blob: f7cf8c6729f2678a0291df81a20969d766326770 [file] [log] [blame]
Chandler Carruthbf71a342014-02-06 04:37:03 +00001//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/LazyCallGraph.h"
Chandler Carruth11b3f602016-09-04 08:34:31 +000011#include "llvm/ADT/ScopeExit.h"
Chandler Carruth49d728a2016-09-16 10:20:17 +000012#include "llvm/ADT/Sequence.h"
Chandler Carruth18eadd922014-04-18 10:50:32 +000013#include "llvm/ADT/STLExtras.h"
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000014#include "llvm/ADT/ScopeExit.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000015#include "llvm/IR/CallSite.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +000016#include "llvm/IR/InstVisitor.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000017#include "llvm/IR/Instructions.h"
18#include "llvm/IR/PassManager.h"
Chandler Carruth99b756d2014-04-21 05:04:24 +000019#include "llvm/Support/Debug.h"
Sean Silva7cb30662016-06-18 09:17:32 +000020#include "llvm/Support/GraphWriter.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000021
22using namespace llvm;
23
Chandler Carruthf1221bd2014-04-22 02:48:03 +000024#define DEBUG_TYPE "lcg"
25
Chandler Carrutha4499e92016-02-02 03:57:13 +000026static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
Chandler Carruthe5944d92016-02-17 00:18:16 +000027 DenseMap<Function *, int> &EdgeIndexMap, Function &F,
Chandler Carrutha4499e92016-02-02 03:57:13 +000028 LazyCallGraph::Edge::Kind EK) {
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000029 if (!EdgeIndexMap.insert({&F, Edges.size()}).second)
30 return;
31
32 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n");
33 Edges.emplace_back(LazyCallGraph::Edge(F, EK));
Chandler Carrutha4499e92016-02-02 03:57:13 +000034}
35
Chandler Carruth18eadd922014-04-18 10:50:32 +000036LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
37 : G(&G), F(F), DFSNumber(0), LowLink(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +000038 DEBUG(dbgs() << " Adding functions called by '" << F.getName()
39 << "' to the graph.\n");
40
Chandler Carruthbf71a342014-02-06 04:37:03 +000041 SmallVector<Constant *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +000042 SmallPtrSet<Function *, 4> Callees;
Chandler Carruthbf71a342014-02-06 04:37:03 +000043 SmallPtrSet<Constant *, 16> Visited;
Chandler Carrutha4499e92016-02-02 03:57:13 +000044
45 // Find all the potential call graph edges in this function. We track both
46 // actual call edges and indirect references to functions. The direct calls
47 // are trivially added, but to accumulate the latter we walk the instructions
48 // and add every operand which is a constant to the worklist to process
49 // afterward.
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000050 //
51 // Note that we consider *any* function with a definition to be a viable
52 // edge. Even if the function's definition is subject to replacement by
53 // some other module (say, a weak definition) there may still be
54 // optimizations which essentially speculate based on the definition and
55 // a way to check that the specific definition is in fact the one being
56 // used. For example, this could be done by moving the weak definition to
57 // a strong (internal) definition and making the weak definition be an
58 // alias. Then a test of the address of the weak function against the new
59 // strong definition's address would be an effective way to determine the
60 // safety of optimizing a direct call edge.
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000061 for (BasicBlock &BB : F)
Chandler Carrutha4499e92016-02-02 03:57:13 +000062 for (Instruction &I : BB) {
63 if (auto CS = CallSite(&I))
64 if (Function *Callee = CS.getCalledFunction())
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000065 if (!Callee->isDeclaration())
66 if (Callees.insert(Callee).second) {
67 Visited.insert(Callee);
68 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
69 }
Chandler Carrutha4499e92016-02-02 03:57:13 +000070
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000071 for (Value *Op : I.operand_values())
Chandler Carruth1583e992014-03-03 10:42:58 +000072 if (Constant *C = dyn_cast<Constant>(Op))
David Blaikie70573dc2014-11-19 07:49:26 +000073 if (Visited.insert(C).second)
Chandler Carruthbf71a342014-02-06 04:37:03 +000074 Worklist.push_back(C);
Chandler Carrutha4499e92016-02-02 03:57:13 +000075 }
Chandler Carruthbf71a342014-02-06 04:37:03 +000076
77 // We've collected all the constant (and thus potentially function or
78 // function containing) operands to all of the instructions in the function.
79 // Process them (recursively) collecting every function found.
Chandler Carruth88823462016-08-24 09:37:14 +000080 visitReferences(Worklist, Visited, [&](Function &F) {
81 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref);
82 });
Chandler Carruthbf71a342014-02-06 04:37:03 +000083}
84
Chandler Carruthe5944d92016-02-17 00:18:16 +000085void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
86 if (Node *N = G->lookup(Target))
Chandler Carrutha4499e92016-02-02 03:57:13 +000087 return insertEdgeInternal(*N, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000088
Chandler Carruthe5944d92016-02-17 00:18:16 +000089 EdgeIndexMap.insert({&Target, Edges.size()});
90 Edges.emplace_back(Target, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000091}
92
Chandler Carruthe5944d92016-02-17 00:18:16 +000093void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
94 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
95 Edges.emplace_back(TargetN, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +000096}
97
Chandler Carruthe5944d92016-02-17 00:18:16 +000098void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
99 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
100}
101
102void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
103 auto IndexMapI = EdgeIndexMap.find(&Target);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000104 assert(IndexMapI != EdgeIndexMap.end() &&
Chandler Carruthe5944d92016-02-17 00:18:16 +0000105 "Target not in the edge set for this caller?");
Chandler Carruthaa839b22014-04-27 01:59:50 +0000106
Chandler Carrutha4499e92016-02-02 03:57:13 +0000107 Edges[IndexMapI->second] = Edge();
108 EdgeIndexMap.erase(IndexMapI);
Chandler Carruthaa839b22014-04-27 01:59:50 +0000109}
110
Chandler Carruthdca83402016-06-27 23:26:08 +0000111void LazyCallGraph::Node::dump() const {
112 dbgs() << *this << '\n';
113}
114
Chandler Carruth2174f442014-04-18 20:44:16 +0000115LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000116 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
117 << "\n");
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000118 for (Function &F : M)
119 if (!F.isDeclaration() && !F.hasLocalLinkage())
Chandler Carruthe5944d92016-02-17 00:18:16 +0000120 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000121 DEBUG(dbgs() << " Adding '" << F.getName()
122 << "' to entry set of the graph.\n");
Chandler Carrutha4499e92016-02-02 03:57:13 +0000123 EntryEdges.emplace_back(F, Edge::Ref);
Chandler Carruth99b756d2014-04-21 05:04:24 +0000124 }
Chandler Carruthbf71a342014-02-06 04:37:03 +0000125
126 // Now add entry nodes for functions reachable via initializers to globals.
127 SmallVector<Constant *, 16> Worklist;
128 SmallPtrSet<Constant *, 16> Visited;
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000129 for (GlobalVariable &GV : M.globals())
130 if (GV.hasInitializer())
David Blaikie70573dc2014-11-19 07:49:26 +0000131 if (Visited.insert(GV.getInitializer()).second)
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000132 Worklist.push_back(GV.getInitializer());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000133
Chandler Carruth99b756d2014-04-21 05:04:24 +0000134 DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
135 "entry set.\n");
Chandler Carruth88823462016-08-24 09:37:14 +0000136 visitReferences(Worklist, Visited, [&](Function &F) {
137 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
138 });
Chandler Carruth18eadd922014-04-18 10:50:32 +0000139
Chandler Carrutha4499e92016-02-02 03:57:13 +0000140 for (const Edge &E : EntryEdges)
Chandler Carruthe5944d92016-02-17 00:18:16 +0000141 RefSCCEntryNodes.push_back(&E.getFunction());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000142}
143
Chandler Carruthbf71a342014-02-06 04:37:03 +0000144LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
Chandler Carruth2174f442014-04-18 20:44:16 +0000145 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
Chandler Carrutha4499e92016-02-02 03:57:13 +0000146 EntryEdges(std::move(G.EntryEdges)),
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000147 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000148 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
Chandler Carruth18eadd922014-04-18 10:50:32 +0000149 DFSStack(std::move(G.DFSStack)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000150 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
Chandler Carruth2174f442014-04-18 20:44:16 +0000151 NextDFSNumber(G.NextDFSNumber) {
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000152 updateGraphPtrs();
153}
154
155LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
156 BPA = std::move(G.BPA);
Chandler Carruth2174f442014-04-18 20:44:16 +0000157 NodeMap = std::move(G.NodeMap);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000158 EntryEdges = std::move(G.EntryEdges);
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000159 EntryIndexMap = std::move(G.EntryIndexMap);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000160 SCCBPA = std::move(G.SCCBPA);
161 SCCMap = std::move(G.SCCMap);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000162 LeafRefSCCs = std::move(G.LeafRefSCCs);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000163 DFSStack = std::move(G.DFSStack);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000164 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
Chandler Carruth2174f442014-04-18 20:44:16 +0000165 NextDFSNumber = G.NextDFSNumber;
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000166 updateGraphPtrs();
167 return *this;
168}
169
Chandler Carruthdca83402016-06-27 23:26:08 +0000170void LazyCallGraph::SCC::dump() const {
171 dbgs() << *this << '\n';
172}
173
Chandler Carruthe5944d92016-02-17 00:18:16 +0000174#ifndef NDEBUG
175void LazyCallGraph::SCC::verify() {
176 assert(OuterRefSCC && "Can't have a null RefSCC!");
177 assert(!Nodes.empty() && "Can't have an empty SCC!");
Chandler Carruth8f92d6d2014-04-26 01:03:46 +0000178
Chandler Carruthe5944d92016-02-17 00:18:16 +0000179 for (Node *N : Nodes) {
180 assert(N && "Can't have a null node!");
181 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
182 "Node does not map to this SCC!");
183 assert(N->DFSNumber == -1 &&
184 "Must set DFS numbers to -1 when adding a node to an SCC!");
185 assert(N->LowLink == -1 &&
186 "Must set low link to -1 when adding a node to an SCC!");
187 for (Edge &E : *N)
188 assert(E.getNode() && "Can't have an edge to a raw function!");
189 }
190}
191#endif
192
Chandler Carruthbae595b2016-11-22 19:23:31 +0000193bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
194 if (this == &C)
195 return false;
196
197 for (Node &N : *this)
198 for (Edge &E : N.calls())
199 if (Node *CalleeN = E.getNode())
200 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C)
201 return true;
202
203 // No edges found.
204 return false;
205}
206
207bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
208 if (this == &TargetC)
209 return false;
210
211 LazyCallGraph &G = *OuterRefSCC->G;
212
213 // Start with this SCC.
214 SmallPtrSet<const SCC *, 16> Visited = {this};
215 SmallVector<const SCC *, 16> Worklist = {this};
216
217 // Walk down the graph until we run out of edges or find a path to TargetC.
218 do {
219 const SCC &C = *Worklist.pop_back_val();
220 for (Node &N : C)
221 for (Edge &E : N.calls()) {
222 Node *CalleeN = E.getNode();
223 if (!CalleeN)
224 continue;
225 SCC *CalleeC = G.lookupSCC(*CalleeN);
226 if (!CalleeC)
227 continue;
228
229 // If the callee's SCC is the TargetC, we're done.
230 if (CalleeC == &TargetC)
231 return true;
232
233 // If this is the first time we've reached this SCC, put it on the
234 // worklist to recurse through.
235 if (Visited.insert(CalleeC).second)
236 Worklist.push_back(CalleeC);
237 }
238 } while (!Worklist.empty());
239
240 // No paths found.
241 return false;
242}
243
Chandler Carruthe5944d92016-02-17 00:18:16 +0000244LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
245
Chandler Carruthdca83402016-06-27 23:26:08 +0000246void LazyCallGraph::RefSCC::dump() const {
247 dbgs() << *this << '\n';
248}
249
Chandler Carruthe5944d92016-02-17 00:18:16 +0000250#ifndef NDEBUG
251void LazyCallGraph::RefSCC::verify() {
252 assert(G && "Can't have a null graph!");
253 assert(!SCCs.empty() && "Can't have an empty SCC!");
254
255 // Verify basic properties of the SCCs.
Chandler Carruth88823462016-08-24 09:37:14 +0000256 SmallPtrSet<SCC *, 4> SCCSet;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000257 for (SCC *C : SCCs) {
258 assert(C && "Can't have a null SCC!");
259 C->verify();
260 assert(&C->getOuterRefSCC() == this &&
261 "SCC doesn't think it is inside this RefSCC!");
Chandler Carruth88823462016-08-24 09:37:14 +0000262 bool Inserted = SCCSet.insert(C).second;
263 assert(Inserted && "Found a duplicate SCC!");
Chandler Carruth23a6c3f2016-12-06 10:29:23 +0000264 auto IndexIt = SCCIndices.find(C);
265 assert(IndexIt != SCCIndices.end() &&
266 "Found an SCC that doesn't have an index!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000267 }
268
269 // Check that our indices map correctly.
270 for (auto &SCCIndexPair : SCCIndices) {
271 SCC *C = SCCIndexPair.first;
272 int i = SCCIndexPair.second;
273 assert(C && "Can't have a null SCC in the indices!");
Chandler Carruth88823462016-08-24 09:37:14 +0000274 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000275 assert(SCCs[i] == C && "Index doesn't point to SCC!");
276 }
277
278 // Check that the SCCs are in fact in post-order.
279 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
280 SCC &SourceSCC = *SCCs[i];
281 for (Node &N : SourceSCC)
282 for (Edge &E : N) {
283 if (!E.isCall())
284 continue;
285 SCC &TargetSCC = *G->lookupSCC(*E.getNode());
286 if (&TargetSCC.getOuterRefSCC() == this) {
287 assert(SCCIndices.find(&TargetSCC)->second <= i &&
288 "Edge between SCCs violates post-order relationship.");
289 continue;
290 }
291 assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
292 "Edge to a RefSCC missing us in its parent set.");
293 }
294 }
Chandler Carruth5205c352016-12-07 01:42:40 +0000295
296 // Check that our parents are actually parents.
297 for (RefSCC *ParentRC : Parents) {
298 assert(ParentRC != this && "Cannot be our own parent!");
299 auto HasConnectingEdge = [&] {
300 for (SCC &C : *ParentRC)
301 for (Node &N : C)
302 for (Edge &E : N)
303 if (G->lookupRefSCC(*E.getNode()) == this)
304 return true;
305 return false;
306 };
307 assert(HasConnectingEdge() && "No edge connects the parent to us!");
308 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000309}
310#endif
311
312bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
Chandler Carruth4b096742014-05-01 12:12:42 +0000313 // Walk up the parents of this SCC and verify that we eventually find C.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000314 SmallVector<const RefSCC *, 4> AncestorWorklist;
Chandler Carruth4b096742014-05-01 12:12:42 +0000315 AncestorWorklist.push_back(this);
316 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000317 const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
Chandler Carruth4b096742014-05-01 12:12:42 +0000318 if (AncestorC->isChildOf(C))
319 return true;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000320 for (const RefSCC *ParentC : AncestorC->Parents)
Chandler Carruth4b096742014-05-01 12:12:42 +0000321 AncestorWorklist.push_back(ParentC);
322 } while (!AncestorWorklist.empty());
323
324 return false;
325}
326
Chandler Carruth1f621f02016-09-04 08:34:24 +0000327/// Generic helper that updates a postorder sequence of SCCs for a potentially
328/// cycle-introducing edge insertion.
329///
330/// A postorder sequence of SCCs of a directed graph has one fundamental
331/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
332/// all edges in the SCC DAG point to prior SCCs in the sequence.
333///
334/// This routine both updates a postorder sequence and uses that sequence to
335/// compute the set of SCCs connected into a cycle. It should only be called to
336/// insert a "downward" edge which will require changing the sequence to
337/// restore it to a postorder.
338///
339/// When inserting an edge from an earlier SCC to a later SCC in some postorder
340/// sequence, all of the SCCs which may be impacted are in the closed range of
341/// those two within the postorder sequence. The algorithm used here to restore
342/// the state is as follows:
343///
344/// 1) Starting from the source SCC, construct a set of SCCs which reach the
345/// source SCC consisting of just the source SCC. Then scan toward the
346/// target SCC in postorder and for each SCC, if it has an edge to an SCC
347/// in the set, add it to the set. Otherwise, the source SCC is not
348/// a successor, move it in the postorder sequence to immediately before
349/// the source SCC, shifting the source SCC and all SCCs in the set one
350/// position toward the target SCC. Stop scanning after processing the
351/// target SCC.
352/// 2) If the source SCC is now past the target SCC in the postorder sequence,
353/// and thus the new edge will flow toward the start, we are done.
354/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
355/// SCC between the source and the target, and add them to the set of
356/// connected SCCs, then recurse through them. Once a complete set of the
357/// SCCs the target connects to is known, hoist the remaining SCCs between
358/// the source and the target to be above the target. Note that there is no
359/// need to process the source SCC, it is already known to connect.
360/// 4) At this point, all of the SCCs in the closed range between the source
361/// SCC and the target SCC in the postorder sequence are connected,
362/// including the target SCC and the source SCC. Inserting the edge from
363/// the source SCC to the target SCC will form a cycle out of precisely
364/// these SCCs. Thus we can merge all of the SCCs in this closed range into
365/// a single SCC.
366///
367/// This process has various important properties:
368/// - Only mutates the SCCs when adding the edge actually changes the SCC
369/// structure.
370/// - Never mutates SCCs which are unaffected by the change.
371/// - Updates the postorder sequence to correctly satisfy the postorder
372/// constraint after the edge is inserted.
373/// - Only reorders SCCs in the closed postorder sequence from the source to
374/// the target, so easy to bound how much has changed even in the ordering.
375/// - Big-O is the number of edges in the closed postorder range of SCCs from
376/// source to target.
377///
378/// This helper routine, in addition to updating the postorder sequence itself
379/// will also update a map from SCCs to indices within that sequecne.
380///
381/// The sequence and the map must operate on pointers to the SCC type.
382///
383/// Two callbacks must be provided. The first computes the subset of SCCs in
384/// the postorder closed range from the source to the target which connect to
385/// the source SCC via some (transitive) set of edges. The second computes the
386/// subset of the same range which the target SCC connects to via some
387/// (transitive) set of edges. Both callbacks should populate the set argument
388/// provided.
389template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
390 typename ComputeSourceConnectedSetCallableT,
391 typename ComputeTargetConnectedSetCallableT>
392static iterator_range<typename PostorderSequenceT::iterator>
393updatePostorderSequenceForEdgeInsertion(
394 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
395 SCCIndexMapT &SCCIndices,
396 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
397 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
398 int SourceIdx = SCCIndices[&SourceSCC];
399 int TargetIdx = SCCIndices[&TargetSCC];
400 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
401
402 SmallPtrSet<SCCT *, 4> ConnectedSet;
403
404 // Compute the SCCs which (transitively) reach the source.
405 ComputeSourceConnectedSet(ConnectedSet);
406
407 // Partition the SCCs in this part of the port-order sequence so only SCCs
408 // connecting to the source remain between it and the target. This is
409 // a benign partition as it preserves postorder.
410 auto SourceI = std::stable_partition(
411 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
412 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
413 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
414 SCCIndices.find(SCCs[i])->second = i;
415
416 // If the target doesn't connect to the source, then we've corrected the
417 // post-order and there are no cycles formed.
418 if (!ConnectedSet.count(&TargetSCC)) {
419 assert(SourceI > (SCCs.begin() + SourceIdx) &&
420 "Must have moved the source to fix the post-order.");
421 assert(*std::prev(SourceI) == &TargetSCC &&
422 "Last SCC to move should have bene the target.");
423
424 // Return an empty range at the target SCC indicating there is nothing to
425 // merge.
426 return make_range(std::prev(SourceI), std::prev(SourceI));
427 }
428
429 assert(SCCs[TargetIdx] == &TargetSCC &&
430 "Should not have moved target if connected!");
431 SourceIdx = SourceI - SCCs.begin();
432 assert(SCCs[SourceIdx] == &SourceSCC &&
433 "Bad updated index computation for the source SCC!");
434
435
436 // See whether there are any remaining intervening SCCs between the source
437 // and target. If so we need to make sure they all are reachable form the
438 // target.
439 if (SourceIdx + 1 < TargetIdx) {
440 ConnectedSet.clear();
441 ComputeTargetConnectedSet(ConnectedSet);
442
443 // Partition SCCs so that only SCCs reached from the target remain between
444 // the source and the target. This preserves postorder.
445 auto TargetI = std::stable_partition(
446 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
447 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
448 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
449 SCCIndices.find(SCCs[i])->second = i;
450 TargetIdx = std::prev(TargetI) - SCCs.begin();
451 assert(SCCs[TargetIdx] == &TargetSCC &&
452 "Should always end with the target!");
453 }
454
455 // At this point, we know that connecting source to target forms a cycle
456 // because target connects back to source, and we know that all of the SCCs
457 // between the source and target in the postorder sequence participate in that
458 // cycle.
459 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
460}
461
Chandler Carruthe5944d92016-02-17 00:18:16 +0000462SmallVector<LazyCallGraph::SCC *, 1>
463LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
464 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000465 SmallVector<SCC *, 1> DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000466
Chandler Carruth11b3f602016-09-04 08:34:31 +0000467#ifndef NDEBUG
468 // In a debug build, verify the RefSCC is valid to start with and when this
469 // routine finishes.
470 verify();
471 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
472#endif
473
Chandler Carruthe5944d92016-02-17 00:18:16 +0000474 SCC &SourceSCC = *G->lookupSCC(SourceN);
475 SCC &TargetSCC = *G->lookupSCC(TargetN);
476
477 // If the two nodes are already part of the same SCC, we're also done as
478 // we've just added more connectivity.
479 if (&SourceSCC == &TargetSCC) {
480 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000481 return DeletedSCCs;
482 }
483
484 // At this point we leverage the postorder list of SCCs to detect when the
485 // insertion of an edge changes the SCC structure in any way.
486 //
487 // First and foremost, we can eliminate the need for any changes when the
488 // edge is toward the beginning of the postorder sequence because all edges
489 // flow in that direction already. Thus adding a new one cannot form a cycle.
490 int SourceIdx = SCCIndices[&SourceSCC];
491 int TargetIdx = SCCIndices[&TargetSCC];
492 if (TargetIdx < SourceIdx) {
493 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000494 return DeletedSCCs;
495 }
496
Chandler Carruthe5944d92016-02-17 00:18:16 +0000497 // Compute the SCCs which (transitively) reach the source.
Chandler Carruth1f621f02016-09-04 08:34:24 +0000498 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000499#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000500 // Check that the RefSCC is still valid before computing this as the
501 // results will be nonsensical of we've broken its invariants.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000502 verify();
503#endif
Chandler Carruth1f621f02016-09-04 08:34:24 +0000504 ConnectedSet.insert(&SourceSCC);
505 auto IsConnected = [&](SCC &C) {
506 for (Node &N : C)
507 for (Edge &E : N.calls()) {
508 assert(E.getNode() && "Must have formed a node within an SCC!");
509 if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
510 return true;
511 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000512
Chandler Carruth1f621f02016-09-04 08:34:24 +0000513 return false;
514 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000515
Chandler Carruth1f621f02016-09-04 08:34:24 +0000516 for (SCC *C :
517 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
518 if (IsConnected(*C))
519 ConnectedSet.insert(C);
520 };
521
522 // Use a normal worklist to find which SCCs the target connects to. We still
523 // bound the search based on the range in the postorder list we care about,
524 // but because this is forward connectivity we just "recurse" through the
525 // edges.
526 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000527#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000528 // Check that the RefSCC is still valid before computing this as the
529 // results will be nonsensical of we've broken its invariants.
530 verify();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000531#endif
Chandler Carruthe5944d92016-02-17 00:18:16 +0000532 ConnectedSet.insert(&TargetSCC);
533 SmallVector<SCC *, 4> Worklist;
534 Worklist.push_back(&TargetSCC);
535 do {
536 SCC &C = *Worklist.pop_back_val();
537 for (Node &N : C)
538 for (Edge &E : N) {
539 assert(E.getNode() && "Must have formed a node within an SCC!");
540 if (!E.isCall())
541 continue;
542 SCC &EdgeC = *G->lookupSCC(*E.getNode());
543 if (&EdgeC.getOuterRefSCC() != this)
544 // Not in this RefSCC...
545 continue;
546 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
547 // Not in the postorder sequence between source and target.
548 continue;
549
550 if (ConnectedSet.insert(&EdgeC).second)
551 Worklist.push_back(&EdgeC);
552 }
553 } while (!Worklist.empty());
Chandler Carruth1f621f02016-09-04 08:34:24 +0000554 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000555
Chandler Carruth1f621f02016-09-04 08:34:24 +0000556 // Use a generic helper to update the postorder sequence of SCCs and return
557 // a range of any SCCs connected into a cycle by inserting this edge. This
558 // routine will also take care of updating the indices into the postorder
559 // sequence.
560 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
561 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
562 ComputeTargetConnectedSet);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000563
Chandler Carruth1f621f02016-09-04 08:34:24 +0000564 // If the merge range is empty, then adding the edge didn't actually form any
565 // new cycles. We're done.
566 if (MergeRange.begin() == MergeRange.end()) {
567 // Now that the SCC structure is finalized, flip the kind to call.
568 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruth1f621f02016-09-04 08:34:24 +0000569 return DeletedSCCs;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000570 }
571
Chandler Carruth1f621f02016-09-04 08:34:24 +0000572#ifndef NDEBUG
573 // Before merging, check that the RefSCC remains valid after all the
574 // postorder updates.
575 verify();
576#endif
577
578 // Otherwise we need to merge all of the SCCs in the cycle into a single
Chandler Carruthe5944d92016-02-17 00:18:16 +0000579 // result SCC.
580 //
581 // NB: We merge into the target because all of these functions were already
582 // reachable from the target, meaning any SCC-wide properties deduced about it
583 // other than the set of functions within it will not have changed.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000584 for (SCC *C : MergeRange) {
585 assert(C != &TargetSCC &&
586 "We merge *into* the target and shouldn't process it here!");
587 SCCIndices.erase(C);
588 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
589 for (Node *N : C->Nodes)
590 G->SCCMap[N] = &TargetSCC;
591 C->clear();
592 DeletedSCCs.push_back(C);
593 }
594
595 // Erase the merged SCCs from the list and update the indices of the
596 // remaining SCCs.
597 int IndexOffset = MergeRange.end() - MergeRange.begin();
598 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
599 for (SCC *C : make_range(EraseEnd, SCCs.end()))
600 SCCIndices[C] -= IndexOffset;
601
602 // Now that the SCC structure is finalized, flip the kind to call.
603 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
604
Chandler Carruth11b3f602016-09-04 08:34:31 +0000605 // And we're done!
Chandler Carruthe5944d92016-02-17 00:18:16 +0000606 return DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000607}
608
Chandler Carruth443e57e2016-12-28 10:34:50 +0000609void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
610 Node &TargetN) {
611 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
612
613#ifndef NDEBUG
614 // In a debug build, verify the RefSCC is valid to start with and when this
615 // routine finishes.
616 verify();
617 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
618#endif
619
620 assert(G->lookupRefSCC(SourceN) == this &&
621 "Source must be in this RefSCC.");
622 assert(G->lookupRefSCC(TargetN) == this &&
623 "Target must be in this RefSCC.");
624 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
625 "Source and Target must be in separate SCCs for this to be trivial!");
626
627 // Set the edge kind.
628 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
629}
630
Chandler Carruth88823462016-08-24 09:37:14 +0000631iterator_range<LazyCallGraph::RefSCC::iterator>
632LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000633 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
634
Chandler Carruth11b3f602016-09-04 08:34:31 +0000635#ifndef NDEBUG
636 // In a debug build, verify the RefSCC is valid to start with and when this
637 // routine finishes.
638 verify();
639 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
640#endif
641
Chandler Carruth443e57e2016-12-28 10:34:50 +0000642 assert(G->lookupRefSCC(SourceN) == this &&
Chandler Carruthe5944d92016-02-17 00:18:16 +0000643 "Source must be in this RefSCC.");
Chandler Carruth443e57e2016-12-28 10:34:50 +0000644 assert(G->lookupRefSCC(TargetN) == this &&
Chandler Carruthe5944d92016-02-17 00:18:16 +0000645 "Target must be in this RefSCC.");
646
Chandler Carruth443e57e2016-12-28 10:34:50 +0000647 SCC &TargetSCC = *G->lookupSCC(TargetN);
648 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
649 "the same SCC to require the "
650 "full CG update.");
651
Chandler Carruthe5944d92016-02-17 00:18:16 +0000652 // Set the edge kind.
653 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
654
Chandler Carruthe5944d92016-02-17 00:18:16 +0000655 // Otherwise we are removing a call edge from a single SCC. This may break
656 // the cycle. In order to compute the new set of SCCs, we need to do a small
657 // DFS over the nodes within the SCC to form any sub-cycles that remain as
658 // distinct SCCs and compute a postorder over the resulting SCCs.
659 //
660 // However, we specially handle the target node. The target node is known to
661 // reach all other nodes in the original SCC by definition. This means that
662 // we want the old SCC to be replaced with an SCC contaning that node as it
663 // will be the root of whatever SCC DAG results from the DFS. Assumptions
664 // about an SCC such as the set of functions called will continue to hold,
665 // etc.
666
667 SCC &OldSCC = TargetSCC;
668 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
669 SmallVector<Node *, 16> PendingSCCStack;
670 SmallVector<SCC *, 4> NewSCCs;
671
672 // Prepare the nodes for a fresh DFS.
673 SmallVector<Node *, 16> Worklist;
674 Worklist.swap(OldSCC.Nodes);
675 for (Node *N : Worklist) {
676 N->DFSNumber = N->LowLink = 0;
677 G->SCCMap.erase(N);
678 }
679
680 // Force the target node to be in the old SCC. This also enables us to take
681 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
682 // below: whenever we build an edge that reaches the target node, we know
683 // that the target node eventually connects back to all other nodes in our
684 // walk. As a consequence, we can detect and handle participants in that
685 // cycle without walking all the edges that form this connection, and instead
686 // by relying on the fundamental guarantee coming into this operation (all
687 // nodes are reachable from the target due to previously forming an SCC).
688 TargetN.DFSNumber = TargetN.LowLink = -1;
689 OldSCC.Nodes.push_back(&TargetN);
690 G->SCCMap[&TargetN] = &OldSCC;
691
692 // Scan down the stack and DFS across the call edges.
693 for (Node *RootN : Worklist) {
694 assert(DFSStack.empty() &&
695 "Cannot begin a new root with a non-empty DFS stack!");
696 assert(PendingSCCStack.empty() &&
697 "Cannot begin a new root with pending nodes for an SCC!");
698
699 // Skip any nodes we've already reached in the DFS.
700 if (RootN->DFSNumber != 0) {
701 assert(RootN->DFSNumber == -1 &&
702 "Shouldn't have any mid-DFS root nodes!");
703 continue;
704 }
705
706 RootN->DFSNumber = RootN->LowLink = 1;
707 int NextDFSNumber = 2;
708
709 DFSStack.push_back({RootN, RootN->call_begin()});
710 do {
711 Node *N;
712 call_edge_iterator I;
713 std::tie(N, I) = DFSStack.pop_back_val();
714 auto E = N->call_end();
715 while (I != E) {
716 Node &ChildN = *I->getNode();
717 if (ChildN.DFSNumber == 0) {
718 // We haven't yet visited this child, so descend, pushing the current
719 // node onto the stack.
720 DFSStack.push_back({N, I});
721
722 assert(!G->SCCMap.count(&ChildN) &&
723 "Found a node with 0 DFS number but already in an SCC!");
724 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
725 N = &ChildN;
726 I = N->call_begin();
727 E = N->call_end();
728 continue;
729 }
730
731 // Check for the child already being part of some component.
732 if (ChildN.DFSNumber == -1) {
733 if (G->lookupSCC(ChildN) == &OldSCC) {
734 // If the child is part of the old SCC, we know that it can reach
735 // every other node, so we have formed a cycle. Pull the entire DFS
736 // and pending stacks into it. See the comment above about setting
737 // up the old SCC for why we do this.
738 int OldSize = OldSCC.size();
739 OldSCC.Nodes.push_back(N);
740 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
741 PendingSCCStack.clear();
742 while (!DFSStack.empty())
743 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
744 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
745 N.DFSNumber = N.LowLink = -1;
746 G->SCCMap[&N] = &OldSCC;
747 }
748 N = nullptr;
749 break;
750 }
751
752 // If the child has already been added to some child component, it
753 // couldn't impact the low-link of this parent because it isn't
754 // connected, and thus its low-link isn't relevant so skip it.
755 ++I;
756 continue;
757 }
758
759 // Track the lowest linked child as the lowest link for this node.
760 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
761 if (ChildN.LowLink < N->LowLink)
762 N->LowLink = ChildN.LowLink;
763
764 // Move to the next edge.
765 ++I;
766 }
767 if (!N)
768 // Cleared the DFS early, start another round.
769 break;
770
771 // We've finished processing N and its descendents, put it on our pending
772 // SCC stack to eventually get merged into an SCC of nodes.
773 PendingSCCStack.push_back(N);
774
775 // If this node is linked to some lower entry, continue walking up the
776 // stack.
777 if (N->LowLink != N->DFSNumber)
778 continue;
779
780 // Otherwise, we've completed an SCC. Append it to our post order list of
781 // SCCs.
782 int RootDFSNumber = N->DFSNumber;
783 // Find the range of the node stack by walking down until we pass the
784 // root DFS number.
785 auto SCCNodes = make_range(
786 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +0000787 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
788 return N->DFSNumber < RootDFSNumber;
789 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +0000790
791 // Form a new SCC out of these nodes and then clear them off our pending
792 // stack.
793 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
794 for (Node &N : *NewSCCs.back()) {
795 N.DFSNumber = N.LowLink = -1;
796 G->SCCMap[&N] = NewSCCs.back();
797 }
798 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
799 } while (!DFSStack.empty());
800 }
801
802 // Insert the remaining SCCs before the old one. The old SCC can reach all
803 // other SCCs we form because it contains the target node of the removed edge
804 // of the old SCC. This means that we will have edges into all of the new
805 // SCCs, which means the old one must come last for postorder.
806 int OldIdx = SCCIndices[&OldSCC];
807 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
808
809 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
810 // old SCC from the mapping.
811 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
812 SCCIndices[SCCs[Idx]] = Idx;
813
Chandler Carruth88823462016-08-24 09:37:14 +0000814 return make_range(SCCs.begin() + OldIdx,
815 SCCs.begin() + OldIdx + NewSCCs.size());
Chandler Carruthe5944d92016-02-17 00:18:16 +0000816}
817
818void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
819 Node &TargetN) {
820 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
821
822 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
823 assert(G->lookupRefSCC(TargetN) != this &&
824 "Target must not be in this RefSCC.");
825 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
826 "Target must be a descendant of the Source.");
827
828 // Edges between RefSCCs are the same regardless of call or ref, so we can
829 // just flip the edge here.
830 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
831
832#ifndef NDEBUG
833 // Check that the RefSCC is still valid.
834 verify();
835#endif
836}
837
838void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
839 Node &TargetN) {
840 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
841
842 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
843 assert(G->lookupRefSCC(TargetN) != this &&
844 "Target must not be in this RefSCC.");
845 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
846 "Target must be a descendant of the Source.");
847
848 // Edges between RefSCCs are the same regardless of call or ref, so we can
849 // just flip the edge here.
850 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
851
852#ifndef NDEBUG
853 // Check that the RefSCC is still valid.
854 verify();
855#endif
856}
857
858void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
859 Node &TargetN) {
860 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
861 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
862
863 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
864
865#ifndef NDEBUG
866 // Check that the RefSCC is still valid.
867 verify();
868#endif
869}
870
871void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
872 Edge::Kind EK) {
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000873 // First insert it into the caller.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000874 SourceN.insertEdgeInternal(TargetN, EK);
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000875
Chandler Carruthe5944d92016-02-17 00:18:16 +0000876 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000877
Chandler Carruthe5944d92016-02-17 00:18:16 +0000878 RefSCC &TargetC = *G->lookupRefSCC(TargetN);
879 assert(&TargetC != this && "Target must not be in this RefSCC.");
880 assert(TargetC.isDescendantOf(*this) &&
881 "Target must be a descendant of the Source.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000882
Chandler Carruth91539112015-12-28 01:54:20 +0000883 // The only change required is to add this SCC to the parent set of the
884 // callee.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000885 TargetC.Parents.insert(this);
886
887#ifndef NDEBUG
888 // Check that the RefSCC is still valid.
889 verify();
890#endif
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000891}
892
Chandler Carruthe5944d92016-02-17 00:18:16 +0000893SmallVector<LazyCallGraph::RefSCC *, 1>
894LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
Chandler Carruth49d728a2016-09-16 10:20:17 +0000895 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
896 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
897 assert(&SourceC != this && "Source must not be in this RefSCC.");
898 assert(SourceC.isDescendantOf(*this) &&
899 "Source must be a descendant of the Target.");
900
901 SmallVector<RefSCC *, 1> DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000902
Chandler Carruth11b3f602016-09-04 08:34:31 +0000903#ifndef NDEBUG
904 // In a debug build, verify the RefSCC is valid to start with and when this
905 // routine finishes.
906 verify();
907 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
908#endif
909
Chandler Carruth49d728a2016-09-16 10:20:17 +0000910 int SourceIdx = G->RefSCCIndices[&SourceC];
911 int TargetIdx = G->RefSCCIndices[this];
912 assert(SourceIdx < TargetIdx &&
913 "Postorder list doesn't see edge as incoming!");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000914
Chandler Carruth49d728a2016-09-16 10:20:17 +0000915 // Compute the RefSCCs which (transitively) reach the source. We do this by
916 // working backwards from the source using the parent set in each RefSCC,
917 // skipping any RefSCCs that don't fall in the postorder range. This has the
918 // advantage of walking the sparser parent edge (in high fan-out graphs) but
919 // more importantly this removes examining all forward edges in all RefSCCs
920 // within the postorder range which aren't in fact connected. Only connected
921 // RefSCCs (and their edges) are visited here.
922 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
923 Set.insert(&SourceC);
924 SmallVector<RefSCC *, 4> Worklist;
925 Worklist.push_back(&SourceC);
926 do {
927 RefSCC &RC = *Worklist.pop_back_val();
928 for (RefSCC &ParentRC : RC.parents()) {
929 // Skip any RefSCCs outside the range of source to target in the
930 // postorder sequence.
931 int ParentIdx = G->getRefSCCIndex(ParentRC);
932 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
933 if (ParentIdx > TargetIdx)
934 continue;
935 if (Set.insert(&ParentRC).second)
936 // First edge connecting to this parent, add it to our worklist.
937 Worklist.push_back(&ParentRC);
Chandler Carruth312dddf2014-05-04 09:38:32 +0000938 }
Chandler Carruth49d728a2016-09-16 10:20:17 +0000939 } while (!Worklist.empty());
940 };
Chandler Carruth312dddf2014-05-04 09:38:32 +0000941
Chandler Carruth49d728a2016-09-16 10:20:17 +0000942 // Use a normal worklist to find which SCCs the target connects to. We still
943 // bound the search based on the range in the postorder list we care about,
944 // but because this is forward connectivity we just "recurse" through the
945 // edges.
946 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
947 Set.insert(this);
948 SmallVector<RefSCC *, 4> Worklist;
949 Worklist.push_back(this);
950 do {
951 RefSCC &RC = *Worklist.pop_back_val();
952 for (SCC &C : RC)
953 for (Node &N : C)
954 for (Edge &E : N) {
955 assert(E.getNode() && "Must have formed a node!");
956 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode());
957 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
958 // Not in the postorder sequence between source and target.
959 continue;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000960
Chandler Carruth49d728a2016-09-16 10:20:17 +0000961 if (Set.insert(&EdgeRC).second)
962 Worklist.push_back(&EdgeRC);
963 }
964 } while (!Worklist.empty());
965 };
966
967 // Use a generic helper to update the postorder sequence of RefSCCs and return
968 // a range of any RefSCCs connected into a cycle by inserting this edge. This
969 // routine will also take care of updating the indices into the postorder
970 // sequence.
971 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
972 updatePostorderSequenceForEdgeInsertion(
973 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
974 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
975
Chandler Carruth5205c352016-12-07 01:42:40 +0000976 // Build a set so we can do fast tests for whether a RefSCC will end up as
977 // part of the merged RefSCC.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000978 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
Chandler Carruth312dddf2014-05-04 09:38:32 +0000979
Chandler Carruth5205c352016-12-07 01:42:40 +0000980 // This RefSCC will always be part of that set, so just insert it here.
981 MergeSet.insert(this);
982
Chandler Carruth312dddf2014-05-04 09:38:32 +0000983 // Now that we have identified all of the SCCs which need to be merged into
984 // a connected set with the inserted edge, merge all of them into this SCC.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000985 SmallVector<SCC *, 16> MergedSCCs;
986 int SCCIndex = 0;
Chandler Carruth49d728a2016-09-16 10:20:17 +0000987 for (RefSCC *RC : MergeRange) {
988 assert(RC != this && "We're merging into the target RefSCC, so it "
989 "shouldn't be in the range.");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000990
Chandler Carruthe5944d92016-02-17 00:18:16 +0000991 // Merge the parents which aren't part of the merge into the our parents.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000992 for (RefSCC *ParentRC : RC->Parents)
993 if (!MergeSet.count(ParentRC))
994 Parents.insert(ParentRC);
995 RC->Parents.clear();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000996
997 // Walk the inner SCCs to update their up-pointer and walk all the edges to
998 // update any parent sets.
999 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1000 // walk by updating the parent sets in some other manner.
Chandler Carruth49d728a2016-09-16 10:20:17 +00001001 for (SCC &InnerC : *RC) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001002 InnerC.OuterRefSCC = this;
1003 SCCIndices[&InnerC] = SCCIndex++;
1004 for (Node &N : InnerC) {
1005 G->SCCMap[&N] = &InnerC;
1006 for (Edge &E : N) {
1007 assert(E.getNode() &&
1008 "Cannot have a null node within a visited SCC!");
1009 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
Chandler Carruth49d728a2016-09-16 10:20:17 +00001010 if (MergeSet.count(&ChildRC))
Chandler Carruthe5944d92016-02-17 00:18:16 +00001011 continue;
Chandler Carruth49d728a2016-09-16 10:20:17 +00001012 ChildRC.Parents.erase(RC);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001013 ChildRC.Parents.insert(this);
1014 }
Chandler Carruth312dddf2014-05-04 09:38:32 +00001015 }
Chandler Carruth312dddf2014-05-04 09:38:32 +00001016 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001017
1018 // Now merge in the SCCs. We can actually move here so try to reuse storage
1019 // the first time through.
1020 if (MergedSCCs.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +00001021 MergedSCCs = std::move(RC->SCCs);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001022 else
Chandler Carruth49d728a2016-09-16 10:20:17 +00001023 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1024 RC->SCCs.clear();
1025 DeletedRefSCCs.push_back(RC);
Chandler Carruth312dddf2014-05-04 09:38:32 +00001026 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001027
Chandler Carruth49d728a2016-09-16 10:20:17 +00001028 // Append our original SCCs to the merged list and move it into place.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001029 for (SCC &InnerC : *this)
1030 SCCIndices[&InnerC] = SCCIndex++;
1031 MergedSCCs.append(SCCs.begin(), SCCs.end());
1032 SCCs = std::move(MergedSCCs);
1033
Chandler Carruth49d728a2016-09-16 10:20:17 +00001034 // Remove the merged away RefSCCs from the post order sequence.
1035 for (RefSCC *RC : MergeRange)
1036 G->RefSCCIndices.erase(RC);
1037 int IndexOffset = MergeRange.end() - MergeRange.begin();
1038 auto EraseEnd =
1039 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1040 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1041 G->RefSCCIndices[RC] -= IndexOffset;
1042
Chandler Carruthe5944d92016-02-17 00:18:16 +00001043 // At this point we have a merged RefSCC with a post-order SCCs list, just
1044 // connect the nodes to form the new edge.
1045 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
1046
Chandler Carruth312dddf2014-05-04 09:38:32 +00001047 // We return the list of SCCs which were merged so that callers can
1048 // invalidate any data they have associated with those SCCs. Note that these
1049 // SCCs are no longer in an interesting state (they are totally empty) but
1050 // the pointers will remain stable for the life of the graph itself.
Chandler Carruth49d728a2016-09-16 10:20:17 +00001051 return DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +00001052}
1053
Chandler Carruthe5944d92016-02-17 00:18:16 +00001054void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1055 assert(G->lookupRefSCC(SourceN) == this &&
1056 "The source must be a member of this RefSCC.");
1057
1058 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1059 assert(&TargetRC != this && "The target must not be a member of this RefSCC");
1060
David Majnemer0d955d02016-08-11 22:21:41 +00001061 assert(!is_contained(G->LeafRefSCCs, this) &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001062 "Cannot have a leaf RefSCC source.");
1063
Chandler Carruth11b3f602016-09-04 08:34:31 +00001064#ifndef NDEBUG
1065 // In a debug build, verify the RefSCC is valid to start with and when this
1066 // routine finishes.
1067 verify();
1068 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1069#endif
1070
Chandler Carruthaa839b22014-04-27 01:59:50 +00001071 // First remove it from the node.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001072 SourceN.removeEdgeInternal(TargetN.getFunction());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001073
Chandler Carruthe5944d92016-02-17 00:18:16 +00001074 bool HasOtherEdgeToChildRC = false;
1075 bool HasOtherChildRC = false;
1076 for (SCC *InnerC : SCCs) {
1077 for (Node &N : *InnerC) {
1078 for (Edge &E : N) {
1079 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1080 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
1081 if (&OtherChildRC == &TargetRC) {
1082 HasOtherEdgeToChildRC = true;
1083 break;
1084 }
1085 if (&OtherChildRC != this)
1086 HasOtherChildRC = true;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001087 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001088 if (HasOtherEdgeToChildRC)
1089 break;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001090 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001091 if (HasOtherEdgeToChildRC)
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001092 break;
1093 }
1094 // Because the SCCs form a DAG, deleting such an edge cannot change the set
1095 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
Chandler Carruthe5944d92016-02-17 00:18:16 +00001096 // the source SCC no longer connected to the target SCC. If so, we need to
1097 // update the target SCC's map of its parents.
1098 if (!HasOtherEdgeToChildRC) {
1099 bool Removed = TargetRC.Parents.erase(this);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001100 (void)Removed;
1101 assert(Removed &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001102 "Did not find the source SCC in the target SCC's parent list!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001103
1104 // It may orphan an SCC if it is the last edge reaching it, but that does
1105 // not violate any invariants of the graph.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001106 if (TargetRC.Parents.empty())
1107 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
1108 << " -> " << TargetN.getFunction().getName()
Chandler Carruthaa839b22014-04-27 01:59:50 +00001109 << " edge orphaned the callee's SCC!\n");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001110
Chandler Carruthe5944d92016-02-17 00:18:16 +00001111 // It may make the Source SCC a leaf SCC.
1112 if (!HasOtherChildRC)
1113 G->LeafRefSCCs.push_back(this);
Chandler Carruthaca48d02014-04-26 09:06:53 +00001114 }
1115}
1116
Chandler Carruthe5944d92016-02-17 00:18:16 +00001117SmallVector<LazyCallGraph::RefSCC *, 1>
1118LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1119 assert(!SourceN[TargetN].isCall() &&
1120 "Cannot remove a call edge, it must first be made a ref edge");
Chandler Carruthaa839b22014-04-27 01:59:50 +00001121
Chandler Carruth11b3f602016-09-04 08:34:31 +00001122#ifndef NDEBUG
1123 // In a debug build, verify the RefSCC is valid to start with and when this
1124 // routine finishes.
1125 verify();
1126 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1127#endif
1128
Chandler Carruthe5944d92016-02-17 00:18:16 +00001129 // First remove the actual edge.
1130 SourceN.removeEdgeInternal(TargetN.getFunction());
1131
1132 // We return a list of the resulting *new* RefSCCs in post-order.
1133 SmallVector<RefSCC *, 1> Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001134
Chandler Carrutha7205b62014-04-26 03:36:37 +00001135 // Direct recursion doesn't impact the SCC graph at all.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001136 if (&SourceN == &TargetN)
1137 return Result;
Chandler Carrutha7205b62014-04-26 03:36:37 +00001138
Chandler Carruthc6334572016-12-28 02:24:58 +00001139 // If this ref edge is within an SCC then there are sufficient other edges to
1140 // form a cycle without this edge so removing it is a no-op.
1141 SCC &SourceC = *G->lookupSCC(SourceN);
1142 SCC &TargetC = *G->lookupSCC(TargetN);
1143 if (&SourceC == &TargetC)
1144 return Result;
1145
Chandler Carruthe5944d92016-02-17 00:18:16 +00001146 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1147 // for each inner SCC. We also store these associated with *nodes* rather
1148 // than SCCs because this saves a round-trip through the node->SCC map and in
1149 // the common case, SCCs are small. We will verify that we always give the
1150 // same number to every node in the SCC such that these are equivalent.
1151 const int RootPostOrderNumber = 0;
1152 int PostOrderNumber = RootPostOrderNumber + 1;
1153 SmallDenseMap<Node *, int> PostOrderMapping;
1154
1155 // Every node in the target SCC can already reach every node in this RefSCC
1156 // (by definition). It is the only node we know will stay inside this RefSCC.
1157 // Everything which transitively reaches Target will also remain in the
1158 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1159 // back to the root post order number.
1160 //
1161 // This also enables us to take a very significant short-cut in the standard
1162 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1163 // references the target node, we know that the target node eventually
1164 // references all other nodes in our walk. As a consequence, we can detect
1165 // and handle participants in that cycle without walking all the edges that
1166 // form the connections, and instead by relying on the fundamental guarantee
1167 // coming into this operation.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001168 for (Node &N : TargetC)
1169 PostOrderMapping[&N] = RootPostOrderNumber;
1170
1171 // Reset all the other nodes to prepare for a DFS over them, and add them to
1172 // our worklist.
1173 SmallVector<Node *, 8> Worklist;
1174 for (SCC *C : SCCs) {
1175 if (C == &TargetC)
1176 continue;
1177
1178 for (Node &N : *C)
1179 N.DFSNumber = N.LowLink = 0;
1180
1181 Worklist.append(C->Nodes.begin(), C->Nodes.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001182 }
1183
Chandler Carruthe5944d92016-02-17 00:18:16 +00001184 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1185 N.DFSNumber = N.LowLink = -1;
1186 PostOrderMapping[&N] = Number;
1187 };
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001188
Chandler Carruthe5944d92016-02-17 00:18:16 +00001189 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1190 SmallVector<Node *, 4> PendingRefSCCStack;
Chandler Carruthaca48d02014-04-26 09:06:53 +00001191 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001192 assert(DFSStack.empty() &&
1193 "Cannot begin a new root with a non-empty DFS stack!");
1194 assert(PendingRefSCCStack.empty() &&
1195 "Cannot begin a new root with pending nodes for an SCC!");
1196
1197 Node *RootN = Worklist.pop_back_val();
1198 // Skip any nodes we've already reached in the DFS.
1199 if (RootN->DFSNumber != 0) {
1200 assert(RootN->DFSNumber == -1 &&
1201 "Shouldn't have any mid-DFS root nodes!");
1202 continue;
1203 }
1204
1205 RootN->DFSNumber = RootN->LowLink = 1;
1206 int NextDFSNumber = 2;
1207
1208 DFSStack.push_back({RootN, RootN->begin()});
1209 do {
1210 Node *N;
1211 edge_iterator I;
1212 std::tie(N, I) = DFSStack.pop_back_val();
1213 auto E = N->end();
1214
1215 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1216 "before processing a node.");
1217
1218 while (I != E) {
1219 Node &ChildN = I->getNode(*G);
1220 if (ChildN.DFSNumber == 0) {
1221 // Mark that we should start at this child when next this node is the
1222 // top of the stack. We don't start at the next child to ensure this
1223 // child's lowlink is reflected.
1224 DFSStack.push_back({N, I});
1225
1226 // Continue, resetting to the child node.
1227 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1228 N = &ChildN;
1229 I = ChildN.begin();
1230 E = ChildN.end();
1231 continue;
1232 }
1233 if (ChildN.DFSNumber == -1) {
1234 // Check if this edge's target node connects to the deleted edge's
1235 // target node. If so, we know that every node connected will end up
1236 // in this RefSCC, so collapse the entire current stack into the root
1237 // slot in our SCC numbering. See above for the motivation of
1238 // optimizing the target connected nodes in this way.
1239 auto PostOrderI = PostOrderMapping.find(&ChildN);
1240 if (PostOrderI != PostOrderMapping.end() &&
1241 PostOrderI->second == RootPostOrderNumber) {
1242 MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1243 while (!PendingRefSCCStack.empty())
1244 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1245 RootPostOrderNumber);
1246 while (!DFSStack.empty())
1247 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1248 RootPostOrderNumber);
1249 // Ensure we break all the way out of the enclosing loop.
1250 N = nullptr;
1251 break;
1252 }
1253
1254 // If this child isn't currently in this RefSCC, no need to process
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001255 // it. However, we do need to remove this RefSCC from its RefSCC's
1256 // parent set.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001257 RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1258 ChildRC.Parents.erase(this);
1259 ++I;
1260 continue;
1261 }
1262
1263 // Track the lowest link of the children, if any are still in the stack.
1264 // Any child not on the stack will have a LowLink of -1.
1265 assert(ChildN.LowLink != 0 &&
1266 "Low-link must not be zero with a non-zero DFS number.");
1267 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1268 N->LowLink = ChildN.LowLink;
1269 ++I;
1270 }
1271 if (!N)
1272 // We short-circuited this node.
1273 break;
1274
1275 // We've finished processing N and its descendents, put it on our pending
1276 // stack to eventually get merged into a RefSCC.
1277 PendingRefSCCStack.push_back(N);
1278
1279 // If this node is linked to some lower entry, continue walking up the
1280 // stack.
1281 if (N->LowLink != N->DFSNumber) {
1282 assert(!DFSStack.empty() &&
1283 "We never found a viable root for a RefSCC to pop off!");
1284 continue;
1285 }
1286
1287 // Otherwise, form a new RefSCC from the top of the pending node stack.
1288 int RootDFSNumber = N->DFSNumber;
1289 // Find the range of the node stack by walking down until we pass the
1290 // root DFS number.
1291 auto RefSCCNodes = make_range(
1292 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001293 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1294 return N->DFSNumber < RootDFSNumber;
1295 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001296
1297 // Mark the postorder number for these nodes and clear them off the
1298 // stack. We'll use the postorder number to pull them into RefSCCs at the
1299 // end. FIXME: Fuse with the loop above.
1300 int RefSCCNumber = PostOrderNumber++;
1301 for (Node *N : RefSCCNodes)
1302 MarkNodeForSCCNumber(*N, RefSCCNumber);
1303
1304 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1305 PendingRefSCCStack.end());
1306 } while (!DFSStack.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001307
Chandler Carruthaca48d02014-04-26 09:06:53 +00001308 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
Chandler Carruthe5944d92016-02-17 00:18:16 +00001309 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
Chandler Carruthaca48d02014-04-26 09:06:53 +00001310 } while (!Worklist.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001311
Chandler Carruthe5944d92016-02-17 00:18:16 +00001312 // We now have a post-order numbering for RefSCCs and a mapping from each
1313 // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1314 // (re-using this RefSCC node for the root) and build a radix-sort style map
1315 // from postorder number to the RefSCC. We then append SCCs to each of these
1316 // RefSCCs in the order they occured in the original SCCs container.
1317 for (int i = 1; i < PostOrderNumber; ++i)
1318 Result.push_back(G->createRefSCC(*G));
1319
Chandler Carruth49d728a2016-09-16 10:20:17 +00001320 // Insert the resulting postorder sequence into the global graph postorder
1321 // sequence before the current RefSCC in that sequence. The idea being that
1322 // this RefSCC is the target of the reference edge removed, and thus has
1323 // a direct or indirect edge to every other RefSCC formed and so must be at
1324 // the end of any postorder traversal.
1325 //
1326 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1327 // range over the global postorder sequence and generally use that sequence
1328 // rather than building a separate result vector here.
1329 if (!Result.empty()) {
1330 int Idx = G->getRefSCCIndex(*this);
1331 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
1332 Result.begin(), Result.end());
1333 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1334 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1335 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
1336 "Failed to update this RefSCC's index after insertion!");
1337 }
1338
Chandler Carruthe5944d92016-02-17 00:18:16 +00001339 for (SCC *C : SCCs) {
1340 auto PostOrderI = PostOrderMapping.find(&*C->begin());
1341 assert(PostOrderI != PostOrderMapping.end() &&
1342 "Cannot have missing mappings for nodes!");
1343 int SCCNumber = PostOrderI->second;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001344#ifndef NDEBUG
Chandler Carruthe5944d92016-02-17 00:18:16 +00001345 for (Node &N : *C)
1346 assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1347 "Cannot have different numbers for nodes in the same SCC!");
1348#endif
1349 if (SCCNumber == 0)
1350 // The root node is handled separately by removing the SCCs.
1351 continue;
1352
1353 RefSCC &RC = *Result[SCCNumber - 1];
1354 int SCCIndex = RC.SCCs.size();
1355 RC.SCCs.push_back(C);
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001356 RC.SCCIndices[C] = SCCIndex;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001357 C->OuterRefSCC = &RC;
1358 }
1359
1360 // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1361 // a leaf and connect it to the rest of the graph's parents lists. This is
1362 // really wasteful. We should instead do this during the DFS to avoid yet
1363 // another edge walk.
1364 for (RefSCC *RC : Result)
1365 G->connectRefSCC(*RC);
1366
1367 // Now erase all but the root's SCCs.
David Majnemer42531262016-08-12 03:55:06 +00001368 SCCs.erase(remove_if(SCCs,
1369 [&](SCC *C) {
1370 return PostOrderMapping.lookup(&*C->begin()) !=
1371 RootPostOrderNumber;
1372 }),
Chandler Carruthe5944d92016-02-17 00:18:16 +00001373 SCCs.end());
Chandler Carruth88823462016-08-24 09:37:14 +00001374 SCCIndices.clear();
1375 for (int i = 0, Size = SCCs.size(); i < Size; ++i)
1376 SCCIndices[SCCs[i]] = i;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001377
1378#ifndef NDEBUG
1379 // Now we need to reconnect the current (root) SCC to the graph. We do this
1380 // manually because we can special case our leaf handling and detect errors.
1381 bool IsLeaf = true;
1382#endif
1383 for (SCC *C : SCCs)
1384 for (Node &N : *C) {
1385 for (Edge &E : N) {
1386 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1387 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1388 if (&ChildRC == this)
1389 continue;
1390 ChildRC.Parents.insert(this);
1391#ifndef NDEBUG
1392 IsLeaf = false;
1393#endif
1394 }
1395 }
1396#ifndef NDEBUG
1397 if (!Result.empty())
1398 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1399 "SCCs by removing this edge.");
David Majnemer0a16c222016-08-11 21:15:00 +00001400 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
Chandler Carruthe5944d92016-02-17 00:18:16 +00001401 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1402 "SCCs before we removed this edge.");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001403#endif
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001404 // And connect both this RefSCC and all the new ones to the correct parents.
1405 // The easiest way to do this is just to re-analyze the old parent set.
1406 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
1407 Parents.clear();
1408 for (RefSCC *ParentRC : OldParents)
Chandler Carruth5205c352016-12-07 01:42:40 +00001409 for (SCC &ParentC : *ParentRC)
1410 for (Node &ParentN : ParentC)
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001411 for (Edge &E : ParentN) {
1412 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1413 RefSCC &RC = *G->lookupRefSCC(*E.getNode());
Chandler Carruth5205c352016-12-07 01:42:40 +00001414 if (&RC != ParentRC)
1415 RC.Parents.insert(ParentRC);
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001416 }
1417
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001418 // If this SCC stopped being a leaf through this edge removal, remove it from
Chandler Carruthe5944d92016-02-17 00:18:16 +00001419 // the leaf SCC list. Note that this DTRT in the case where this was never
1420 // a leaf.
1421 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1422 // entire list if this RefSCC wasn't a leaf before the edge removal.
1423 if (!Result.empty())
1424 G->LeafRefSCCs.erase(
1425 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1426 G->LeafRefSCCs.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001427
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001428#ifndef NDEBUG
1429 // Verify all of the new RefSCCs.
1430 for (RefSCC *RC : Result)
1431 RC->verify();
1432#endif
1433
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001434 // Return the new list of SCCs.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001435 return Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001436}
1437
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001438void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1439 Node &TargetN) {
1440 // The only trivial case that requires any graph updates is when we add new
1441 // ref edge and may connect different RefSCCs along that path. This is only
1442 // because of the parents set. Every other part of the graph remains constant
1443 // after this edge insertion.
1444 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1445 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1446 if (&TargetRC == this) {
1447
1448 return;
1449 }
1450
1451 assert(TargetRC.isDescendantOf(*this) &&
1452 "Target must be a descendant of the Source.");
1453 // The only change required is to add this RefSCC to the parent set of the
1454 // target. This is a set and so idempotent if the edge already existed.
1455 TargetRC.Parents.insert(this);
1456}
1457
1458void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1459 Node &TargetN) {
1460#ifndef NDEBUG
1461 // Check that the RefSCC is still valid when we finish.
1462 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruthbae595b2016-11-22 19:23:31 +00001463
1464 // Check that we aren't breaking some invariants of the SCC graph.
1465 SCC &SourceC = *G->lookupSCC(SourceN);
1466 SCC &TargetC = *G->lookupSCC(TargetN);
1467 if (&SourceC != &TargetC)
1468 assert(SourceC.isAncestorOf(TargetC) &&
1469 "Call edge is not trivial in the SCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001470#endif
1471 // First insert it into the source or find the existing edge.
1472 auto InsertResult = SourceN.EdgeIndexMap.insert(
1473 {&TargetN.getFunction(), SourceN.Edges.size()});
1474 if (!InsertResult.second) {
1475 // Already an edge, just update it.
1476 Edge &E = SourceN.Edges[InsertResult.first->second];
1477 if (E.isCall())
1478 return; // Nothing to do!
1479 E.setKind(Edge::Call);
1480 } else {
1481 // Create the new edge.
1482 SourceN.Edges.emplace_back(TargetN, Edge::Call);
1483 }
1484
1485 // Now that we have the edge, handle the graph fallout.
1486 handleTrivialEdgeInsertion(SourceN, TargetN);
1487}
1488
1489void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1490#ifndef NDEBUG
1491 // Check that the RefSCC is still valid when we finish.
1492 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruth9eb857c2016-11-22 21:40:10 +00001493
1494 // Check that we aren't breaking some invariants of the RefSCC graph.
1495 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1496 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1497 if (&SourceRC != &TargetRC)
1498 assert(SourceRC.isAncestorOf(TargetRC) &&
1499 "Ref edge is not trivial in the RefSCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001500#endif
1501 // First insert it into the source or find the existing edge.
1502 auto InsertResult = SourceN.EdgeIndexMap.insert(
1503 {&TargetN.getFunction(), SourceN.Edges.size()});
1504 if (!InsertResult.second)
1505 // Already an edge, we're done.
1506 return;
1507
1508 // Create the new edge.
1509 SourceN.Edges.emplace_back(TargetN, Edge::Ref);
1510
1511 // Now that we have the edge, handle the graph fallout.
1512 handleTrivialEdgeInsertion(SourceN, TargetN);
1513}
1514
Chandler Carruthe5944d92016-02-17 00:18:16 +00001515void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001516 assert(SCCMap.empty() && DFSStack.empty() &&
1517 "This method cannot be called after SCCs have been formed!");
1518
Chandler Carruthe5944d92016-02-17 00:18:16 +00001519 return SourceN.insertEdgeInternal(Target, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001520}
1521
Chandler Carruthe5944d92016-02-17 00:18:16 +00001522void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
Chandler Carruthaa839b22014-04-27 01:59:50 +00001523 assert(SCCMap.empty() && DFSStack.empty() &&
1524 "This method cannot be called after SCCs have been formed!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001525
Chandler Carruthe5944d92016-02-17 00:18:16 +00001526 return SourceN.removeEdgeInternal(Target);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001527}
1528
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001529void LazyCallGraph::removeDeadFunction(Function &F) {
1530 // FIXME: This is unnecessarily restrictive. We should be able to remove
1531 // functions which recursively call themselves.
1532 assert(F.use_empty() &&
1533 "This routine should only be called on trivially dead functions!");
1534
1535 auto EII = EntryIndexMap.find(&F);
1536 if (EII != EntryIndexMap.end()) {
1537 EntryEdges[EII->second] = Edge();
1538 EntryIndexMap.erase(EII);
1539 }
1540
1541 // It's safe to just remove un-visited functions from the RefSCC entry list.
1542 // FIXME: This is a linear operation which could become hot and benefit from
1543 // an index map.
1544 auto RENI = find(RefSCCEntryNodes, &F);
1545 if (RENI != RefSCCEntryNodes.end())
1546 RefSCCEntryNodes.erase(RENI);
1547
1548 auto NI = NodeMap.find(&F);
1549 if (NI == NodeMap.end())
1550 // Not in the graph at all!
1551 return;
1552
1553 Node &N = *NI->second;
1554 NodeMap.erase(NI);
1555
1556 if (SCCMap.empty() && DFSStack.empty()) {
1557 // No SCC walk has begun, so removing this is fine and there is nothing
1558 // else necessary at this point but clearing out the node.
1559 N.clear();
1560 return;
1561 }
1562
1563 // Check that we aren't going to break the DFS walk.
1564 assert(all_of(DFSStack,
1565 [&N](const std::pair<Node *, edge_iterator> &Element) {
1566 return Element.first != &N;
1567 }) &&
1568 "Tried to remove a function currently in the DFS stack!");
1569 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() &&
1570 "Tried to remove a function currently pending to add to a RefSCC!");
1571
1572 // Cannot remove a function which has yet to be visited in the DFS walk, so
1573 // if we have a node at all then we must have an SCC and RefSCC.
1574 auto CI = SCCMap.find(&N);
1575 assert(CI != SCCMap.end() &&
1576 "Tried to remove a node without an SCC after DFS walk started!");
1577 SCC &C = *CI->second;
1578 SCCMap.erase(CI);
1579 RefSCC &RC = C.getOuterRefSCC();
1580
1581 // This node must be the only member of its SCC as it has no callers, and
1582 // that SCC must be the only member of a RefSCC as it has no references.
1583 // Validate these properties first.
1584 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1585 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1586 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!");
1587
1588 // Now remove this RefSCC from any parents sets and the leaf list.
1589 for (Edge &E : N)
1590 if (Node *TargetN = E.getNode())
1591 if (RefSCC *TargetRC = lookupRefSCC(*TargetN))
1592 TargetRC->Parents.erase(&RC);
1593 // FIXME: This is a linear operation which could become hot and benefit from
1594 // an index map.
1595 auto LRI = find(LeafRefSCCs, &RC);
1596 if (LRI != LeafRefSCCs.end())
1597 LeafRefSCCs.erase(LRI);
1598
1599 auto RCIndexI = RefSCCIndices.find(&RC);
1600 int RCIndex = RCIndexI->second;
1601 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1602 RefSCCIndices.erase(RCIndexI);
1603 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1604 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1605
1606 // Finally clear out all the data structures from the node down through the
1607 // components.
1608 N.clear();
1609 C.clear();
1610 RC.clear();
1611
1612 // Nothing to delete as all the objects are allocated in stable bump pointer
1613 // allocators.
1614}
1615
Chandler Carruth2a898e02014-04-23 23:20:36 +00001616LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1617 return *new (MappedN = BPA.Allocate()) Node(*this, F);
Chandler Carruthd8d865e2014-04-18 11:02:33 +00001618}
1619
1620void LazyCallGraph::updateGraphPtrs() {
Chandler Carruthb60cb312014-04-17 07:25:59 +00001621 // Process all nodes updating the graph pointers.
Chandler Carruthaa839b22014-04-27 01:59:50 +00001622 {
1623 SmallVector<Node *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001624 for (Edge &E : EntryEdges)
1625 if (Node *EntryN = E.getNode())
Chandler Carruthaa839b22014-04-27 01:59:50 +00001626 Worklist.push_back(EntryN);
Chandler Carruthb60cb312014-04-17 07:25:59 +00001627
Chandler Carruthaa839b22014-04-27 01:59:50 +00001628 while (!Worklist.empty()) {
1629 Node *N = Worklist.pop_back_val();
1630 N->G = this;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001631 for (Edge &E : N->Edges)
Chandler Carruthe5944d92016-02-17 00:18:16 +00001632 if (Node *TargetN = E.getNode())
1633 Worklist.push_back(TargetN);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001634 }
1635 }
1636
1637 // Process all SCCs updating the graph pointers.
1638 {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001639 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001640
1641 while (!Worklist.empty()) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001642 RefSCC &C = *Worklist.pop_back_val();
1643 C.G = this;
1644 for (RefSCC &ParentC : C.parents())
1645 Worklist.push_back(&ParentC);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001646 }
Chandler Carruthb60cb312014-04-17 07:25:59 +00001647 }
Chandler Carruthbf71a342014-02-06 04:37:03 +00001648}
Chandler Carruthbf71a342014-02-06 04:37:03 +00001649
Chandler Carruthe5944d92016-02-17 00:18:16 +00001650/// Build the internal SCCs for a RefSCC from a sequence of nodes.
1651///
1652/// Appends the SCCs to the provided vector and updates the map with their
1653/// indices. Both the vector and map must be empty when passed into this
1654/// routine.
1655void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1656 assert(RC.SCCs.empty() && "Already built SCCs!");
1657 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001658
Chandler Carruthe5944d92016-02-17 00:18:16 +00001659 for (Node *N : Nodes) {
1660 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
Chandler Carruthcace6622014-04-23 10:31:17 +00001661 "We cannot have a low link in an SCC lower than its root on the "
1662 "stack!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001663
Chandler Carruthe5944d92016-02-17 00:18:16 +00001664 // This node will go into the next RefSCC, clear out its DFS and low link
1665 // as we scan.
1666 N->DFSNumber = N->LowLink = 0;
1667 }
1668
1669 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1670 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1671 // internal storage as we won't need it for the outer graph's DFS any longer.
1672
1673 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1674 SmallVector<Node *, 16> PendingSCCStack;
1675
1676 // Scan down the stack and DFS across the call edges.
1677 for (Node *RootN : Nodes) {
1678 assert(DFSStack.empty() &&
1679 "Cannot begin a new root with a non-empty DFS stack!");
1680 assert(PendingSCCStack.empty() &&
1681 "Cannot begin a new root with pending nodes for an SCC!");
1682
1683 // Skip any nodes we've already reached in the DFS.
1684 if (RootN->DFSNumber != 0) {
1685 assert(RootN->DFSNumber == -1 &&
1686 "Shouldn't have any mid-DFS root nodes!");
1687 continue;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001688 }
1689
Chandler Carruthe5944d92016-02-17 00:18:16 +00001690 RootN->DFSNumber = RootN->LowLink = 1;
1691 int NextDFSNumber = 2;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001692
Chandler Carruthe5944d92016-02-17 00:18:16 +00001693 DFSStack.push_back({RootN, RootN->call_begin()});
1694 do {
1695 Node *N;
1696 call_edge_iterator I;
1697 std::tie(N, I) = DFSStack.pop_back_val();
1698 auto E = N->call_end();
1699 while (I != E) {
1700 Node &ChildN = *I->getNode();
1701 if (ChildN.DFSNumber == 0) {
1702 // We haven't yet visited this child, so descend, pushing the current
1703 // node onto the stack.
1704 DFSStack.push_back({N, I});
1705
1706 assert(!lookupSCC(ChildN) &&
1707 "Found a node with 0 DFS number but already in an SCC!");
1708 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1709 N = &ChildN;
1710 I = N->call_begin();
1711 E = N->call_end();
1712 continue;
1713 }
1714
1715 // If the child has already been added to some child component, it
1716 // couldn't impact the low-link of this parent because it isn't
1717 // connected, and thus its low-link isn't relevant so skip it.
1718 if (ChildN.DFSNumber == -1) {
1719 ++I;
1720 continue;
1721 }
1722
1723 // Track the lowest linked child as the lowest link for this node.
1724 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1725 if (ChildN.LowLink < N->LowLink)
1726 N->LowLink = ChildN.LowLink;
1727
1728 // Move to the next edge.
1729 ++I;
1730 }
1731
1732 // We've finished processing N and its descendents, put it on our pending
1733 // SCC stack to eventually get merged into an SCC of nodes.
1734 PendingSCCStack.push_back(N);
1735
1736 // If this node is linked to some lower entry, continue walking up the
1737 // stack.
1738 if (N->LowLink != N->DFSNumber)
1739 continue;
1740
1741 // Otherwise, we've completed an SCC. Append it to our post order list of
1742 // SCCs.
1743 int RootDFSNumber = N->DFSNumber;
1744 // Find the range of the node stack by walking down until we pass the
1745 // root DFS number.
1746 auto SCCNodes = make_range(
1747 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001748 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1749 return N->DFSNumber < RootDFSNumber;
1750 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001751 // Form a new SCC out of these nodes and then clear them off our pending
1752 // stack.
1753 RC.SCCs.push_back(createSCC(RC, SCCNodes));
1754 for (Node &N : *RC.SCCs.back()) {
1755 N.DFSNumber = N.LowLink = -1;
1756 SCCMap[&N] = RC.SCCs.back();
1757 }
1758 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1759 } while (!DFSStack.empty());
1760 }
1761
1762 // Wire up the SCC indices.
1763 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1764 RC.SCCIndices[RC.SCCs[i]] = i;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001765}
1766
Chandler Carruthe5944d92016-02-17 00:18:16 +00001767// FIXME: We should move callers of this to embed the parent linking and leaf
1768// tracking into their DFS in order to remove a full walk of all edges.
1769void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1770 // Walk all edges in the RefSCC (this remains linear as we only do this once
1771 // when we build the RefSCC) to connect it to the parent sets of its
1772 // children.
1773 bool IsLeaf = true;
1774 for (SCC &C : RC)
1775 for (Node &N : C)
1776 for (Edge &E : N) {
1777 assert(E.getNode() &&
1778 "Cannot have a missing node in a visited part of the graph!");
1779 RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1780 if (&ChildRC == &RC)
1781 continue;
1782 ChildRC.Parents.insert(&RC);
1783 IsLeaf = false;
1784 }
1785
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001786 // For the SCCs where we find no child SCCs, add them to the leaf list.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001787 if (IsLeaf)
1788 LeafRefSCCs.push_back(&RC);
1789}
1790
Chandler Carruth49d728a2016-09-16 10:20:17 +00001791bool LazyCallGraph::buildNextRefSCCInPostOrder() {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001792 if (DFSStack.empty()) {
1793 Node *N;
Chandler Carruth90821c22014-04-26 09:45:55 +00001794 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001795 // If we've handled all candidate entry nodes to the SCC forest, we're
1796 // done.
1797 if (RefSCCEntryNodes.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +00001798 return false;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001799
Chandler Carruthe5944d92016-02-17 00:18:16 +00001800 N = &get(*RefSCCEntryNodes.pop_back_val());
Chandler Carruth90821c22014-04-26 09:45:55 +00001801 } while (N->DFSNumber != 0);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001802
1803 // Found a new root, begin the DFS here.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001804 N->LowLink = N->DFSNumber = 1;
Chandler Carruth09751bf2014-04-24 09:59:59 +00001805 NextDFSNumber = 2;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001806 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001807 }
1808
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001809 for (;;) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001810 Node *N;
1811 edge_iterator I;
1812 std::tie(N, I) = DFSStack.pop_back_val();
1813
1814 assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1815 "before placing a node onto the stack.");
Chandler Carruth24553932014-04-24 11:05:20 +00001816
Chandler Carrutha4499e92016-02-02 03:57:13 +00001817 auto E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001818 while (I != E) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001819 Node &ChildN = I->getNode(*this);
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001820 if (ChildN.DFSNumber == 0) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001821 // We haven't yet visited this child, so descend, pushing the current
1822 // node onto the stack.
1823 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001824
Chandler Carruth09751bf2014-04-24 09:59:59 +00001825 assert(!SCCMap.count(&ChildN) &&
1826 "Found a node with 0 DFS number but already in an SCC!");
1827 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001828 N = &ChildN;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001829 I = N->begin();
1830 E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001831 continue;
Chandler Carruthcace6622014-04-23 10:31:17 +00001832 }
1833
Chandler Carruthe5944d92016-02-17 00:18:16 +00001834 // If the child has already been added to some child component, it
1835 // couldn't impact the low-link of this parent because it isn't
1836 // connected, and thus its low-link isn't relevant so skip it.
1837 if (ChildN.DFSNumber == -1) {
1838 ++I;
1839 continue;
1840 }
1841
1842 // Track the lowest linked child as the lowest link for this node.
1843 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1844 if (ChildN.LowLink < N->LowLink)
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001845 N->LowLink = ChildN.LowLink;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001846
1847 // Move to the next edge.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001848 ++I;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001849 }
1850
Chandler Carruthe5944d92016-02-17 00:18:16 +00001851 // We've finished processing N and its descendents, put it on our pending
1852 // SCC stack to eventually get merged into an SCC of nodes.
1853 PendingRefSCCStack.push_back(N);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001854
Chandler Carruthe5944d92016-02-17 00:18:16 +00001855 // If this node is linked to some lower entry, continue walking up the
1856 // stack.
1857 if (N->LowLink != N->DFSNumber) {
1858 assert(!DFSStack.empty() &&
1859 "We never found a viable root for an SCC to pop off!");
1860 continue;
1861 }
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001862
Chandler Carruthe5944d92016-02-17 00:18:16 +00001863 // Otherwise, form a new RefSCC from the top of the pending node stack.
1864 int RootDFSNumber = N->DFSNumber;
1865 // Find the range of the node stack by walking down until we pass the
1866 // root DFS number.
1867 auto RefSCCNodes = node_stack_range(
1868 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001869 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1870 return N->DFSNumber < RootDFSNumber;
1871 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001872 // Form a new RefSCC out of these nodes and then clear them off our pending
1873 // stack.
1874 RefSCC *NewRC = createRefSCC(*this);
1875 buildSCCs(*NewRC, RefSCCNodes);
1876 connectRefSCC(*NewRC);
1877 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1878 PendingRefSCCStack.end());
1879
Chandler Carruth49d728a2016-09-16 10:20:17 +00001880 // Push the new node into the postorder list and return true indicating we
1881 // successfully grew the postorder sequence by one.
1882 bool Inserted =
1883 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1884 (void)Inserted;
1885 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1886 PostOrderRefSCCs.push_back(NewRC);
1887 return true;
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001888 }
Chandler Carruth18eadd922014-04-18 10:50:32 +00001889}
1890
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001891AnalysisKey LazyCallGraphAnalysis::Key;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +00001892
Chandler Carruthbf71a342014-02-06 04:37:03 +00001893LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1894
Chandler Carruthe5944d92016-02-17 00:18:16 +00001895static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001896 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1897 for (const LazyCallGraph::Edge &E : N)
1898 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1899 << E.getFunction().getName() << "\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001900
1901 OS << "\n";
1902}
1903
Chandler Carruthe5944d92016-02-17 00:18:16 +00001904static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1905 ptrdiff_t Size = std::distance(C.begin(), C.end());
1906 OS << " SCC with " << Size << " functions:\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001907
Chandler Carruthe5944d92016-02-17 00:18:16 +00001908 for (LazyCallGraph::Node &N : C)
1909 OS << " " << N.getFunction().getName() << "\n";
1910}
1911
1912static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1913 ptrdiff_t Size = std::distance(C.begin(), C.end());
1914 OS << " RefSCC with " << Size << " call SCCs:\n";
1915
1916 for (LazyCallGraph::SCC &InnerC : C)
1917 printSCC(OS, InnerC);
Chandler Carruth11f50322015-01-14 00:27:45 +00001918
1919 OS << "\n";
1920}
1921
Chandler Carruthd174ce42015-01-05 02:47:05 +00001922PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
Chandler Carruthb47f8012016-03-11 11:05:24 +00001923 ModuleAnalysisManager &AM) {
1924 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
Chandler Carruth11f50322015-01-14 00:27:45 +00001925
1926 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1927 << "\n\n";
1928
Chandler Carruthe5944d92016-02-17 00:18:16 +00001929 for (Function &F : M)
1930 printNode(OS, G.get(F));
Chandler Carruth11f50322015-01-14 00:27:45 +00001931
Chandler Carruthe5944d92016-02-17 00:18:16 +00001932 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1933 printRefSCC(OS, C);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001934
Chandler Carruthbf71a342014-02-06 04:37:03 +00001935 return PreservedAnalyses::all();
Chandler Carruthbf71a342014-02-06 04:37:03 +00001936}
Sean Silva7cb30662016-06-18 09:17:32 +00001937
1938LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1939 : OS(OS) {}
1940
1941static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1942 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1943
1944 for (const LazyCallGraph::Edge &E : N) {
1945 OS << " " << Name << " -> \""
1946 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1947 if (!E.isCall()) // It is a ref edge.
1948 OS << " [style=dashed,label=\"ref\"]";
1949 OS << ";\n";
1950 }
1951
1952 OS << "\n";
1953}
1954
1955PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1956 ModuleAnalysisManager &AM) {
1957 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1958
1959 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1960
1961 for (Function &F : M)
1962 printNodeDOT(OS, G.get(F));
1963
1964 OS << "}\n";
1965
1966 return PreservedAnalyses::all();
1967}