 +0000467 // If a magic bitvector captures the entire comparison state
Chris Lattner2188e402010-01-04 07:37:31 +0000468 // of this load, replace it with computation that does:
469 // ((magic_cst >> i) & 1) != 0
Arnaud A. de Grandmaisonf364bc62013-03-22 08:25:01 +0000470 {
Craig Topperf40110f2014-04-25 05:29:35 +0000471 Type *Ty = nullptr;
Arnaud A. de Grandmaisonf364bc62013-03-22 08:25:01 +0000472
473 // Look for an appropriate type:
474 // - The type of Idx if the magic fits
475 // - The smallest fitting legal type if we have a DataLayout
476 // - Default to i32
477 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
478 Ty = Idx->getType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000479 else
480 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
Arnaud A. de Grandmaisonf364bc62013-03-22 08:25:01 +0000481
Craig Topperf40110f2014-04-25 05:29:35 +0000482 if (Ty) {
Arnaud A. de Grandmaisonf364bc62013-03-22 08:25:01 +0000483 Value *V = Builder->CreateIntCast(Idx, Ty, false);
484 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
485 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
486 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
487 }
Chris Lattner2188e402010-01-04 07:37:31 +0000488 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000489
Craig Topperf40110f2014-04-25 05:29:35 +0000490 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +0000491}
492
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000493/// Return a value that can be used to compare the *offset* implied by a GEP to
494/// zero. For example, if we have &A[i], we want to return 'i' for
495/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
496/// are involved. The above expression would also be legal to codegen as
497/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
498/// This latter form is less amenable to optimization though, and we are allowed
Chris Lattner2188e402010-01-04 07:37:31 +0000499/// to generate the first by knowing that pointer arithmetic doesn't overflow.
500///
501/// If we can't emit an optimized form for this expression, this returns null.
Jim Grosbach129c52a2011-09-30 18:09:53 +0000502///
Sanjay Pateld93c4c02016-09-15 18:22:25 +0000503static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000504 const DataLayout &DL) {
Chris Lattner2188e402010-01-04 07:37:31 +0000505 gep_type_iterator GTI = gep_type_begin(GEP);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000506
Chris Lattner2188e402010-01-04 07:37:31 +0000507 // Check to see if this gep only has a single variable index. If so, and if
508 // any constant indices are a multiple of its scale, then we can compute this
509 // in terms of the scale of the variable index. For example, if the GEP
510 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
511 // because the expression will cross zero at the same point.
512 unsigned i, e = GEP->getNumOperands();
513 int64_t Offset = 0;
514 for (i = 1; i != e; ++i, ++GTI) {
515 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
516 // Compute the aggregate offset of constant indices.
517 if (CI->isZero()) continue;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000518
Chris Lattner2188e402010-01-04 07:37:31 +0000519 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattner229907c2011-07-18 04:54:35 +0000520 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000521 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
Chris Lattner2188e402010-01-04 07:37:31 +0000522 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000523 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Chris Lattner2188e402010-01-04 07:37:31 +0000524 Offset += Size*CI->getSExtValue();
525 }
526 } else {
527 // Found our variable index.
528 break;
529 }
530 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000531
Chris Lattner2188e402010-01-04 07:37:31 +0000532 // If there are no variable indices, we must have a constant offset, just
533 // evaluate it the general way.
Craig Topperf40110f2014-04-25 05:29:35 +0000534 if (i == e) return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000535
Chris Lattner2188e402010-01-04 07:37:31 +0000536 Value *VariableIdx = GEP->getOperand(i);
537 // Determine the scale factor of the variable element. For example, this is
538 // 4 if the variable index is into an array of i32.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000539 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
Jim Grosbach129c52a2011-09-30 18:09:53 +0000540
Chris Lattner2188e402010-01-04 07:37:31 +0000541 // Verify that there are no other variable indices. If so, emit the hard way.
542 for (++i, ++GTI; i != e; ++i, ++GTI) {
543 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
Craig Topperf40110f2014-04-25 05:29:35 +0000544 if (!CI) return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000545
Chris Lattner2188e402010-01-04 07:37:31 +0000546 // Compute the aggregate offset of constant indices.
547 if (CI->isZero()) continue;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000548
Chris Lattner2188e402010-01-04 07:37:31 +0000549 // Handle a struct index, which adds its field offset to the pointer.
Chris Lattner229907c2011-07-18 04:54:35 +0000550 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000551 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
Chris Lattner2188e402010-01-04 07:37:31 +0000552 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000553 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Chris Lattner2188e402010-01-04 07:37:31 +0000554 Offset += Size*CI->getSExtValue();
555 }
556 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000557
Chris Lattner2188e402010-01-04 07:37:31 +0000558 // Okay, we know we have a single variable index, which must be a
559 // pointer/array/vector index. If there is no offset, life is simple, return
560 // the index.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000561 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
Matt Arsenault745101d2013-08-21 19:53:10 +0000562 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
Chris Lattner2188e402010-01-04 07:37:31 +0000563 if (Offset == 0) {
564 // Cast to intptrty in case a truncation occurs. If an extension is needed,
565 // we don't need to bother extending: the extension won't affect where the
566 // computation crosses zero.
Eli Friedman1754a252011-05-18 23:11:30 +0000567 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
Eli Friedman1754a252011-05-18 23:11:30 +0000568 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
569 }
Chris Lattner2188e402010-01-04 07:37:31 +0000570 return VariableIdx;
571 }
Jim Grosbach129c52a2011-09-30 18:09:53 +0000572
Chris Lattner2188e402010-01-04 07:37:31 +0000573 // Otherwise, there is an index. The computation we will do will be modulo
574 // the pointer size, so get it.
575 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000576
Chris Lattner2188e402010-01-04 07:37:31 +0000577 Offset &= PtrSizeMask;
578 VariableScale &= PtrSizeMask;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000579
Chris Lattner2188e402010-01-04 07:37:31 +0000580 // To do this transformation, any constant index must be a multiple of the
581 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
582 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
583 // multiple of the variable scale.
584 int64_t NewOffs = Offset / (int64_t)VariableScale;
585 if (Offset != NewOffs*(int64_t)VariableScale)
Craig Topperf40110f2014-04-25 05:29:35 +0000586 return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +0000587
Chris Lattner2188e402010-01-04 07:37:31 +0000588 // Okay, we can do this evaluation. Start by converting the index to intptr.
Chris Lattner2188e402010-01-04 07:37:31 +0000589 if (VariableIdx->getType() != IntPtrTy)
Eli Friedman1754a252011-05-18 23:11:30 +0000590 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
591 true /*Signed*/);
Chris Lattner2188e402010-01-04 07:37:31 +0000592 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
Eli Friedman1754a252011-05-18 23:11:30 +0000593 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
Chris Lattner2188e402010-01-04 07:37:31 +0000594}
595
Silviu Barangaf29dfd32016-01-15 15:52:05 +0000596/// Returns true if we can rewrite Start as a GEP with pointer Base
597/// and some integer offset. The nodes that need to be re-written
598/// for this transformation will be added to Explored.
599static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
600 const DataLayout &DL,
601 SetVector<Value *> &Explored) {
602 SmallVector<Value *, 16> WorkList(1, Start);
603 Explored.insert(Base);
604
605 // The following traversal gives us an order which can be used
606 // when doing the final transformation. Since in the final
607 // transformation we create the PHI replacement instructions first,
608 // we don't have to get them in any particular order.
609 //
610 // However, for other instructions we will have to traverse the
611 // operands of an instruction first, which means that we have to
612 // do a post-order traversal.
613 while (!WorkList.empty()) {
614 SetVector<PHINode *> PHIs;
615
616 while (!WorkList.empty()) {
617 if (Explored.size() >= 100)
618 return false;
619
620 Value *V = WorkList.back();
621
622 if (Explored.count(V) != 0) {
623 WorkList.pop_back();
624 continue;
625 }
626
627 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
David Majnemer8b16da82016-09-15 20:10:09 +0000628 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
Silviu Barangaf29dfd32016-01-15 15:52:05 +0000629 // We've found some value that we can't explore which is different from
630 // the base. Therefore we can't do this transformation.
631 return false;
632
633 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
634 auto *CI = dyn_cast<CastInst>(V);
635 if (!CI->isNoopCast(DL))
636 return false;
637
638 if (Explored.count(CI->getOperand(0)) == 0)
639 WorkList.push_back(CI->getOperand(0));
640 }
641
642 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
643 // We're limiting the GEP to having one index. This will preserve
644 // the original pointer type. We could handle more cases in the
645 // future.
646 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
647 GEP->getType() != Start->getType())
648 return false;
649
650 if (Explored.count(GEP->getOperand(0)) == 0)
651 WorkList.push_back(GEP->getOperand(0));
652 }
653
654 if (WorkList.back() == V) {
655 WorkList.pop_back();
656 // We've finished visiting this node, mark it as such.
657 Explored.insert(V);
658 }
659
660 if (auto *PN = dyn_cast<PHINode>(V)) {
David Majnemercdf28732016-03-19 04:39:52 +0000661 // We cannot transform PHIs on unsplittable basic blocks.
662 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
663 return false;
Silviu Barangaf29dfd32016-01-15 15:52:05 +0000664 Explored.insert(PN);
665 PHIs.insert(PN);
666 }
667 }
668
669 // Explore the PHI nodes further.
670 for (auto *PN : PHIs)
671 for (Value *Op : PN->incoming_values())
672 if (Explored.count(Op) == 0)
673 WorkList.push_back(Op);
674 }
675
676 // Make sure that we can do this. Since we can't insert GEPs in a basic
677 // block before a PHI node, we can't easily do this transformation if
678 // we have PHI node users of transformed instructions.
679 for (Value *Val : Explored) {
680 for (Value *Use : Val->uses()) {
681
682 auto *PHI = dyn_cast<PHINode>(Use);
683 auto *Inst = dyn_cast<Instruction>(Val);
684
685 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
686 Explored.count(PHI) == 0)
687 continue;
688
689 if (PHI->getParent() == Inst->getParent())
690 return false;
691 }
692 }
693 return true;
694}
695
696// Sets the appropriate insert point on Builder where we can add
697// a replacement Instruction for V (if that is possible).
698static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
699 bool Before = true) {
700 if (auto *PHI = dyn_cast<PHINode>(V)) {
701 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
702 return;
703 }
704 if (auto *I = dyn_cast<Instruction>(V)) {
705 if (!Before)
706 I = &*std::next(I->getIterator());
707 Builder.SetInsertPoint(I);
708 return;
709 }
710 if (auto *A = dyn_cast<Argument>(V)) {
711 // Set the insertion point in the entry block.
712 BasicBlock &Entry = A->getParent()->getEntryBlock();
713 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
714 return;
715 }
716 // Otherwise, this is a constant and we don't need to set a new
717 // insertion point.
718 assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
719}
720
721/// Returns a re-written value of Start as an indexed GEP using Base as a
722/// pointer.
723static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
724 const DataLayout &DL,
725 SetVector<Value *> &Explored) {
726 // Perform all the substitutions. This is a bit tricky because we can
727 // have cycles in our use-def chains.
728 // 1. Create the PHI nodes without any incoming values.
729 // 2. Create all the other values.
730 // 3. Add the edges for the PHI nodes.
731 // 4. Emit GEPs to get the original pointers.
732 // 5. Remove the original instructions.
733 Type *IndexType = IntegerType::get(
734 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
735
736 DenseMap<Value *, Value *> NewInsts;
737 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
738
739 // Create the new PHI nodes, without adding any incoming values.
740 for (Value *Val : Explored) {
741 if (Val == Base)
742 continue;
743 // Create empty phi nodes. This avoids cyclic dependencies when creating
744 // the remaining instructions.
745 if (auto *PHI = dyn_cast<PHINode>(Val))
746 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
747 PHI->getName() + ".idx", PHI);
748 }
749 IRBuilder<> Builder(Base->getContext());
750
751 // Create all the other instructions.
752 for (Value *Val : Explored) {
753
754 if (NewInsts.find(Val) != NewInsts.end())
755 continue;
756
757 if (auto *CI = dyn_cast<CastInst>(Val)) {
758 NewInsts[CI] = NewInsts[CI->getOperand(0)];
759 continue;
760 }
761 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
762 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
763 : GEP->getOperand(1);
764 setInsertionPoint(Builder, GEP);
765 // Indices might need to be sign extended. GEPs will magically do
766 // this, but we need to do it ourselves here.
767 if (Index->getType()->getScalarSizeInBits() !=
768 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
769 Index = Builder.CreateSExtOrTrunc(
770 Index, NewInsts[GEP->getOperand(0)]->getType(),
771 GEP->getOperand(0)->getName() + ".sext");
772 }
773
774 auto *Op = NewInsts[GEP->getOperand(0)];
775 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
776 NewInsts[GEP] = Index;
777 else
778 NewInsts[GEP] = Builder.CreateNSWAdd(
779 Op, Index, GEP->getOperand(0)->getName() + ".add");
780 continue;
781 }
782 if (isa<PHINode>(Val))
783 continue;
784
785 llvm_unreachable("Unexpected instruction type");
786 }
787
788 // Add the incoming values to the PHI nodes.
789 for (Value *Val : Explored) {
790 if (Val == Base)
791 continue;
792 // All the instructions have been created, we can now add edges to the
793 // phi nodes.
794 if (auto *PHI = dyn_cast<PHINode>(Val)) {
795 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
796 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
797 Value *NewIncoming = PHI->getIncomingValue(I);
798
799 if (NewInsts.find(NewIncoming) != NewInsts.end())
800 NewIncoming = NewInsts[NewIncoming];
801
802 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
803 }
804 }
805 }
806
807 for (Value *Val : Explored) {
808 if (Val == Base)
809 continue;
810
811 // Depending on the type, for external users we have to emit
812 // a GEP or a GEP + ptrtoint.
813 setInsertionPoint(Builder, Val, false);
814
815 // If required, create an inttoptr instruction for Base.
816 Value *NewBase = Base;
817 if (!Base->getType()->isPointerTy())
818 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
819 Start->getName() + "to.ptr");
820
821 Value *GEP = Builder.CreateInBoundsGEP(
822 Start->getType()->getPointerElementType(), NewBase,
823 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
824
825 if (!Val->getType()->isPointerTy()) {
826 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
827 Val->getName() + ".conv");
828 GEP = Cast;
829 }
830 Val->replaceAllUsesWith(GEP);
831 }
832
833 return NewInsts[Start];
834}
835
836/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
837/// the input Value as a constant indexed GEP. Returns a pair containing
838/// the GEPs Pointer and Index.
839static std::pair<Value *, Value *>
840getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
841 Type *IndexType = IntegerType::get(V->getContext(),
842 DL.getPointerTypeSizeInBits(V->getType()));
843
844 Constant *Index = ConstantInt::getNullValue(IndexType);
845 while (true) {
846 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
847 // We accept only inbouds GEPs here to exclude the possibility of
848 // overflow.
849 if (!GEP->isInBounds())
850 break;
851 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
852 GEP->getType() == V->getType()) {
853 V = GEP->getOperand(0);
854 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
855 Index = ConstantExpr::getAdd(
856 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
857 continue;
858 }
859 break;
860 }
861 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
862 if (!CI->isNoopCast(DL))
863 break;
864 V = CI->getOperand(0);
865 continue;
866 }
867 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
868 if (!CI->isNoopCast(DL))
869 break;
870 V = CI->getOperand(0);
871 continue;
872 }
873 break;
874 }
875 return {V, Index};
876}
877
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000878/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
879/// We can look through PHIs, GEPs and casts in order to determine a common base
880/// between GEPLHS and RHS.
Silviu Barangaf29dfd32016-01-15 15:52:05 +0000881static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
882 ICmpInst::Predicate Cond,
883 const DataLayout &DL) {
884 if (!GEPLHS->hasAllConstantIndices())
885 return nullptr;
886
887 Value *PtrBase, *Index;
888 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
889
890 // The set of nodes that will take part in this transformation.
891 SetVector<Value *> Nodes;
892
893 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
894 return nullptr;
895
896 // We know we can re-write this as
897 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
898 // Since we've only looked through inbouds GEPs we know that we
899 // can't have overflow on either side. We can therefore re-write
900 // this as:
901 // OFFSET1 cmp OFFSET2
902 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
903
904 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
905 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
906 // offset. Since Index is the offset of LHS to the base pointer, we will now
907 // compare the offsets instead of comparing the pointers.
908 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
909}
910
Sanjay Patel5f0217f2016-06-05 16:46:18 +0000911/// Fold comparisons between a GEP instruction and something else. At this point
912/// we know that the GEP is on the LHS of the comparison.
Sanjay Patel43395062016-07-21 18:07:40 +0000913Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
Chris Lattner2188e402010-01-04 07:37:31 +0000914 ICmpInst::Predicate Cond,
915 Instruction &I) {
Benjamin Kramer6ee86902012-02-21 13:31:09 +0000916 // Don't transform signed compares of GEPs into index compares. Even if the
917 // GEP is inbounds, the final add of the base pointer can have signed overflow
918 // and would change the result of the icmp.
919 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
Benjamin Kramerc7a22fe2012-02-21 13:40:06 +0000920 // the maximum signed value for the pointer type.
Benjamin Kramer6ee86902012-02-21 13:31:09 +0000921 if (ICmpInst::isSigned(Cond))
Craig Topperf40110f2014-04-25 05:29:35 +0000922 return nullptr;
Benjamin Kramer6ee86902012-02-21 13:31:09 +0000923
Matt Arsenault44f60d02014-06-09 19:20:29 +0000924 // Look through bitcasts and addrspacecasts. We do not however want to remove
925 // 0 GEPs.
926 if (!isa<GetElementPtrInst>(RHS))
927 RHS = RHS->stripPointerCasts();
Chris Lattner2188e402010-01-04 07:37:31 +0000928
929 Value *PtrBase = GEPLHS->getOperand(0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000930 if (PtrBase == RHS && GEPLHS->isInBounds()) {
Chris Lattner2188e402010-01-04 07:37:31 +0000931 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
932 // This transformation (ignoring the base and scales) is valid because we
933 // know pointers can't overflow since the gep is inbounds. See if we can
934 // output an optimized form.
Sanjay Pateld93c4c02016-09-15 18:22:25 +0000935 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
Jim Grosbach129c52a2011-09-30 18:09:53 +0000936
Chris Lattner2188e402010-01-04 07:37:31 +0000937 // If not, synthesize the offset the hard way.
Craig Topperf40110f2014-04-25 05:29:35 +0000938 if (!Offset)
Chris Lattner2188e402010-01-04 07:37:31 +0000939 Offset = EmitGEPOffset(GEPLHS);
940 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
941 Constant::getNullValue(Offset->getType()));
942 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
943 // If the base pointers are different, but the indices are the same, just
944 // compare the base pointer.
945 if (PtrBase != GEPRHS->getOperand(0)) {
946 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
947 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
948 GEPRHS->getOperand(0)->getType();
949 if (IndicesTheSame)
950 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
951 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
952 IndicesTheSame = false;
953 break;
954 }
955
956 // If all indices are the same, just compare the base pointers.
957 if (IndicesTheSame)
David Majnemer5953d372013-06-29 10:28:04 +0000958 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattner2188e402010-01-04 07:37:31 +0000959
Benjamin Kramer7adb1892012-02-20 15:07:47 +0000960 // If we're comparing GEPs with two base pointers that only differ in type
961 // and both GEPs have only constant indices or just one use, then fold
962 // the compare with the adjusted indices.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000963 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
Benjamin Kramer7adb1892012-02-20 15:07:47 +0000964 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
965 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
966 PtrBase->stripPointerCasts() ==
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000967 GEPRHS->getOperand(0)->stripPointerCasts()) {
Matt Arsenault44f60d02014-06-09 19:20:29 +0000968 Value *LOffset = EmitGEPOffset(GEPLHS);
969 Value *ROffset = EmitGEPOffset(GEPRHS);
970
971 // If we looked through an addrspacecast between different sized address
972 // spaces, the LHS and RHS pointers are different sized
973 // integers. Truncate to the smaller one.
974 Type *LHSIndexTy = LOffset->getType();
975 Type *RHSIndexTy = ROffset->getType();
976 if (LHSIndexTy != RHSIndexTy) {
977 if (LHSIndexTy->getPrimitiveSizeInBits() <
978 RHSIndexTy->getPrimitiveSizeInBits()) {
979 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
980 } else
981 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
982 }
983
Benjamin Kramer7adb1892012-02-20 15:07:47 +0000984 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
Matt Arsenault44f60d02014-06-09 19:20:29 +0000985 LOffset, ROffset);
Sanjay Patel4b198802016-02-01 22:23:39 +0000986 return replaceInstUsesWith(I, Cmp);
Benjamin Kramer7adb1892012-02-20 15:07:47 +0000987 }
988
Chris Lattner2188e402010-01-04 07:37:31 +0000989 // Otherwise, the base pointers are different and the indices are
Silviu Barangaf29dfd32016-01-15 15:52:05 +0000990 // different. Try convert this to an indexed compare by looking through
991 // PHIs/casts.
992 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
Chris Lattner2188e402010-01-04 07:37:31 +0000993 }
994
995 // If one of the GEPs has all zero indices, recurse.
Benjamin Kramerd0993e02014-07-07 11:01:16 +0000996 if (GEPLHS->hasAllZeroIndices())
Sanjay Patel43395062016-07-21 18:07:40 +0000997 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
David Majnemer92a8a7d2013-06-29 09:45:35 +0000998 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner2188e402010-01-04 07:37:31 +0000999
1000 // If the other GEP has all zero indices, recurse.
Benjamin Kramerd0993e02014-07-07 11:01:16 +00001001 if (GEPRHS->hasAllZeroIndices())
Sanjay Patel43395062016-07-21 18:07:40 +00001002 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattner2188e402010-01-04 07:37:31 +00001003
Stuart Hastings66a82b92011-05-14 05:55:10 +00001004 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
Chris Lattner2188e402010-01-04 07:37:31 +00001005 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
1006 // If the GEPs only differ by one index, compare it.
1007 unsigned NumDifferences = 0; // Keep track of # differences.
1008 unsigned DiffOperand = 0; // The operand that differs.
1009 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
1010 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
1011 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
1012 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
1013 // Irreconcilable differences.
1014 NumDifferences = 2;
1015 break;
1016 } else {
1017 if (NumDifferences++) break;
1018 DiffOperand = i;
1019 }
1020 }
1021
Rafael Espindolaa7bbc0b2013-06-06 17:03:05 +00001022 if (NumDifferences == 0) // SAME GEP?
Sanjay Patel4b198802016-02-01 22:23:39 +00001023 return replaceInstUsesWith(I, // No comparison is needed here.
Jakub Staszakbddea112013-06-06 20:18:46 +00001024 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
Chris Lattner2188e402010-01-04 07:37:31 +00001025
Stuart Hastings66a82b92011-05-14 05:55:10 +00001026 else if (NumDifferences == 1 && GEPsInBounds) {
Chris Lattner2188e402010-01-04 07:37:31 +00001027 Value *LHSV = GEPLHS->getOperand(DiffOperand);
1028 Value *RHSV = GEPRHS->getOperand(DiffOperand);
1029 // Make sure we do a signed comparison here.
1030 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1031 }
1032 }
1033
1034 // Only lower this if the icmp is the only user of the GEP or if we expect
1035 // the result to fold to a constant!
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001036 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
Chris Lattner2188e402010-01-04 07:37:31 +00001037 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1038 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1039 Value *L = EmitGEPOffset(GEPLHS);
1040 Value *R = EmitGEPOffset(GEPRHS);
1041 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1042 }
1043 }
Silviu Barangaf29dfd32016-01-15 15:52:05 +00001044
1045 // Try convert this to an indexed compare by looking through PHIs/casts as a
1046 // last resort.
1047 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
Chris Lattner2188e402010-01-04 07:37:31 +00001048}
1049
Pete Cooper980a9352016-08-12 17:13:28 +00001050Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1051 const AllocaInst *Alloca,
1052 const Value *Other) {
Hans Wennborgf1f36512015-10-07 00:20:07 +00001053 assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1054
1055 // It would be tempting to fold away comparisons between allocas and any
1056 // pointer not based on that alloca (e.g. an argument). However, even
1057 // though such pointers cannot alias, they can still compare equal.
1058 //
1059 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1060 // doesn't escape we can argue that it's impossible to guess its value, and we
1061 // can therefore act as if any such guesses are wrong.
1062 //
1063 // The code below checks that the alloca doesn't escape, and that it's only
1064 // used in a comparison once (the current instruction). The
1065 // single-comparison-use condition ensures that we're trivially folding all
1066 // comparisons against the alloca consistently, and avoids the risk of
1067 // erroneously folding a comparison of the pointer with itself.
1068
1069 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1070
Pete Cooper980a9352016-08-12 17:13:28 +00001071 SmallVector<const Use *, 32> Worklist;
1072 for (const Use &U : Alloca->uses()) {
Hans Wennborgf1f36512015-10-07 00:20:07 +00001073 if (Worklist.size() >= MaxIter)
1074 return nullptr;
1075 Worklist.push_back(&U);
1076 }
1077
1078 unsigned NumCmps = 0;
1079 while (!Worklist.empty()) {
1080 assert(Worklist.size() <= MaxIter);
Pete Cooper980a9352016-08-12 17:13:28 +00001081 const Use *U = Worklist.pop_back_val();
1082 const Value *V = U->getUser();
Hans Wennborgf1f36512015-10-07 00:20:07 +00001083 --MaxIter;
1084
1085 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1086 isa<SelectInst>(V)) {
1087 // Track the uses.
1088 } else if (isa<LoadInst>(V)) {
1089 // Loading from the pointer doesn't escape it.
1090 continue;
Pete Cooper980a9352016-08-12 17:13:28 +00001091 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
Hans Wennborgf1f36512015-10-07 00:20:07 +00001092 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1093 if (SI->getValueOperand() == U->get())
1094 return nullptr;
1095 continue;
1096 } else if (isa<ICmpInst>(V)) {
1097 if (NumCmps++)
1098 return nullptr; // Found more than one cmp.
1099 continue;
Pete Cooper980a9352016-08-12 17:13:28 +00001100 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
Hans Wennborgf1f36512015-10-07 00:20:07 +00001101 switch (Intrin->getIntrinsicID()) {
1102 // These intrinsics don't escape or compare the pointer. Memset is safe
1103 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1104 // we don't allow stores, so src cannot point to V.
1105 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1106 case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
1107 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1108 continue;
1109 default:
1110 return nullptr;
1111 }
1112 } else {
1113 return nullptr;
1114 }
Pete Cooper980a9352016-08-12 17:13:28 +00001115 for (const Use &U : V->uses()) {
Hans Wennborgf1f36512015-10-07 00:20:07 +00001116 if (Worklist.size() >= MaxIter)
1117 return nullptr;
1118 Worklist.push_back(&U);
1119 }
1120 }
1121
1122 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
Sanjay Patel4b198802016-02-01 22:23:39 +00001123 return replaceInstUsesWith(
Hans Wennborgf1f36512015-10-07 00:20:07 +00001124 ICI,
1125 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1126}
1127
Sanjay Patel5f0217f2016-06-05 16:46:18 +00001128/// Fold "icmp pred (X+CI), X".
Sanjay Patel43395062016-07-21 18:07:40 +00001129Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
1130 Value *X, ConstantInt *CI,
1131 ICmpInst::Predicate Pred) {
Chris Lattner2188e402010-01-04 07:37:31 +00001132 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001133 // so the values can never be equal. Similarly for all other "or equals"
Chris Lattner2188e402010-01-04 07:37:31 +00001134 // operators.
Jim Grosbach129c52a2011-09-30 18:09:53 +00001135
Chris Lattner8c92b572010-01-08 17:48:19 +00001136 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner2188e402010-01-04 07:37:31 +00001137 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1138 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1139 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Jim Grosbach129c52a2011-09-30 18:09:53 +00001140 Value *R =
Chris Lattner8c92b572010-01-08 17:48:19 +00001141 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner2188e402010-01-04 07:37:31 +00001142 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1143 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00001144
Chris Lattner2188e402010-01-04 07:37:31 +00001145 // (X+1) >u X --> X <u (0-1) --> X != 255
1146 // (X+2) >u X --> X <u (0-2) --> X <u 254
1147 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
Duncan Sandse5220012011-02-17 07:46:37 +00001148 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
Chris Lattner2188e402010-01-04 07:37:31 +00001149 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
Jim Grosbach129c52a2011-09-30 18:09:53 +00001150
Chris Lattner2188e402010-01-04 07:37:31 +00001151 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
1152 ConstantInt *SMax = ConstantInt::get(X->getContext(),
1153 APInt::getSignedMaxValue(BitWidth));
1154
1155 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1156 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1157 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1158 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1159 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1160 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
Duncan Sandse5220012011-02-17 07:46:37 +00001161 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
Chris Lattner2188e402010-01-04 07:37:31 +00001162 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
Jim Grosbach129c52a2011-09-30 18:09:53 +00001163
Chris Lattner2188e402010-01-04 07:37:31 +00001164 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1165 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1166 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1167 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1168 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1169 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
Jim Grosbach129c52a2011-09-30 18:09:53 +00001170
Chris Lattner2188e402010-01-04 07:37:31 +00001171 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Jakub Staszakbddea112013-06-06 20:18:46 +00001172 Constant *C = Builder->getInt(CI->getValue()-1);
Chris Lattner2188e402010-01-04 07:37:31 +00001173 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
1174}
1175
Sanjay Patel8da42cc2016-09-15 22:26:31 +00001176/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1177/// (icmp eq/ne A, Log2(AP2/AP1)) ->
1178/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1179Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1180 const APInt &AP1,
1181 const APInt &AP2) {
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001182 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1183
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001184 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1185 if (I.getPredicate() == I.ICMP_NE)
1186 Pred = CmpInst::getInversePredicate(Pred);
1187 return new ICmpInst(Pred, LHS, RHS);
1188 };
1189
David Majnemer2abb8182014-10-25 07:13:13 +00001190 // Don't bother doing any work for cases which InstSimplify handles.
1191 if (AP2 == 0)
1192 return nullptr;
Sanjay Patel8da42cc2016-09-15 22:26:31 +00001193
1194 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
David Majnemer2abb8182014-10-25 07:13:13 +00001195 if (IsAShr) {
1196 if (AP2.isAllOnesValue())
1197 return nullptr;
1198 if (AP2.isNegative() != AP1.isNegative())
1199 return nullptr;
1200 if (AP2.sgt(AP1))
1201 return nullptr;
1202 }
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001203
David Majnemerd2056022014-10-21 19:51:55 +00001204 if (!AP1)
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001205 // 'A' must be large enough to shift out the highest set bit.
1206 return getICmp(I.ICMP_UGT, A,
1207 ConstantInt::get(A->getType(), AP2.logBase2()));
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001208
David Majnemerd2056022014-10-21 19:51:55 +00001209 if (AP1 == AP2)
1210 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001211
Andrea Di Biagio5b92b492014-09-17 11:32:31 +00001212 int Shift;
David Majnemerd2056022014-10-21 19:51:55 +00001213 if (IsAShr && AP1.isNegative())
David Majnemere5977eb2015-09-19 00:48:26 +00001214 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
Andrea Di Biagio5b92b492014-09-17 11:32:31 +00001215 else
David Majnemere5977eb2015-09-19 00:48:26 +00001216 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001217
David Majnemerd2056022014-10-21 19:51:55 +00001218 if (Shift > 0) {
David Majnemere5977eb2015-09-19 00:48:26 +00001219 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1220 // There are multiple solutions if we are comparing against -1 and the LHS
David Majnemer47ce0b82015-09-19 00:48:31 +00001221 // of the ashr is not a power of two.
David Majnemere5977eb2015-09-19 00:48:26 +00001222 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1223 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
David Majnemerd2056022014-10-21 19:51:55 +00001224 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
David Majnemere5977eb2015-09-19 00:48:26 +00001225 } else if (AP1 == AP2.lshr(Shift)) {
1226 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227 }
David Majnemerd2056022014-10-21 19:51:55 +00001228 }
Sanjay Patel524fcdf2016-09-15 19:04:55 +00001229
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001230 // Shifting const2 will never be equal to const1.
Sanjay Patel524fcdf2016-09-15 19:04:55 +00001231 // FIXME: This should always be handled by InstSimplify?
1232 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1233 return replaceInstUsesWith(I, TorF);
Suyog Sarda3a8c2c12014-07-22 19:19:36 +00001234}
Chris Lattner2188e402010-01-04 07:37:31 +00001235
Sanjay Patel8da42cc2016-09-15 22:26:31 +00001236/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1237/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1238Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1239 const APInt &AP1,
1240 const APInt &AP2) {
David Majnemer59939ac2014-10-19 08:23:08 +00001241 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1242
David Majnemer59939ac2014-10-19 08:23:08 +00001243 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1244 if (I.getPredicate() == I.ICMP_NE)
1245 Pred = CmpInst::getInversePredicate(Pred);
1246 return new ICmpInst(Pred, LHS, RHS);
1247 };
1248
David Majnemer2abb8182014-10-25 07:13:13 +00001249 // Don't bother doing any work for cases which InstSimplify handles.
1250 if (AP2 == 0)
1251 return nullptr;
David Majnemer59939ac2014-10-19 08:23:08 +00001252
1253 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1254
1255 if (!AP1 && AP2TrailingZeros != 0)
Sanjay Patelaf91d1f2016-09-15 21:35:30 +00001256 return getICmp(
1257 I.ICMP_UGE, A,
1258 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
David Majnemer59939ac2014-10-19 08:23:08 +00001259
1260 if (AP1 == AP2)
1261 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1262
1263 // Get the distance between the lowest bits that are set.
1264 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1265
1266 if (Shift > 0 && AP2.shl(Shift) == AP1)
1267 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1268
1269 // Shifting const2 will never be equal to const1.
Sanjay Patel524fcdf2016-09-15 19:04:55 +00001270 // FIXME: This should always be handled by InstSimplify?
1271 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1272 return replaceInstUsesWith(I, TorF);
David Majnemer59939ac2014-10-19 08:23:08 +00001273}
1274
Sanjay Patel06b127a2016-09-15 14:37:50 +00001275/// The caller has matched a pattern of the form:
1276/// I = icmp ugt (add (add A, B), CI2), CI1
1277/// If this is of the form:
1278/// sum = a + b
1279/// if (sum+128 >u 255)
1280/// Then replace it with llvm.sadd.with.overflow.i8.
1281///
Sanjay Pateld93c4c02016-09-15 18:22:25 +00001282static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
Sanjay Patel06b127a2016-09-15 14:37:50 +00001283 ConstantInt *CI2, ConstantInt *CI1,
1284 InstCombiner &IC) {
1285 // The transformation we're trying to do here is to transform this into an
1286 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1287 // with a narrower add, and discard the add-with-constant that is part of the
1288 // range check (if we can't eliminate it, this isn't profitable).
1289
1290 // In order to eliminate the add-with-constant, the compare can be its only
1291 // use.
1292 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1293 if (!AddWithCst->hasOneUse())
1294 return nullptr;
1295
1296 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1297 if (!CI2->getValue().isPowerOf2())
1298 return nullptr;
1299 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1300 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1301 return nullptr;
1302
1303 // The width of the new add formed is 1 more than the bias.
1304 ++NewWidth;
1305
1306 // Check to see that CI1 is an all-ones value with NewWidth bits.
1307 if (CI1->getBitWidth() == NewWidth ||
1308 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1309 return nullptr;
1310
1311 // This is only really a signed overflow check if the inputs have been
1312 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1313 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1314 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1315 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1316 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1317 return nullptr;
1318
1319 // In order to replace the original add with a narrower
1320 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1321 // and truncates that discard the high bits of the add. Verify that this is
1322 // the case.
1323 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1324 for (User *U : OrigAdd->users()) {
1325 if (U == AddWithCst)
1326 continue;
1327
1328 // Only accept truncates for now. We would really like a nice recursive
1329 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1330 // chain to see which bits of a value are actually demanded. If the
1331 // original add had another add which was then immediately truncated, we
1332 // could still do the transformation.
1333 TruncInst *TI = dyn_cast<TruncInst>(U);
1334 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1335 return nullptr;
1336 }
1337
1338 // If the pattern matches, truncate the inputs to the narrower type and
1339 // use the sadd_with_overflow intrinsic to efficiently compute both the
1340 // result and the overflow bit.
1341 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1342 Value *F = Intrinsic::getDeclaration(I.getModule(),
1343 Intrinsic::sadd_with_overflow, NewType);
1344
1345 InstCombiner::BuilderTy *Builder = IC.Builder;
1346
1347 // Put the new code above the original add, in case there are any uses of the
1348 // add between the add and the compare.
1349 Builder->SetInsertPoint(OrigAdd);
1350
1351 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
1352 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
1353 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
1354 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1355 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1356
1357 // The inner add was the result of the narrow add, zero extended to the
1358 // wider type. Replace it with the result computed by the intrinsic.
1359 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1360
1361 // The original icmp gets replaced with the overflow value.
1362 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1363}
1364
1365// Fold icmp Pred X, C.
Sanjay Patel97459832016-09-15 15:11:12 +00001366Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1367 CmpInst::Predicate Pred = Cmp.getPredicate();
Sanjay Patel40c53ea2016-09-15 16:23:20 +00001368 Value *X = Cmp.getOperand(0);
Sanjay Patel06b127a2016-09-15 14:37:50 +00001369
Sanjay Patel40c53ea2016-09-15 16:23:20 +00001370 const APInt *C;
1371 if (!match(Cmp.getOperand(1), m_APInt(C)))
Sanjay Patel97459832016-09-15 15:11:12 +00001372 return nullptr;
Sanjay Patel06b127a2016-09-15 14:37:50 +00001373
Sanjay Patel97459832016-09-15 15:11:12 +00001374 Value *A = nullptr, *B = nullptr;
Sanjay Patel06b127a2016-09-15 14:37:50 +00001375
Sanjay Patel97459832016-09-15 15:11:12 +00001376 // Match the following pattern, which is a common idiom when writing
1377 // overflow-safe integer arithmetic functions. The source performs an addition
1378 // in wider type and explicitly checks for overflow using comparisons against
1379 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1380 //
1381 // TODO: This could probably be generalized to handle other overflow-safe
1382 // operations if we worked out the formulas to compute the appropriate magic
1383 // constants.
1384 //
1385 // sum = a + b
1386 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1387 {
1388 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1389 if (Pred == ICmpInst::ICMP_UGT &&
1390 match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Sanjay Pateld93c4c02016-09-15 18:22:25 +00001391 if (Instruction *Res = processUGT_ADDCST_ADD(
Sanjay Patel40c53ea2016-09-15 16:23:20 +00001392 Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
Sanjay Patel97459832016-09-15 15:11:12 +00001393 return Res;
1394 }
Sanjay Patel06b127a2016-09-15 14:37:50 +00001395
Sanjay Patel97459832016-09-15 15:11:12 +00001396 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
Sanjay Patel40c53ea2016-09-15 16:23:20 +00001397 if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
1398 SelectPatternResult SPR = matchSelectPattern(X, A, B);
1399 if (SPR.Flavor == SPF_SMIN) {
1400 if (isKnownPositive(A, DL))
1401 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1402 if (isKnownPositive(B, DL))
1403 return new ICmpInst(Pred, A, Cmp.getOperand(1));
Sanjay Patel06b127a2016-09-15 14:37:50 +00001404 }
Sanjay Patel40c53ea2016-09-15 16:23:20 +00001405 }
1406
1407 // FIXME: Use m_APInt to allow folds for splat constants.
1408 ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
1409 if (!CI)
1410 return nullptr;
Sanjay Patel06b127a2016-09-15 14:37:50 +00001411
Sanjay Patel97459832016-09-15 15:11:12 +00001412 // Canonicalize icmp instructions based on dominating conditions.
1413 BasicBlock *Parent = Cmp.getParent();
1414 BasicBlock *Dom = Parent->getSinglePredecessor();
1415 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
1416 ICmpInst::Predicate Pred2;
1417 BasicBlock *TrueBB, *FalseBB;
1418 ConstantInt *CI2;
1419 if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
1420 TrueBB, FalseBB)) &&
1421 TrueBB != FalseBB) {
1422 ConstantRange CR =
1423 ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
1424 ConstantRange DominatingCR =
1425 (Parent == TrueBB)
1426 ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
1427 : ConstantRange::makeExactICmpRegion(
1428 CmpInst::getInversePredicate(Pred2), CI2->getValue());
1429 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1430 ConstantRange Difference = DominatingCR.difference(CR);
1431 if (Intersection.isEmptySet())
1432 return replaceInstUsesWith(Cmp, Builder->getFalse());
1433 if (Difference.isEmptySet())
1434 return replaceInstUsesWith(Cmp, Builder->getTrue());
Sanjay Patel06b127a2016-09-15 14:37:50 +00001435
Sanjay Patel97459832016-09-15 15:11:12 +00001436 // If this is a normal comparison, it demands all bits. If it is a sign
1437 // bit comparison, it only demands the sign bit.
1438 bool UnusedBit;
1439 bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
1440
1441 // Canonicalizing a sign bit comparison that gets used in a branch,
1442 // pessimizes codegen by generating branch on zero instruction instead
1443 // of a test and branch. So we avoid canonicalizing in such situations
1444 // because test and branch instruction has better branch displacement
1445 // than compare and branch instruction.
1446 if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
1447 if (auto *AI = Intersection.getSingleElement())
1448 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
1449 if (auto *AD = Difference.getSingleElement())
1450 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
Sanjay Patel06b127a2016-09-15 14:37:50 +00001451 }
1452 }
1453
1454 return nullptr;
1455}
1456
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001457/// Fold icmp (trunc X, Y), C.
1458Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1459 Instruction *Trunc,
1460 const APInt *C) {
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001461 ICmpInst::Predicate Pred = Cmp.getPredicate();
1462 Value *X = Trunc->getOperand(0);
Sanjay Patel40e8ca42016-08-18 20:28:54 +00001463 if (*C == 1 && C->getBitWidth() > 1) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001464 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1465 Value *V = nullptr;
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001466 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001467 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1468 ConstantInt::get(V->getType(), 1));
1469 }
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001470
1471 if (Cmp.isEquality() && Trunc->hasOneUse()) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001472 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1473 // of the high bits truncated out of x are known.
Sanjay Patel40e8ca42016-08-18 20:28:54 +00001474 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1475 SrcBits = X->getType()->getScalarSizeInBits();
Sanjay Patela3f4f082016-08-16 17:54:36 +00001476 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001477 computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001478
1479 // If all the high bits are known, we can do this xform.
1480 if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
1481 // Pull in the high bits from known-ones set.
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001482 APInt NewRHS = C->zext(SrcBits);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001483 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
Sanjay Patel40e8ca42016-08-18 20:28:54 +00001484 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001485 }
1486 }
Sanjay Patel5f4ce4e2016-08-18 20:25:16 +00001487
Sanjay Patela3f4f082016-08-16 17:54:36 +00001488 return nullptr;
1489}
1490
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001491/// Fold icmp (xor X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001492Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1493 BinaryOperator *Xor,
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001494 const APInt *C) {
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001495 Value *X = Xor->getOperand(0);
1496 Value *Y = Xor->getOperand(1);
Sanjay Pateldaffec912016-08-17 19:45:18 +00001497 const APInt *XorC;
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001498 if (!match(Y, m_APInt(XorC)))
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001499 return nullptr;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001500
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001501 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1502 // fold the xor.
1503 ICmpInst::Predicate Pred = Cmp.getPredicate();
1504 if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
1505 (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001506
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001507 // If the sign bit of the XorCst is not set, there is no change to
1508 // the operation, just stop using the Xor.
Sanjay Pateldaffec912016-08-17 19:45:18 +00001509 if (!XorC->isNegative()) {
1510 Cmp.setOperand(0, X);
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001511 Worklist.Add(Xor);
1512 return &Cmp;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001513 }
1514
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001515 // Was the old condition true if the operand is positive?
1516 bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001517
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001518 // If so, the new one isn't.
1519 isTrueIfPositive ^= true;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001520
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001521 Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001522 if (isTrueIfPositive)
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001523 return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001524 else
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001525 return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001526 }
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001527
1528 if (Xor->hasOneUse()) {
Sanjay Pateldaffec912016-08-17 19:45:18 +00001529 // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
1530 if (!Cmp.isEquality() && XorC->isSignBit()) {
1531 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1532 : Cmp.getSignedPredicate();
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001533 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001534 }
1535
Sanjay Pateldaffec912016-08-17 19:45:18 +00001536 // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
1537 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1538 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1539 : Cmp.getSignedPredicate();
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001540 Pred = Cmp.getSwappedPredicate(Pred);
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001541 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001542 }
1543 }
1544
1545 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1546 // iff -C is a power of 2
Sanjay Pateldaffec912016-08-17 19:45:18 +00001547 if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001548 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001549
1550 // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1551 // iff -C is a power of 2
Sanjay Pateldaffec912016-08-17 19:45:18 +00001552 if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
Sanjay Patel4c5e60d2016-08-18 14:10:48 +00001553 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
Sanjay Patel6d5f4482016-08-17 19:23:42 +00001554
Sanjay Patela3f4f082016-08-16 17:54:36 +00001555 return nullptr;
1556}
1557
Sanjay Patel14e0e182016-08-26 18:28:46 +00001558/// Fold icmp (and (sh X, Y), C2), C1.
1559Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
Sanjay Patel9b40f982016-09-07 22:33:03 +00001560 const APInt *C1, const APInt *C2) {
1561 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1562 if (!Shift || !Shift->isShift())
Sanjay Patelda9c5622016-08-26 17:15:22 +00001563 return nullptr;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001564
Sanjay Patelda9c5622016-08-26 17:15:22 +00001565 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1566 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1567 // code produced by the clang front-end, for bitfield access.
Sanjay Patelda9c5622016-08-26 17:15:22 +00001568 // This seemingly simple opportunity to fold away a shift turns out to be
1569 // rather complicated. See PR17827 for details.
Sanjay Patel9b40f982016-09-07 22:33:03 +00001570 unsigned ShiftOpcode = Shift->getOpcode();
1571 bool IsShl = ShiftOpcode == Instruction::Shl;
1572 const APInt *C3;
1573 if (match(Shift->getOperand(1), m_APInt(C3))) {
Sanjay Patelda9c5622016-08-26 17:15:22 +00001574 bool CanFold = false;
Sanjay Patelda9c5622016-08-26 17:15:22 +00001575 if (ShiftOpcode == Instruction::AShr) {
1576 // There may be some constraints that make this possible, but nothing
1577 // simple has been discovered yet.
1578 CanFold = false;
1579 } else if (ShiftOpcode == Instruction::Shl) {
1580 // For a left shift, we can fold if the comparison is not signed. We can
1581 // also fold a signed comparison if the mask value and comparison value
1582 // are not negative. These constraints may not be obvious, but we can
1583 // prove that they are correct using an SMT solver.
Sanjay Patel9b40f982016-09-07 22:33:03 +00001584 if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
Sanjay Patelda9c5622016-08-26 17:15:22 +00001585 CanFold = true;
1586 } else if (ShiftOpcode == Instruction::LShr) {
1587 // For a logical right shift, we can fold if the comparison is not signed.
1588 // We can also fold a signed comparison if the shifted mask value and the
1589 // shifted comparison value are not negative. These constraints may not be
1590 // obvious, but we can prove that they are correct using an SMT solver.
Sanjay Patel9b40f982016-09-07 22:33:03 +00001591 if (!Cmp.isSigned() ||
1592 (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
Sanjay Patelda9c5622016-08-26 17:15:22 +00001593 CanFold = true;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001594 }
1595
Sanjay Patelda9c5622016-08-26 17:15:22 +00001596 if (CanFold) {
Sanjay Patel9b40f982016-09-07 22:33:03 +00001597 APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
1598 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
Sanjay Patelda9c5622016-08-26 17:15:22 +00001599 // Check to see if we are shifting out any of the bits being compared.
Sanjay Patel9b40f982016-09-07 22:33:03 +00001600 if (SameAsC1 != *C1) {
Sanjay Patelda9c5622016-08-26 17:15:22 +00001601 // If we shifted bits out, the fold is not going to work out. As a
1602 // special case, check to see if this means that the result is always
1603 // true or false now.
1604 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
Sanjay Patel1c608f42016-09-08 16:54:02 +00001605 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
Sanjay Patelda9c5622016-08-26 17:15:22 +00001606 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
Sanjay Patel1c608f42016-09-08 16:54:02 +00001607 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001608 } else {
Sanjay Patel9b40f982016-09-07 22:33:03 +00001609 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
1610 APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
1611 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
Sanjay Patelda9c5622016-08-26 17:15:22 +00001612 And->setOperand(0, Shift->getOperand(0));
1613 Worklist.Add(Shift); // Shift is dead.
1614 return &Cmp;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001615 }
Sanjay Patelda9c5622016-08-26 17:15:22 +00001616 }
1617 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00001618
Sanjay Patelda9c5622016-08-26 17:15:22 +00001619 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1620 // preferable because it allows the C2 << Y expression to be hoisted out of a
1621 // loop if Y is invariant and X is not.
Sanjay Patel14e0e182016-08-26 18:28:46 +00001622 if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
Sanjay Patelda9c5622016-08-26 17:15:22 +00001623 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1624 // Compute C2 << Y.
Sanjay Patel9b40f982016-09-07 22:33:03 +00001625 Value *NewShift =
1626 IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
1627 : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001628
Sanjay Patelda9c5622016-08-26 17:15:22 +00001629 // Compute X & (C2 << Y).
Sanjay Patel9b40f982016-09-07 22:33:03 +00001630 Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
Sanjay Patelda9c5622016-08-26 17:15:22 +00001631 Cmp.setOperand(0, NewAnd);
1632 return &Cmp;
1633 }
1634
Sanjay Patel14e0e182016-08-26 18:28:46 +00001635 return nullptr;
1636}
1637
1638/// Fold icmp (and X, C2), C1.
1639Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1640 BinaryOperator *And,
1641 const APInt *C1) {
Sanjay Patel6b490972016-09-04 14:32:15 +00001642 const APInt *C2;
1643 if (!match(And->getOperand(1), m_APInt(C2)))
Sanjay Patel14e0e182016-08-26 18:28:46 +00001644 return nullptr;
1645
1646 if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
1647 return nullptr;
1648
Sanjay Patel6b490972016-09-04 14:32:15 +00001649 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1650 // the input width without changing the value produced, eliminate the cast:
1651 //
1652 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1653 //
1654 // We can do this transformation if the constants do not have their sign bits
1655 // set or if it is an equality comparison. Extending a relational comparison
1656 // when we're checking the sign bit would not work.
1657 Value *W;
1658 if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
1659 (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
1660 // TODO: Is this a good transform for vectors? Wider types may reduce
1661 // throughput. Should this transform be limited (even for scalars) by using
1662 // ShouldChangeType()?
1663 if (!Cmp.getType()->isVectorTy()) {
1664 Type *WideType = W->getType();
1665 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1666 Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
1667 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1668 Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
1669 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
Sanjay Patel14e0e182016-08-26 18:28:46 +00001670 }
1671 }
1672
Sanjay Patel9b40f982016-09-07 22:33:03 +00001673 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
Sanjay Patel14e0e182016-08-26 18:28:46 +00001674 return I;
1675
Sanjay Patelda9c5622016-08-26 17:15:22 +00001676 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
Sanjay Patel6b490972016-09-04 14:32:15 +00001677 // (icmp pred (and A, (or (shl 1, B), 1), 0))
Sanjay Patelda9c5622016-08-26 17:15:22 +00001678 //
1679 // iff pred isn't signed
Sanjay Pateldef931e2016-09-07 20:50:44 +00001680 if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
1681 Constant *One = cast<Constant>(And->getOperand(1));
1682 Value *Or = And->getOperand(0);
Sanjay Patelda9c5622016-08-26 17:15:22 +00001683 Value *A, *B, *LShr;
Sanjay Pateldef931e2016-09-07 20:50:44 +00001684 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1685 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1686 unsigned UsesRemoved = 0;
1687 if (And->hasOneUse())
1688 ++UsesRemoved;
1689 if (Or->hasOneUse())
1690 ++UsesRemoved;
1691 if (LShr->hasOneUse())
1692 ++UsesRemoved;
1693
1694 // Compute A & ((1 << B) | 1)
1695 Value *NewOr = nullptr;
1696 if (auto *C = dyn_cast<Constant>(B)) {
1697 if (UsesRemoved >= 1)
1698 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1699 } else {
1700 if (UsesRemoved >= 3)
1701 NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
Sanjay Patelda9c5622016-08-26 17:15:22 +00001702 /*HasNUW=*/true),
1703 One, Or->getName());
Sanjay Pateldef931e2016-09-07 20:50:44 +00001704 }
1705 if (NewOr) {
1706 Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
1707 Cmp.setOperand(0, NewAnd);
1708 return &Cmp;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001709 }
1710 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00001711 }
Sanjay Patelda9c5622016-08-26 17:15:22 +00001712
Sanjay Pateldef931e2016-09-07 20:50:44 +00001713 // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
1714 // result greater than C1.
1715 unsigned NumTZ = C2->countTrailingZeros();
1716 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
1717 APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
1718 Constant *Zero = Constant::getNullValue(And->getType());
1719 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
Sanjay Patelda9c5622016-08-26 17:15:22 +00001720 }
1721
Sanjay Pateld3c7bb282016-08-26 16:42:33 +00001722 return nullptr;
1723}
1724
1725/// Fold icmp (and X, Y), C.
1726Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1727 BinaryOperator *And,
1728 const APInt *C) {
1729 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1730 return I;
1731
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001732 // TODO: These all require that Y is constant too, so refactor with the above.
Sanjay Patela3f4f082016-08-16 17:54:36 +00001733
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001734 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1735 Value *X = And->getOperand(0);
1736 Value *Y = And->getOperand(1);
1737 if (auto *LI = dyn_cast<LoadInst>(X))
1738 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1739 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001740 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001741 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1742 ConstantInt *C2 = cast<ConstantInt>(Y);
1743 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001744 return Res;
1745 }
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001746
1747 if (!Cmp.isEquality())
1748 return nullptr;
Sanjay Patela3f4f082016-08-16 17:54:36 +00001749
1750 // X & -C == -C -> X > u ~C
1751 // X & -C != -C -> X <= u ~C
1752 // iff C is a power of 2
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001753 if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
1754 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1755 : CmpInst::ICMP_ULE;
1756 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1757 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00001758
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001759 // (X & C2) == 0 -> (trunc X) >= 0
1760 // (X & C2) != 0 -> (trunc X) < 0
1761 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1762 const APInt *C2;
1763 if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
1764 int32_t ExactLogBase2 = C2->exactLogBase2();
1765 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1766 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1767 if (And->getType()->isVectorTy())
1768 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1769 Value *Trunc = Builder->CreateTrunc(X, NTy);
1770 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1771 : CmpInst::ICMP_SLT;
1772 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001773 }
1774 }
Sanjay Patel5c5311f2016-08-28 18:18:00 +00001775
Sanjay Patela3f4f082016-08-16 17:54:36 +00001776 return nullptr;
1777}
1778
Sanjay Patel943e92e2016-08-17 16:30:43 +00001779/// Fold icmp (or X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001780Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
Sanjay Patel943e92e2016-08-17 16:30:43 +00001781 const APInt *C) {
Sanjay Patel943e92e2016-08-17 16:30:43 +00001782 ICmpInst::Predicate Pred = Cmp.getPredicate();
1783 if (*C == 1) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001784 // icmp slt signum(V) 1 --> icmp slt V, 1
1785 Value *V = nullptr;
Sanjay Patel943e92e2016-08-17 16:30:43 +00001786 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001787 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1788 ConstantInt::get(V->getType(), 1));
1789 }
1790
Sanjay Patel943e92e2016-08-17 16:30:43 +00001791 if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
Sanjay Patela3f4f082016-08-16 17:54:36 +00001792 return nullptr;
1793
1794 Value *P, *Q;
Sanjay Patel943e92e2016-08-17 16:30:43 +00001795 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001796 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1797 // -> and (icmp eq P, null), (icmp eq Q, null).
Reid Klecknera871d382016-08-19 16:53:18 +00001798 Value *CmpP =
1799 Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1800 Value *CmpQ =
1801 Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
Sanjay Patel943e92e2016-08-17 16:30:43 +00001802 auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
1803 : Instruction::Or;
1804 return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001805 }
Sanjay Patel943e92e2016-08-17 16:30:43 +00001806
Sanjay Patela3f4f082016-08-16 17:54:36 +00001807 return nullptr;
1808}
1809
Sanjay Patel63478072016-08-18 15:44:44 +00001810/// Fold icmp (mul X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001811Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1812 BinaryOperator *Mul,
Sanjay Patel63478072016-08-18 15:44:44 +00001813 const APInt *C) {
1814 const APInt *MulC;
1815 if (!match(Mul->getOperand(1), m_APInt(MulC)))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001816 return nullptr;
1817
Sanjay Patel63478072016-08-18 15:44:44 +00001818 // If this is a test of the sign bit and the multiply is sign-preserving with
1819 // a constant operand, use the multiply LHS operand instead.
1820 ICmpInst::Predicate Pred = Cmp.getPredicate();
Sanjay Patelc9196c42016-08-22 21:24:29 +00001821 if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
Sanjay Patel63478072016-08-18 15:44:44 +00001822 if (MulC->isNegative())
1823 Pred = ICmpInst::getSwappedPredicate(Pred);
1824 return new ICmpInst(Pred, Mul->getOperand(0),
1825 Constant::getNullValue(Mul->getType()));
1826 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00001827
1828 return nullptr;
1829}
1830
Sanjay Patel98cd99d2016-08-18 21:28:30 +00001831/// Fold icmp (shl 1, Y), C.
1832static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1833 const APInt *C) {
1834 Value *Y;
1835 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1836 return nullptr;
1837
1838 Type *ShiftType = Shl->getType();
1839 uint32_t TypeBits = C->getBitWidth();
1840 bool CIsPowerOf2 = C->isPowerOf2();
1841 ICmpInst::Predicate Pred = Cmp.getPredicate();
1842 if (Cmp.isUnsigned()) {
1843 // (1 << Y) pred C -> Y pred Log2(C)
1844 if (!CIsPowerOf2) {
1845 // (1 << Y) < 30 -> Y <= 4
1846 // (1 << Y) <= 30 -> Y <= 4
1847 // (1 << Y) >= 30 -> Y > 4
1848 // (1 << Y) > 30 -> Y > 4
1849 if (Pred == ICmpInst::ICMP_ULT)
1850 Pred = ICmpInst::ICMP_ULE;
1851 else if (Pred == ICmpInst::ICMP_UGE)
1852 Pred = ICmpInst::ICMP_UGT;
1853 }
1854
1855 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1856 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1857 unsigned CLog2 = C->logBase2();
1858 if (CLog2 == TypeBits - 1) {
1859 if (Pred == ICmpInst::ICMP_UGE)
1860 Pred = ICmpInst::ICMP_EQ;
1861 else if (Pred == ICmpInst::ICMP_ULT)
1862 Pred = ICmpInst::ICMP_NE;
1863 }
1864 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1865 } else if (Cmp.isSigned()) {
1866 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1867 if (C->isAllOnesValue()) {
1868 // (1 << Y) <= -1 -> Y == 31
1869 if (Pred == ICmpInst::ICMP_SLE)
1870 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1871
1872 // (1 << Y) > -1 -> Y != 31
1873 if (Pred == ICmpInst::ICMP_SGT)
1874 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1875 } else if (!(*C)) {
1876 // (1 << Y) < 0 -> Y == 31
1877 // (1 << Y) <= 0 -> Y == 31
1878 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1879 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1880
1881 // (1 << Y) >= 0 -> Y != 31
1882 // (1 << Y) > 0 -> Y != 31
1883 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1884 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
1885 }
1886 } else if (Cmp.isEquality() && CIsPowerOf2) {
1887 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
1888 }
1889
1890 return nullptr;
1891}
1892
Sanjay Patel38b75062016-08-19 17:20:37 +00001893/// Fold icmp (shl X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001894Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
1895 BinaryOperator *Shl,
Sanjay Patel38b75062016-08-19 17:20:37 +00001896 const APInt *C) {
Sanjay Patel8da42cc2016-09-15 22:26:31 +00001897 const APInt *ShiftVal;
1898 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
1899 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
1900
Sanjay Patelfa7de602016-08-19 22:33:26 +00001901 const APInt *ShiftAmt;
1902 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
Sanjay Patel38b75062016-08-19 17:20:37 +00001903 return foldICmpShlOne(Cmp, Shl, C);
Sanjay Patela867afe2016-08-19 16:12:16 +00001904
Sanjay Patel38b75062016-08-19 17:20:37 +00001905 // Check that the shift amount is in range. If not, don't perform undefined
1906 // shifts. When the shift is visited it will be simplified.
1907 unsigned TypeBits = C->getBitWidth();
Sanjay Patelfa7de602016-08-19 22:33:26 +00001908 if (ShiftAmt->uge(TypeBits))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001909 return nullptr;
1910
Sanjay Patele38e79c2016-08-19 17:34:05 +00001911 ICmpInst::Predicate Pred = Cmp.getPredicate();
1912 Value *X = Shl->getOperand(0);
Sanjay Patel38b75062016-08-19 17:20:37 +00001913 if (Cmp.isEquality()) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001914 // If the shift is NUW, then it is just shifting out zeros, no need for an
1915 // AND.
Sanjay Patelfa7de602016-08-19 22:33:26 +00001916 Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt));
Sanjay Patelc9196c42016-08-22 21:24:29 +00001917 if (Shl->hasNoUnsignedWrap())
Sanjay Patelfa7de602016-08-19 22:33:26 +00001918 return new ICmpInst(Pred, X, LShrC);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001919
1920 // If the shift is NSW and we compare to 0, then it is just shifting out
1921 // sign bits, no need for an AND either.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001922 if (Shl->hasNoSignedWrap() && *C == 0)
Sanjay Patelfa7de602016-08-19 22:33:26 +00001923 return new ICmpInst(Pred, X, LShrC);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001924
Sanjay Patel38b75062016-08-19 17:20:37 +00001925 if (Shl->hasOneUse()) {
Sanjay Patela3f4f082016-08-16 17:54:36 +00001926 // Otherwise strength reduce the shift into an and.
Sanjay Patelfa7de602016-08-19 22:33:26 +00001927 Constant *Mask = ConstantInt::get(Shl->getType(),
1928 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
Sanjay Patela3f4f082016-08-16 17:54:36 +00001929
Sanjay Patele38e79c2016-08-19 17:34:05 +00001930 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
Sanjay Patelfa7de602016-08-19 22:33:26 +00001931 return new ICmpInst(Pred, And, LShrC);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001932 }
1933 }
1934
1935 // If this is a signed comparison to 0 and the shift is sign preserving,
Sanjay Patele38e79c2016-08-19 17:34:05 +00001936 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
1937 // do that if we're sure to not continue on in this function.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001938 if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C))
Sanjay Patel7e09f132016-08-21 16:28:22 +00001939 return new ICmpInst(Pred, X, Constant::getNullValue(X->getType()));
1940
Sanjay Patela3f4f082016-08-16 17:54:36 +00001941 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1942 bool TrueIfSigned = false;
Sanjay Patel79263662016-08-21 15:07:45 +00001943 if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
Sanjay Patel7ffcde72016-08-21 16:35:34 +00001944 // (X << 31) <s 0 --> (X & 1) != 0
Sanjay Patela3f4f082016-08-16 17:54:36 +00001945 Constant *Mask = ConstantInt::get(
Sanjay Patele38e79c2016-08-19 17:34:05 +00001946 X->getType(),
Sanjay Patelfa7de602016-08-19 22:33:26 +00001947 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
Sanjay Patele38e79c2016-08-19 17:34:05 +00001948 Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
Sanjay Patela3f4f082016-08-16 17:54:36 +00001949 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1950 And, Constant::getNullValue(And->getType()));
1951 }
1952
Sanjay Patel643d21a2016-08-21 17:10:07 +00001953 // Transform (icmp pred iM (shl iM %v, N), C)
1954 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
1955 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
1956 // This enables us to get rid of the shift in favor of a trunc which can be
Sanjay Patela3f4f082016-08-16 17:54:36 +00001957 // free on the target. It has the additional benefit of comparing to a
1958 // smaller constant, which will be target friendly.
Sanjay Patelfa7de602016-08-19 22:33:26 +00001959 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
Sanjay Patel38b75062016-08-19 17:20:37 +00001960 if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt) {
Sanjay Patel643d21a2016-08-21 17:10:07 +00001961 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
1962 if (X->getType()->isVectorTy())
1963 TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements());
1964 Constant *NewC =
1965 ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
1966 return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
Sanjay Patela3f4f082016-08-16 17:54:36 +00001967 }
1968
1969 return nullptr;
1970}
1971
Sanjay Patela3920492016-08-22 20:45:06 +00001972/// Fold icmp ({al}shr X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00001973Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
1974 BinaryOperator *Shr,
1975 const APInt *C) {
Sanjay Patela3920492016-08-22 20:45:06 +00001976 // An exact shr only shifts out zero bits, so:
1977 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
Sanjay Pateld64e9882016-08-23 22:05:55 +00001978 Value *X = Shr->getOperand(0);
Sanjay Patelc9196c42016-08-22 21:24:29 +00001979 CmpInst::Predicate Pred = Cmp.getPredicate();
1980 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
Sanjay Pateld64e9882016-08-23 22:05:55 +00001981 return new ICmpInst(Pred, X, Cmp.getOperand(1));
Sanjay Patela3920492016-08-22 20:45:06 +00001982
Sanjay Patel8da42cc2016-09-15 22:26:31 +00001983 const APInt *ShiftVal;
1984 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
1985 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
1986
Sanjay Pateld398d4a2016-08-24 22:22:06 +00001987 const APInt *ShiftAmt;
1988 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
Sanjay Patela3f4f082016-08-16 17:54:36 +00001989 return nullptr;
1990
Sanjay Pateld398d4a2016-08-24 22:22:06 +00001991 // Check that the shift amount is in range. If not, don't perform undefined
1992 // shifts. When the shift is visited it will be simplified.
1993 unsigned TypeBits = C->getBitWidth();
1994 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
Sanjay Pateldcac0df2016-08-23 21:25:13 +00001995 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1996 return nullptr;
1997
Sanjay Pateld64e9882016-08-23 22:05:55 +00001998 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
Sanjay Pateldcac0df2016-08-23 21:25:13 +00001999 if (!Cmp.isEquality()) {
2000 // If we have an unsigned comparison and an ashr, we can't simplify this.
2001 // Similarly for signed comparisons with lshr.
Sanjay Pateld64e9882016-08-23 22:05:55 +00002002 if (Cmp.isSigned() != IsAShr)
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002003 return nullptr;
2004
2005 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
2006 // by a power of 2. Since we already have logic to simplify these,
2007 // transform to div and then simplify the resultant comparison.
Sanjay Pateld64e9882016-08-23 22:05:55 +00002008 if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002009 return nullptr;
2010
2011 // Revisit the shift (to delete it).
2012 Worklist.Add(Shr);
2013
2014 Constant *DivCst = ConstantInt::get(
2015 Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
2016
Sanjay Pateld64e9882016-08-23 22:05:55 +00002017 Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
2018 : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002019
2020 Cmp.setOperand(0, Tmp);
2021
2022 // If the builder folded the binop, just return it.
2023 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
2024 if (!TheDiv)
2025 return &Cmp;
2026
2027 // Otherwise, fold this div/compare.
2028 assert(TheDiv->getOpcode() == Instruction::SDiv ||
2029 TheDiv->getOpcode() == Instruction::UDiv);
2030
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002031 Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002032 assert(Res && "This div/cst should have folded!");
Sanjay Patela3920492016-08-22 20:45:06 +00002033 return Res;
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002034 }
2035
Sanjay Pateld398d4a2016-08-24 22:22:06 +00002036 // Handle equality comparisons of shift-by-constant.
2037
Sanjay Patel8e297742016-08-24 13:55:55 +00002038 // If the comparison constant changes with the shift, the comparison cannot
2039 // succeed (bits of the comparison constant cannot match the shifted value).
2040 // This should be known by InstSimplify and already be folded to true/false.
2041 assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
2042 (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
2043 "Expected icmp+shr simplify did not occur.");
2044
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002045 // Check if the bits shifted out are known to be zero. If so, we can compare
2046 // against the unshifted value:
2047 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Sanjay Pateld398d4a2016-08-24 22:22:06 +00002048 Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002049 if (Shr->hasOneUse()) {
Sanjay Pateld398d4a2016-08-24 22:22:06 +00002050 if (Shr->isExact())
2051 return new ICmpInst(Pred, X, ShiftedCmpRHS);
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002052
Sanjay Pateld398d4a2016-08-24 22:22:06 +00002053 // Otherwise strength reduce the shift into an 'and'.
2054 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2055 Constant *Mask = ConstantInt::get(Shr->getType(), Val);
Sanjay Pateld64e9882016-08-23 22:05:55 +00002056 Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
Sanjay Pateldcac0df2016-08-23 21:25:13 +00002057 return new ICmpInst(Pred, And, ShiftedCmpRHS);
2058 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00002059
2060 return nullptr;
2061}
2062
Sanjay Patel12a41052016-08-18 17:37:26 +00002063/// Fold icmp (udiv X, Y), C.
2064Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
Sanjay Patelc9196c42016-08-22 21:24:29 +00002065 BinaryOperator *UDiv,
Sanjay Patel12a41052016-08-18 17:37:26 +00002066 const APInt *C) {
Sanjay Patelfa5ca2b2016-08-18 17:55:59 +00002067 const APInt *C2;
2068 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2069 return nullptr;
2070
2071 assert(C2 != 0 && "udiv 0, X should have been simplified already.");
2072
2073 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2074 Value *Y = UDiv->getOperand(1);
2075 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2076 assert(!C->isMaxValue() &&
2077 "icmp ugt X, UINT_MAX should have been simplified already.");
2078 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2079 ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
2080 }
2081
2082 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2083 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2084 assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2085 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2086 ConstantInt::get(Y->getType(), C2->udiv(*C)));
Sanjay Patela3f4f082016-08-16 17:54:36 +00002087 }
2088
2089 return nullptr;
2090}
2091
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002092/// Fold icmp ({su}div X, Y), C.
2093Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2094 BinaryOperator *Div,
2095 const APInt *C) {
Sanjay Patela7cb4772016-08-30 17:10:49 +00002096 // Fold: icmp pred ([us]div X, C2), C -> range test
Sanjay Patela3f4f082016-08-16 17:54:36 +00002097 // Fold this div into the comparison, producing a range check.
2098 // Determine, based on the divide type, what the range is being
2099 // checked. If there is an overflow on the low or high side, remember
2100 // it, otherwise compute the range [low, hi) bounding the new value.
2101 // See: InsertRangeTest above for the kinds of replacements possible.
Sanjay Patela7cb4772016-08-30 17:10:49 +00002102 const APInt *C2;
2103 if (!match(Div->getOperand(1), m_APInt(C2)))
Sanjay Patel16554142016-08-24 23:03:36 +00002104 return nullptr;
2105
Sanjay Patel16554142016-08-24 23:03:36 +00002106 // FIXME: If the operand types don't match the type of the divide
2107 // then don't attempt this transform. The code below doesn't have the
2108 // logic to deal with a signed divide and an unsigned compare (and
Sanjay Patela7cb4772016-08-30 17:10:49 +00002109 // vice versa). This is because (x /s C2) <s C produces different
2110 // results than (x /s C2) <u C or (x /u C2) <s C or even
2111 // (x /u C2) <u C. Simply casting the operands and result won't
Sanjay Patel16554142016-08-24 23:03:36 +00002112 // work. :( The if statement below tests that condition and bails
2113 // if it finds it.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002114 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2115 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
Sanjay Patel16554142016-08-24 23:03:36 +00002116 return nullptr;
Sanjay Patela7cb4772016-08-30 17:10:49 +00002117
Sanjay Pateleea2ef72016-09-05 23:38:22 +00002118 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2119 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2120 // division-by-constant cases should be present, we can not assert that they
2121 // have happened before we reach this icmp instruction.
2122 if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
2123 return nullptr;
Sanjay Patelb3714572016-08-30 17:31:34 +00002124
Sanjay Patel541aef42016-08-31 21:57:21 +00002125 // TODO: We could do all of the computations below using APInt.
2126 Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
2127 Constant *DivRHS = cast<Constant>(Div->getOperand(1));
Sanjay Patelb3714572016-08-30 17:31:34 +00002128
Sanjay Patel541aef42016-08-31 21:57:21 +00002129 // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
2130 // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
2131 // By solving for X, we can turn this into a range check instead of computing
2132 // a divide.
2133 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
Sanjay Patel16554142016-08-24 23:03:36 +00002134
Sanjay Patel541aef42016-08-31 21:57:21 +00002135 // Determine if the product overflows by seeing if the product is not equal to
2136 // the divide. Make sure we do the same kind of divide as in the LHS
2137 // instruction that we're folding.
2138 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
2139 : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
Sanjay Patel16554142016-08-24 23:03:36 +00002140
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002141 ICmpInst::Predicate Pred = Cmp.getPredicate();
Sanjay Patel16554142016-08-24 23:03:36 +00002142
2143 // If the division is known to be exact, then there is no remainder from the
2144 // divide, so the covered range size is unit, otherwise it is the divisor.
Sanjay Patel541aef42016-08-31 21:57:21 +00002145 Constant *RangeSize =
2146 Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
Sanjay Patel16554142016-08-24 23:03:36 +00002147
2148 // Figure out the interval that is being checked. For example, a comparison
2149 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2150 // Compute this interval based on the constants involved and the signedness of
2151 // the compare/divide. This computes a half-open interval, keeping track of
2152 // whether either value in the interval overflows. After analysis each
2153 // overflow variable is set to 0 if it's corresponding bound variable is valid
2154 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2155 int LoOverflow = 0, HiOverflow = 0;
2156 Constant *LoBound = nullptr, *HiBound = nullptr;
2157
2158 if (!DivIsSigned) { // udiv
2159 // e.g. X/5 op 3 --> [15, 20)
2160 LoBound = Prod;
2161 HiOverflow = LoOverflow = ProdOV;
2162 if (!HiOverflow) {
2163 // If this is not an exact divide, then many values in the range collapse
2164 // to the same result value.
Sanjay Pateld93c4c02016-09-15 18:22:25 +00002165 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
Sanjay Patel16554142016-08-24 23:03:36 +00002166 }
Sanjay Patel541aef42016-08-31 21:57:21 +00002167 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002168 if (*C == 0) { // (X / pos) op 0
Sanjay Patel16554142016-08-24 23:03:36 +00002169 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2170 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
2171 HiBound = RangeSize;
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002172 } else if (C->isStrictlyPositive()) { // (X / pos) op pos
Sanjay Patel16554142016-08-24 23:03:36 +00002173 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2174 HiOverflow = LoOverflow = ProdOV;
2175 if (!HiOverflow)
Sanjay Pateld93c4c02016-09-15 18:22:25 +00002176 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
Sanjay Patel16554142016-08-24 23:03:36 +00002177 } else { // (X / pos) op neg
2178 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2179 HiBound = AddOne(Prod);
2180 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2181 if (!LoOverflow) {
Sanjay Patel541aef42016-08-31 21:57:21 +00002182 Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
Sanjay Pateld93c4c02016-09-15 18:22:25 +00002183 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Sanjay Patel16554142016-08-24 23:03:36 +00002184 }
2185 }
Sanjay Patel541aef42016-08-31 21:57:21 +00002186 } else if (C2->isNegative()) { // Divisor is < 0.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002187 if (Div->isExact())
Sanjay Patel541aef42016-08-31 21:57:21 +00002188 RangeSize = ConstantExpr::getNeg(RangeSize);
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002189 if (*C == 0) { // (X / neg) op 0
Sanjay Patel16554142016-08-24 23:03:36 +00002190 // e.g. X/-5 op 0 --> [-4, 5)
2191 LoBound = AddOne(RangeSize);
Sanjay Patel541aef42016-08-31 21:57:21 +00002192 HiBound = ConstantExpr::getNeg(RangeSize);
Sanjay Patel16554142016-08-24 23:03:36 +00002193 if (HiBound == DivRHS) { // -INTMIN = INTMIN
2194 HiOverflow = 1; // [INTMIN+1, overflow)
2195 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
2196 }
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002197 } else if (C->isStrictlyPositive()) { // (X / neg) op pos
Sanjay Patel16554142016-08-24 23:03:36 +00002198 // e.g. X/-5 op 3 --> [-19, -14)
2199 HiBound = AddOne(Prod);
2200 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2201 if (!LoOverflow)
Sanjay Pateld93c4c02016-09-15 18:22:25 +00002202 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Sanjay Patel16554142016-08-24 23:03:36 +00002203 } else { // (X / neg) op neg
2204 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2205 LoOverflow = HiOverflow = ProdOV;
2206 if (!HiOverflow)
Sanjay Pateld93c4c02016-09-15 18:22:25 +00002207 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
Sanjay Patel16554142016-08-24 23:03:36 +00002208 }
2209
2210 // Dividing by a negative swaps the condition. LT <-> GT
2211 Pred = ICmpInst::getSwappedPredicate(Pred);
2212 }
2213
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002214 Value *X = Div->getOperand(0);
Sanjay Patel16554142016-08-24 23:03:36 +00002215 switch (Pred) {
2216 default: llvm_unreachable("Unhandled icmp opcode!");
2217 case ICmpInst::ICMP_EQ:
2218 if (LoOverflow && HiOverflow)
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002219 return replaceInstUsesWith(Cmp, Builder->getFalse());
Sanjay Patel16554142016-08-24 23:03:36 +00002220 if (HiOverflow)
2221 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2222 ICmpInst::ICMP_UGE, X, LoBound);
2223 if (LoOverflow)
2224 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2225 ICmpInst::ICMP_ULT, X, HiBound);
Sanjay Patel85d79742016-08-31 19:49:56 +00002226 return replaceInstUsesWith(
Sanjay Patel541aef42016-08-31 21:57:21 +00002227 Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
2228 HiBound->getUniqueInteger(), DivIsSigned, true));
Sanjay Patel16554142016-08-24 23:03:36 +00002229 case ICmpInst::ICMP_NE:
2230 if (LoOverflow && HiOverflow)
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002231 return replaceInstUsesWith(Cmp, Builder->getTrue());
Sanjay Patel16554142016-08-24 23:03:36 +00002232 if (HiOverflow)
2233 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2234 ICmpInst::ICMP_ULT, X, LoBound);
2235 if (LoOverflow)
2236 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2237 ICmpInst::ICMP_UGE, X, HiBound);
Sanjay Patel541aef42016-08-31 21:57:21 +00002238 return replaceInstUsesWith(Cmp,
2239 insertRangeTest(X, LoBound->getUniqueInteger(),
2240 HiBound->getUniqueInteger(),
2241 DivIsSigned, false));
Sanjay Patel16554142016-08-24 23:03:36 +00002242 case ICmpInst::ICMP_ULT:
2243 case ICmpInst::ICMP_SLT:
2244 if (LoOverflow == +1) // Low bound is greater than input range.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002245 return replaceInstUsesWith(Cmp, Builder->getTrue());
Sanjay Patel16554142016-08-24 23:03:36 +00002246 if (LoOverflow == -1) // Low bound is less than input range.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002247 return replaceInstUsesWith(Cmp, Builder->getFalse());
Sanjay Patel16554142016-08-24 23:03:36 +00002248 return new ICmpInst(Pred, X, LoBound);
2249 case ICmpInst::ICMP_UGT:
2250 case ICmpInst::ICMP_SGT:
2251 if (HiOverflow == +1) // High bound greater than input range.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002252 return replaceInstUsesWith(Cmp, Builder->getFalse());
Sanjay Patel16554142016-08-24 23:03:36 +00002253 if (HiOverflow == -1) // High bound less than input range.
Sanjay Patelf7ba0892016-08-26 15:53:01 +00002254 return replaceInstUsesWith(Cmp, Builder->getTrue());
Sanjay Patel16554142016-08-24 23:03:36 +00002255 if (Pred == ICmpInst::ICMP_UGT)
2256 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
2257 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
2258 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00002259
2260 return nullptr;
2261}
2262
Sanjay Patelb9aa67b2016-08-16 21:26:10 +00002263/// Fold icmp (sub X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00002264Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2265 BinaryOperator *Sub,
Sanjay Patelb9aa67b2016-08-16 21:26:10 +00002266 const APInt *C) {
Sanjay Patel886a5422016-09-15 18:05:17 +00002267 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2268 ICmpInst::Predicate Pred = Cmp.getPredicate();
2269
2270 // The following transforms are only worth it if the only user of the subtract
2271 // is the icmp.
2272 if (!Sub->hasOneUse())
Sanjay Patela3f4f082016-08-16 17:54:36 +00002273 return nullptr;
2274
Sanjay Patel886a5422016-09-15 18:05:17 +00002275 if (Sub->hasNoSignedWrap()) {
2276 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2277 if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
2278 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
Sanjay Patela3f4f082016-08-16 17:54:36 +00002279
Sanjay Patel886a5422016-09-15 18:05:17 +00002280 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2281 if (Pred == ICmpInst::ICMP_SGT && *C == 0)
2282 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2283
2284 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2285 if (Pred == ICmpInst::ICMP_SLT && *C == 0)
2286 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2287
2288 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2289 if (Pred == ICmpInst::ICMP_SLT && *C == 1)
2290 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2291 }
2292
2293 const APInt *C2;
2294 if (!match(X, m_APInt(C2)))
2295 return nullptr;
2296
2297 // C2 - Y <u C -> (Y | (C - 1)) == C2
2298 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2299 if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2300 (*C2 & (*C - 1)) == (*C - 1))
2301 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
2302
2303 // C2 - Y >u C -> (Y | C) != C2
2304 // iff C2 & C == C and C + 1 is a power of 2
2305 if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
2306 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
Sanjay Patela3f4f082016-08-16 17:54:36 +00002307
2308 return nullptr;
2309}
2310
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002311/// Fold icmp (add X, Y), C.
Sanjay Patelc9196c42016-08-22 21:24:29 +00002312Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2313 BinaryOperator *Add,
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002314 const APInt *C) {
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002315 Value *Y = Add->getOperand(1);
2316 const APInt *C2;
2317 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
Sanjay Patela3f4f082016-08-16 17:54:36 +00002318 return nullptr;
2319
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002320 // Fold icmp pred (add X, C2), C.
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002321 Value *X = Add->getOperand(0);
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002322 Type *Ty = Add->getType();
2323 auto CR = Cmp.makeConstantRange(Cmp.getPredicate(), *C).subtract(*C2);
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002324 const APInt &Upper = CR.getUpper();
2325 const APInt &Lower = CR.getLower();
2326 if (Cmp.isSigned()) {
2327 if (Lower.isSignBit())
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002328 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002329 if (Upper.isSignBit())
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002330 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002331 } else {
2332 if (Lower.isMinValue())
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002333 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002334 if (Upper.isMinValue())
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002335 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
Sanjay Patel60ea1b42016-08-16 22:34:42 +00002336 }
Sanjay Patela3f4f082016-08-16 17:54:36 +00002337
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002338 if (!Add->hasOneUse())
2339 return nullptr;
Sanjay Patela3f4f082016-08-16 17:54:36 +00002340
Sanjay Patel4f7eb2a2016-08-17 15:24:30 +00002341 // X+C <u C2 -> (X & -C2) == C
2342 // iff C & (C2-1) == 0
2343 // C2 is a power of 2
2344 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
2345 (*C2 & (*C - 1)) == 0)
2346 return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
2347 ConstantExpr::getNeg(cast<Constant>(Y)));
2348
2349 // X+C >u C2 -> (X & ~C2) != C
2350 // iff C & C2 == 0
2351 // C2+1 is a power of 2
2352 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
2353 (*C2 & *C) == 0)
2354 return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
2355 ConstantExpr::getNeg(cast<Constant>(Y)));
2356
Sanjay Patela3f4f082016-08-16 17:54:36 +00002357 return nullptr;
2358}
2359
Sanjay Patelf58f68c2016-09-10 15:03:44 +00002360/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2361/// where X is some kind of instruction.
2362Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
Sanjay Patelc9196c42016-08-22 21:24:29 +00002363 const APInt *C;
2364 if (!match(Cmp.getOperand(1), m_APInt(C)))
Sanjay Patel1e5b2d12016-08-16 16:08:11 +00002365 return nullptr;
2366
Sanjay Patelc9196c42016-08-22 21:24:29 +00002367 BinaryOperator *BO;
2368 if (match(Cmp.getOperand(0), m_BinOp(BO))) {
2369 switch (BO->getOpcode()) {
2370 case Instruction::Xor:
2371 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
2372 return I;
2373 break;
2374 case Instruction::And:
2375 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
2376 return I;
2377 break;
2378 case Instruction::Or:
2379 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
2380 return I;
2381 break;
2382 case Instruction::Mul:
2383 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
2384 return I;
2385 break;
2386 case Instruction::Shl:
2387 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
2388 return I;
2389 break;
2390 case Instruction::LShr:
2391 case Instruction::AShr:
2392 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
2393 return I;
2394 break;
2395 case Instruction::UDiv:
2396 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
2397 return I;
2398 LLVM_FALLTHROUGH;
2399 case Instruction::SDiv:
2400 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
2401 return I;
2402 break;
2403 case Instruction::Sub:
2404 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
2405 return I;
2406 break;
2407 case Instruction::Add:
2408 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
2409 return I;
2410 break;
2411 default:
2412 break;
2413 }
Sanjay Patelf58f68c2016-09-10 15:03:44 +00002414 // TODO: These folds could be refactored to be part of the above calls.
2415 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
2416 return I;
Chris Lattner2188e402010-01-04 07:37:31 +00002417 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00002418
Sanjay Patelc9196c42016-08-22 21:24:29 +00002419 Instruction *LHSI;
2420 if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
2421 LHSI->getOpcode() == Instruction::Trunc)
2422 if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
2423 return I;
2424
Sanjay Patelf58f68c2016-09-10 15:03:44 +00002425 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
2426 return I;
2427
Sanjay Patel1710e7c2016-07-21 17:15:49 +00002428 return nullptr;
2429}
Jim Grosbach129c52a2011-09-30 18:09:53 +00002430
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002431/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2432/// icmp eq/ne BO, C.
2433Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2434 BinaryOperator *BO,
2435 const APInt *C) {
2436 // TODO: Some of these folds could work with arbitrary constants, but this
2437 // function is limited to scalar and vector splat constants.
2438 if (!Cmp.isEquality())
Sanjay Patel1710e7c2016-07-21 17:15:49 +00002439 return nullptr;
2440
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002441 ICmpInst::Predicate Pred = Cmp.getPredicate();
2442 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2443 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
Sanjay Patel51a767c2016-08-03 17:23:08 +00002444 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Sanjay Patel1710e7c2016-07-21 17:15:49 +00002445
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002446 switch (BO->getOpcode()) {
2447 case Instruction::SRem:
2448 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002449 if (*C == 0 && BO->hasOneUse()) {
Sanjay Patel2e9675f2016-08-03 19:48:40 +00002450 const APInt *BOC;
2451 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
Sanjay Patel51a767c2016-08-03 17:23:08 +00002452 Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002453 return new ICmpInst(Pred, NewRem,
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002454 Constant::getNullValue(BO->getType()));
Chris Lattner2188e402010-01-04 07:37:31 +00002455 }
Sanjay Patel1710e7c2016-07-21 17:15:49 +00002456 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002457 break;
Sanjay Patel00a324e2016-08-03 22:08:44 +00002458 case Instruction::Add: {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002459 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
Sanjay Patel00a324e2016-08-03 22:08:44 +00002460 const APInt *BOC;
2461 if (match(BOp1, m_APInt(BOC))) {
2462 if (BO->hasOneUse()) {
2463 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002464 return new ICmpInst(Pred, BOp0, SubC);
Sanjay Patel00a324e2016-08-03 22:08:44 +00002465 }
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002466 } else if (*C == 0) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002467 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2468 // efficiently invertible, or if the add has just this one use.
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002469 if (Value *NegVal = dyn_castNegVal(BOp1))
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002470 return new ICmpInst(Pred, BOp0, NegVal);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002471 if (Value *NegVal = dyn_castNegVal(BOp0))
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002472 return new ICmpInst(Pred, NegVal, BOp1);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002473 if (BO->hasOneUse()) {
2474 Value *Neg = Builder->CreateNeg(BOp1);
2475 Neg->takeName(BO);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002476 return new ICmpInst(Pred, BOp0, Neg);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002477 }
2478 }
2479 break;
Sanjay Patel00a324e2016-08-03 22:08:44 +00002480 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002481 case Instruction::Xor:
2482 if (BO->hasOneUse()) {
Sanjay Patel51a767c2016-08-03 17:23:08 +00002483 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002484 // For the xor case, we can xor two constants together, eliminating
2485 // the explicit xor.
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002486 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2487 } else if (*C == 0) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002488 // Replace ((xor A, B) != 0) with (A != B)
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002489 return new ICmpInst(Pred, BOp0, BOp1);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002490 }
2491 }
2492 break;
2493 case Instruction::Sub:
2494 if (BO->hasOneUse()) {
Sanjay Patel9d591d12016-08-04 15:19:25 +00002495 const APInt *BOC;
2496 if (match(BOp0, m_APInt(BOC))) {
Sanjay Patel362ff5c2016-09-15 17:01:17 +00002497 // Replace ((sub BOC, B) != C) with (B != BOC-C).
Sanjay Patel9d591d12016-08-04 15:19:25 +00002498 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002499 return new ICmpInst(Pred, BOp1, SubC);
2500 } else if (*C == 0) {
Sanjay Patel362ff5c2016-09-15 17:01:17 +00002501 // Replace ((sub A, B) != 0) with (A != B).
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002502 return new ICmpInst(Pred, BOp0, BOp1);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002503 }
2504 }
2505 break;
Sanjay Patelb3de75d2016-08-04 19:12:12 +00002506 case Instruction::Or: {
2507 const APInt *BOC;
2508 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002509 // Comparing if all bits outside of a constant mask are set?
2510 // Replace (X | C) == -1 with (X & ~C) == ~C.
2511 // This removes the -1 constant.
Sanjay Patelb3de75d2016-08-04 19:12:12 +00002512 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2513 Value *And = Builder->CreateAnd(BOp0, NotBOC);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002514 return new ICmpInst(Pred, And, NotBOC);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002515 }
2516 break;
Sanjay Patelb3de75d2016-08-04 19:12:12 +00002517 }
Sanjay Pateld938e882016-08-04 20:05:02 +00002518 case Instruction::And: {
2519 const APInt *BOC;
2520 if (match(BOp1, m_APInt(BOC))) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002521 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002522 if (C == BOC && C->isPowerOf2())
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002523 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
Sanjay Patelab50a932016-08-02 22:38:33 +00002524 BO, Constant::getNullValue(RHS->getType()));
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002525
2526 // Don't perform the following transforms if the AND has multiple uses
2527 if (!BO->hasOneUse())
2528 break;
2529
2530 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Sanjay Pateld938e882016-08-04 20:05:02 +00002531 if (BOC->isSignBit()) {
Sanjay Patel51a767c2016-08-03 17:23:08 +00002532 Constant *Zero = Constant::getNullValue(BOp0->getType());
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002533 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
2534 return new ICmpInst(NewPred, BOp0, Zero);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002535 }
2536
2537 // ((X & ~7) == 0) --> X < 8
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002538 if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
Sanjay Pateld938e882016-08-04 20:05:02 +00002539 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002540 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
2541 return new ICmpInst(NewPred, BOp0, NegBOC);
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002542 }
2543 }
2544 break;
Sanjay Pateld938e882016-08-04 20:05:02 +00002545 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002546 case Instruction::Mul:
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002547 if (*C == 0 && BO->hasNoSignedWrap()) {
Sanjay Patel3bade132016-08-04 22:19:27 +00002548 const APInt *BOC;
2549 if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
2550 // The trivial case (mul X, 0) is handled by InstSimplify.
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002551 // General case : (mul X, C) != 0 iff X != 0
2552 // (mul X, C) == 0 iff X == 0
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002553 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002554 }
2555 }
2556 break;
Sanjay Patel6ebd5852016-07-23 00:28:39 +00002557 case Instruction::UDiv:
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002558 if (*C == 0) {
Sanjay Patel6ebd5852016-07-23 00:28:39 +00002559 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002560 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
2561 return new ICmpInst(NewPred, BOp1, BOp0);
Sanjay Patel6ebd5852016-07-23 00:28:39 +00002562 }
2563 break;
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002564 default:
2565 break;
2566 }
2567 return nullptr;
2568}
2569
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002570/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
2571Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
2572 const APInt *C) {
2573 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
2574 if (!II || !Cmp.isEquality())
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002575 return nullptr;
2576
2577 // Handle icmp {eq|ne} <intrinsic>, intcst.
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002578 switch (II->getIntrinsicID()) {
2579 case Intrinsic::bswap:
2580 Worklist.Add(II);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002581 Cmp.setOperand(0, II->getArgOperand(0));
2582 Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
2583 return &Cmp;
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002584 case Intrinsic::ctlz:
2585 case Intrinsic::cttz:
Amaury Sechet6bea6742016-08-04 05:27:20 +00002586 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002587 if (*C == C->getBitWidth()) {
Sanjay Patel1710e7c2016-07-21 17:15:49 +00002588 Worklist.Add(II);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002589 Cmp.setOperand(0, II->getArgOperand(0));
2590 Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
2591 return &Cmp;
Chris Lattner2188e402010-01-04 07:37:31 +00002592 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002593 break;
Amaury Sechet6bea6742016-08-04 05:27:20 +00002594 case Intrinsic::ctpop: {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002595 // popcount(A) == 0 -> A == 0 and likewise for !=
Amaury Sechet6bea6742016-08-04 05:27:20 +00002596 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002597 bool IsZero = *C == 0;
2598 if (IsZero || *C == C->getBitWidth()) {
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002599 Worklist.Add(II);
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002600 Cmp.setOperand(0, II->getArgOperand(0));
2601 auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
2602 : Constant::getAllOnesValue(II->getType());
2603 Cmp.setOperand(1, NewOp);
2604 return &Cmp;
Amaury Sechet6bea6742016-08-04 05:27:20 +00002605 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002606 break;
Sanjay Patel0a3d72b2016-09-10 15:33:39 +00002607 }
Sanjay Patel18fa9d32016-07-21 23:27:36 +00002608 default:
2609 break;
Chris Lattner2188e402010-01-04 07:37:31 +00002610 }
Craig Topperf40110f2014-04-25 05:29:35 +00002611 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00002612}
2613
Sanjay Patel10494b22016-09-16 16:10:22 +00002614/// Handle icmp with constant (but not simple integer constant) RHS.
2615Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
2616 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2617 Constant *RHSC = dyn_cast<Constant>(Op1);
2618 Instruction *LHSI = dyn_cast<Instruction>(Op0);
2619 if (!RHSC || !LHSI)
2620 return nullptr;
2621
2622 switch (LHSI->getOpcode()) {
2623 case Instruction::GetElementPtr:
2624 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2625 if (RHSC->isNullValue() &&
2626 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2627 return new ICmpInst(
2628 I.getPredicate(), LHSI->getOperand(0),
2629 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2630 break;
2631 case Instruction::PHI:
2632 // Only fold icmp into the PHI if the phi and icmp are in the same
2633 // block. If in the same block, we're encouraging jump threading. If
2634 // not, we are just pessimizing the code by making an i1 phi.
2635 if (LHSI->getParent() == I.getParent())
2636 if (Instruction *NV = FoldOpIntoPhi(I))
2637 return NV;
2638 break;
2639 case Instruction::Select: {
2640 // If either operand of the select is a constant, we can fold the
2641 // comparison into the select arms, which will cause one to be
2642 // constant folded and the select turned into a bitwise or.
2643 Value *Op1 = nullptr, *Op2 = nullptr;
2644 ConstantInt *CI = nullptr;
2645 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2646 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2647 CI = dyn_cast<ConstantInt>(Op1);
2648 }
2649 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2650 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2651 CI = dyn_cast<ConstantInt>(Op2);
2652 }
2653
2654 // We only want to perform this transformation if it will not lead to
2655 // additional code. This is true if either both sides of the select
2656 // fold to a constant (in which case the icmp is replaced with a select
2657 // which will usually simplify) or this is the only user of the
2658 // select (in which case we are trading a select+icmp for a simpler
2659 // select+icmp) or all uses of the select can be replaced based on
2660 // dominance information ("Global cases").
2661 bool Transform = false;
2662 if (Op1 && Op2)
2663 Transform = true;
2664 else if (Op1 || Op2) {
2665 // Local case
2666 if (LHSI->hasOneUse())
2667 Transform = true;
2668 // Global cases
2669 else if (CI && !CI->isZero())
2670 // When Op1 is constant try replacing select with second operand.
2671 // Otherwise Op2 is constant and try replacing select with first
2672 // operand.
2673 Transform =
2674 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
2675 }
2676 if (Transform) {
2677 if (!Op1)
2678 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
2679 I.getName());
2680 if (!Op2)
2681 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
2682 I.getName());
2683 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2684 }
2685 break;
2686 }
2687 case Instruction::IntToPtr:
2688 // icmp pred inttoptr(X), null -> icmp pred X, 0
2689 if (RHSC->isNullValue() &&
2690 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
2691 return new ICmpInst(
2692 I.getPredicate(), LHSI->getOperand(0),
2693 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2694 break;
2695
2696 case Instruction::Load:
2697 // Try to optimize things like "A[i] > 4" to index computations.
2698 if (GetElementPtrInst *GEP =
2699 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2700 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2701 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2702 !cast<LoadInst>(LHSI)->isVolatile())
2703 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
2704 return Res;
2705 }
2706 break;
2707 }
2708
2709 return nullptr;
2710}
2711
2712/// Try to fold icmp (binop), X or icmp X, (binop).
2713Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
2714 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2715
2716 // Special logic for binary operators.
2717 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2718 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2719 if (!BO0 && !BO1)
2720 return nullptr;
2721
2722 CmpInst::Predicate Pred = I.getPredicate();
2723 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2724 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2725 NoOp0WrapProblem =
2726 ICmpInst::isEquality(Pred) ||
2727 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2728 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2729 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2730 NoOp1WrapProblem =
2731 ICmpInst::isEquality(Pred) ||
2732 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2733 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2734
2735 // Analyze the case when either Op0 or Op1 is an add instruction.
2736 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2737 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2738 if (BO0 && BO0->getOpcode() == Instruction::Add) {
2739 A = BO0->getOperand(0);
2740 B = BO0->getOperand(1);
2741 }
2742 if (BO1 && BO1->getOpcode() == Instruction::Add) {
2743 C = BO1->getOperand(0);
2744 D = BO1->getOperand(1);
2745 }
2746
2747 // icmp (X+cst) < 0 --> X < -cst
2748 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
2749 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
2750 if (!RHSC->isMinValue(/*isSigned=*/true))
2751 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
2752
2753 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2754 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2755 return new ICmpInst(Pred, A == Op1 ? B : A,
2756 Constant::getNullValue(Op1->getType()));
2757
2758 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2759 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2760 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2761 C == Op0 ? D : C);
2762
2763 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2764 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
2765 NoOp1WrapProblem &&
2766 // Try not to increase register pressure.
2767 BO0->hasOneUse() && BO1->hasOneUse()) {
2768 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2769 Value *Y, *Z;
2770 if (A == C) {
2771 // C + B == C + D -> B == D
2772 Y = B;
2773 Z = D;
2774 } else if (A == D) {
2775 // D + B == C + D -> B == C
2776 Y = B;
2777 Z = C;
2778 } else if (B == C) {
2779 // A + C == C + D -> A == D
2780 Y = A;
2781 Z = D;
2782 } else {
2783 assert(B == D);
2784 // A + D == C + D -> A == C
2785 Y = A;
2786 Z = C;
2787 }
2788 return new ICmpInst(Pred, Y, Z);
2789 }
2790
2791 // icmp slt (X + -1), Y -> icmp sle X, Y
2792 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2793 match(B, m_AllOnes()))
2794 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2795
2796 // icmp sge (X + -1), Y -> icmp sgt X, Y
2797 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2798 match(B, m_AllOnes()))
2799 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2800
2801 // icmp sle (X + 1), Y -> icmp slt X, Y
2802 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
2803 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2804
2805 // icmp sgt (X + 1), Y -> icmp sge X, Y
2806 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
2807 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2808
2809 // icmp sgt X, (Y + -1) -> icmp sge X, Y
2810 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
2811 match(D, m_AllOnes()))
2812 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
2813
2814 // icmp sle X, (Y + -1) -> icmp slt X, Y
2815 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
2816 match(D, m_AllOnes()))
2817 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
2818
2819 // icmp sge X, (Y + 1) -> icmp sgt X, Y
2820 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
2821 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
2822
2823 // icmp slt X, (Y + 1) -> icmp sle X, Y
2824 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
2825 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
2826
2827 // if C1 has greater magnitude than C2:
2828 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2829 // s.t. C3 = C1 - C2
2830 //
2831 // if C2 has greater magnitude than C1:
2832 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2833 // s.t. C3 = C2 - C1
2834 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2835 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2836 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2837 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2838 const APInt &AP1 = C1->getValue();
2839 const APInt &AP2 = C2->getValue();
2840 if (AP1.isNegative() == AP2.isNegative()) {
2841 APInt AP1Abs = C1->getValue().abs();
2842 APInt AP2Abs = C2->getValue().abs();
2843 if (AP1Abs.uge(AP2Abs)) {
2844 ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2845 Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2846 return new ICmpInst(Pred, NewAdd, C);
2847 } else {
2848 ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2849 Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2850 return new ICmpInst(Pred, A, NewAdd);
2851 }
2852 }
2853 }
2854
2855 // Analyze the case when either Op0 or Op1 is a sub instruction.
2856 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2857 A = nullptr;
2858 B = nullptr;
2859 C = nullptr;
2860 D = nullptr;
2861 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
2862 A = BO0->getOperand(0);
2863 B = BO0->getOperand(1);
2864 }
2865 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
2866 C = BO1->getOperand(0);
2867 D = BO1->getOperand(1);
2868 }
2869
2870 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2871 if (A == Op1 && NoOp0WrapProblem)
2872 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2873
2874 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2875 if (C == Op0 && NoOp1WrapProblem)
2876 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2877
2878 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2879 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2880 // Try not to increase register pressure.
2881 BO0->hasOneUse() && BO1->hasOneUse())
2882 return new ICmpInst(Pred, A, C);
2883
2884 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2885 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2886 // Try not to increase register pressure.
2887 BO0->hasOneUse() && BO1->hasOneUse())
2888 return new ICmpInst(Pred, D, B);
2889
2890 // icmp (0-X) < cst --> x > -cst
2891 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2892 Value *X;
2893 if (match(BO0, m_Neg(m_Value(X))))
2894 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2895 if (!RHSC->isMinValue(/*isSigned=*/true))
2896 return new ICmpInst(I.getSwappedPredicate(), X,
2897 ConstantExpr::getNeg(RHSC));
2898 }
2899
2900 BinaryOperator *SRem = nullptr;
2901 // icmp (srem X, Y), Y
2902 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
2903 SRem = BO0;
2904 // icmp Y, (srem X, Y)
2905 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2906 Op0 == BO1->getOperand(1))
2907 SRem = BO1;
2908 if (SRem) {
2909 // We don't check hasOneUse to avoid increasing register pressure because
2910 // the value we use is the same value this instruction was already using.
2911 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2912 default:
2913 break;
2914 case ICmpInst::ICMP_EQ:
2915 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2916 case ICmpInst::ICMP_NE:
2917 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2918 case ICmpInst::ICMP_SGT:
2919 case ICmpInst::ICMP_SGE:
2920 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2921 Constant::getAllOnesValue(SRem->getType()));
2922 case ICmpInst::ICMP_SLT:
2923 case ICmpInst::ICMP_SLE:
2924 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2925 Constant::getNullValue(SRem->getType()));
2926 }
2927 }
2928
2929 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
2930 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
2931 switch (BO0->getOpcode()) {
2932 default:
2933 break;
2934 case Instruction::Add:
2935 case Instruction::Sub:
2936 case Instruction::Xor:
2937 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2938 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2939 BO1->getOperand(0));
2940 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2941 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2942 if (CI->getValue().isSignBit()) {
2943 ICmpInst::Predicate Pred =
2944 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
2945 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
2946 }
2947
2948 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
2949 ICmpInst::Predicate Pred =
2950 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
2951 Pred = I.getSwappedPredicate(Pred);
2952 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
2953 }
2954 }
2955 break;
2956 case Instruction::Mul:
2957 if (!I.isEquality())
2958 break;
2959
2960 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2961 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2962 // Mask = -1 >> count-trailing-zeros(Cst).
2963 if (!CI->isZero() && !CI->isOne()) {
2964 const APInt &AP = CI->getValue();
2965 ConstantInt *Mask = ConstantInt::get(
2966 I.getContext(),
2967 APInt::getLowBitsSet(AP.getBitWidth(),
2968 AP.getBitWidth() - AP.countTrailingZeros()));
2969 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2970 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2971 return new ICmpInst(I.getPredicate(), And1, And2);
2972 }
2973 }
2974 break;
2975 case Instruction::UDiv:
2976 case Instruction::LShr:
2977 if (I.isSigned())
2978 break;
2979 LLVM_FALLTHROUGH;
2980 case Instruction::SDiv:
2981 case Instruction::AShr:
2982 if (!BO0->isExact() || !BO1->isExact())
2983 break;
2984 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2985 BO1->getOperand(0));
2986 case Instruction::Shl: {
2987 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2988 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2989 if (!NUW && !NSW)
2990 break;
2991 if (!NSW && I.isSigned())
2992 break;
2993 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2994 BO1->getOperand(0));
2995 }
2996 }
2997 }
2998
2999 if (BO0) {
3000 // Transform A & (L - 1) `ult` L --> L != 0
3001 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3002 auto BitwiseAnd =
3003 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3004
3005 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3006 auto *Zero = Constant::getNullValue(BO0->getType());
3007 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3008 }
3009 }
3010
3011 return nullptr;
3012}
3013
3014Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
3015 if (!I.isEquality())
3016 return nullptr;
3017
3018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3019 Value *A, *B, *C, *D;
3020 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3021 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
3022 Value *OtherVal = A == Op1 ? B : A;
3023 return new ICmpInst(I.getPredicate(), OtherVal,
3024 Constant::getNullValue(A->getType()));
3025 }
3026
3027 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3028 // A^c1 == C^c2 --> A == C^(c1^c2)
3029 ConstantInt *C1, *C2;
3030 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
3031 Op1->hasOneUse()) {
3032 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3033 Value *Xor = Builder->CreateXor(C, NC);
3034 return new ICmpInst(I.getPredicate(), A, Xor);
3035 }
3036
3037 // A^B == A^D -> B == D
3038 if (A == C)
3039 return new ICmpInst(I.getPredicate(), B, D);
3040 if (A == D)
3041 return new ICmpInst(I.getPredicate(), B, C);
3042 if (B == C)
3043 return new ICmpInst(I.getPredicate(), A, D);
3044 if (B == D)
3045 return new ICmpInst(I.getPredicate(), A, C);
3046 }
3047 }
3048
3049 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
3050 // A == (A^B) -> B == 0
3051 Value *OtherVal = A == Op0 ? B : A;
3052 return new ICmpInst(I.getPredicate(), OtherVal,
3053 Constant::getNullValue(A->getType()));
3054 }
3055
3056 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3057 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3058 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3059 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3060
3061 if (A == C) {
3062 X = B;
3063 Y = D;
3064 Z = A;
3065 } else if (A == D) {
3066 X = B;
3067 Y = C;
3068 Z = A;
3069 } else if (B == C) {
3070 X = A;
3071 Y = D;
3072 Z = B;
3073 } else if (B == D) {
3074 X = A;
3075 Y = C;
3076 Z = B;
3077 }
3078
3079 if (X) { // Build (X^Y) & Z
3080 Op1 = Builder->CreateXor(X, Y);
3081 Op1 = Builder->CreateAnd(Op1, Z);
3082 I.setOperand(0, Op1);
3083 I.setOperand(1, Constant::getNullValue(Op1->getType()));
3084 return &I;
3085 }
3086 }
3087
3088 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3089 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3090 ConstantInt *Cst1;
3091 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
3092 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3093 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3094 match(Op1, m_ZExt(m_Value(A))))) {
3095 APInt Pow2 = Cst1->getValue() + 1;
3096 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3097 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3098 return new ICmpInst(I.getPredicate(), A,
3099 Builder->CreateTrunc(B, A->getType()));
3100 }
3101
3102 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3103 // For lshr and ashr pairs.
3104 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3105 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3106 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3107 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3108 unsigned TypeBits = Cst1->getBitWidth();
3109 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3110 if (ShAmt < TypeBits && ShAmt != 0) {
3111 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3112 ? ICmpInst::ICMP_UGE
3113 : ICmpInst::ICMP_ULT;
3114 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3115 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3116 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3117 }
3118 }
3119
3120 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3121 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3122 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3123 unsigned TypeBits = Cst1->getBitWidth();
3124 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3125 if (ShAmt < TypeBits && ShAmt != 0) {
3126 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3127 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3128 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3129 I.getName() + ".mask");
3130 return new ICmpInst(I.getPredicate(), And,
3131 Constant::getNullValue(Cst1->getType()));
3132 }
3133 }
3134
3135 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3136 // "icmp (and X, mask), cst"
3137 uint64_t ShAmt = 0;
3138 if (Op0->hasOneUse() &&
3139 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
3140 match(Op1, m_ConstantInt(Cst1)) &&
3141 // Only do this when A has multiple uses. This is most important to do
3142 // when it exposes other optimizations.
3143 !A->hasOneUse()) {
3144 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3145
3146 if (ShAmt < ASize) {
3147 APInt MaskV =
3148 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3149 MaskV <<= ShAmt;
3150
3151 APInt CmpV = Cst1->getValue().zext(ASize);
3152 CmpV <<= ShAmt;
3153
3154 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3155 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3156 }
3157 }
3158
3159 return nullptr;
3160}
3161
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003162/// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
3163/// far.
Sanjay Patel43395062016-07-21 18:07:40 +00003164Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003165 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
Chris Lattner2188e402010-01-04 07:37:31 +00003166 Value *LHSCIOp = LHSCI->getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00003167 Type *SrcTy = LHSCIOp->getType();
3168 Type *DestTy = LHSCI->getType();
Chris Lattner2188e402010-01-04 07:37:31 +00003169 Value *RHSCIOp;
3170
Jim Grosbach129c52a2011-09-30 18:09:53 +00003171 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
Chris Lattner2188e402010-01-04 07:37:31 +00003172 // integer type is the same size as the pointer type.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003173 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
3174 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
Craig Topperf40110f2014-04-25 05:29:35 +00003175 Value *RHSOp = nullptr;
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003176 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
Michael Liaod266b922015-02-13 04:51:26 +00003177 Value *RHSCIOp = RHSC->getOperand(0);
3178 if (RHSCIOp->getType()->getPointerAddressSpace() ==
3179 LHSCIOp->getType()->getPointerAddressSpace()) {
3180 RHSOp = RHSC->getOperand(0);
3181 // If the pointer types don't match, insert a bitcast.
3182 if (LHSCIOp->getType() != RHSOp->getType())
3183 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
3184 }
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003185 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
Chris Lattner2188e402010-01-04 07:37:31 +00003186 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003187 }
Chris Lattner2188e402010-01-04 07:37:31 +00003188
3189 if (RHSOp)
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003190 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
Chris Lattner2188e402010-01-04 07:37:31 +00003191 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00003192
Chris Lattner2188e402010-01-04 07:37:31 +00003193 // The code below only handles extension cast instructions, so far.
3194 // Enforce this.
3195 if (LHSCI->getOpcode() != Instruction::ZExt &&
3196 LHSCI->getOpcode() != Instruction::SExt)
Craig Topperf40110f2014-04-25 05:29:35 +00003197 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00003198
3199 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003200 bool isSignedCmp = ICmp.isSigned();
Chris Lattner2188e402010-01-04 07:37:31 +00003201
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003202 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
Chris Lattner2188e402010-01-04 07:37:31 +00003203 // Not an extension from the same type?
3204 RHSCIOp = CI->getOperand(0);
Jim Grosbach129c52a2011-09-30 18:09:53 +00003205 if (RHSCIOp->getType() != LHSCIOp->getType())
Craig Topperf40110f2014-04-25 05:29:35 +00003206 return nullptr;
Jim Grosbach129c52a2011-09-30 18:09:53 +00003207
Chris Lattner2188e402010-01-04 07:37:31 +00003208 // If the signedness of the two casts doesn't agree (i.e. one is a sext
3209 // and the other is a zext), then we can't handle this.
3210 if (CI->getOpcode() != LHSCI->getOpcode())
Craig Topperf40110f2014-04-25 05:29:35 +00003211 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00003212
3213 // Deal with equality cases early.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003214 if (ICmp.isEquality())
3215 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
Chris Lattner2188e402010-01-04 07:37:31 +00003216
3217 // A signed comparison of sign extended values simplifies into a
3218 // signed comparison.
3219 if (isSignedCmp && isSignedExt)
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003220 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
Chris Lattner2188e402010-01-04 07:37:31 +00003221
3222 // The other three cases all fold into an unsigned comparison.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003223 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
Chris Lattner2188e402010-01-04 07:37:31 +00003224 }
3225
Sanjay Patel4c204232016-06-04 20:39:22 +00003226 // If we aren't dealing with a constant on the RHS, exit early.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003227 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
3228 if (!C)
Craig Topperf40110f2014-04-25 05:29:35 +00003229 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00003230
3231 // Compute the constant that would happen if we truncated to SrcTy then
Sanjay Patelc774f8c2016-06-04 21:20:44 +00003232 // re-extended to DestTy.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003233 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
Sanjay Patelc774f8c2016-06-04 21:20:44 +00003234 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
Chris Lattner2188e402010-01-04 07:37:31 +00003235
3236 // If the re-extended constant didn't change...
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003237 if (Res2 == C) {
Chris Lattner2188e402010-01-04 07:37:31 +00003238 // Deal with equality cases early.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003239 if (ICmp.isEquality())
3240 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
Chris Lattner2188e402010-01-04 07:37:31 +00003241
3242 // A signed comparison of sign extended values simplifies into a
3243 // signed comparison.
3244 if (isSignedExt && isSignedCmp)
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003245 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
Chris Lattner2188e402010-01-04 07:37:31 +00003246
3247 // The other three cases all fold into an unsigned comparison.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003248 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
Chris Lattner2188e402010-01-04 07:37:31 +00003249 }
3250
Sanjay Patel6a333c32016-06-06 16:56:57 +00003251 // The re-extended constant changed, partly changed (in the case of a vector),
3252 // or could not be determined to be equal (in the case of a constant
3253 // expression), so the constant cannot be represented in the shorter type.
3254 // Consequently, we cannot emit a simple comparison.
Duncan Sands8fb2c382011-01-20 13:21:55 +00003255 // All the cases that fold to true or false will have already been handled
3256 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner2188e402010-01-04 07:37:31 +00003257
Sanjay Patel6a333c32016-06-06 16:56:57 +00003258 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
Craig Topperf40110f2014-04-25 05:29:35 +00003259 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00003260
3261 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
3262 // should have been folded away previously and not enter in here.
Duncan Sands8fb2c382011-01-20 13:21:55 +00003263
3264 // We're performing an unsigned comp with a sign extended value.
3265 // This is true if the input is >= 0. [aka >s -1]
3266 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003267 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
Chris Lattner2188e402010-01-04 07:37:31 +00003268
3269 // Finally, return the value computed.
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003270 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
3271 return replaceInstUsesWith(ICmp, Result);
Chris Lattner2188e402010-01-04 07:37:31 +00003272
Sanjay Patel6f8f47b2016-06-05 00:12:32 +00003273 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner2188e402010-01-04 07:37:31 +00003274 return BinaryOperator::CreateNot(Result);
3275}
3276
Sanjoy Dasb0984472015-04-08 04:27:22 +00003277bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
3278 Value *RHS, Instruction &OrigI,
3279 Value *&Result, Constant *&Overflow) {
Sanjoy Das827529e2015-08-11 21:33:55 +00003280 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
3281 std::swap(LHS, RHS);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003282
3283 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
3284 Result = OpResult;
3285 Overflow = OverflowVal;
3286 if (ReuseName)
3287 Result->takeName(&OrigI);
3288 return true;
3289 };
3290
Sanjoy Das6f5dca72015-08-28 19:09:31 +00003291 // If the overflow check was an add followed by a compare, the insertion point
3292 // may be pointing to the compare. We want to insert the new instructions
3293 // before the add in case there are uses of the add between the add and the
3294 // compare.
3295 Builder->SetInsertPoint(&OrigI);
3296
Sanjoy Dasb0984472015-04-08 04:27:22 +00003297 switch (OCF) {
3298 case OCF_INVALID:
3299 llvm_unreachable("bad overflow check kind!");
3300
3301 case OCF_UNSIGNED_ADD: {
3302 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
3303 if (OR == OverflowResult::NeverOverflows)
3304 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
3305 true);
3306
3307 if (OR == OverflowResult::AlwaysOverflows)
3308 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00003309
3310 // Fall through uadd into sadd
3311 LLVM_FALLTHROUGH;
Sanjoy Dasb0984472015-04-08 04:27:22 +00003312 }
Sanjoy Dasb0984472015-04-08 04:27:22 +00003313 case OCF_SIGNED_ADD: {
David Majnemer27e89ba2015-05-21 23:04:21 +00003314 // X + 0 -> {X, false}
3315 if (match(RHS, m_Zero()))
3316 return SetResult(LHS, Builder->getFalse(), false);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003317
3318 // We can strength reduce this signed add into a regular add if we can prove
3319 // that it will never overflow.
3320 if (OCF == OCF_SIGNED_ADD)
3321 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
3322 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
3323 true);
Sanjoy Das72cb5e12015-06-05 18:04:42 +00003324 break;
Sanjoy Dasb0984472015-04-08 04:27:22 +00003325 }
3326
3327 case OCF_UNSIGNED_SUB:
3328 case OCF_SIGNED_SUB: {
David Majnemer27e89ba2015-05-21 23:04:21 +00003329 // X - 0 -> {X, false}
3330 if (match(RHS, m_Zero()))
3331 return SetResult(LHS, Builder->getFalse(), false);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003332
3333 if (OCF == OCF_SIGNED_SUB) {
3334 if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
3335 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
3336 true);
3337 } else {
3338 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
3339 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
3340 true);
3341 }
3342 break;
3343 }
3344
3345 case OCF_UNSIGNED_MUL: {
3346 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
3347 if (OR == OverflowResult::NeverOverflows)
3348 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
3349 true);
3350 if (OR == OverflowResult::AlwaysOverflows)
3351 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00003352 LLVM_FALLTHROUGH;
3353 }
Sanjoy Dasb0984472015-04-08 04:27:22 +00003354 case OCF_SIGNED_MUL:
3355 // X * undef -> undef
3356 if (isa<UndefValue>(RHS))
David Majnemer27e89ba2015-05-21 23:04:21 +00003357 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003358
David Majnemer27e89ba2015-05-21 23:04:21 +00003359 // X * 0 -> {0, false}
3360 if (match(RHS, m_Zero()))
3361 return SetResult(RHS, Builder->getFalse(), false);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003362
David Majnemer27e89ba2015-05-21 23:04:21 +00003363 // X * 1 -> {X, false}
3364 if (match(RHS, m_One()))
3365 return SetResult(LHS, Builder->getFalse(), false);
Sanjoy Dasb0984472015-04-08 04:27:22 +00003366
3367 if (OCF == OCF_SIGNED_MUL)
3368 if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
3369 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
3370 true);
Sanjoy Dasc80dad62015-06-05 18:04:46 +00003371 break;
Sanjoy Dasb0984472015-04-08 04:27:22 +00003372 }
3373
3374 return false;
3375}
3376
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003377/// \brief Recognize and process idiom involving test for multiplication
3378/// overflow.
3379///
3380/// The caller has matched a pattern of the form:
3381/// I = cmp u (mul(zext A, zext B), V
3382/// The function checks if this is a test for overflow and if so replaces
3383/// multiplication with call to 'mul.with.overflow' intrinsic.
3384///
3385/// \param I Compare instruction.
3386/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
3387/// the compare instruction. Must be of integer type.
3388/// \param OtherVal The other argument of compare instruction.
3389/// \returns Instruction which must replace the compare instruction, NULL if no
3390/// replacement required.
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003391static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003392 Value *OtherVal, InstCombiner &IC) {
Benjamin Kramerc96a7f82014-06-24 10:47:52 +00003393 // Don't bother doing this transformation for pointers, don't do it for
3394 // vectors.
3395 if (!isa<IntegerType>(MulVal->getType()))
3396 return nullptr;
3397
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003398 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
3399 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
David Majnemerdaa24b92015-09-05 20:44:56 +00003400 auto *MulInstr = dyn_cast<Instruction>(MulVal);
3401 if (!MulInstr)
3402 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003403 assert(MulInstr->getOpcode() == Instruction::Mul);
3404
David Majnemer634ca232014-11-01 23:46:05 +00003405 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
3406 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003407 assert(LHS->getOpcode() == Instruction::ZExt);
3408 assert(RHS->getOpcode() == Instruction::ZExt);
3409 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
3410
3411 // Calculate type and width of the result produced by mul.with.overflow.
3412 Type *TyA = A->getType(), *TyB = B->getType();
3413 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
3414 WidthB = TyB->getPrimitiveSizeInBits();
3415 unsigned MulWidth;
3416 Type *MulType;
3417 if (WidthB > WidthA) {
3418 MulWidth = WidthB;
3419 MulType = TyB;
3420 } else {
3421 MulWidth = WidthA;
3422 MulType = TyA;
3423 }
3424
3425 // In order to replace the original mul with a narrower mul.with.overflow,
3426 // all uses must ignore upper bits of the product. The number of used low
3427 // bits must be not greater than the width of mul.with.overflow.
3428 if (MulVal->hasNUsesOrMore(2))
3429 for (User *U : MulVal->users()) {
3430 if (U == &I)
3431 continue;
3432 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3433 // Check if truncation ignores bits above MulWidth.
3434 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
3435 if (TruncWidth > MulWidth)
Craig Topperf40110f2014-04-25 05:29:35 +00003436 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003437 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3438 // Check if AND ignores bits above MulWidth.
3439 if (BO->getOpcode() != Instruction::And)
Craig Topperf40110f2014-04-25 05:29:35 +00003440 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003441 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
3442 const APInt &CVal = CI->getValue();
3443 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
Craig Topperf40110f2014-04-25 05:29:35 +00003444 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003445 }
3446 } else {
3447 // Other uses prohibit this transformation.
Craig Topperf40110f2014-04-25 05:29:35 +00003448 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003449 }
3450 }
3451
3452 // Recognize patterns
3453 switch (I.getPredicate()) {
3454 case ICmpInst::ICMP_EQ:
3455 case ICmpInst::ICMP_NE:
3456 // Recognize pattern:
3457 // mulval = mul(zext A, zext B)
3458 // cmp eq/neq mulval, zext trunc mulval
3459 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
3460 if (Zext->hasOneUse()) {
3461 Value *ZextArg = Zext->getOperand(0);
3462 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
3463 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
3464 break; //Recognized
3465 }
3466
3467 // Recognize pattern:
3468 // mulval = mul(zext A, zext B)
3469 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
3470 ConstantInt *CI;
3471 Value *ValToMask;
3472 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
3473 if (ValToMask != MulVal)
Craig Topperf40110f2014-04-25 05:29:35 +00003474 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003475 const APInt &CVal = CI->getValue() + 1;
3476 if (CVal.isPowerOf2()) {
3477 unsigned MaskWidth = CVal.logBase2();
3478 if (MaskWidth == MulWidth)
3479 break; // Recognized
3480 }
3481 }
Craig Topperf40110f2014-04-25 05:29:35 +00003482 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003483
3484 case ICmpInst::ICMP_UGT:
3485 // Recognize pattern:
3486 // mulval = mul(zext A, zext B)
3487 // cmp ugt mulval, max
3488 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3489 APInt MaxVal = APInt::getMaxValue(MulWidth);
3490 MaxVal = MaxVal.zext(CI->getBitWidth());
3491 if (MaxVal.eq(CI->getValue()))
3492 break; // Recognized
3493 }
Craig Topperf40110f2014-04-25 05:29:35 +00003494 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003495
3496 case ICmpInst::ICMP_UGE:
3497 // Recognize pattern:
3498 // mulval = mul(zext A, zext B)
3499 // cmp uge mulval, max+1
3500 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3501 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
3502 if (MaxVal.eq(CI->getValue()))
3503 break; // Recognized
3504 }
Craig Topperf40110f2014-04-25 05:29:35 +00003505 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003506
3507 case ICmpInst::ICMP_ULE:
3508 // Recognize pattern:
3509 // mulval = mul(zext A, zext B)
3510 // cmp ule mulval, max
3511 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
3512 APInt MaxVal = APInt::getMaxValue(MulWidth);
3513 MaxVal = MaxVal.zext(CI->getBitWidth());
3514 if (MaxVal.eq(CI->getValue()))
3515 break; // Recognized
3516 }
Craig Topperf40110f2014-04-25 05:29:35 +00003517 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003518
3519 case ICmpInst::ICMP_ULT:
3520 // Recognize pattern:
3521 // mulval = mul(zext A, zext B)
3522 // cmp ule mulval, max + 1
3523 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
Serge Pavlovb5f3ddc2014-04-14 02:20:19 +00003524 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003525 if (MaxVal.eq(CI->getValue()))
3526 break; // Recognized
3527 }
Craig Topperf40110f2014-04-25 05:29:35 +00003528 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003529
3530 default:
Craig Topperf40110f2014-04-25 05:29:35 +00003531 return nullptr;
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003532 }
3533
3534 InstCombiner::BuilderTy *Builder = IC.Builder;
3535 Builder->SetInsertPoint(MulInstr);
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003536
3537 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
3538 Value *MulA = A, *MulB = B;
3539 if (WidthA < MulWidth)
3540 MulA = Builder->CreateZExt(A, MulType);
3541 if (WidthB < MulWidth)
3542 MulB = Builder->CreateZExt(B, MulType);
Sanjay Patelaf674fb2015-12-14 17:24:23 +00003543 Value *F = Intrinsic::getDeclaration(I.getModule(),
3544 Intrinsic::umul_with_overflow, MulType);
David Blaikieff6409d2015-05-18 22:13:54 +00003545 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003546 IC.Worklist.Add(MulInstr);
3547
3548 // If there are uses of mul result other than the comparison, we know that
3549 // they are truncation or binary AND. Change them to use result of
Serge Pavlovb5f3ddc2014-04-14 02:20:19 +00003550 // mul.with.overflow and adjust properly mask/size.
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003551 if (MulVal->hasNUsesOrMore(2)) {
3552 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
3553 for (User *U : MulVal->users()) {
3554 if (U == &I || U == OtherVal)
3555 continue;
3556 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
3557 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
Sanjay Patel4b198802016-02-01 22:23:39 +00003558 IC.replaceInstUsesWith(*TI, Mul);
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003559 else
3560 TI->setOperand(0, Mul);
3561 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
3562 assert(BO->getOpcode() == Instruction::And);
3563 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
3564 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
3565 APInt ShortMask = CI->getValue().trunc(MulWidth);
3566 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
3567 Instruction *Zext =
3568 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
3569 IC.Worklist.Add(Zext);
Sanjay Patel4b198802016-02-01 22:23:39 +00003570 IC.replaceInstUsesWith(*BO, Zext);
Serge Pavlov4bb54d52014-04-13 18:23:41 +00003571 } else {
3572 llvm_unreachable("Unexpected Binary operation");
3573 }
3574 IC.Worklist.Add(cast<Instruction>(U));
3575 }
3576 }
3577 if (isa<Instruction>(OtherVal))
3578 IC.Worklist.Add(cast<Instruction>(OtherVal));
3579
3580 // The original icmp gets replaced with the overflow value, maybe inverted
3581 // depending on predicate.
3582 bool Inverse = false;
3583 switch (I.getPredicate()) {
3584 case ICmpInst::ICMP_NE:
3585 break;
3586 case ICmpInst::ICMP_EQ:
3587 Inverse = true;
3588 break;
3589 case ICmpInst::ICMP_UGT:
3590 case ICmpInst::ICMP_UGE:
3591 if (I.getOperand(0) == MulVal)
3592 break;
3593 Inverse = true;
3594 break;
3595 case ICmpInst::ICMP_ULT:
3596 case ICmpInst::ICMP_ULE:
3597 if (I.getOperand(1) == MulVal)
3598 break;
3599 Inverse = true;
3600 break;
3601 default:
3602 llvm_unreachable("Unexpected predicate");
3603 }
3604 if (Inverse) {
3605 Value *Res = Builder->CreateExtractValue(Call, 1);
3606 return BinaryOperator::CreateNot(Res);
3607 }
3608
3609 return ExtractValueInst::Create(Call, 1);
3610}
3611
Sanjay Patel5f0217f2016-06-05 16:46:18 +00003612/// When performing a comparison against a constant, it is possible that not all
3613/// the bits in the LHS are demanded. This helper method computes the mask that
3614/// IS demanded.
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003615static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
3616 bool isSignCheck) {
Owen Andersond490c2d2011-01-11 00:36:45 +00003617 if (isSignCheck)
3618 return APInt::getSignBit(BitWidth);
Jim Grosbach129c52a2011-09-30 18:09:53 +00003619
Owen Andersond490c2d2011-01-11 00:36:45 +00003620 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3621 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Anderson0022a4b2011-01-11 18:26:37 +00003622 const APInt &RHS = CI->getValue();
Jim Grosbach129c52a2011-09-30 18:09:53 +00003623
Owen Andersond490c2d2011-01-11 00:36:45 +00003624 switch (I.getPredicate()) {
Jim Grosbach129c52a2011-09-30 18:09:53 +00003625 // For a UGT comparison, we don't care about any bits that
Owen Andersond490c2d2011-01-11 00:36:45 +00003626 // correspond to the trailing ones of the comparand. The value of these
3627 // bits doesn't impact the outcome of the comparison, because any value
3628 // greater than the RHS must differ in a bit higher than these due to carry.
3629 case ICmpInst::ICMP_UGT: {
3630 unsigned trailingOnes = RHS.countTrailingOnes();
3631 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
3632 return ~lowBitsSet;
3633 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00003634
Owen Andersond490c2d2011-01-11 00:36:45 +00003635 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
3636 // Any value less than the RHS must differ in a higher bit because of carries.
3637 case ICmpInst::ICMP_ULT: {
3638 unsigned trailingZeros = RHS.countTrailingZeros();
3639 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
3640 return ~lowBitsSet;
3641 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00003642
Owen Andersond490c2d2011-01-11 00:36:45 +00003643 default:
3644 return APInt::getAllOnesValue(BitWidth);
3645 }
Owen Andersond490c2d2011-01-11 00:36:45 +00003646}
Chris Lattner2188e402010-01-04 07:37:31 +00003647
Quentin Colombet5ab55552013-09-09 20:56:48 +00003648/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
3649/// should be swapped.
Alp Tokercb402912014-01-24 17:20:08 +00003650/// The decision is based on how many times these two operands are reused
Quentin Colombet5ab55552013-09-09 20:56:48 +00003651/// as subtract operands and their positions in those instructions.
3652/// The rational is that several architectures use the same instruction for
3653/// both subtract and cmp, thus it is better if the order of those operands
3654/// match.
3655/// \return true if Op0 and Op1 should be swapped.
3656static bool swapMayExposeCSEOpportunities(const Value * Op0,
3657 const Value * Op1) {
3658 // Filter out pointer value as those cannot appears directly in subtract.
3659 // FIXME: we may want to go through inttoptrs or bitcasts.
3660 if (Op0->getType()->isPointerTy())
3661 return false;
3662 // Count every uses of both Op0 and Op1 in a subtract.
3663 // Each time Op0 is the first operand, count -1: swapping is bad, the
3664 // subtract has already the same layout as the compare.
3665 // Each time Op0 is the second operand, count +1: swapping is good, the
Alp Tokercb402912014-01-24 17:20:08 +00003666 // subtract has a different layout as the compare.
Quentin Colombet5ab55552013-09-09 20:56:48 +00003667 // At the end, if the benefit is greater than 0, Op0 should come second to
3668 // expose more CSE opportunities.
3669 int GlobalSwapBenefits = 0;
Chandler Carruthcdf47882014-03-09 03:16:01 +00003670 for (const User *U : Op0->users()) {
3671 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
Quentin Colombet5ab55552013-09-09 20:56:48 +00003672 if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
3673 continue;
3674 // If Op0 is the first argument, this is not beneficial to swap the
3675 // arguments.
3676 int LocalSwapBenefits = -1;
3677 unsigned Op1Idx = 1;
3678 if (BinOp->getOperand(Op1Idx) == Op0) {
3679 Op1Idx = 0;
3680 LocalSwapBenefits = 1;
3681 }
3682 if (BinOp->getOperand(Op1Idx) != Op1)
3683 continue;
3684 GlobalSwapBenefits += LocalSwapBenefits;
3685 }
3686 return GlobalSwapBenefits > 0;
3687}
3688
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003689/// \brief Check that one use is in the same block as the definition and all
Sanjay Patel53523312016-09-12 14:25:46 +00003690/// other uses are in blocks dominated by a given block.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003691///
3692/// \param DI Definition
3693/// \param UI Use
3694/// \param DB Block that must dominate all uses of \p DI outside
3695/// the parent block
3696/// \return true when \p UI is the only use of \p DI in the parent block
3697/// and all other uses of \p DI are in blocks dominated by \p DB.
3698///
3699bool InstCombiner::dominatesAllUses(const Instruction *DI,
3700 const Instruction *UI,
3701 const BasicBlock *DB) const {
3702 assert(DI && UI && "Instruction not defined\n");
Sanjay Patel53523312016-09-12 14:25:46 +00003703 // Ignore incomplete definitions.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003704 if (!DI->getParent())
3705 return false;
Sanjay Patel53523312016-09-12 14:25:46 +00003706 // DI and UI must be in the same block.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003707 if (DI->getParent() != UI->getParent())
3708 return false;
Sanjay Patel53523312016-09-12 14:25:46 +00003709 // Protect from self-referencing blocks.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003710 if (DI->getParent() == DB)
3711 return false;
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003712 for (const User *U : DI->users()) {
3713 auto *Usr = cast<Instruction>(U);
Justin Bogner99798402016-08-05 01:06:44 +00003714 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003715 return false;
3716 }
3717 return true;
3718}
3719
Sanjay Patel5f0217f2016-06-05 16:46:18 +00003720/// Return true when the instruction sequence within a block is select-cmp-br.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003721static bool isChainSelectCmpBranch(const SelectInst *SI) {
3722 const BasicBlock *BB = SI->getParent();
3723 if (!BB)
3724 return false;
3725 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
3726 if (!BI || BI->getNumSuccessors() != 2)
3727 return false;
3728 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
3729 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
3730 return false;
3731 return true;
3732}
3733
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003734/// \brief True when a select result is replaced by one of its operands
3735/// in select-icmp sequence. This will eventually result in the elimination
3736/// of the select.
3737///
3738/// \param SI Select instruction
3739/// \param Icmp Compare instruction
3740/// \param SIOpd Operand that replaces the select
3741///
3742/// Notes:
3743/// - The replacement is global and requires dominator information
3744/// - The caller is responsible for the actual replacement
3745///
3746/// Example:
3747///
3748/// entry:
3749/// %4 = select i1 %3, %C* %0, %C* null
3750/// %5 = icmp eq %C* %4, null
3751/// br i1 %5, label %9, label %7
3752/// ...
3753/// ; <label>:7 ; preds = %entry
3754/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
3755/// ...
3756///
3757/// can be transformed to
3758///
3759/// %5 = icmp eq %C* %0, null
3760/// %6 = select i1 %3, i1 %5, i1 true
3761/// br i1 %6, label %9, label %7
3762/// ...
3763/// ; <label>:7 ; preds = %entry
3764/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
3765///
3766/// Similar when the first operand of the select is a constant or/and
3767/// the compare is for not equal rather than equal.
3768///
3769/// NOTE: The function is only called when the select and compare constants
3770/// are equal, the optimization can work only for EQ predicates. This is not a
3771/// major restriction since a NE compare should be 'normalized' to an equal
3772/// compare, which usually happens in the combiner and test case
Sanjay Patel53523312016-09-12 14:25:46 +00003773/// select-cmp-br.ll checks for it.
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003774bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
3775 const ICmpInst *Icmp,
3776 const unsigned SIOpd) {
David Majnemer83484fd2014-11-22 06:09:28 +00003777 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003778 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
3779 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
3780 // The check for the unique predecessor is not the best that can be
Sanjay Patel53523312016-09-12 14:25:46 +00003781 // done. But it protects efficiently against cases like when SI's
Gerolf Hoflehnerec6217c2014-11-21 23:36:44 +00003782 // home block has two successors, Succ and Succ1, and Succ1 predecessor
3783 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
3784 // replaced can be reached on either path. So the uniqueness check
3785 // guarantees that the path all uses of SI (outside SI's parent) are on
3786 // is disjoint from all other paths out of SI. But that information
3787 // is more expensive to compute, and the trade-off here is in favor
3788 // of compile-time.
3789 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
3790 NumSel++;
3791 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
3792 return true;
3793 }
3794 }
3795 return false;
3796}
3797
Sanjay Patel3151dec2016-09-12 15:24:31 +00003798/// Try to fold the comparison based on range information we can get by checking
3799/// whether bits are known to be zero or one in the inputs.
3800Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
3801 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3802 Type *Ty = Op0->getType();
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003803 ICmpInst::Predicate Pred = I.getPredicate();
Sanjay Patel3151dec2016-09-12 15:24:31 +00003804
3805 // Get scalar or pointer size.
3806 unsigned BitWidth = Ty->isIntOrIntVectorTy()
3807 ? Ty->getScalarSizeInBits()
3808 : DL.getTypeSizeInBits(Ty->getScalarType());
3809
3810 if (!BitWidth)
3811 return nullptr;
3812
3813 // If this is a normal comparison, it demands all bits. If it is a sign bit
3814 // comparison, it only demands the sign bit.
3815 bool IsSignBit = false;
Sanjay Patelf5887f12016-09-12 16:25:41 +00003816 const APInt *CmpC;
3817 if (match(Op1, m_APInt(CmpC))) {
Sanjay Patel3151dec2016-09-12 15:24:31 +00003818 bool UnusedBit;
Sanjay Patelf5887f12016-09-12 16:25:41 +00003819 IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
Sanjay Patel3151dec2016-09-12 15:24:31 +00003820 }
3821
3822 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
3823 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
3824
3825 if (SimplifyDemandedBits(I.getOperandUse(0),
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003826 getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
Sanjay Patel3151dec2016-09-12 15:24:31 +00003827 Op0KnownZero, Op0KnownOne, 0))
3828 return &I;
3829
3830 if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
3831 Op1KnownZero, Op1KnownOne, 0))
3832 return &I;
3833
3834 // Given the known and unknown bits, compute a range that the LHS could be
3835 // in. Compute the Min, Max and RHS values based on the known bits. For the
3836 // EQ and NE we use unsigned values.
3837 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
3838 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
3839 if (I.isSigned()) {
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003840 computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
Sanjay Patel3151dec2016-09-12 15:24:31 +00003841 Op0Max);
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003842 computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
Sanjay Patel3151dec2016-09-12 15:24:31 +00003843 Op1Max);
3844 } else {
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003845 computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
Sanjay Patel3151dec2016-09-12 15:24:31 +00003846 Op0Max);
Sanjay Pateld93c4c02016-09-15 18:22:25 +00003847 computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
Sanjay Patel3151dec2016-09-12 15:24:31 +00003848 Op1Max);
3849 }
3850
3851 // If Min and Max are known to be the same, then SimplifyDemandedBits
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003852 // figured out that the LHS is a constant. Constant fold this now, so that
3853 // code below can assume that Min != Max.
Sanjay Patel3151dec2016-09-12 15:24:31 +00003854 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003855 return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
Sanjay Patel3151dec2016-09-12 15:24:31 +00003856 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003857 return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
Sanjay Patel3151dec2016-09-12 15:24:31 +00003858
3859 // Based on the range information we know about the LHS, see if we can
3860 // simplify this comparison. For example, (x&4) < 8 is always true.
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003861 switch (Pred) {
Sanjay Patel3151dec2016-09-12 15:24:31 +00003862 default:
3863 llvm_unreachable("Unknown icmp opcode!");
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003864 case ICmpInst::ICMP_EQ:
Sanjay Patel3151dec2016-09-12 15:24:31 +00003865 case ICmpInst::ICMP_NE: {
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003866 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
3867 return Pred == CmpInst::ICMP_EQ
3868 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
3869 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3870 }
Sanjay Patel3151dec2016-09-12 15:24:31 +00003871
Sanjay Patel0531f0a2016-09-12 15:52:28 +00003872 // If all bits are known zero except for one, then we know at most one bit
3873 // is set. If the comparison is against zero, then this is a check to see if
3874 // *that* bit is set.
Sanjay Patel3151dec2016-09-12 15:24:31 +00003875 APInt Op0KnownZeroInverted = ~Op0KnownZero;
3876 if (~Op1KnownZero == 0) {
3877 // If the LHS is an AND with the same constant, look through it.
3878 Value *LHS = nullptr;
Sanjay Patel7577a3d2016-09-15 14:15:47 +00003879 const APInt *LHSC;
3880 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
3881 *LHSC != Op0KnownZeroInverted)
Sanjay Patel3151dec2016-09-12 15:24:31 +00003882 LHS = Op0;
3883
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003884 Value *X;
Sanjay Patel3151dec2016-09-12 15:24:31 +00003885 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3886 APInt ValToCheck = Op0KnownZeroInverted;
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003887 Type *XTy = X->getType();
Sanjay Patel3151dec2016-09-12 15:24:31 +00003888 if (ValToCheck.isPowerOf2()) {
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003889 // ((1 << X) & 8) == 0 -> X != 3
3890 // ((1 << X) & 8) != 0 -> X == 3
3891 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
3892 auto NewPred = ICmpInst::getInversePredicate(Pred);
3893 return new ICmpInst(NewPred, X, CmpC);
Sanjay Patel3151dec2016-09-12 15:24:31 +00003894 } else if ((++ValToCheck).isPowerOf2()) {
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003895 // ((1 << X) & 7) == 0 -> X >= 3
3896 // ((1 << X) & 7) != 0 -> X < 3
3897 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
3898 auto NewPred =
3899 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
3900 return new ICmpInst(NewPred, X, CmpC);
Sanjay Patel3151dec2016-09-12 15:24:31 +00003901 }
3902 }
3903
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003904 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
Sanjay Patel3151dec2016-09-12 15:24:31 +00003905 const APInt *CI;
3906 if (Op0KnownZeroInverted == 1 &&
Sanjay Patel9efb1bd2016-09-14 23:38:56 +00003907 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
3908 // ((8 >>u X) & 1) == 0 -> X != 3
3909 // ((8 >>u X) & 1) != 0 -> X == 3
3910 unsigned CmpVal = CI->countTrailingZeros();
3911 auto NewPred = ICmpInst::getInversePredicate(Pred);
3912 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
3913 }
Sanjay Patel3151dec2016-09-12 15:24:31 +00003914 }
3915 break;
3916 }
3917 case ICmpInst::ICMP_ULT: {
3918 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
3919 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3920 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
3921 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3922 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
3923 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3924
3925 const APInt *CmpC;
3926 if (match(Op1, m_APInt(CmpC))) {
3927 // A <u C -> A == C-1 if min(A)+1 == C
3928 if (Op1Max == Op0Min + 1) {
3929 Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
3930 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
3931 }
3932 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
3933 if (CmpC->isMinSignedValue()) {
3934 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
3935 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
3936 }
3937 }
3938 break;
3939 }
3940 case ICmpInst::ICMP_UGT: {
3941 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
3942 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3943
3944 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
3945 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3946
3947 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
3948 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3949
3950 const APInt *CmpC;
3951 if (match(Op1, m_APInt(CmpC))) {
3952 // A >u C -> A == C+1 if max(a)-1 == C
3953 if (*CmpC == Op0Max - 1)
3954 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3955 ConstantInt::get(Op1->getType(), *CmpC + 1));
3956
3957 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
3958 if (CmpC->isMaxSignedValue())
3959 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3960 Constant::getNullValue(Op0->getType()));
3961 }
3962 break;
3963 }
3964 case ICmpInst::ICMP_SLT:
3965 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
3966 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3967 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
3968 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3969 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
3970 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3971 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3972 if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
3973 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3974 Builder->getInt(CI->getValue() - 1));
3975 }
3976 break;
3977 case ICmpInst::ICMP_SGT:
3978 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
3979 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3980 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
3981 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3982
3983 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
3984 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3985 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3986 if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
3987 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3988 Builder->getInt(CI->getValue() + 1));
3989 }
3990 break;
3991 case ICmpInst::ICMP_SGE:
3992 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3993 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
3994 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3995 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
3996 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3997 break;
3998 case ICmpInst::ICMP_SLE:
3999 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
4000 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
4001 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4002 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
4003 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4004 break;
4005 case ICmpInst::ICMP_UGE:
4006 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
4007 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
4008 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4009 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
4010 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4011 break;
4012 case ICmpInst::ICMP_ULE:
4013 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
4014 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
4015 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4016 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
4017 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4018 break;
4019 }
4020
4021 // Turn a signed comparison into an unsigned one if both operands are known to
4022 // have the same sign.
4023 if (I.isSigned() &&
4024 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
4025 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
4026 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
4027
4028 return nullptr;
4029}
4030
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004031/// If we have an icmp le or icmp ge instruction with a constant operand, turn
4032/// it into the appropriate icmp lt or icmp gt instruction. This transform
4033/// allows them to be folded in visitICmpInst.
Sanjay Patele9b2c322016-05-17 00:57:57 +00004034static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
4035 ICmpInst::Predicate Pred = I.getPredicate();
4036 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
4037 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
4038 return nullptr;
4039
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004040 Value *Op0 = I.getOperand(0);
4041 Value *Op1 = I.getOperand(1);
Sanjay Patele9b2c322016-05-17 00:57:57 +00004042 auto *Op1C = dyn_cast<Constant>(Op1);
4043 if (!Op1C)
4044 return nullptr;
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004045
Sanjay Patele9b2c322016-05-17 00:57:57 +00004046 // Check if the constant operand can be safely incremented/decremented without
4047 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
4048 // the edge cases for us, so we just assert on them. For vectors, we must
4049 // handle the edge cases.
4050 Type *Op1Type = Op1->getType();
4051 bool IsSigned = I.isSigned();
4052 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
Sanjay Patel18254932016-05-17 01:12:31 +00004053 auto *CI = dyn_cast<ConstantInt>(Op1C);
4054 if (CI) {
Sanjay Patele9b2c322016-05-17 00:57:57 +00004055 // A <= MAX -> TRUE ; A >= MIN -> TRUE
4056 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
4057 } else if (Op1Type->isVectorTy()) {
Sanjay Patelb79ab272016-05-13 15:10:46 +00004058 // TODO? If the edge cases for vectors were guaranteed to be handled as they
Sanjay Patele9b2c322016-05-17 00:57:57 +00004059 // are for scalar, we could remove the min/max checks. However, to do that,
4060 // we would have to use insertelement/shufflevector to replace edge values.
4061 unsigned NumElts = Op1Type->getVectorNumElements();
4062 for (unsigned i = 0; i != NumElts; ++i) {
4063 Constant *Elt = Op1C->getAggregateElement(i);
Benjamin Kramerca9a0fe2016-05-17 12:08:55 +00004064 if (!Elt)
4065 return nullptr;
4066
Sanjay Patele9b2c322016-05-17 00:57:57 +00004067 if (isa<UndefValue>(Elt))
4068 continue;
Sanjay Patel06b127a2016-09-15 14:37:50 +00004069
Sanjay Patele9b2c322016-05-17 00:57:57 +00004070 // Bail out if we can't determine if this constant is min/max or if we
4071 // know that this constant is min/max.
4072 auto *CI = dyn_cast<ConstantInt>(Elt);
4073 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
4074 return nullptr;
Sanjay Patelb79ab272016-05-13 15:10:46 +00004075 }
Sanjay Patele9b2c322016-05-17 00:57:57 +00004076 } else {
4077 // ConstantExpr?
4078 return nullptr;
Sanjay Patelb79ab272016-05-13 15:10:46 +00004079 }
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004080
Sanjay Patele9b2c322016-05-17 00:57:57 +00004081 // Increment or decrement the constant and set the new comparison predicate:
4082 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
Sanjay Patel22b01fe2016-05-17 20:20:40 +00004083 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
Sanjay Patele9b2c322016-05-17 00:57:57 +00004084 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
4085 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
4086 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004087}
4088
Chris Lattner2188e402010-01-04 07:37:31 +00004089Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4090 bool Changed = false;
Chris Lattner9306ffa2010-02-01 19:54:45 +00004091 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Quentin Colombet5ab55552013-09-09 20:56:48 +00004092 unsigned Op0Cplxity = getComplexity(Op0);
4093 unsigned Op1Cplxity = getComplexity(Op1);
Jim Grosbach129c52a2011-09-30 18:09:53 +00004094
Chris Lattner2188e402010-01-04 07:37:31 +00004095 /// Orders the operands of the compare so that they are listed from most
4096 /// complex to least complex. This puts constants before unary operators,
4097 /// before binary operators.
Quentin Colombet5ab55552013-09-09 20:56:48 +00004098 if (Op0Cplxity < Op1Cplxity ||
Sanjay Patel4c204232016-06-04 20:39:22 +00004099 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
Chris Lattner2188e402010-01-04 07:37:31 +00004100 I.swapOperands();
Chris Lattner9306ffa2010-02-01 19:54:45 +00004101 std::swap(Op0, Op1);
Chris Lattner2188e402010-01-04 07:37:31 +00004102 Changed = true;
4103 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004104
Jingyue Wu5e34ce32015-06-25 20:14:47 +00004105 if (Value *V =
Justin Bogner99798402016-08-05 01:06:44 +00004106 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
Sanjay Patel4b198802016-02-01 22:23:39 +00004107 return replaceInstUsesWith(I, V);
Jim Grosbach129c52a2011-09-30 18:09:53 +00004108
Pete Cooperbc5c5242011-12-01 03:58:40 +00004109 // comparing -val or val with non-zero is the same as just comparing val
Pete Cooperfdddc272011-12-01 19:13:26 +00004110 // ie, abs(val) != 0 -> val != 0
Sanjay Patel4c204232016-06-04 20:39:22 +00004111 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
Pete Cooperfdddc272011-12-01 19:13:26 +00004112 Value *Cond, *SelectTrue, *SelectFalse;
4113 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
Pete Cooperbc5c5242011-12-01 03:58:40 +00004114 m_Value(SelectFalse)))) {
Pete Cooperfdddc272011-12-01 19:13:26 +00004115 if (Value *V = dyn_castNegVal(SelectTrue)) {
4116 if (V == SelectFalse)
4117 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
4118 }
4119 else if (Value *V = dyn_castNegVal(SelectFalse)) {
4120 if (V == SelectTrue)
4121 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
Pete Cooperbc5c5242011-12-01 03:58:40 +00004122 }
4123 }
4124 }
4125
Chris Lattner229907c2011-07-18 04:54:35 +00004126 Type *Ty = Op0->getType();
Chris Lattner2188e402010-01-04 07:37:31 +00004127
4128 // icmp's with boolean values can always be turned into bitwise operations
Sanjay Patela6fbc822016-06-05 17:49:45 +00004129 if (Ty->getScalarType()->isIntegerTy(1)) {
Chris Lattner2188e402010-01-04 07:37:31 +00004130 switch (I.getPredicate()) {
4131 default: llvm_unreachable("Invalid icmp instruction!");
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004132 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
4133 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
Chris Lattner2188e402010-01-04 07:37:31 +00004134 return BinaryOperator::CreateNot(Xor);
4135 }
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004136 case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B
Chris Lattner2188e402010-01-04 07:37:31 +00004137 return BinaryOperator::CreateXor(Op0, Op1);
4138
4139 case ICmpInst::ICMP_UGT:
4140 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004141 LLVM_FALLTHROUGH;
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004142 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
4143 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
Chris Lattner2188e402010-01-04 07:37:31 +00004144 return BinaryOperator::CreateAnd(Not, Op1);
4145 }
4146 case ICmpInst::ICMP_SGT:
4147 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004148 LLVM_FALLTHROUGH;
Chris Lattner2188e402010-01-04 07:37:31 +00004149 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004150 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
Chris Lattner2188e402010-01-04 07:37:31 +00004151 return BinaryOperator::CreateAnd(Not, Op0);
4152 }
4153 case ICmpInst::ICMP_UGE:
4154 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004155 LLVM_FALLTHROUGH;
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004156 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
4157 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
Chris Lattner2188e402010-01-04 07:37:31 +00004158 return BinaryOperator::CreateOr(Not, Op1);
4159 }
4160 case ICmpInst::ICMP_SGE:
4161 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004162 LLVM_FALLTHROUGH;
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004163 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
4164 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
Chris Lattner2188e402010-01-04 07:37:31 +00004165 return BinaryOperator::CreateOr(Not, Op0);
4166 }
4167 }
4168 }
4169
Sanjay Patele9b2c322016-05-17 00:57:57 +00004170 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
Sanjay Pateld5b0e542016-04-29 16:22:25 +00004171 return NewICmp;
4172
Sanjay Patel06b127a2016-09-15 14:37:50 +00004173 if (Instruction *Res = foldICmpWithConstant(I))
4174 return Res;
Chris Lattner2188e402010-01-04 07:37:31 +00004175
Sanjay Patel3151dec2016-09-12 15:24:31 +00004176 if (Instruction *Res = foldICmpUsingKnownBits(I))
4177 return Res;
Chris Lattner2188e402010-01-04 07:37:31 +00004178
4179 // Test if the ICmpInst instruction is used exclusively by a select as
4180 // part of a minimum or maximum operation. If so, refrain from doing
4181 // any other folding. This helps out other analyses which understand
4182 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4183 // and CodeGen. And in this case, at least one of the comparison
4184 // operands has at least one user besides the compare (the select),
4185 // which would often largely negate the benefit of folding anyway.
4186 if (I.hasOneUse())
Chandler Carruthcdf47882014-03-09 03:16:01 +00004187 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
Chris Lattner2188e402010-01-04 07:37:31 +00004188 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4189 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
Craig Topperf40110f2014-04-25 05:29:35 +00004190 return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00004191
Sanjay Patelf58f68c2016-09-10 15:03:44 +00004192 if (Instruction *Res = foldICmpInstWithConstant(I))
Sanjay Patel1271bf92016-07-23 13:06:49 +00004193 return Res;
4194
Sanjay Patel10494b22016-09-16 16:10:22 +00004195 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
4196 return Res;
Chris Lattner2188e402010-01-04 07:37:31 +00004197
4198 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4199 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
Sanjay Patel43395062016-07-21 18:07:40 +00004200 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner2188e402010-01-04 07:37:31 +00004201 return NI;
4202 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
Sanjay Patel43395062016-07-21 18:07:40 +00004203 if (Instruction *NI = foldGEPICmp(GEP, Op0,
Chris Lattner2188e402010-01-04 07:37:31 +00004204 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4205 return NI;
4206
Hans Wennborgf1f36512015-10-07 00:20:07 +00004207 // Try to optimize equality comparisons against alloca-based pointers.
4208 if (Op0->getType()->isPointerTy() && I.isEquality()) {
4209 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
4210 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
Sanjay Patel43395062016-07-21 18:07:40 +00004211 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
Hans Wennborgf1f36512015-10-07 00:20:07 +00004212 return New;
4213 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
Sanjay Patel43395062016-07-21 18:07:40 +00004214 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
Hans Wennborgf1f36512015-10-07 00:20:07 +00004215 return New;
4216 }
4217
Chris Lattner2188e402010-01-04 07:37:31 +00004218 // Test to see if the operands of the icmp are casted versions of other
4219 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
4220 // now.
4221 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Jim Grosbach129c52a2011-09-30 18:09:53 +00004222 if (Op0->getType()->isPointerTy() &&
4223 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner2188e402010-01-04 07:37:31 +00004224 // We keep moving the cast from the left operand over to the right
4225 // operand, where it can often be eliminated completely.
4226 Op0 = CI->getOperand(0);
4227
4228 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
4229 // so eliminate it as well.
4230 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
4231 Op1 = CI2->getOperand(0);
4232
4233 // If Op1 is a constant, we can fold the cast into the constant.
4234 if (Op0->getType() != Op1->getType()) {
4235 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
4236 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
4237 } else {
4238 // Otherwise, cast the RHS right before the icmp
4239 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
4240 }
4241 }
4242 return new ICmpInst(I.getPredicate(), Op0, Op1);
4243 }
4244 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004245
Chris Lattner2188e402010-01-04 07:37:31 +00004246 if (isa<CastInst>(Op0)) {
4247 // Handle the special case of: icmp (cast bool to X), <cst>
4248 // This comes up when you have code like
4249 // int X = A < B;
4250 // if (X) ...
4251 // For generality, we handle any zero-extension of any operand comparison
4252 // with a constant or another cast from the same type.
4253 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
Sanjay Patel43395062016-07-21 18:07:40 +00004254 if (Instruction *R = foldICmpWithCastAndCast(I))
Chris Lattner2188e402010-01-04 07:37:31 +00004255 return R;
4256 }
Chris Lattner2188e402010-01-04 07:37:31 +00004257
Sanjay Patel10494b22016-09-16 16:10:22 +00004258 if (Instruction *Res = foldICmpBinOp(I))
4259 return Res;
Duncan Sandse5220012011-02-17 07:46:37 +00004260
Sanjay Patel10494b22016-09-16 16:10:22 +00004261 {
4262 Value *A, *B;
David Majnemer1a08acc2013-04-12 17:25:07 +00004263 // Transform (A & ~B) == 0 --> (A & B) != 0
4264 // and (A & ~B) != 0 --> (A & B) == 0
4265 // if A is a power of 2.
4266 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
Chandler Carruth66b31302015-01-04 12:03:27 +00004267 match(Op1, m_Zero()) &&
Justin Bogner99798402016-08-05 01:06:44 +00004268 isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
David Majnemer1a08acc2013-04-12 17:25:07 +00004269 return new ICmpInst(I.getInversePredicate(),
4270 Builder->CreateAnd(A, B),
4271 Op1);
4272
Chris Lattnerf3c4eef2011-01-15 05:41:33 +00004273 // ~x < ~y --> y < x
4274 // ~x < cst --> ~cst < x
4275 if (match(Op0, m_Not(m_Value(A)))) {
4276 if (match(Op1, m_Not(m_Value(B))))
4277 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner497459d2011-01-15 05:42:47 +00004278 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerf3c4eef2011-01-15 05:41:33 +00004279 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
4280 }
Chris Lattner5e0c0c72010-12-19 19:37:52 +00004281
Sanjoy Dasb6c59142015-04-10 21:07:09 +00004282 Instruction *AddI = nullptr;
4283 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
4284 m_Instruction(AddI))) &&
4285 isa<IntegerType>(A->getType())) {
4286 Value *Result;
4287 Constant *Overflow;
4288 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
4289 Overflow)) {
Sanjay Patel4b198802016-02-01 22:23:39 +00004290 replaceInstUsesWith(*AddI, Result);
4291 return replaceInstUsesWith(I, Overflow);
Sanjoy Dasb6c59142015-04-10 21:07:09 +00004292 }
4293 }
Serge Pavlov4bb54d52014-04-13 18:23:41 +00004294
4295 // (zext a) * (zext b) --> llvm.umul.with.overflow.
4296 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
Sanjay Pateld93c4c02016-09-15 18:22:25 +00004297 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
Serge Pavlov4bb54d52014-04-13 18:23:41 +00004298 return R;
4299 }
4300 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
Sanjay Pateld93c4c02016-09-15 18:22:25 +00004301 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
Serge Pavlov4bb54d52014-04-13 18:23:41 +00004302 return R;
4303 }
Chris Lattner2188e402010-01-04 07:37:31 +00004304 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004305
Sanjay Patel10494b22016-09-16 16:10:22 +00004306 if (Instruction *Res = foldICmpEquality(I))
4307 return Res;
Jim Grosbach129c52a2011-09-30 18:09:53 +00004308
David Majnemerc1eca5a2014-11-06 23:23:30 +00004309 // The 'cmpxchg' instruction returns an aggregate containing the old value and
4310 // an i1 which indicates whether or not we successfully did the swap.
4311 //
4312 // Replace comparisons between the old value and the expected value with the
4313 // indicator that 'cmpxchg' returns.
4314 //
4315 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
4316 // spuriously fail. In those cases, the old value may equal the expected
4317 // value but it is possible for the swap to not occur.
4318 if (I.getPredicate() == ICmpInst::ICMP_EQ)
4319 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
4320 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
4321 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
4322 !ACXI->isWeak())
4323 return ExtractValueInst::Create(ACXI, 1);
4324
Chris Lattner2188e402010-01-04 07:37:31 +00004325 {
4326 Value *X; ConstantInt *Cst;
4327 // icmp X+Cst, X
4328 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
Sanjay Patel43395062016-07-21 18:07:40 +00004329 return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
Chris Lattner2188e402010-01-04 07:37:31 +00004330
4331 // icmp X, X+Cst
4332 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
Sanjay Patel43395062016-07-21 18:07:40 +00004333 return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
Chris Lattner2188e402010-01-04 07:37:31 +00004334 }
Craig Topperf40110f2014-04-25 05:29:35 +00004335 return Changed ? &I : nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00004336}
4337
Sanjay Patel5f0217f2016-06-05 16:46:18 +00004338/// Fold fcmp ([us]itofp x, cst) if possible.
Sanjay Patel43395062016-07-21 18:07:40 +00004339Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
Chris Lattner2188e402010-01-04 07:37:31 +00004340 Constant *RHSC) {
Craig Topperf40110f2014-04-25 05:29:35 +00004341 if (!isa<ConstantFP>(RHSC)) return nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00004342 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
Jim Grosbach129c52a2011-09-30 18:09:53 +00004343
Chris Lattner2188e402010-01-04 07:37:31 +00004344 // Get the width of the mantissa. We don't want to hack on conversions that
4345 // might lose information from the integer, e.g. "i64 -> float"
4346 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
Craig Topperf40110f2014-04-25 05:29:35 +00004347 if (MantissaWidth == -1) return nullptr; // Unknown.
Jim Grosbach129c52a2011-09-30 18:09:53 +00004348
Matt Arsenault55e73122015-01-06 15:50:59 +00004349 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
4350
Chris Lattner2188e402010-01-04 07:37:31 +00004351 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
Jim Grosbach129c52a2011-09-30 18:09:53 +00004352
Matt Arsenault55e73122015-01-06 15:50:59 +00004353 if (I.isEquality()) {
4354 FCmpInst::Predicate P = I.getPredicate();
4355 bool IsExact = false;
4356 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
4357 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
4358
4359 // If the floating point constant isn't an integer value, we know if we will
4360 // ever compare equal / not equal to it.
4361 if (!IsExact) {
4362 // TODO: Can never be -0.0 and other non-representable values
4363 APFloat RHSRoundInt(RHS);
4364 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
4365 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
4366 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
Sanjay Patel4b198802016-02-01 22:23:39 +00004367 return replaceInstUsesWith(I, Builder->getFalse());
Matt Arsenault55e73122015-01-06 15:50:59 +00004368
4369 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
Sanjay Patel4b198802016-02-01 22:23:39 +00004370 return replaceInstUsesWith(I, Builder->getTrue());
Matt Arsenault55e73122015-01-06 15:50:59 +00004371 }
4372 }
4373
4374 // TODO: If the constant is exactly representable, is it always OK to do
4375 // equality compares as integer?
4376 }
4377
Arch D. Robison8ed08542015-09-15 17:51:59 +00004378 // Check to see that the input is converted from an integer type that is small
4379 // enough that preserves all bits. TODO: check here for "known" sign bits.
4380 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
4381 unsigned InputSize = IntTy->getScalarSizeInBits();
Matt Arsenault55e73122015-01-06 15:50:59 +00004382
Justin Bognerc7e4fbe2016-08-05 01:09:48 +00004383 // Following test does NOT adjust InputSize downwards for signed inputs,
4384 // because the most negative value still requires all the mantissa bits
Arch D. Robison8ed08542015-09-15 17:51:59 +00004385 // to distinguish it from one less than that value.
4386 if ((int)InputSize > MantissaWidth) {
4387 // Conversion would lose accuracy. Check if loss can impact comparison.
4388 int Exp = ilogb(RHS);
4389 if (Exp == APFloat::IEK_Inf) {
4390 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
Justin Bognerc7e4fbe2016-08-05 01:09:48 +00004391 if (MaxExponent < (int)InputSize - !LHSUnsigned)
Arch D. Robison8ed08542015-09-15 17:51:59 +00004392 // Conversion could create infinity.
4393 return nullptr;
4394 } else {
Justin Bognerc7e4fbe2016-08-05 01:09:48 +00004395 // Note that if RHS is zero or NaN, then Exp is negative
Arch D. Robison8ed08542015-09-15 17:51:59 +00004396 // and first condition is trivially false.
Justin Bognerc7e4fbe2016-08-05 01:09:48 +00004397 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
Arch D. Robison8ed08542015-09-15 17:51:59 +00004398 // Conversion could affect comparison.
4399 return nullptr;
4400 }
4401 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004402
Chris Lattner2188e402010-01-04 07:37:31 +00004403 // Otherwise, we can potentially simplify the comparison. We know that it
4404 // will always come through as an integer value and we know the constant is
4405 // not a NAN (it would have been previously simplified).
4406 assert(!RHS.isNaN() && "NaN comparison not already folded!");
Jim Grosbach129c52a2011-09-30 18:09:53 +00004407
Chris Lattner2188e402010-01-04 07:37:31 +00004408 ICmpInst::Predicate Pred;
4409 switch (I.getPredicate()) {
4410 default: llvm_unreachable("Unexpected predicate!");
4411 case FCmpInst::FCMP_UEQ:
4412 case FCmpInst::FCMP_OEQ:
4413 Pred = ICmpInst::ICMP_EQ;
4414 break;
4415 case FCmpInst::FCMP_UGT:
4416 case FCmpInst::FCMP_OGT:
4417 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
4418 break;
4419 case FCmpInst::FCMP_UGE:
4420 case FCmpInst::FCMP_OGE:
4421 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
4422 break;
4423 case FCmpInst::FCMP_ULT:
4424 case FCmpInst::FCMP_OLT:
4425 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
4426 break;
4427 case FCmpInst::FCMP_ULE:
4428 case FCmpInst::FCMP_OLE:
4429 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
4430 break;
4431 case FCmpInst::FCMP_UNE:
4432 case FCmpInst::FCMP_ONE:
4433 Pred = ICmpInst::ICMP_NE;
4434 break;
4435 case FCmpInst::FCMP_ORD:
Sanjay Patel4b198802016-02-01 22:23:39 +00004436 return replaceInstUsesWith(I, Builder->getTrue());
Chris Lattner2188e402010-01-04 07:37:31 +00004437 case FCmpInst::FCMP_UNO:
Sanjay Patel4b198802016-02-01 22:23:39 +00004438 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004439 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004440
Chris Lattner2188e402010-01-04 07:37:31 +00004441 // Now we know that the APFloat is a normal number, zero or inf.
Jim Grosbach129c52a2011-09-30 18:09:53 +00004442
Chris Lattner2188e402010-01-04 07:37:31 +00004443 // See if the FP constant is too large for the integer. For example,
4444 // comparing an i8 to 300.0.
4445 unsigned IntWidth = IntTy->getScalarSizeInBits();
Jim Grosbach129c52a2011-09-30 18:09:53 +00004446
Chris Lattner2188e402010-01-04 07:37:31 +00004447 if (!LHSUnsigned) {
4448 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
4449 // and large values.
Michael Gottesman79b09672013-06-27 21:58:19 +00004450 APFloat SMax(RHS.getSemantics());
Chris Lattner2188e402010-01-04 07:37:31 +00004451 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
4452 APFloat::rmNearestTiesToEven);
4453 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
4454 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
4455 Pred == ICmpInst::ICMP_SLE)
Sanjay Patel4b198802016-02-01 22:23:39 +00004456 return replaceInstUsesWith(I, Builder->getTrue());
4457 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004458 }
4459 } else {
4460 // If the RHS value is > UnsignedMax, fold the comparison. This handles
4461 // +INF and large values.
Michael Gottesman79b09672013-06-27 21:58:19 +00004462 APFloat UMax(RHS.getSemantics());
Chris Lattner2188e402010-01-04 07:37:31 +00004463 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
4464 APFloat::rmNearestTiesToEven);
4465 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
4466 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
4467 Pred == ICmpInst::ICMP_ULE)
Sanjay Patel4b198802016-02-01 22:23:39 +00004468 return replaceInstUsesWith(I, Builder->getTrue());
4469 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004470 }
4471 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004472
Chris Lattner2188e402010-01-04 07:37:31 +00004473 if (!LHSUnsigned) {
4474 // See if the RHS value is < SignedMin.
Michael Gottesman79b09672013-06-27 21:58:19 +00004475 APFloat SMin(RHS.getSemantics());
Chris Lattner2188e402010-01-04 07:37:31 +00004476 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
4477 APFloat::rmNearestTiesToEven);
4478 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
4479 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
4480 Pred == ICmpInst::ICMP_SGE)
Sanjay Patel4b198802016-02-01 22:23:39 +00004481 return replaceInstUsesWith(I, Builder->getTrue());
4482 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004483 }
Devang Patel698452b2012-02-13 23:05:18 +00004484 } else {
4485 // See if the RHS value is < UnsignedMin.
Michael Gottesman79b09672013-06-27 21:58:19 +00004486 APFloat SMin(RHS.getSemantics());
Devang Patel698452b2012-02-13 23:05:18 +00004487 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
4488 APFloat::rmNearestTiesToEven);
4489 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
4490 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
4491 Pred == ICmpInst::ICMP_UGE)
Sanjay Patel4b198802016-02-01 22:23:39 +00004492 return replaceInstUsesWith(I, Builder->getTrue());
4493 return replaceInstUsesWith(I, Builder->getFalse());
Devang Patel698452b2012-02-13 23:05:18 +00004494 }
Chris Lattner2188e402010-01-04 07:37:31 +00004495 }
4496
4497 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
4498 // [0, UMAX], but it may still be fractional. See if it is fractional by
4499 // casting the FP value to the integer value and back, checking for equality.
4500 // Don't do this for zero, because -0.0 is not fractional.
4501 Constant *RHSInt = LHSUnsigned
4502 ? ConstantExpr::getFPToUI(RHSC, IntTy)
4503 : ConstantExpr::getFPToSI(RHSC, IntTy);
4504 if (!RHS.isZero()) {
4505 bool Equal = LHSUnsigned
4506 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4507 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4508 if (!Equal) {
4509 // If we had a comparison against a fractional value, we have to adjust
4510 // the compare predicate and sometimes the value. RHSC is rounded towards
4511 // zero at this point.
4512 switch (Pred) {
4513 default: llvm_unreachable("Unexpected integer comparison!");
4514 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
Sanjay Patel4b198802016-02-01 22:23:39 +00004515 return replaceInstUsesWith(I, Builder->getTrue());
Chris Lattner2188e402010-01-04 07:37:31 +00004516 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
Sanjay Patel4b198802016-02-01 22:23:39 +00004517 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004518 case ICmpInst::ICMP_ULE:
4519 // (float)int <= 4.4 --> int <= 4
4520 // (float)int <= -4.4 --> false
4521 if (RHS.isNegative())
Sanjay Patel4b198802016-02-01 22:23:39 +00004522 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004523 break;
4524 case ICmpInst::ICMP_SLE:
4525 // (float)int <= 4.4 --> int <= 4
4526 // (float)int <= -4.4 --> int < -4
4527 if (RHS.isNegative())
4528 Pred = ICmpInst::ICMP_SLT;
4529 break;
4530 case ICmpInst::ICMP_ULT:
4531 // (float)int < -4.4 --> false
4532 // (float)int < 4.4 --> int <= 4
4533 if (RHS.isNegative())
Sanjay Patel4b198802016-02-01 22:23:39 +00004534 return replaceInstUsesWith(I, Builder->getFalse());
Chris Lattner2188e402010-01-04 07:37:31 +00004535 Pred = ICmpInst::ICMP_ULE;
4536 break;
4537 case ICmpInst::ICMP_SLT:
4538 // (float)int < -4.4 --> int < -4
4539 // (float)int < 4.4 --> int <= 4
4540 if (!RHS.isNegative())
4541 Pred = ICmpInst::ICMP_SLE;
4542 break;
4543 case ICmpInst::ICMP_UGT:
4544 // (float)int > 4.4 --> int > 4
4545 // (float)int > -4.4 --> true
4546 if (RHS.isNegative())
Sanjay Patel4b198802016-02-01 22:23:39 +00004547 return replaceInstUsesWith(I, Builder->getTrue());
Chris Lattner2188e402010-01-04 07:37:31 +00004548 break;
4549 case ICmpInst::ICMP_SGT:
4550 // (float)int > 4.4 --> int > 4
4551 // (float)int > -4.4 --> int >= -4
4552 if (RHS.isNegative())
4553 Pred = ICmpInst::ICMP_SGE;
4554 break;
4555 case ICmpInst::ICMP_UGE:
4556 // (float)int >= -4.4 --> true
4557 // (float)int >= 4.4 --> int > 4
Bob Wilson61f3ad52012-08-07 22:35:16 +00004558 if (RHS.isNegative())
Sanjay Patel4b198802016-02-01 22:23:39 +00004559 return replaceInstUsesWith(I, Builder->getTrue());
Chris Lattner2188e402010-01-04 07:37:31 +00004560 Pred = ICmpInst::ICMP_UGT;
4561 break;
4562 case ICmpInst::ICMP_SGE:
4563 // (float)int >= -4.4 --> int >= -4
4564 // (float)int >= 4.4 --> int > 4
4565 if (!RHS.isNegative())
4566 Pred = ICmpInst::ICMP_SGT;
4567 break;
4568 }
4569 }
4570 }
4571
4572 // Lower this FP comparison into an appropriate integer version of the
4573 // comparison.
4574 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4575}
4576
4577Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4578 bool Changed = false;
Jim Grosbach129c52a2011-09-30 18:09:53 +00004579
Chris Lattner2188e402010-01-04 07:37:31 +00004580 /// Orders the operands of the compare so that they are listed from most
4581 /// complex to least complex. This puts constants before unary operators,
4582 /// before binary operators.
4583 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4584 I.swapOperands();
4585 Changed = true;
4586 }
4587
4588 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Jim Grosbach129c52a2011-09-30 18:09:53 +00004589
Benjamin Kramerf4ebfa32015-07-10 14:02:02 +00004590 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
Justin Bogner99798402016-08-05 01:06:44 +00004591 I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
Sanjay Patel4b198802016-02-01 22:23:39 +00004592 return replaceInstUsesWith(I, V);
Chris Lattner2188e402010-01-04 07:37:31 +00004593
4594 // Simplify 'fcmp pred X, X'
4595 if (Op0 == Op1) {
4596 switch (I.getPredicate()) {
4597 default: llvm_unreachable("Unknown predicate!");
4598 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
4599 case FCmpInst::FCMP_ULT: // True if unordered or less than
4600 case FCmpInst::FCMP_UGT: // True if unordered or greater than
4601 case FCmpInst::FCMP_UNE: // True if unordered or not equal
4602 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4603 I.setPredicate(FCmpInst::FCMP_UNO);
4604 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4605 return &I;
Jim Grosbach129c52a2011-09-30 18:09:53 +00004606
Chris Lattner2188e402010-01-04 07:37:31 +00004607 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
4608 case FCmpInst::FCMP_OEQ: // True if ordered and equal
4609 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
4610 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
4611 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4612 I.setPredicate(FCmpInst::FCMP_ORD);
4613 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4614 return &I;
4615 }
4616 }
Jim Grosbach129c52a2011-09-30 18:09:53 +00004617
James Molloy2b21a7c2015-05-20 18:41:25 +00004618 // Test if the FCmpInst instruction is used exclusively by a select as
4619 // part of a minimum or maximum operation. If so, refrain from doing
4620 // any other folding. This helps out other analyses which understand
4621 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4622 // and CodeGen. And in this case, at least one of the comparison
4623 // operands has at least one user besides the compare (the select),
4624 // which would often largely negate the benefit of folding anyway.
4625 if (I.hasOneUse())
4626 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4627 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4628 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4629 return nullptr;
4630
Chris Lattner2188e402010-01-04 07:37:31 +00004631 // Handle fcmp with constant RHS
4632 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4633 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4634 switch (LHSI->getOpcode()) {
Benjamin Kramercbb18e92011-03-31 10:12:07 +00004635 case Instruction::FPExt: {
4636 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4637 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4638 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4639 if (!RHSF)
4640 break;
4641
4642 const fltSemantics *Sem;
4643 // FIXME: This shouldn't be here.
Dan Gohman518cda42011-12-17 00:04:22 +00004644 if (LHSExt->getSrcTy()->isHalfTy())
4645 Sem = &APFloat::IEEEhalf;
4646 else if (LHSExt->getSrcTy()->isFloatTy())
Benjamin Kramercbb18e92011-03-31 10:12:07 +00004647 Sem = &APFloat::IEEEsingle;
4648 else if (LHSExt->getSrcTy()->isDoubleTy())
4649 Sem = &APFloat::IEEEdouble;
4650 else if (LHSExt->getSrcTy()->isFP128Ty())
4651 Sem = &APFloat::IEEEquad;
4652 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4653 Sem = &APFloat::x87DoubleExtended;
Ulrich Weigand6a9bb512012-10-30 12:33:18 +00004654 else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4655 Sem = &APFloat::PPCDoubleDouble;
Benjamin Kramercbb18e92011-03-31 10:12:07 +00004656 else
4657 break;
4658
4659 bool Lossy;
4660 APFloat F = RHSF->getValueAPF();
4661 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4662
Jim Grosbach24ff8342011-09-30 18:45:50 +00004663 // Avoid lossy conversions and denormals. Zero is a special case
4664 // that's OK to convert.
Jim Grosbach011dafb2011-09-30 19:58:46 +00004665 APFloat Fabs = F;
4666 Fabs.clearSign();
Benjamin Kramercbb18e92011-03-31 10:12:07 +00004667 if (!Lossy &&
Jim Grosbach011dafb2011-09-30 19:58:46 +00004668 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4669 APFloat::cmpLessThan) || Fabs.isZero()))
Jim Grosbach24ff8342011-09-30 18:45:50 +00004670
Benjamin Kramercbb18e92011-03-31 10:12:07 +00004671 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4672 ConstantFP::get(RHSC->getContext(), F));
4673 break;
4674 }
Chris Lattner2188e402010-01-04 07:37:31 +00004675 case Instruction::PHI:
4676 // Only fold fcmp into the PHI if the phi and fcmp are in the same
4677 // block. If in the same block, we're encouraging jump threading. If
4678 // not, we are just pessimizing the code by making an i1 phi.
4679 if (LHSI->getParent() == I.getParent())
Chris Lattnerea7131a2011-01-16 05:14:26 +00004680 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner2188e402010-01-04 07:37:31 +00004681 return NV;
4682 break;
4683 case Instruction::SIToFP:
4684 case Instruction::UIToFP:
Sanjay Patel43395062016-07-21 18:07:40 +00004685 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
Chris Lattner2188e402010-01-04 07:37:31 +00004686 return NV;
4687 break;
Benjamin Kramera8c5d082011-03-31 10:12:15 +00004688 case Instruction::FSub: {
4689 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4690 Value *Op;
4691 if (match(LHSI, m_FNeg(m_Value(Op))))
4692 return new FCmpInst(I.getSwappedPredicate(), Op,
4693 ConstantExpr::getFNeg(RHSC));
4694 break;
4695 }
Dan Gohman94732022010-02-24 06:46:09 +00004696 case Instruction::Load:
4697 if (GetElementPtrInst *GEP =
4698 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4699 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4700 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4701 !cast<LoadInst>(LHSI)->isVolatile())
Sanjay Patel43395062016-07-21 18:07:40 +00004702 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
Dan Gohman94732022010-02-24 06:46:09 +00004703 return Res;
4704 }
4705 break;
Benjamin Kramer8c2a7332012-08-18 20:06:47 +00004706 case Instruction::Call: {
Matt Arsenaultb935d9d2015-01-08 20:09:34 +00004707 if (!RHSC->isNullValue())
4708 break;
4709
Benjamin Kramer8c2a7332012-08-18 20:06:47 +00004710 CallInst *CI = cast<CallInst>(LHSI);
Justin Bogner99798402016-08-05 01:06:44 +00004711 Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
David Majnemer2e02ba72016-04-15 17:21:03 +00004712 if (IID != Intrinsic::fabs)
Matt Arsenaultb935d9d2015-01-08 20:09:34 +00004713 break;
4714
Benjamin Kramer8c2a7332012-08-18 20:06:47 +00004715 // Various optimization for fabs compared with zero.
David Majnemer2e02ba72016-04-15 17:21:03 +00004716 switch (I.getPredicate()) {
4717 default:
4718 break;
4719 // fabs(x) < 0 --> false
4720 case FCmpInst::FCMP_OLT:
4721 llvm_unreachable("handled by SimplifyFCmpInst");
4722 // fabs(x) > 0 --> x != 0
4723 case FCmpInst::FCMP_OGT:
4724 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4725 // fabs(x) <= 0 --> x == 0
4726 case FCmpInst::FCMP_OLE:
4727 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4728 // fabs(x) >= 0 --> !isnan(x)
4729 case FCmpInst::FCMP_OGE:
4730 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4731 // fabs(x) == 0 --> x == 0
4732 // fabs(x) != 0 --> x != 0
4733 case FCmpInst::FCMP_OEQ:
4734 case FCmpInst::FCMP_UEQ:
4735 case FCmpInst::FCMP_ONE:
4736 case FCmpInst::FCMP_UNE:
4737 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
Benjamin Kramer8c2a7332012-08-18 20:06:47 +00004738 }
4739 }
Chris Lattner2188e402010-01-04 07:37:31 +00004740 }
Chris Lattner2188e402010-01-04 07:37:31 +00004741 }
4742
Benjamin Kramerbe209ab2011-03-31 10:46:03 +00004743 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Benjamin Kramerd159d942011-03-31 10:12:22 +00004744 Value *X, *Y;
4745 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
Benjamin Kramerbe209ab2011-03-31 10:46:03 +00004746 return new FCmpInst(I.getSwappedPredicate(), X, Y);
Benjamin Kramerd159d942011-03-31 10:12:22 +00004747
Benjamin Kramer2ccfbc82011-03-31 10:11:58 +00004748 // fcmp (fpext x), (fpext y) -> fcmp x, y
4749 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4750 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4751 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4752 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4753 RHSExt->getOperand(0));
4754
Craig Topperf40110f2014-04-25 05:29:35 +00004755 return Changed ? &I : nullptr;
Chris Lattner2188e402010-01-04 07:37:31 +00004756}