blob: def49dfbe5cacc1ecaa2c7ba3c44f1101524be53 [file] [log] [blame]
Alexey Bataev7cf32472015-12-04 10:53:15 +00001//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass that performs some optimizations with LEA
11// instructions in order to improve code size.
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +000012// Currently, it does two things:
13// 1) If there are two LEA instructions calculating addresses which only differ
14// by displacement inside a basic block, one of them is removed.
15// 2) Address calculations in load and store instructions are replaced by
Alexey Bataev7cf32472015-12-04 10:53:15 +000016// existing LEA def registers where possible.
17//
18//===----------------------------------------------------------------------===//
19
20#include "X86.h"
21#include "X86InstrInfo.h"
22#include "X86Subtarget.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetInstrInfo.h"
33
34using namespace llvm;
35
36#define DEBUG_TYPE "x86-optimize-LEAs"
37
Hans Wennborg75fab7b2016-02-11 16:44:06 +000038static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden,
39 cl::desc("X86: Enable LEA optimizations."),
40 cl::init(false));
Alexey Bataev7b72b652015-12-17 07:34:39 +000041
Alexey Bataev7cf32472015-12-04 10:53:15 +000042STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +000043STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
Alexey Bataev7cf32472015-12-04 10:53:15 +000044
Andrey Turetskiybca0f992016-02-04 08:57:03 +000045class MemOpKey;
46
47/// \brief Returns a hash table key based on memory operands of \p MI. The
48/// number of the first memory operand of \p MI is specified through \p N.
49static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N);
50
51/// \brief Returns true if two machine operands are identical and they are not
52/// physical registers.
53static inline bool isIdenticalOp(const MachineOperand &MO1,
54 const MachineOperand &MO2);
55
56/// \brief Returns true if the instruction is LEA.
57static inline bool isLEA(const MachineInstr &MI);
58
59/// A key based on instruction's memory operands.
60class MemOpKey {
61public:
62 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
63 const MachineOperand *Index, const MachineOperand *Segment,
64 const MachineOperand *Disp)
65 : Disp(Disp) {
66 Operands[0] = Base;
67 Operands[1] = Scale;
68 Operands[2] = Index;
69 Operands[3] = Segment;
70 }
71
72 bool operator==(const MemOpKey &Other) const {
73 // Addresses' bases, scales, indices and segments must be identical.
74 for (int i = 0; i < 4; ++i)
75 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
76 return false;
77
78 assert((Disp->isImm() || Disp->isGlobal()) &&
79 (Other.Disp->isImm() || Other.Disp->isGlobal()) &&
80 "Address displacement operand is always an immediate or a global");
81
82 // Addresses' displacements must be either immediates or the same global.
83 // Immediates' and offsets' values don't matter for the operator since the
84 // difference will be taken care of during instruction substitution.
85 if ((Disp->isImm() && Other.Disp->isImm()) ||
86 (Disp->isGlobal() && Other.Disp->isGlobal() &&
87 Disp->getGlobal() == Other.Disp->getGlobal()))
88 return true;
89
90 return false;
91 }
92
93 // Address' base, scale, index and segment operands.
94 const MachineOperand *Operands[4];
95
96 // Address' displacement operand.
97 const MachineOperand *Disp;
98};
99
100/// Provide DenseMapInfo for MemOpKey.
101namespace llvm {
102template <> struct DenseMapInfo<MemOpKey> {
103 typedef DenseMapInfo<const MachineOperand *> PtrInfo;
104
105 static inline MemOpKey getEmptyKey() {
106 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
107 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
108 PtrInfo::getEmptyKey());
109 }
110
111 static inline MemOpKey getTombstoneKey() {
112 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
113 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
114 PtrInfo::getTombstoneKey());
115 }
116
117 static unsigned getHashValue(const MemOpKey &Val) {
118 // Checking any field of MemOpKey is enough to determine if the key is
119 // empty or tombstone.
120 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
121 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
122 "Cannot hash the tombstone key");
123
124 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
125 *Val.Operands[2], *Val.Operands[3]);
126
127 // If the address displacement is an immediate, it should not affect the
128 // hash so that memory operands which differ only be immediate displacement
129 // would have the same hash. If the address displacement is a global, we
130 // should reflect this global in the hash.
131 if (Val.Disp->isGlobal())
132 Hash = hash_combine(Hash, Val.Disp->getGlobal());
133
134 return (unsigned)Hash;
135 }
136
137 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
138 // Checking any field of MemOpKey is enough to determine if the key is
139 // empty or tombstone.
140 if (RHS.Disp == PtrInfo::getEmptyKey())
141 return LHS.Disp == PtrInfo::getEmptyKey();
142 if (RHS.Disp == PtrInfo::getTombstoneKey())
143 return LHS.Disp == PtrInfo::getTombstoneKey();
144 return LHS == RHS;
145 }
146};
147}
148
149static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
150 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
151 "The instruction must be a LEA, a load or a store");
152 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
153 &MI.getOperand(N + X86::AddrScaleAmt),
154 &MI.getOperand(N + X86::AddrIndexReg),
155 &MI.getOperand(N + X86::AddrSegmentReg),
156 &MI.getOperand(N + X86::AddrDisp));
157}
158
159static inline bool isIdenticalOp(const MachineOperand &MO1,
160 const MachineOperand &MO2) {
161 return MO1.isIdenticalTo(MO2) &&
162 (!MO1.isReg() ||
163 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
164}
165
166static inline bool isLEA(const MachineInstr &MI) {
167 unsigned Opcode = MI.getOpcode();
168 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
169 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
170}
171
Alexey Bataev7cf32472015-12-04 10:53:15 +0000172namespace {
173class OptimizeLEAPass : public MachineFunctionPass {
174public:
175 OptimizeLEAPass() : MachineFunctionPass(ID) {}
176
177 const char *getPassName() const override { return "X86 LEA Optimize"; }
178
179 /// \brief Loop over all of the basic blocks, replacing address
180 /// calculations in load and store instructions, if it's already
181 /// been calculated by LEA. Also, remove redundant LEAs.
182 bool runOnMachineFunction(MachineFunction &MF) override;
183
184private:
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000185 typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap;
186
Alexey Bataev7cf32472015-12-04 10:53:15 +0000187 /// \brief Returns a distance between two instructions inside one basic block.
188 /// Negative result means, that instructions occur in reverse order.
189 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
190
191 /// \brief Choose the best \p LEA instruction from the \p List to replace
192 /// address calculation in \p MI instruction. Return the address displacement
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000193 /// and the distance between \p MI and the choosen \p BestLEA in
194 /// \p AddrDispShift and \p Dist.
Alexey Bataev7cf32472015-12-04 10:53:15 +0000195 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000196 const MachineInstr &MI, MachineInstr *&BestLEA,
Alexey Bataev7cf32472015-12-04 10:53:15 +0000197 int64_t &AddrDispShift, int &Dist);
198
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000199 /// \brief Returns the difference between addresses' displacements of \p MI1
200 /// and \p MI2. The numbers of the first memory operands for the instructions
201 /// are specified through \p N1 and \p N2.
202 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
203 const MachineInstr &MI2, unsigned N2) const;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000204
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000205 /// \brief Returns true if the \p Last LEA instruction can be replaced by the
206 /// \p First. The difference between displacements of the addresses calculated
207 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
208 /// replacement of the \p Last LEA's uses with the \p First's def register.
209 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000210 int64_t &AddrDispShift) const;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000211
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000212 /// \brief Find all LEA instructions in the basic block. Also, assign position
213 /// numbers to all instructions in the basic block to speed up calculation of
214 /// distance between them.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000215 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000216
217 /// \brief Removes redundant address calculations.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000218 bool removeRedundantAddrCalc(MemOpMap &LEAs);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000219
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000220 /// \brief Removes LEAs which calculate similar addresses.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000221 bool removeRedundantLEAs(MemOpMap &LEAs);
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000222
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000223 DenseMap<const MachineInstr *, unsigned> InstrPos;
224
Alexey Bataev7cf32472015-12-04 10:53:15 +0000225 MachineRegisterInfo *MRI;
226 const X86InstrInfo *TII;
227 const X86RegisterInfo *TRI;
228
229 static char ID;
230};
231char OptimizeLEAPass::ID = 0;
232}
233
234FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
235
236int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
237 const MachineInstr &Last) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000238 // Both instructions must be in the same basic block and they must be
239 // presented in InstrPos.
240 assert(Last.getParent() == First.getParent() &&
Alexey Bataev7cf32472015-12-04 10:53:15 +0000241 "Instructions are in different basic blocks");
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000242 assert(InstrPos.find(&First) != InstrPos.end() &&
243 InstrPos.find(&Last) != InstrPos.end() &&
244 "Instructions' positions are undefined");
Alexey Bataev7cf32472015-12-04 10:53:15 +0000245
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000246 return InstrPos[&Last] - InstrPos[&First];
Alexey Bataev7cf32472015-12-04 10:53:15 +0000247}
248
249// Find the best LEA instruction in the List to replace address recalculation in
250// MI. Such LEA must meet these requirements:
251// 1) The address calculated by the LEA differs only by the displacement from
252// the address used in MI.
253// 2) The register class of the definition of the LEA is compatible with the
254// register class of the address base register of MI.
255// 3) Displacement of the new memory operand should fit in 1 byte if possible.
256// 4) The LEA should be as close to MI as possible, and prior to it if
257// possible.
258bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000259 const MachineInstr &MI,
260 MachineInstr *&BestLEA,
Alexey Bataev7cf32472015-12-04 10:53:15 +0000261 int64_t &AddrDispShift, int &Dist) {
262 const MachineFunction *MF = MI.getParent()->getParent();
263 const MCInstrDesc &Desc = MI.getDesc();
264 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
265 X86II::getOperandBias(Desc);
266
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000267 BestLEA = nullptr;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000268
269 // Loop over all LEA instructions.
270 for (auto DefMI : List) {
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000271 // Get new address displacement.
272 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
Alexey Bataev7cf32472015-12-04 10:53:15 +0000273
274 // Make sure address displacement fits 4 bytes.
275 if (!isInt<32>(AddrDispShiftTemp))
276 continue;
277
278 // Check that LEA def register can be used as MI address base. Some
279 // instructions can use a limited set of registers as address base, for
280 // example MOV8mr_NOREX. We could constrain the register class of the LEA
281 // def to suit MI, however since this case is very rare and hard to
282 // reproduce in a test it's just more reliable to skip the LEA.
283 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
284 MRI->getRegClass(DefMI->getOperand(0).getReg()))
285 continue;
286
287 // Choose the closest LEA instruction from the list, prior to MI if
288 // possible. Note that we took into account resulting address displacement
289 // as well. Also note that the list is sorted by the order in which the LEAs
290 // occur, so the break condition is pretty simple.
291 int DistTemp = calcInstrDist(*DefMI, MI);
292 assert(DistTemp != 0 &&
293 "The distance between two different instructions cannot be zero");
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000294 if (DistTemp > 0 || BestLEA == nullptr) {
Alexey Bataev7cf32472015-12-04 10:53:15 +0000295 // Do not update return LEA, if the current one provides a displacement
296 // which fits in 1 byte, while the new candidate does not.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000297 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
Alexey Bataev7cf32472015-12-04 10:53:15 +0000298 isInt<8>(AddrDispShift))
299 continue;
300
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000301 BestLEA = DefMI;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000302 AddrDispShift = AddrDispShiftTemp;
303 Dist = DistTemp;
304 }
305
306 // FIXME: Maybe we should not always stop at the first LEA after MI.
307 if (DistTemp < 0)
308 break;
309 }
310
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000311 return BestLEA != nullptr;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000312}
313
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000314// Get the difference between the addresses' displacements of the two
315// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
316// passed through \p N1 and \p N2.
317int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
318 const MachineInstr &MI2,
319 unsigned N2) const {
320 // Address displacement operands may differ by a constant.
321 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
322 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
323 if (Op1.isImm() && Op2.isImm())
324 return Op1.getImm() - Op2.getImm();
325 else if (Op1.isGlobal() && Op2.isGlobal() &&
326 Op1.getGlobal() == Op2.getGlobal())
327 return Op1.getOffset() - Op2.getOffset();
328 else
329 llvm_unreachable("Invalid address displacement operand");
Alexey Bataev7cf32472015-12-04 10:53:15 +0000330}
331
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000332// Check that the Last LEA can be replaced by the First LEA. To be so,
333// these requirements must be met:
334// 1) Addresses calculated by LEAs differ only by displacement.
335// 2) Def registers of LEAs belong to the same class.
336// 3) All uses of the Last LEA def register are replaceable, thus the
337// register is used only as address base.
338bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
339 const MachineInstr &Last,
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000340 int64_t &AddrDispShift) const {
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000341 assert(isLEA(First) && isLEA(Last) &&
342 "The function works only with LEA instructions");
343
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000344 // Get new address displacement.
345 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000346
347 // Make sure that LEA def registers belong to the same class. There may be
348 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
349 // be used as their operands, so we must be sure that replacing one LEA
350 // with another won't lead to putting a wrong register in the instruction.
351 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
352 MRI->getRegClass(Last.getOperand(0).getReg()))
353 return false;
354
355 // Loop over all uses of the Last LEA to check that its def register is
356 // used only as address base for memory accesses. If so, it can be
357 // replaced, otherwise - no.
358 for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) {
359 MachineInstr &MI = *MO.getParent();
360
361 // Get the number of the first memory operand.
362 const MCInstrDesc &Desc = MI.getDesc();
363 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode());
364
365 // If the use instruction has no memory operand - the LEA is not
366 // replaceable.
367 if (MemOpNo < 0)
368 return false;
369
370 MemOpNo += X86II::getOperandBias(Desc);
371
372 // If the address base of the use instruction is not the LEA def register -
373 // the LEA is not replaceable.
374 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
375 return false;
376
377 // If the LEA def register is used as any other operand of the use
378 // instruction - the LEA is not replaceable.
379 for (unsigned i = 0; i < MI.getNumOperands(); i++)
380 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
381 isIdenticalOp(MI.getOperand(i), MO))
382 return false;
383
384 // Check that the new address displacement will fit 4 bytes.
385 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
386 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
387 AddrDispShift))
388 return false;
389 }
390
391 return true;
392}
393
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000394void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000395 unsigned Pos = 0;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000396 for (auto &MI : MBB) {
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000397 // Assign the position number to the instruction. Note that we are going to
398 // move some instructions during the optimization however there will never
399 // be a need to move two instructions before any selected instruction. So to
400 // avoid multiple positions' updates during moves we just increase position
401 // counter by two leaving a free space for instructions which will be moved.
402 InstrPos[&MI] = Pos += 2;
403
Alexey Bataev7cf32472015-12-04 10:53:15 +0000404 if (isLEA(MI))
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000405 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
Alexey Bataev7cf32472015-12-04 10:53:15 +0000406 }
407}
408
409// Try to find load and store instructions which recalculate addresses already
410// calculated by some LEA and replace their memory operands with its def
411// register.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000412bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
Alexey Bataev7cf32472015-12-04 10:53:15 +0000413 bool Changed = false;
414
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000415 assert(!LEAs.empty());
416 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
Alexey Bataev7cf32472015-12-04 10:53:15 +0000417
418 // Process all instructions in basic block.
419 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
420 MachineInstr &MI = *I++;
421 unsigned Opcode = MI.getOpcode();
422
423 // Instruction must be load or store.
424 if (!MI.mayLoadOrStore())
425 continue;
426
427 // Get the number of the first memory operand.
428 const MCInstrDesc &Desc = MI.getDesc();
429 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode);
430
431 // If instruction has no memory operand - skip it.
432 if (MemOpNo < 0)
433 continue;
434
435 MemOpNo += X86II::getOperandBias(Desc);
436
Andrey Turetskiy1052ac22016-02-16 12:47:45 +0000437 // Address displacement must be an immediate or a global.
438 MachineOperand &Disp = MI.getOperand(MemOpNo + X86::AddrDisp);
439 if (!Disp.isImm() && !Disp.isGlobal())
440 continue;
441
Alexey Bataev7cf32472015-12-04 10:53:15 +0000442 // Get the best LEA instruction to replace address calculation.
443 MachineInstr *DefMI;
444 int64_t AddrDispShift;
445 int Dist;
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000446 if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift,
447 Dist))
Alexey Bataev7cf32472015-12-04 10:53:15 +0000448 continue;
449
450 // If LEA occurs before current instruction, we can freely replace
451 // the instruction. If LEA occurs after, we can lift LEA above the
452 // instruction and this way to be able to replace it. Since LEA and the
453 // instruction have similar memory operands (thus, the same def
454 // instructions for these operands), we can always do that, without
455 // worries of using registers before their defs.
456 if (Dist < 0) {
457 DefMI->removeFromParent();
458 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000459 InstrPos[DefMI] = InstrPos[&MI] - 1;
460
461 // Make sure the instructions' position numbers are sane.
462 assert(((InstrPos[DefMI] == 1 && DefMI == MBB->begin()) ||
463 InstrPos[DefMI] >
464 InstrPos[std::prev(MachineBasicBlock::iterator(DefMI))]) &&
465 "Instruction positioning is broken");
Alexey Bataev7cf32472015-12-04 10:53:15 +0000466 }
467
468 // Since we can possibly extend register lifetime, clear kill flags.
469 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
470
471 ++NumSubstLEAs;
472 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
473
474 // Change instruction operands.
475 MI.getOperand(MemOpNo + X86::AddrBaseReg)
476 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
477 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
478 MI.getOperand(MemOpNo + X86::AddrIndexReg)
479 .ChangeToRegister(X86::NoRegister, false);
480 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
481 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
482 .ChangeToRegister(X86::NoRegister, false);
483
484 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
485
486 Changed = true;
487 }
488
489 return Changed;
490}
491
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000492// Try to find similar LEAs in the list and replace one with another.
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000493bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000494 bool Changed = false;
495
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000496 // Loop over all entries in the table.
497 for (auto &E : LEAs) {
498 auto &List = E.second;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000499
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000500 // Loop over all LEA pairs.
501 auto I1 = List.begin();
502 while (I1 != List.end()) {
503 MachineInstr &First = **I1;
504 auto I2 = std::next(I1);
505 while (I2 != List.end()) {
506 MachineInstr &Last = **I2;
507 int64_t AddrDispShift;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000508
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000509 // LEAs should be in occurence order in the list, so we can freely
510 // replace later LEAs with earlier ones.
511 assert(calcInstrDist(First, Last) > 0 &&
512 "LEAs must be in occurence order in the list");
513
514 // Check that the Last LEA instruction can be replaced by the First.
515 if (!isReplaceable(First, Last, AddrDispShift)) {
516 ++I2;
517 continue;
518 }
519
520 // Loop over all uses of the Last LEA and update their operands. Note
521 // that the correctness of this has already been checked in the
522 // isReplaceable function.
523 for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
524 UE = MRI->use_end();
525 UI != UE;) {
526 MachineOperand &MO = *UI++;
527 MachineInstr &MI = *MO.getParent();
528
529 // Get the number of the first memory operand.
530 const MCInstrDesc &Desc = MI.getDesc();
531 int MemOpNo =
532 X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
533 X86II::getOperandBias(Desc);
534
535 // Update address base.
536 MO.setReg(First.getOperand(0).getReg());
537
538 // Update address disp.
539 MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp);
540 if (Op->isImm())
541 Op->setImm(Op->getImm() + AddrDispShift);
542 else if (Op->isGlobal())
543 Op->setOffset(Op->getOffset() + AddrDispShift);
544 else
545 llvm_unreachable("Invalid address displacement operand");
546 }
547
548 // Since we can possibly extend register lifetime, clear kill flags.
549 MRI->clearKillFlags(First.getOperand(0).getReg());
550
551 ++NumRedundantLEAs;
552 DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
553
554 // By this moment, all of the Last LEA's uses must be replaced. So we
555 // can freely remove it.
556 assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
557 "The LEA's def register must have no uses");
558 Last.eraseFromParent();
559
560 // Erase removed LEA from the list.
561 I2 = List.erase(I2);
562
563 Changed = true;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000564 }
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000565 ++I1;
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000566 }
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000567 }
568
569 return Changed;
570}
571
Alexey Bataev7cf32472015-12-04 10:53:15 +0000572bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
573 bool Changed = false;
Alexey Bataev7cf32472015-12-04 10:53:15 +0000574
575 // Perform this optimization only if we care about code size.
Hans Wennborg75fab7b2016-02-11 16:44:06 +0000576 if (!EnableX86LEAOpt || !MF.getFunction()->optForSize())
Alexey Bataev7cf32472015-12-04 10:53:15 +0000577 return false;
578
579 MRI = &MF.getRegInfo();
580 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
581 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
582
583 // Process all basic blocks.
584 for (auto &MBB : MF) {
Andrey Turetskiybca0f992016-02-04 08:57:03 +0000585 MemOpMap LEAs;
Alexey Bataev28f0c5e2016-01-11 11:52:29 +0000586 InstrPos.clear();
Alexey Bataev7cf32472015-12-04 10:53:15 +0000587
588 // Find all LEA instructions in basic block.
589 findLEAs(MBB, LEAs);
590
591 // If current basic block has no LEAs, move on to the next one.
592 if (LEAs.empty())
593 continue;
594
Andrey Turetskiy1ce2c992016-01-13 11:30:44 +0000595 // Remove redundant LEA instructions. The optimization may have a negative
596 // effect on performance, so do it only for -Oz.
597 if (MF.getFunction()->optForMinSize())
598 Changed |= removeRedundantLEAs(LEAs);
599
Alexey Bataev7cf32472015-12-04 10:53:15 +0000600 // Remove redundant address calculations.
601 Changed |= removeRedundantAddrCalc(LEAs);
602 }
603
604 return Changed;
605}