blob: 1b36569f7a07c9075a08aabf4299d04d53b5ae7c [file] [log] [blame]
Marcello Maggioniab58c742015-09-21 17:58:14 +00001//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
Jingyue Wu5da831c2015-04-10 05:03:50 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Marcello Maggioniab58c742015-09-21 17:58:14 +000010// This file implements divergence analysis which determines whether a branch
11// in a GPU program is divergent.It can help branch optimizations such as jump
Jingyue Wu5da831c2015-04-10 05:03:50 +000012// threading and loop unswitching to make better decisions.
13//
14// GPU programs typically use the SIMD execution model, where multiple threads
15// in the same execution group have to execute in lock-step. Therefore, if the
16// code contains divergent branches (i.e., threads in a group do not agree on
17// which path of the branch to take), the group of threads has to execute all
18// the paths from that branch with different subsets of threads enabled until
19// they converge at the immediately post-dominating BB of the paths.
20//
21// Due to this execution model, some optimizations such as jump
22// threading and loop unswitching can be unfortunately harmful when performed on
23// divergent branches. Therefore, an analysis that computes which branches in a
24// GPU program are divergent can help the compiler to selectively run these
25// optimizations.
26//
27// This file defines divergence analysis which computes a conservative but
28// non-trivial approximation of all divergent branches in a GPU program. It
29// partially implements the approach described in
30//
31// Divergence Analysis
32// Sampaio, Souza, Collange, Pereira
33// TOPLAS '13
34//
35// The divergence analysis identifies the sources of divergence (e.g., special
36// variables that hold the thread ID), and recursively marks variables that are
37// data or sync dependent on a source of divergence as divergent.
38//
39// While data dependency is a well-known concept, the notion of sync dependency
40// is worth more explanation. Sync dependence characterizes the control flow
41// aspect of the propagation of branch divergence. For example,
42//
43// %cond = icmp slt i32 %tid, 10
44// br i1 %cond, label %then, label %else
45// then:
46// br label %merge
47// else:
48// br label %merge
49// merge:
50// %a = phi i32 [ 0, %then ], [ 1, %else ]
51//
52// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53// because %tid is not on its use-def chains, %a is sync dependent on %tid
54// because the branch "br i1 %cond" depends on %tid and affects which value %a
55// is assigned to.
56//
57// The current implementation has the following limitations:
58// 1. intra-procedural. It conservatively considers the arguments of a
59// non-kernel-entry function and the return value of a function call as
60// divergent.
61// 2. memory as black box. It conservatively considers values loaded from
62// generic or local address as divergent. This can be improved by leveraging
63// pointer analysis.
Marcello Maggioniab58c742015-09-21 17:58:14 +000064//
Jingyue Wu5da831c2015-04-10 05:03:50 +000065//===----------------------------------------------------------------------===//
66
Marcello Maggioniab58c742015-09-21 17:58:14 +000067#include "llvm/Analysis/DivergenceAnalysis.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000068#include "llvm/Analysis/Passes.h"
69#include "llvm/Analysis/PostDominators.h"
70#include "llvm/Analysis/TargetTransformInfo.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000071#include "llvm/IR/Dominators.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000072#include "llvm/IR/InstIterator.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/Value.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000076#include "llvm/Support/Debug.h"
77#include "llvm/Support/raw_ostream.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000078#include <vector>
Jingyue Wu5da831c2015-04-10 05:03:50 +000079using namespace llvm;
80
Jingyue Wu5da831c2015-04-10 05:03:50 +000081namespace {
82
83class DivergencePropagator {
84public:
Marcello Maggioniab58c742015-09-21 17:58:14 +000085 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
86 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
Jingyue Wu5da831c2015-04-10 05:03:50 +000087 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
88 void populateWithSourcesOfDivergence();
89 void propagate();
90
91private:
92 // A helper function that explores data dependents of V.
93 void exploreDataDependency(Value *V);
94 // A helper function that explores sync dependents of TI.
95 void exploreSyncDependency(TerminatorInst *TI);
96 // Computes the influence region from Start to End. This region includes all
Jingyue Wu3f422282015-12-18 21:44:26 +000097 // basic blocks on any simple path from Start to End.
Jingyue Wu5da831c2015-04-10 05:03:50 +000098 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
99 DenseSet<BasicBlock *> &InfluenceRegion);
100 // Finds all users of I that are outside the influence region, and add these
101 // users to Worklist.
102 void findUsersOutsideInfluenceRegion(
103 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
104
105 Function &F;
106 TargetTransformInfo &TTI;
107 DominatorTree &DT;
108 PostDominatorTree &PDT;
109 std::vector<Value *> Worklist; // Stack for DFS.
Marcello Maggioniab58c742015-09-21 17:58:14 +0000110 DenseSet<const Value *> &DV; // Stores all divergent values.
Jingyue Wu5da831c2015-04-10 05:03:50 +0000111};
112
113void DivergencePropagator::populateWithSourcesOfDivergence() {
114 Worklist.clear();
115 DV.clear();
Nico Rieck78199512015-08-06 19:10:45 +0000116 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000117 if (TTI.isSourceOfDivergence(&I)) {
118 Worklist.push_back(&I);
119 DV.insert(&I);
120 }
121 }
122 for (auto &Arg : F.args()) {
123 if (TTI.isSourceOfDivergence(&Arg)) {
124 Worklist.push_back(&Arg);
125 DV.insert(&Arg);
126 }
127 }
128}
129
130void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
131 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
132 // immediate post dominator are divergent. This rule handles if-then-else
133 // patterns. For example,
134 //
135 // if (tid < 5)
136 // a1 = 1;
137 // else
138 // a2 = 2;
139 // a = phi(a1, a2); // sync dependent on (tid < 5)
140 BasicBlock *ThisBB = TI->getParent();
Matt Arsenault790eb1c2016-04-29 06:17:47 +0000141
142 // Unreachable blocks may not be in the dominator tree.
143 if (!DT.isReachableFromEntry(ThisBB))
144 return;
145
Matt Arsenault1af53a92016-05-09 16:57:08 +0000146 // If the function has no exit blocks or doesn't reach any exit blocks, the
147 // post dominator may be null.
148 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
149 if (!ThisNode)
150 return;
151
152 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000153 if (IPostDom == nullptr)
154 return;
155
156 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
157 // A PHINode is uniform if it returns the same value no matter which path is
158 // taken.
Nicolai Haehnle13d90f32016-04-14 17:42:47 +0000159 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000160 Worklist.push_back(&*I);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000161 }
162
163 // Propagation rule 2: if a value defined in a loop is used outside, the user
164 // is sync dependent on the condition of the loop exits that dominate the
165 // user. For example,
166 //
167 // int i = 0;
168 // do {
169 // i++;
170 // if (foo(i)) ... // uniform
171 // } while (i < tid);
172 // if (bar(i)) ... // divergent
173 //
174 // A program may contain unstructured loops. Therefore, we cannot leverage
175 // LoopInfo, which only recognizes natural loops.
176 //
177 // The algorithm used here handles both natural and unstructured loops. Given
178 // a branch TI, we first compute its influence region, the union of all simple
179 // paths from TI to its immediate post dominator (IPostDom). Then, we search
180 // for all the values defined in the influence region but used outside. All
181 // these users are sync dependent on TI.
182 DenseSet<BasicBlock *> InfluenceRegion;
183 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
184 // An insight that can speed up the search process is that all the in-region
185 // values that are used outside must dominate TI. Therefore, instead of
186 // searching every basic blocks in the influence region, we search all the
187 // dominators of TI until it is outside the influence region.
188 BasicBlock *InfluencedBB = ThisBB;
189 while (InfluenceRegion.count(InfluencedBB)) {
190 for (auto &I : *InfluencedBB)
191 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
192 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
193 if (IDomNode == nullptr)
194 break;
195 InfluencedBB = IDomNode->getBlock();
196 }
197}
198
199void DivergencePropagator::findUsersOutsideInfluenceRegion(
200 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
201 for (User *U : I.users()) {
202 Instruction *UserInst = cast<Instruction>(U);
203 if (!InfluenceRegion.count(UserInst->getParent())) {
204 if (DV.insert(UserInst).second)
205 Worklist.push_back(UserInst);
206 }
207 }
208}
209
Jingyue Wu3f422282015-12-18 21:44:26 +0000210// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
211// to the influence region.
212static void
213addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
214 DenseSet<BasicBlock *> &InfluenceRegion,
215 std::vector<BasicBlock *> &InfluenceStack) {
216 for (BasicBlock *Succ : successors(ThisBB)) {
217 if (Succ != End && InfluenceRegion.insert(Succ).second)
218 InfluenceStack.push_back(Succ);
219 }
220}
221
Jingyue Wu5da831c2015-04-10 05:03:50 +0000222void DivergencePropagator::computeInfluenceRegion(
223 BasicBlock *Start, BasicBlock *End,
224 DenseSet<BasicBlock *> &InfluenceRegion) {
225 assert(PDT.properlyDominates(End, Start) &&
226 "End does not properly dominate Start");
Jingyue Wu3f422282015-12-18 21:44:26 +0000227
228 // The influence region starts from the end of "Start" to the beginning of
229 // "End". Therefore, "Start" should not be in the region unless "Start" is in
230 // a loop that doesn't contain "End".
Jingyue Wu5da831c2015-04-10 05:03:50 +0000231 std::vector<BasicBlock *> InfluenceStack;
Jingyue Wu3f422282015-12-18 21:44:26 +0000232 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000233 while (!InfluenceStack.empty()) {
234 BasicBlock *BB = InfluenceStack.back();
235 InfluenceStack.pop_back();
Jingyue Wu3f422282015-12-18 21:44:26 +0000236 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000237 }
238}
239
240void DivergencePropagator::exploreDataDependency(Value *V) {
241 // Follow def-use chains of V.
242 for (User *U : V->users()) {
243 Instruction *UserInst = cast<Instruction>(U);
244 if (DV.insert(UserInst).second)
245 Worklist.push_back(UserInst);
246 }
247}
248
249void DivergencePropagator::propagate() {
250 // Traverse the dependency graph using DFS.
251 while (!Worklist.empty()) {
252 Value *V = Worklist.back();
253 Worklist.pop_back();
254 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
255 // Terminators with less than two successors won't introduce sync
256 // dependency. Ignore them.
257 if (TI->getNumSuccessors() > 1)
258 exploreSyncDependency(TI);
259 }
260 exploreDataDependency(V);
261 }
262}
263
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000264} /// end namespace anonymous
Jingyue Wu5da831c2015-04-10 05:03:50 +0000265
Marcello Maggioniab58c742015-09-21 17:58:14 +0000266// Register this pass.
267char DivergenceAnalysis::ID = 0;
268INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
269 false, true)
270INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Hongbin Zheng3f978402016-02-25 17:54:07 +0000271INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
Marcello Maggioniab58c742015-09-21 17:58:14 +0000272INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
273 false, true)
274
Jingyue Wu5da831c2015-04-10 05:03:50 +0000275FunctionPass *llvm::createDivergenceAnalysisPass() {
276 return new DivergenceAnalysis();
277}
278
Marcello Maggioniab58c742015-09-21 17:58:14 +0000279void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
280 AU.addRequired<DominatorTreeWrapperPass>();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000281 AU.addRequired<PostDominatorTreeWrapperPass>();
Marcello Maggioniab58c742015-09-21 17:58:14 +0000282 AU.setPreservesAll();
283}
284
Jingyue Wu5da831c2015-04-10 05:03:50 +0000285bool DivergenceAnalysis::runOnFunction(Function &F) {
286 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
287 if (TTIWP == nullptr)
288 return false;
289
290 TargetTransformInfo &TTI = TTIWP->getTTI(F);
291 // Fast path: if the target does not have branch divergence, we do not mark
292 // any branch as divergent.
293 if (!TTI.hasBranchDivergence())
294 return false;
295
296 DivergentValues.clear();
Hongbin Zheng3f978402016-02-25 17:54:07 +0000297 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
Jingyue Wu5da831c2015-04-10 05:03:50 +0000298 DivergencePropagator DP(F, TTI,
299 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
Hongbin Zheng3f978402016-02-25 17:54:07 +0000300 PDT, DivergentValues);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000301 DP.populateWithSourcesOfDivergence();
302 DP.propagate();
303 return false;
304}
305
306void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
307 if (DivergentValues.empty())
308 return;
309 const Value *FirstDivergentValue = *DivergentValues.begin();
310 const Function *F;
311 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
312 F = Arg->getParent();
313 } else if (const Instruction *I =
314 dyn_cast<Instruction>(FirstDivergentValue)) {
315 F = I->getParent()->getParent();
316 } else {
317 llvm_unreachable("Only arguments and instructions can be divergent");
318 }
319
320 // Dumps all divergent values in F, arguments and then instructions.
321 for (auto &Arg : F->args()) {
322 if (DivergentValues.count(&Arg))
323 OS << "DIVERGENT: " << Arg << "\n";
324 }
Nico Rieck78199512015-08-06 19:10:45 +0000325 // Iterate instructions using instructions() to ensure a deterministic order.
326 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000327 if (DivergentValues.count(&I))
328 OS << "DIVERGENT:" << I << "\n";
329 }
330}