blob: 890379d5639fcfcb1e00ab5d84c65414d4ea6260 [file] [log] [blame]
Dylan McKay7549b0a2016-11-02 06:47:40 +00001//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AVR uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AVRISelLowering.h"
16
Dylan McKay8fa6d8d2017-01-07 23:39:47 +000017#include "llvm/ADT/StringSwitch.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000018#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
29#include "AVRTargetMachine.h"
30#include "MCTargetDesc/AVRMCTargetDesc.h"
31
32namespace llvm {
33
34AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
35 : TargetLowering(tm) {
36 // Set up the register classes.
37 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
38 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
39
40 // Compute derived properties from the register classes.
41 computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
42
43 setBooleanContents(ZeroOrOneBooleanContent);
44 setBooleanVectorContents(ZeroOrOneBooleanContent);
45 setSchedulingPreference(Sched::RegPressure);
46 setStackPointerRegisterToSaveRestore(AVR::SP);
47
48 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
49 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
50
Dylan McKayccd819a2017-02-05 21:35:45 +000051 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
52 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000053 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
54 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
55
56 for (MVT VT : MVT::integer_valuetypes()) {
57 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
58 setLoadExtAction(N, VT, MVT::i1, Promote);
59 setLoadExtAction(N, VT, MVT::i8, Expand);
60 }
61 }
62
63 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
64
65 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
66 // revert into a sub since we don't have an add with immediate instruction.
67 setOperationAction(ISD::ADD, MVT::i32, Custom);
68 setOperationAction(ISD::ADD, MVT::i64, Custom);
69
70 // our shift instructions are only able to shift 1 bit at a time, so handle
71 // this in a custom way.
72 setOperationAction(ISD::SRA, MVT::i8, Custom);
73 setOperationAction(ISD::SHL, MVT::i8, Custom);
74 setOperationAction(ISD::SRL, MVT::i8, Custom);
75 setOperationAction(ISD::SRA, MVT::i16, Custom);
76 setOperationAction(ISD::SHL, MVT::i16, Custom);
77 setOperationAction(ISD::SRL, MVT::i16, Custom);
78 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
79 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
80 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
81
Dylan McKay59e7fe32017-05-01 09:48:55 +000082 setOperationAction(ISD::ROTL, MVT::i8, Custom);
83 setOperationAction(ISD::ROTL, MVT::i16, Custom);
84 setOperationAction(ISD::ROTR, MVT::i8, Custom);
85 setOperationAction(ISD::ROTR, MVT::i16, Custom);
86
Dylan McKay7549b0a2016-11-02 06:47:40 +000087 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
88 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
89 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
91 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
92
93 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
Dylan McKay99b756e2016-12-07 12:34:47 +000095 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
96 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000097 setOperationAction(ISD::SETCC, MVT::i8, Custom);
98 setOperationAction(ISD::SETCC, MVT::i16, Custom);
99 setOperationAction(ISD::SETCC, MVT::i32, Custom);
100 setOperationAction(ISD::SETCC, MVT::i64, Custom);
101 setOperationAction(ISD::SELECT, MVT::i8, Expand);
102 setOperationAction(ISD::SELECT, MVT::i16, Expand);
103
104 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
105
106 // Add support for postincrement and predecrement load/stores.
107 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
108 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
109 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
110 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
111 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
112 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
113 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
114 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
115
116 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
117
118 setOperationAction(ISD::VASTART, MVT::Other, Custom);
119 setOperationAction(ISD::VAEND, MVT::Other, Expand);
120 setOperationAction(ISD::VAARG, MVT::Other, Expand);
121 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
122
123 // Atomic operations which must be lowered to rtlib calls
124 for (MVT VT : MVT::integer_valuetypes()) {
125 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
126 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
127 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
128 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
129 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
130 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
131 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
132 }
133
134 // Division/remainder
135 setOperationAction(ISD::UDIV, MVT::i8, Expand);
136 setOperationAction(ISD::UDIV, MVT::i16, Expand);
137 setOperationAction(ISD::UREM, MVT::i8, Expand);
138 setOperationAction(ISD::UREM, MVT::i16, Expand);
139 setOperationAction(ISD::SDIV, MVT::i8, Expand);
140 setOperationAction(ISD::SDIV, MVT::i16, Expand);
141 setOperationAction(ISD::SREM, MVT::i8, Expand);
142 setOperationAction(ISD::SREM, MVT::i16, Expand);
143
144 // Make division and modulus custom
145 for (MVT VT : MVT::integer_valuetypes()) {
146 setOperationAction(ISD::UDIVREM, VT, Custom);
147 setOperationAction(ISD::SDIVREM, VT, Custom);
148 }
149
150 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
151 setOperationAction(ISD::MUL, MVT::i8, Expand);
152 setOperationAction(ISD::MUL, MVT::i16, Expand);
153
154 // Expand 16 bit multiplications.
155 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
156 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
157
158 for (MVT VT : MVT::integer_valuetypes()) {
159 setOperationAction(ISD::MULHS, VT, Expand);
160 setOperationAction(ISD::MULHU, VT, Expand);
161 }
162
163 for (MVT VT : MVT::integer_valuetypes()) {
164 setOperationAction(ISD::CTPOP, VT, Expand);
165 setOperationAction(ISD::CTLZ, VT, Expand);
166 setOperationAction(ISD::CTTZ, VT, Expand);
167 }
168
169 for (MVT VT : MVT::integer_valuetypes()) {
170 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
171 // TODO: The generated code is pretty poor. Investigate using the
172 // same "shift and subtract with carry" trick that we do for
173 // extending 8-bit to 16-bit. This may require infrastructure
174 // improvements in how we treat 16-bit "registers" to be feasible.
175 }
176
177 // Division rtlib functions (not supported)
178 setLibcallName(RTLIB::SDIV_I8, nullptr);
179 setLibcallName(RTLIB::SDIV_I16, nullptr);
180 setLibcallName(RTLIB::SDIV_I32, nullptr);
181 setLibcallName(RTLIB::SDIV_I64, nullptr);
182 setLibcallName(RTLIB::SDIV_I128, nullptr);
183 setLibcallName(RTLIB::UDIV_I8, nullptr);
184 setLibcallName(RTLIB::UDIV_I16, nullptr);
185 setLibcallName(RTLIB::UDIV_I32, nullptr);
186 setLibcallName(RTLIB::UDIV_I64, nullptr);
187 setLibcallName(RTLIB::UDIV_I128, nullptr);
188
189 // Modulus rtlib functions (not supported)
190 setLibcallName(RTLIB::SREM_I8, nullptr);
191 setLibcallName(RTLIB::SREM_I16, nullptr);
192 setLibcallName(RTLIB::SREM_I32, nullptr);
193 setLibcallName(RTLIB::SREM_I64, nullptr);
194 setLibcallName(RTLIB::SREM_I128, nullptr);
195 setLibcallName(RTLIB::UREM_I8, nullptr);
196 setLibcallName(RTLIB::UREM_I16, nullptr);
197 setLibcallName(RTLIB::UREM_I32, nullptr);
198 setLibcallName(RTLIB::UREM_I64, nullptr);
199 setLibcallName(RTLIB::UREM_I128, nullptr);
200
201 // Division and modulus rtlib functions
202 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
203 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
204 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
205 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
206 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
207 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
208 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
209 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
210 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
211 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
212
213 // Several of the runtime library functions use a special calling conv
214 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
215 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
216 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
217 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
218
219 // Trigonometric rtlib functions
220 setLibcallName(RTLIB::SIN_F32, "sin");
221 setLibcallName(RTLIB::COS_F32, "cos");
222
223 setMinFunctionAlignment(1);
224 setMinimumJumpTableEntries(INT_MAX);
225}
226
227const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
228#define NODE(name) \
229 case AVRISD::name: \
230 return #name
231
232 switch (Opcode) {
233 default:
234 return nullptr;
235 NODE(RET_FLAG);
236 NODE(RETI_FLAG);
237 NODE(CALL);
238 NODE(WRAPPER);
239 NODE(LSL);
240 NODE(LSR);
241 NODE(ROL);
242 NODE(ROR);
243 NODE(ASR);
244 NODE(LSLLOOP);
245 NODE(LSRLOOP);
246 NODE(ASRLOOP);
247 NODE(BRCOND);
248 NODE(CMP);
249 NODE(CMPC);
250 NODE(TST);
251 NODE(SELECT_CC);
252#undef NODE
253 }
254}
255
256EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
257 EVT VT) const {
258 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
259 return MVT::i8;
260}
261
262SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
263 //:TODO: this function has to be completely rewritten to produce optimal
264 // code, for now it's producing very long but correct code.
265 unsigned Opc8;
266 const SDNode *N = Op.getNode();
267 EVT VT = Op.getValueType();
268 SDLoc dl(N);
269
270 // Expand non-constant shifts to loops.
271 if (!isa<ConstantSDNode>(N->getOperand(1))) {
272 switch (Op.getOpcode()) {
273 default:
274 llvm_unreachable("Invalid shift opcode!");
275 case ISD::SHL:
276 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
277 N->getOperand(1));
278 case ISD::SRL:
279 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
280 N->getOperand(1));
Dylan McKay59e7fe32017-05-01 09:48:55 +0000281 case ISD::ROTL:
282 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
283 N->getOperand(1));
284 case ISD::ROTR:
285 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
286 N->getOperand(1));
Dylan McKay7549b0a2016-11-02 06:47:40 +0000287 case ISD::SRA:
288 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
289 N->getOperand(1));
290 }
291 }
292
293 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
294 SDValue Victim = N->getOperand(0);
295
296 switch (Op.getOpcode()) {
297 case ISD::SRA:
298 Opc8 = AVRISD::ASR;
299 break;
300 case ISD::ROTL:
301 Opc8 = AVRISD::ROL;
302 break;
303 case ISD::ROTR:
304 Opc8 = AVRISD::ROR;
305 break;
306 case ISD::SRL:
307 Opc8 = AVRISD::LSR;
308 break;
309 case ISD::SHL:
310 Opc8 = AVRISD::LSL;
311 break;
312 default:
313 llvm_unreachable("Invalid shift opcode");
314 }
315
316 while (ShiftAmount--) {
317 Victim = DAG.getNode(Opc8, dl, VT, Victim);
318 }
319
320 return Victim;
321}
322
323SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
324 unsigned Opcode = Op->getOpcode();
325 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
326 "Invalid opcode for Div/Rem lowering");
Meador Inge5d3c5992017-03-24 01:57:29 +0000327 bool IsSigned = (Opcode == ISD::SDIVREM);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000328 EVT VT = Op->getValueType(0);
329 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
330
331 RTLIB::Libcall LC;
332 switch (VT.getSimpleVT().SimpleTy) {
333 default:
334 llvm_unreachable("Unexpected request for libcall!");
335 case MVT::i8:
Meador Inge5d3c5992017-03-24 01:57:29 +0000336 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000337 break;
338 case MVT::i16:
Meador Inge5d3c5992017-03-24 01:57:29 +0000339 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000340 break;
341 case MVT::i32:
Meador Inge5d3c5992017-03-24 01:57:29 +0000342 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000343 break;
344 case MVT::i64:
Meador Inge5d3c5992017-03-24 01:57:29 +0000345 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000346 break;
347 }
348
349 SDValue InChain = DAG.getEntryNode();
350
351 TargetLowering::ArgListTy Args;
352 TargetLowering::ArgListEntry Entry;
353 for (SDValue const &Value : Op->op_values()) {
354 Entry.Node = Value;
355 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
Meador Inge5d3c5992017-03-24 01:57:29 +0000356 Entry.IsSExt = IsSigned;
357 Entry.IsZExt = !IsSigned;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000358 Args.push_back(Entry);
359 }
360
361 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
362 getPointerTy(DAG.getDataLayout()));
363
Leslie Zhaia1149e02017-05-12 09:08:03 +0000364 Type *RetTy = (Type *)StructType::get(Ty, Ty);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000365
366 SDLoc dl(Op);
367 TargetLowering::CallLoweringInfo CLI(DAG);
368 CLI.setDebugLoc(dl)
369 .setChain(InChain)
Nirav Daveac6081c2017-03-18 00:44:07 +0000370 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
Dylan McKay7549b0a2016-11-02 06:47:40 +0000371 .setInRegister()
Meador Inge5d3c5992017-03-24 01:57:29 +0000372 .setSExtResult(IsSigned)
373 .setZExtResult(!IsSigned);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000374
375 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
376 return CallInfo.first;
377}
378
379SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
380 SelectionDAG &DAG) const {
381 auto DL = DAG.getDataLayout();
382
383 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
384 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
385
386 // Create the TargetGlobalAddress node, folding in the constant offset.
387 SDValue Result =
388 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
389 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
390}
391
392SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
393 SelectionDAG &DAG) const {
394 auto DL = DAG.getDataLayout();
395 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
396
397 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
398
399 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
400}
401
402/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
403static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
404 switch (CC) {
405 default:
406 llvm_unreachable("Unknown condition code!");
407 case ISD::SETEQ:
408 return AVRCC::COND_EQ;
409 case ISD::SETNE:
410 return AVRCC::COND_NE;
411 case ISD::SETGE:
412 return AVRCC::COND_GE;
413 case ISD::SETLT:
414 return AVRCC::COND_LT;
415 case ISD::SETUGE:
416 return AVRCC::COND_SH;
417 case ISD::SETULT:
418 return AVRCC::COND_LO;
419 }
420}
421
422/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
423/// the given operands.
424SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
425 SDValue &AVRcc, SelectionDAG &DAG,
426 SDLoc DL) const {
427 SDValue Cmp;
428 EVT VT = LHS.getValueType();
429 bool UseTest = false;
430
431 switch (CC) {
432 default:
433 break;
434 case ISD::SETLE: {
435 // Swap operands and reverse the branching condition.
436 std::swap(LHS, RHS);
437 CC = ISD::SETGE;
438 break;
439 }
440 case ISD::SETGT: {
441 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
442 switch (C->getSExtValue()) {
443 case -1: {
444 // When doing lhs > -1 use a tst instruction on the top part of lhs
445 // and use brpl instead of using a chain of cp/cpc.
446 UseTest = true;
447 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
448 break;
449 }
450 case 0: {
451 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
452 // __zero_reg__ in lhs.
453 RHS = LHS;
454 LHS = DAG.getConstant(0, DL, VT);
455 CC = ISD::SETLT;
456 break;
457 }
458 default: {
459 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
460 // us to fold the constant into the cmp instruction.
461 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
462 CC = ISD::SETGE;
463 break;
464 }
465 }
466 break;
467 }
468 // Swap operands and reverse the branching condition.
469 std::swap(LHS, RHS);
470 CC = ISD::SETLT;
471 break;
472 }
473 case ISD::SETLT: {
474 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
475 switch (C->getSExtValue()) {
476 case 1: {
477 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
478 // __zero_reg__ in lhs.
479 RHS = LHS;
480 LHS = DAG.getConstant(0, DL, VT);
481 CC = ISD::SETGE;
482 break;
483 }
484 case 0: {
485 // When doing lhs < 0 use a tst instruction on the top part of lhs
486 // and use brmi instead of using a chain of cp/cpc.
487 UseTest = true;
488 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
489 break;
490 }
491 }
492 }
493 break;
494 }
495 case ISD::SETULE: {
496 // Swap operands and reverse the branching condition.
497 std::swap(LHS, RHS);
498 CC = ISD::SETUGE;
499 break;
500 }
501 case ISD::SETUGT: {
502 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
503 // fold the constant into the cmp instruction.
504 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
505 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
506 CC = ISD::SETUGE;
507 break;
508 }
509 // Swap operands and reverse the branching condition.
510 std::swap(LHS, RHS);
511 CC = ISD::SETULT;
512 break;
513 }
514 }
515
516 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
517 // using the default and/or/xor expansion code which is much longer.
518 if (VT == MVT::i32) {
519 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
520 DAG.getIntPtrConstant(0, DL));
521 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
522 DAG.getIntPtrConstant(1, DL));
523 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
524 DAG.getIntPtrConstant(0, DL));
525 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
526 DAG.getIntPtrConstant(1, DL));
527
528 if (UseTest) {
529 // When using tst we only care about the highest part.
530 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
531 DAG.getIntPtrConstant(1, DL));
532 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
533 } else {
534 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
535 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
536 }
537 } else if (VT == MVT::i64) {
538 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
539 DAG.getIntPtrConstant(0, DL));
540 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
541 DAG.getIntPtrConstant(1, DL));
542
543 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
544 DAG.getIntPtrConstant(0, DL));
545 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
546 DAG.getIntPtrConstant(1, DL));
547 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
548 DAG.getIntPtrConstant(0, DL));
549 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
550 DAG.getIntPtrConstant(1, DL));
551
552 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
553 DAG.getIntPtrConstant(0, DL));
554 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
555 DAG.getIntPtrConstant(1, DL));
556
557 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
558 DAG.getIntPtrConstant(0, DL));
559 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
560 DAG.getIntPtrConstant(1, DL));
561 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
562 DAG.getIntPtrConstant(0, DL));
563 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
564 DAG.getIntPtrConstant(1, DL));
565
566 if (UseTest) {
567 // When using tst we only care about the highest part.
568 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
569 DAG.getIntPtrConstant(1, DL));
570 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
571 } else {
572 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
573 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
574 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
575 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
576 }
577 } else if (VT == MVT::i8 || VT == MVT::i16) {
578 if (UseTest) {
579 // When using tst we only care about the highest part.
580 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
581 (VT == MVT::i8)
582 ? LHS
583 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
584 LHS, DAG.getIntPtrConstant(1, DL)));
585 } else {
586 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
587 }
588 } else {
589 llvm_unreachable("Invalid comparison size");
590 }
591
592 // When using a test instruction AVRcc is already set.
593 if (!UseTest) {
594 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
595 }
596
597 return Cmp;
598}
599
600SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
601 SDValue Chain = Op.getOperand(0);
602 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
603 SDValue LHS = Op.getOperand(2);
604 SDValue RHS = Op.getOperand(3);
605 SDValue Dest = Op.getOperand(4);
606 SDLoc dl(Op);
607
608 SDValue TargetCC;
609 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
610
611 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
612 Cmp);
613}
614
615SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
616 SDValue LHS = Op.getOperand(0);
617 SDValue RHS = Op.getOperand(1);
618 SDValue TrueV = Op.getOperand(2);
619 SDValue FalseV = Op.getOperand(3);
620 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
621 SDLoc dl(Op);
622
623 SDValue TargetCC;
624 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
625
626 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
627 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
628
629 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
630}
631
632SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
633 SDValue LHS = Op.getOperand(0);
634 SDValue RHS = Op.getOperand(1);
635 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
636 SDLoc DL(Op);
637
638 SDValue TargetCC;
639 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
640
641 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
642 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
643 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
644 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
645
646 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
647}
648
649SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
650 const MachineFunction &MF = DAG.getMachineFunction();
651 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
652 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
653 auto DL = DAG.getDataLayout();
654 SDLoc dl(Op);
655
656 // Vastart just stores the address of the VarArgsFrameIndex slot into the
657 // memory location argument.
658 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
659
660 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
661 MachinePointerInfo(SV), 0);
662}
663
664SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
665 switch (Op.getOpcode()) {
666 default:
667 llvm_unreachable("Don't know how to custom lower this!");
668 case ISD::SHL:
669 case ISD::SRA:
670 case ISD::SRL:
671 case ISD::ROTL:
672 case ISD::ROTR:
673 return LowerShifts(Op, DAG);
674 case ISD::GlobalAddress:
675 return LowerGlobalAddress(Op, DAG);
676 case ISD::BlockAddress:
677 return LowerBlockAddress(Op, DAG);
678 case ISD::BR_CC:
679 return LowerBR_CC(Op, DAG);
680 case ISD::SELECT_CC:
681 return LowerSELECT_CC(Op, DAG);
682 case ISD::SETCC:
683 return LowerSETCC(Op, DAG);
684 case ISD::VASTART:
685 return LowerVASTART(Op, DAG);
686 case ISD::SDIVREM:
687 case ISD::UDIVREM:
688 return LowerDivRem(Op, DAG);
689 }
690
691 return SDValue();
692}
693
694/// Replace a node with an illegal result type
695/// with a new node built out of custom code.
696void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
697 SmallVectorImpl<SDValue> &Results,
698 SelectionDAG &DAG) const {
699 SDLoc DL(N);
700
701 switch (N->getOpcode()) {
702 case ISD::ADD: {
703 // Convert add (x, imm) into sub (x, -imm).
704 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
705 SDValue Sub = DAG.getNode(
706 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
707 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
708 Results.push_back(Sub);
709 }
710 break;
711 }
712 default: {
713 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
714
715 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
716 Results.push_back(Res.getValue(I));
717
718 break;
719 }
720 }
721}
722
723/// Return true if the addressing mode represented
724/// by AM is legal for this target, for a load/store of the specified type.
725bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
726 const AddrMode &AM, Type *Ty,
Jonas Paulsson024e3192017-07-21 11:59:37 +0000727 unsigned AS, Instruction *I) const {
Dylan McKay7549b0a2016-11-02 06:47:40 +0000728 int64_t Offs = AM.BaseOffs;
729
730 // Allow absolute addresses.
731 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
732 return true;
733 }
734
735 // Flash memory instructions only allow zero offsets.
736 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
737 return false;
738 }
739
740 // Allow reg+<6bit> offset.
741 if (Offs < 0)
742 Offs = -Offs;
743 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
744 return true;
745 }
746
747 return false;
748}
749
750/// Returns true by value, base pointer and
751/// offset pointer and addressing mode by reference if the node's address
752/// can be legally represented as pre-indexed load / store address.
753bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
754 SDValue &Offset,
755 ISD::MemIndexedMode &AM,
756 SelectionDAG &DAG) const {
757 EVT VT;
758 const SDNode *Op;
759 SDLoc DL(N);
760
761 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
762 VT = LD->getMemoryVT();
763 Op = LD->getBasePtr().getNode();
764 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
765 return false;
766 if (AVR::isProgramMemoryAccess(LD)) {
767 return false;
768 }
769 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
770 VT = ST->getMemoryVT();
771 Op = ST->getBasePtr().getNode();
772 if (AVR::isProgramMemoryAccess(ST)) {
773 return false;
774 }
775 } else {
776 return false;
777 }
778
779 if (VT != MVT::i8 && VT != MVT::i16) {
780 return false;
781 }
782
783 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
784 return false;
785 }
786
787 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
788 int RHSC = RHS->getSExtValue();
789 if (Op->getOpcode() == ISD::SUB)
790 RHSC = -RHSC;
791
792 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
793 return false;
794 }
795
796 Base = Op->getOperand(0);
797 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
798 AM = ISD::PRE_DEC;
799
800 return true;
801 }
802
803 return false;
804}
805
806/// Returns true by value, base pointer and
807/// offset pointer and addressing mode by reference if this node can be
808/// combined with a load / store to form a post-indexed load / store.
809bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
810 SDValue &Base,
811 SDValue &Offset,
812 ISD::MemIndexedMode &AM,
813 SelectionDAG &DAG) const {
814 EVT VT;
815 SDLoc DL(N);
816
817 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
818 VT = LD->getMemoryVT();
819 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
820 return false;
821 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
822 VT = ST->getMemoryVT();
823 if (AVR::isProgramMemoryAccess(ST)) {
824 return false;
825 }
826 } else {
827 return false;
828 }
829
830 if (VT != MVT::i8 && VT != MVT::i16) {
831 return false;
832 }
833
834 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
835 return false;
836 }
837
838 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
839 int RHSC = RHS->getSExtValue();
840 if (Op->getOpcode() == ISD::SUB)
841 RHSC = -RHSC;
842 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
843 return false;
844 }
845
846 Base = Op->getOperand(0);
847 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
848 AM = ISD::POST_INC;
849
850 return true;
851 }
852
853 return false;
854}
855
856bool AVRTargetLowering::isOffsetFoldingLegal(
857 const GlobalAddressSDNode *GA) const {
858 return true;
859}
860
861//===----------------------------------------------------------------------===//
862// Formal Arguments Calling Convention Implementation
863//===----------------------------------------------------------------------===//
864
865#include "AVRGenCallingConv.inc"
866
867/// For each argument in a function store the number of pieces it is composed
868/// of.
869static void parseFunctionArgs(const Function *F, const DataLayout *TD,
870 SmallVectorImpl<unsigned> &Out) {
871 for (Argument const &Arg : F->args()) {
872 unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8;
873 Out.push_back((Bytes + 1) / 2);
874 }
875}
876
877/// For external symbols there is no function prototype information so we
878/// have to rely directly on argument sizes.
879static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
880 SmallVectorImpl<unsigned> &Out) {
881 for (unsigned i = 0, e = In.size(); i != e;) {
882 unsigned Size = 0;
883 unsigned Offset = 0;
884 while ((i != e) && (In[i].PartOffset == Offset)) {
885 Offset += In[i].VT.getStoreSize();
886 ++i;
887 ++Size;
888 }
889 Out.push_back(Size);
890 }
891}
892
893static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
894 SDValue Callee = CLI.Callee;
895
896 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
897 return G->getSymbol();
898 }
899
900 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
901 return G->getGlobal()->getName();
902 }
903
904 llvm_unreachable("don't know how to get the name for this callee");
905}
906
907/// Analyze incoming and outgoing function arguments. We need custom C++ code
908/// to handle special constraints in the ABI like reversing the order of the
909/// pieces of splitted arguments. In addition, all pieces of a certain argument
910/// have to be passed either using registers or the stack but never mixing both.
911static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
912 const Function *F, const DataLayout *TD,
913 const SmallVectorImpl<ISD::OutputArg> *Outs,
914 const SmallVectorImpl<ISD::InputArg> *Ins,
915 CallingConv::ID CallConv,
916 SmallVectorImpl<CCValAssign> &ArgLocs,
917 CCState &CCInfo, bool IsCall, bool IsVarArg) {
918 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
919 AVR::R18, AVR::R16, AVR::R14,
920 AVR::R12, AVR::R10, AVR::R8};
921 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
922 AVR::R19R18, AVR::R17R16, AVR::R15R14,
923 AVR::R13R12, AVR::R11R10, AVR::R9R8};
924 if (IsVarArg) {
925 // Variadic functions do not need all the analisys below.
926 if (IsCall) {
927 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
928 } else {
929 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
930 }
931 return;
932 }
933
934 // Fill in the Args array which will contain original argument sizes.
935 SmallVector<unsigned, 8> Args;
936 if (IsCall) {
937 parseExternFuncCallArgs(*Outs, Args);
938 } else {
939 assert(F != nullptr && "function should not be null");
940 parseFunctionArgs(F, TD, Args);
941 }
942
943 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
944 // Variadic functions always use the stack.
945 bool UsesStack = false;
946 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
947 unsigned Size = Args[i];
Dylan McKay7a3eb292017-02-05 09:53:45 +0000948
949 // If we have a zero-sized argument, don't attempt to lower it.
950 // AVR-GCC does not support zero-sized arguments and so we need not
951 // worry about ABI compatibility.
952 if (Size == 0) continue;
953
Dylan McKay7549b0a2016-11-02 06:47:40 +0000954 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
955
956 // If we have plenty of regs to pass the whole argument do it.
957 if (!UsesStack && (Size <= RegsLeft)) {
958 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
959
960 for (unsigned j = 0; j != Size; ++j) {
961 unsigned Reg = CCInfo.AllocateReg(
962 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
963 CCInfo.addLoc(
964 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
965 --RegsLeft;
966 }
967
968 // Reverse the order of the pieces to agree with the "big endian" format
969 // required in the calling convention ABI.
970 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
971 } else {
972 // Pass the rest of arguments using the stack.
973 UsesStack = true;
974 for (unsigned j = 0; j != Size; ++j) {
975 unsigned Offset = CCInfo.AllocateStack(
976 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
977 TD->getABITypeAlignment(
978 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
979 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
980 CCValAssign::Full));
981 }
982 }
983 pos += Size;
984 }
985}
986
987static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
988 const Function *F, const DataLayout *TD,
989 const SmallVectorImpl<ISD::OutputArg> *Outs,
990 const SmallVectorImpl<ISD::InputArg> *Ins,
991 CallingConv::ID CallConv,
992 SmallVectorImpl<CCValAssign> &ArgLocs,
993 CCState &CCInfo, bool IsCall, bool IsVarArg) {
994 StringRef FuncName = getFunctionName(CLI);
995
996 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
997 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
998 } else {
999 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1000 CallConv, ArgLocs, CCInfo,
1001 IsCall, IsVarArg);
1002 }
1003}
1004
1005static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1006 const Function *F, const DataLayout *TD,
1007 const SmallVectorImpl<ISD::OutputArg> *Outs,
1008 const SmallVectorImpl<ISD::InputArg> *Ins,
1009 CallingConv::ID CallConv,
1010 SmallVectorImpl<CCValAssign> &ArgLocs,
1011 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1012 switch (CallConv) {
1013 case CallingConv::AVR_BUILTIN: {
1014 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1015 CallConv, ArgLocs, CCInfo,
1016 IsCall, IsVarArg);
1017 return;
1018 }
1019 default: {
1020 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1021 CallConv, ArgLocs, CCInfo,
1022 IsCall, IsVarArg);
1023 return;
1024 }
1025 }
1026}
1027
1028SDValue AVRTargetLowering::LowerFormalArguments(
1029 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1030 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1031 SmallVectorImpl<SDValue> &InVals) const {
1032 MachineFunction &MF = DAG.getMachineFunction();
1033 MachineFrameInfo &MFI = MF.getFrameInfo();
1034 auto DL = DAG.getDataLayout();
1035
1036 // Assign locations to all of the incoming arguments.
1037 SmallVector<CCValAssign, 16> ArgLocs;
1038 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1039 *DAG.getContext());
1040
1041 analyzeArguments(nullptr, MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
1042 false, isVarArg);
1043
1044 SDValue ArgValue;
1045 for (CCValAssign &VA : ArgLocs) {
1046
1047 // Arguments stored on registers.
1048 if (VA.isRegLoc()) {
1049 EVT RegVT = VA.getLocVT();
1050 const TargetRegisterClass *RC;
1051 if (RegVT == MVT::i8) {
1052 RC = &AVR::GPR8RegClass;
1053 } else if (RegVT == MVT::i16) {
1054 RC = &AVR::DREGSRegClass;
1055 } else {
1056 llvm_unreachable("Unknown argument type!");
1057 }
1058
1059 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1060 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1061
1062 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1063 // following code will handle zexts or sexts generated by other
1064 // front ends. Otherwise:
1065 // If this is an 8 bit value, it is really passed promoted
1066 // to 16 bits. Insert an assert[sz]ext to capture this, then
1067 // truncate to the right size.
1068 switch (VA.getLocInfo()) {
1069 default:
1070 llvm_unreachable("Unknown loc info!");
1071 case CCValAssign::Full:
1072 break;
1073 case CCValAssign::BCvt:
1074 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1075 break;
1076 case CCValAssign::SExt:
1077 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1078 DAG.getValueType(VA.getValVT()));
1079 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1080 break;
1081 case CCValAssign::ZExt:
1082 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1083 DAG.getValueType(VA.getValVT()));
1084 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1085 break;
1086 }
1087
1088 InVals.push_back(ArgValue);
1089 } else {
1090 // Sanity check.
1091 assert(VA.isMemLoc());
1092
1093 EVT LocVT = VA.getLocVT();
1094
1095 // Create the frame index object for this incoming parameter.
1096 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1097 VA.getLocMemOffset(), true);
1098
1099 // Create the SelectionDAG nodes corresponding to a load
1100 // from this parameter.
1101 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1102 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1103 MachinePointerInfo::getFixedStack(MF, FI),
1104 0));
1105 }
1106 }
1107
1108 // If the function takes variable number of arguments, make a frame index for
1109 // the start of the first vararg value... for expansion of llvm.va_start.
1110 if (isVarArg) {
1111 unsigned StackSize = CCInfo.getNextStackOffset();
1112 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1113
1114 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1115 }
1116
1117 return Chain;
1118}
1119
1120//===----------------------------------------------------------------------===//
1121// Call Calling Convention Implementation
1122//===----------------------------------------------------------------------===//
1123
1124SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1125 SmallVectorImpl<SDValue> &InVals) const {
1126 SelectionDAG &DAG = CLI.DAG;
1127 SDLoc &DL = CLI.DL;
1128 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1129 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1130 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1131 SDValue Chain = CLI.Chain;
1132 SDValue Callee = CLI.Callee;
1133 bool &isTailCall = CLI.IsTailCall;
1134 CallingConv::ID CallConv = CLI.CallConv;
1135 bool isVarArg = CLI.IsVarArg;
1136
1137 MachineFunction &MF = DAG.getMachineFunction();
1138
1139 // AVR does not yet support tail call optimization.
1140 isTailCall = false;
1141
1142 // Analyze operands of the call, assigning locations to each operand.
1143 SmallVector<CCValAssign, 16> ArgLocs;
1144 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1145 *DAG.getContext());
1146
1147 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1148 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1149 // node so that legalize doesn't hack it.
1150 const Function *F = nullptr;
1151 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1152 const GlobalValue *GV = G->getGlobal();
1153
1154 F = cast<Function>(GV);
1155 Callee =
1156 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1157 } else if (const ExternalSymbolSDNode *ES =
1158 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1159 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1160 getPointerTy(DAG.getDataLayout()));
1161 }
1162
1163 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1164 true, isVarArg);
1165
1166 // Get a count of how many bytes are to be pushed on the stack.
1167 unsigned NumBytes = CCInfo.getNextStackOffset();
1168
Serge Pavlovd526b132017-05-09 13:35:13 +00001169 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001170
1171 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1172
1173 // First, walk the register assignments, inserting copies.
1174 unsigned AI, AE;
1175 bool HasStackArgs = false;
1176 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1177 CCValAssign &VA = ArgLocs[AI];
1178 EVT RegVT = VA.getLocVT();
1179 SDValue Arg = OutVals[AI];
1180
1181 // Promote the value if needed. With Clang this should not happen.
1182 switch (VA.getLocInfo()) {
1183 default:
1184 llvm_unreachable("Unknown loc info!");
1185 case CCValAssign::Full:
1186 break;
1187 case CCValAssign::SExt:
1188 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1189 break;
1190 case CCValAssign::ZExt:
1191 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1192 break;
1193 case CCValAssign::AExt:
1194 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1195 break;
1196 case CCValAssign::BCvt:
1197 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1198 break;
1199 }
1200
1201 // Stop when we encounter a stack argument, we need to process them
1202 // in reverse order in the loop below.
1203 if (VA.isMemLoc()) {
1204 HasStackArgs = true;
1205 break;
1206 }
1207
1208 // Arguments that can be passed on registers must be kept in the RegsToPass
1209 // vector.
1210 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1211 }
1212
1213 // Second, stack arguments have to walked in reverse order by inserting
1214 // chained stores, this ensures their order is not changed by the scheduler
1215 // and that the push instruction sequence generated is correct, otherwise they
1216 // can be freely intermixed.
1217 if (HasStackArgs) {
1218 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1219 unsigned Loc = AI - 1;
1220 CCValAssign &VA = ArgLocs[Loc];
1221 SDValue Arg = OutVals[Loc];
1222
1223 assert(VA.isMemLoc());
1224
1225 // SP points to one stack slot further so add one to adjust it.
1226 SDValue PtrOff = DAG.getNode(
1227 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1228 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1229 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1230
1231 Chain =
1232 DAG.getStore(Chain, DL, Arg, PtrOff,
1233 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1234 0);
1235 }
1236 }
1237
1238 // Build a sequence of copy-to-reg nodes chained together with token chain and
1239 // flag operands which copy the outgoing args into registers. The InFlag in
1240 // necessary since all emited instructions must be stuck together.
1241 SDValue InFlag;
1242 for (auto Reg : RegsToPass) {
1243 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1244 InFlag = Chain.getValue(1);
1245 }
1246
1247 // Returns a chain & a flag for retval copy to use.
1248 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1249 SmallVector<SDValue, 8> Ops;
1250 Ops.push_back(Chain);
1251 Ops.push_back(Callee);
1252
1253 // Add argument registers to the end of the list so that they are known live
1254 // into the call.
1255 for (auto Reg : RegsToPass) {
1256 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1257 }
1258
1259 // Add a register mask operand representing the call-preserved registers.
1260 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1261 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
1262 const uint32_t *Mask =
1263 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1264 assert(Mask && "Missing call preserved mask for calling convention");
1265 Ops.push_back(DAG.getRegisterMask(Mask));
1266
1267 if (InFlag.getNode()) {
1268 Ops.push_back(InFlag);
1269 }
1270
1271 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1272 InFlag = Chain.getValue(1);
1273
1274 // Create the CALLSEQ_END node.
1275 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1276 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1277
1278 if (!Ins.empty()) {
1279 InFlag = Chain.getValue(1);
1280 }
1281
1282 // Handle result values, copying them out of physregs into vregs that we
1283 // return.
1284 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1285 InVals);
1286}
1287
1288/// Lower the result values of a call into the
1289/// appropriate copies out of appropriate physical registers.
1290///
1291SDValue AVRTargetLowering::LowerCallResult(
1292 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1293 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1294 SmallVectorImpl<SDValue> &InVals) const {
1295
1296 // Assign locations to each value returned by this call.
1297 SmallVector<CCValAssign, 16> RVLocs;
1298 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1299 *DAG.getContext());
1300
1301 // Handle runtime calling convs.
1302 auto CCFunction = CCAssignFnForReturn(CallConv);
1303 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1304
1305 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1306 // Reverse splitted return values to get the "big endian" format required
1307 // to agree with the calling convention ABI.
1308 std::reverse(RVLocs.begin(), RVLocs.end());
1309 }
1310
1311 // Copy all of the result registers out of their specified physreg.
1312 for (CCValAssign const &RVLoc : RVLocs) {
1313 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1314 InFlag)
1315 .getValue(1);
1316 InFlag = Chain.getValue(2);
1317 InVals.push_back(Chain.getValue(0));
1318 }
1319
1320 return Chain;
1321}
1322
1323//===----------------------------------------------------------------------===//
1324// Return Value Calling Convention Implementation
1325//===----------------------------------------------------------------------===//
1326
1327CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1328 switch (CC) {
1329 case CallingConv::AVR_BUILTIN:
1330 return RetCC_AVR_BUILTIN;
1331 default:
1332 return RetCC_AVR;
1333 }
1334}
1335
1336bool
1337AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1338 MachineFunction &MF, bool isVarArg,
1339 const SmallVectorImpl<ISD::OutputArg> &Outs,
1340 LLVMContext &Context) const
1341{
1342 SmallVector<CCValAssign, 16> RVLocs;
1343 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1344
1345 auto CCFunction = CCAssignFnForReturn(CallConv);
1346 return CCInfo.CheckReturn(Outs, CCFunction);
1347}
1348
1349SDValue
1350AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1351 bool isVarArg,
1352 const SmallVectorImpl<ISD::OutputArg> &Outs,
1353 const SmallVectorImpl<SDValue> &OutVals,
1354 const SDLoc &dl, SelectionDAG &DAG) const {
1355 // CCValAssign - represent the assignment of the return value to locations.
1356 SmallVector<CCValAssign, 16> RVLocs;
1357
1358 // CCState - Info about the registers and stack slot.
1359 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1360 *DAG.getContext());
1361
1362 // Analyze return values.
1363 auto CCFunction = CCAssignFnForReturn(CallConv);
1364 CCInfo.AnalyzeReturn(Outs, CCFunction);
1365
1366 // If this is the first return lowered for this function, add the regs to
1367 // the liveout set for the function.
1368 MachineFunction &MF = DAG.getMachineFunction();
1369 unsigned e = RVLocs.size();
1370
1371 // Reverse splitted return values to get the "big endian" format required
1372 // to agree with the calling convention ABI.
1373 if (e > 1) {
1374 std::reverse(RVLocs.begin(), RVLocs.end());
1375 }
1376
1377 SDValue Flag;
1378 SmallVector<SDValue, 4> RetOps(1, Chain);
1379 // Copy the result values into the output registers.
1380 for (unsigned i = 0; i != e; ++i) {
1381 CCValAssign &VA = RVLocs[i];
1382 assert(VA.isRegLoc() && "Can only return in registers!");
1383
1384 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1385
1386 // Guarantee that all emitted copies are stuck together with flags.
1387 Flag = Chain.getValue(1);
1388 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1389 }
1390
1391 // Don't emit the ret/reti instruction when the naked attribute is present in
1392 // the function being compiled.
1393 if (MF.getFunction()->getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +00001394 AttributeList::FunctionIndex, Attribute::Naked)) {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001395 return Chain;
1396 }
1397
1398 unsigned RetOpc =
1399 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1400 ? AVRISD::RETI_FLAG
1401 : AVRISD::RET_FLAG;
1402
1403 RetOps[0] = Chain; // Update chain.
1404
1405 if (Flag.getNode()) {
1406 RetOps.push_back(Flag);
1407 }
1408
1409 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1410}
1411
1412//===----------------------------------------------------------------------===//
1413// Custom Inserters
1414//===----------------------------------------------------------------------===//
1415
1416MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1417 MachineBasicBlock *BB) const {
1418 unsigned Opc;
1419 const TargetRegisterClass *RC;
1420 MachineFunction *F = BB->getParent();
1421 MachineRegisterInfo &RI = F->getRegInfo();
1422 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1423 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1424 DebugLoc dl = MI.getDebugLoc();
1425
1426 switch (MI.getOpcode()) {
1427 default:
1428 llvm_unreachable("Invalid shift opcode!");
1429 case AVR::Lsl8:
1430 Opc = AVR::LSLRd;
1431 RC = &AVR::GPR8RegClass;
1432 break;
1433 case AVR::Lsl16:
1434 Opc = AVR::LSLWRd;
1435 RC = &AVR::DREGSRegClass;
1436 break;
1437 case AVR::Asr8:
1438 Opc = AVR::ASRRd;
1439 RC = &AVR::GPR8RegClass;
1440 break;
1441 case AVR::Asr16:
1442 Opc = AVR::ASRWRd;
1443 RC = &AVR::DREGSRegClass;
1444 break;
1445 case AVR::Lsr8:
1446 Opc = AVR::LSRRd;
1447 RC = &AVR::GPR8RegClass;
1448 break;
1449 case AVR::Lsr16:
1450 Opc = AVR::LSRWRd;
1451 RC = &AVR::DREGSRegClass;
1452 break;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001453 case AVR::Rol8:
1454 Opc = AVR::ROLRd;
1455 RC = &AVR::GPR8RegClass;
1456 break;
1457 case AVR::Rol16:
1458 Opc = AVR::ROLWRd;
1459 RC = &AVR::DREGSRegClass;
1460 break;
1461 case AVR::Ror8:
1462 Opc = AVR::RORRd;
1463 RC = &AVR::GPR8RegClass;
1464 break;
1465 case AVR::Ror16:
1466 Opc = AVR::RORWRd;
1467 RC = &AVR::DREGSRegClass;
1468 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001469 }
1470
1471 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Dylan McKaydada0142017-09-26 00:51:03 +00001472
1473 MachineFunction::iterator I;
Dylan McKay1446eed2017-09-26 01:37:53 +00001474 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
Dylan McKaydada0142017-09-26 00:51:03 +00001475 if (I != F->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001476
1477 // Create loop block.
1478 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1479 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1480
1481 F->insert(I, LoopBB);
1482 F->insert(I, RemBB);
1483
1484 // Update machine-CFG edges by transferring all successors of the current
1485 // block to the block containing instructions after shift.
1486 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1487 BB->end());
1488 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1489
1490 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1491 BB->addSuccessor(LoopBB);
1492 BB->addSuccessor(RemBB);
1493 LoopBB->addSuccessor(RemBB);
1494 LoopBB->addSuccessor(LoopBB);
1495
1496 unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1497 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1498 unsigned ShiftReg = RI.createVirtualRegister(RC);
1499 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1500 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1501 unsigned SrcReg = MI.getOperand(1).getReg();
1502 unsigned DstReg = MI.getOperand(0).getReg();
1503
1504 // BB:
Dylan McKay043fa4b2017-05-31 06:27:46 +00001505 // cpi N, 0
Dylan McKay7549b0a2016-11-02 06:47:40 +00001506 // breq RemBB
Dylan McKay043fa4b2017-05-31 06:27:46 +00001507 BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
Dylan McKay7549b0a2016-11-02 06:47:40 +00001508 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1509
1510 // LoopBB:
1511 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1512 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1513 // ShiftReg2 = shift ShiftReg
1514 // ShiftAmt2 = ShiftAmt - 1;
1515 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1516 .addReg(SrcReg)
1517 .addMBB(BB)
1518 .addReg(ShiftReg2)
1519 .addMBB(LoopBB);
1520 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1521 .addReg(ShiftAmtSrcReg)
1522 .addMBB(BB)
1523 .addReg(ShiftAmtReg2)
1524 .addMBB(LoopBB);
1525 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1526 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1527 .addReg(ShiftAmtReg)
1528 .addImm(1);
1529 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1530
1531 // RemBB:
1532 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1533 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1534 .addReg(SrcReg)
1535 .addMBB(BB)
1536 .addReg(ShiftReg2)
1537 .addMBB(LoopBB);
1538
1539 MI.eraseFromParent(); // The pseudo instruction is gone now.
1540 return RemBB;
1541}
1542
1543static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1544 if (I->getOpcode() == AVR::COPY) {
1545 unsigned SrcReg = I->getOperand(1).getReg();
1546 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1547 }
1548
1549 return false;
1550}
1551
1552// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1553// after the result has been evacuated. This is probably not the best way to do
1554// it, but it works for now.
1555MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1556 MachineBasicBlock *BB) const {
1557 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1558 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1559 MachineBasicBlock::iterator I(MI);
1560 ++I; // in any case insert *after* the mul instruction
1561 if (isCopyMulResult(I))
1562 ++I;
1563 if (isCopyMulResult(I))
1564 ++I;
1565 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1566 .addReg(AVR::R1)
1567 .addReg(AVR::R1);
1568 return BB;
1569}
1570
1571MachineBasicBlock *
1572AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1573 MachineBasicBlock *MBB) const {
1574 int Opc = MI.getOpcode();
1575
1576 // Pseudo shift instructions with a non constant shift amount are expanded
1577 // into a loop.
1578 switch (Opc) {
1579 case AVR::Lsl8:
1580 case AVR::Lsl16:
1581 case AVR::Lsr8:
1582 case AVR::Lsr16:
Dylan McKay59e7fe32017-05-01 09:48:55 +00001583 case AVR::Rol8:
1584 case AVR::Rol16:
1585 case AVR::Ror8:
1586 case AVR::Ror16:
Dylan McKay7549b0a2016-11-02 06:47:40 +00001587 case AVR::Asr8:
1588 case AVR::Asr16:
1589 return insertShift(MI, MBB);
1590 case AVR::MULRdRr:
1591 case AVR::MULSRdRr:
1592 return insertMul(MI, MBB);
1593 }
1594
1595 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1596 "Unexpected instr type to insert");
1597
1598 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1599 ->getParent()
1600 ->getSubtarget()
1601 .getInstrInfo();
1602 DebugLoc dl = MI.getDebugLoc();
1603
1604 // To "insert" a SELECT instruction, we insert the diamond
1605 // control-flow pattern. The incoming instruction knows the
1606 // destination vreg to set, the condition code register to branch
1607 // on, the true/false values to select between, and a branch opcode
1608 // to use.
1609
1610 MachineFunction *MF = MBB->getParent();
1611 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1612 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1613 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1614
Dylan McKay0c4debc2017-05-13 00:22:34 +00001615 MachineFunction::iterator I;
1616 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1617 if (I != MF->end()) ++I;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001618 MF->insert(I, trueMBB);
1619 MF->insert(I, falseMBB);
1620
1621 // Transfer remaining instructions and all successors of the current
1622 // block to the block which will contain the Phi node for the
1623 // select.
1624 trueMBB->splice(trueMBB->begin(), MBB,
1625 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1626 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1627
1628 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1629 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1630 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1631 MBB->addSuccessor(falseMBB);
1632 MBB->addSuccessor(trueMBB);
1633
1634 // Unconditionally flow back to the true block
1635 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1636 falseMBB->addSuccessor(trueMBB);
1637
1638 // Set up the Phi node to determine where we came from
1639 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1640 .addReg(MI.getOperand(1).getReg())
1641 .addMBB(MBB)
1642 .addReg(MI.getOperand(2).getReg())
1643 .addMBB(falseMBB) ;
1644
1645 MI.eraseFromParent(); // The pseudo instruction is gone now.
1646 return trueMBB;
1647}
1648
1649//===----------------------------------------------------------------------===//
1650// Inline Asm Support
1651//===----------------------------------------------------------------------===//
1652
1653AVRTargetLowering::ConstraintType
1654AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1655 if (Constraint.size() == 1) {
1656 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1657 switch (Constraint[0]) {
1658 case 'a': // Simple upper registers
1659 case 'b': // Base pointer registers pairs
1660 case 'd': // Upper register
1661 case 'l': // Lower registers
1662 case 'e': // Pointer register pairs
1663 case 'q': // Stack pointer register
1664 case 'r': // Any register
1665 case 'w': // Special upper register pairs
1666 return C_RegisterClass;
1667 case 't': // Temporary register
1668 case 'x': case 'X': // Pointer register pair X
1669 case 'y': case 'Y': // Pointer register pair Y
1670 case 'z': case 'Z': // Pointer register pair Z
1671 return C_Register;
1672 case 'Q': // A memory address based on Y or Z pointer with displacement.
1673 return C_Memory;
1674 case 'G': // Floating point constant
1675 case 'I': // 6-bit positive integer constant
1676 case 'J': // 6-bit negative integer constant
1677 case 'K': // Integer constant (Range: 2)
1678 case 'L': // Integer constant (Range: 0)
1679 case 'M': // 8-bit integer constant
1680 case 'N': // Integer constant (Range: -1)
1681 case 'O': // Integer constant (Range: 8, 16, 24)
1682 case 'P': // Integer constant (Range: 1)
1683 case 'R': // Integer constant (Range: -6 to 5)x
1684 return C_Other;
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TargetLowering::getConstraintType(Constraint);
1691}
1692
1693unsigned
1694AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1695 // Not sure if this is actually the right thing to do, but we got to do
1696 // *something* [agnat]
1697 switch (ConstraintCode[0]) {
1698 case 'Q':
1699 return InlineAsm::Constraint_Q;
1700 }
1701 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1702}
1703
1704AVRTargetLowering::ConstraintWeight
1705AVRTargetLowering::getSingleConstraintMatchWeight(
1706 AsmOperandInfo &info, const char *constraint) const {
1707 ConstraintWeight weight = CW_Invalid;
1708 Value *CallOperandVal = info.CallOperandVal;
1709
1710 // If we don't have a value, we can't do a match,
1711 // but allow it at the lowest weight.
1712 // (this behaviour has been copied from the ARM backend)
1713 if (!CallOperandVal) {
1714 return CW_Default;
1715 }
1716
1717 // Look at the constraint type.
1718 switch (*constraint) {
1719 default:
1720 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1721 break;
1722 case 'd':
1723 case 'r':
1724 case 'l':
1725 weight = CW_Register;
1726 break;
1727 case 'a':
1728 case 'b':
1729 case 'e':
1730 case 'q':
1731 case 't':
1732 case 'w':
1733 case 'x': case 'X':
1734 case 'y': case 'Y':
1735 case 'z': case 'Z':
1736 weight = CW_SpecificReg;
1737 break;
1738 case 'G':
1739 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1740 if (C->isZero()) {
1741 weight = CW_Constant;
1742 }
1743 }
1744 break;
1745 case 'I':
1746 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1747 if (isUInt<6>(C->getZExtValue())) {
1748 weight = CW_Constant;
1749 }
1750 }
1751 break;
1752 case 'J':
1753 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1754 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1755 weight = CW_Constant;
1756 }
1757 }
1758 break;
1759 case 'K':
1760 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1761 if (C->getZExtValue() == 2) {
1762 weight = CW_Constant;
1763 }
1764 }
1765 break;
1766 case 'L':
1767 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1768 if (C->getZExtValue() == 0) {
1769 weight = CW_Constant;
1770 }
1771 }
1772 break;
1773 case 'M':
1774 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1775 if (isUInt<8>(C->getZExtValue())) {
1776 weight = CW_Constant;
1777 }
1778 }
1779 break;
1780 case 'N':
1781 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1782 if (C->getSExtValue() == -1) {
1783 weight = CW_Constant;
1784 }
1785 }
1786 break;
1787 case 'O':
1788 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1789 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1790 (C->getZExtValue() == 24)) {
1791 weight = CW_Constant;
1792 }
1793 }
1794 break;
1795 case 'P':
1796 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1797 if (C->getZExtValue() == 1) {
1798 weight = CW_Constant;
1799 }
1800 }
1801 break;
1802 case 'R':
1803 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1804 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1805 weight = CW_Constant;
1806 }
1807 }
1808 break;
1809 case 'Q':
1810 weight = CW_Memory;
1811 break;
1812 }
1813
1814 return weight;
1815}
1816
1817std::pair<unsigned, const TargetRegisterClass *>
1818AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1819 StringRef Constraint,
1820 MVT VT) const {
1821 auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
1822 .getSubtargetImpl();
1823
1824 // We only support i8 and i16.
1825 //
1826 //:FIXME: remove this assert for now since it gets sometimes executed
1827 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1828
1829 if (Constraint.size() == 1) {
1830 switch (Constraint[0]) {
1831 case 'a': // Simple upper registers r16..r23.
1832 return std::make_pair(0U, &AVR::LD8loRegClass);
1833 case 'b': // Base pointer registers: y, z.
1834 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1835 case 'd': // Upper registers r16..r31.
1836 return std::make_pair(0U, &AVR::LD8RegClass);
1837 case 'l': // Lower registers r0..r15.
1838 return std::make_pair(0U, &AVR::GPR8loRegClass);
1839 case 'e': // Pointer register pairs: x, y, z.
1840 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1841 case 'q': // Stack pointer register: SPH:SPL.
1842 return std::make_pair(0U, &AVR::GPRSPRegClass);
1843 case 'r': // Any register: r0..r31.
1844 if (VT == MVT::i8)
1845 return std::make_pair(0U, &AVR::GPR8RegClass);
1846
1847 assert(VT == MVT::i16 && "inline asm constraint too large");
1848 return std::make_pair(0U, &AVR::DREGSRegClass);
1849 case 't': // Temporary register: r0.
1850 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1851 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1852 return std::make_pair(0U, &AVR::IWREGSRegClass);
1853 case 'x': // Pointer register pair X: r27:r26.
1854 case 'X':
1855 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1856 case 'y': // Pointer register pair Y: r29:r28.
1857 case 'Y':
1858 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1859 case 'z': // Pointer register pair Z: r31:r30.
1860 case 'Z':
1861 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1862 default:
1863 break;
1864 }
1865 }
1866
1867 return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
1868 Constraint, VT);
1869}
1870
1871void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1872 std::string &Constraint,
1873 std::vector<SDValue> &Ops,
1874 SelectionDAG &DAG) const {
1875 SDValue Result(0, 0);
1876 SDLoc DL(Op);
1877 EVT Ty = Op.getValueType();
1878
1879 // Currently only support length 1 constraints.
1880 if (Constraint.length() != 1) {
1881 return;
1882 }
1883
1884 char ConstraintLetter = Constraint[0];
1885 switch (ConstraintLetter) {
1886 default:
1887 break;
1888 // Deal with integers first:
1889 case 'I':
1890 case 'J':
1891 case 'K':
1892 case 'L':
1893 case 'M':
1894 case 'N':
1895 case 'O':
1896 case 'P':
1897 case 'R': {
1898 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1899 if (!C) {
1900 return;
1901 }
1902
1903 int64_t CVal64 = C->getSExtValue();
1904 uint64_t CUVal64 = C->getZExtValue();
1905 switch (ConstraintLetter) {
1906 case 'I': // 0..63
1907 if (!isUInt<6>(CUVal64))
1908 return;
1909 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1910 break;
1911 case 'J': // -63..0
1912 if (CVal64 < -63 || CVal64 > 0)
1913 return;
1914 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1915 break;
1916 case 'K': // 2
1917 if (CUVal64 != 2)
1918 return;
1919 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1920 break;
1921 case 'L': // 0
1922 if (CUVal64 != 0)
1923 return;
1924 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1925 break;
1926 case 'M': // 0..255
1927 if (!isUInt<8>(CUVal64))
1928 return;
1929 // i8 type may be printed as a negative number,
1930 // e.g. 254 would be printed as -2,
1931 // so we force it to i16 at least.
1932 if (Ty.getSimpleVT() == MVT::i8) {
1933 Ty = MVT::i16;
1934 }
1935 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1936 break;
1937 case 'N': // -1
1938 if (CVal64 != -1)
1939 return;
1940 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1941 break;
1942 case 'O': // 8, 16, 24
1943 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1944 return;
1945 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1946 break;
1947 case 'P': // 1
1948 if (CUVal64 != 1)
1949 return;
1950 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1951 break;
1952 case 'R': // -6..5
1953 if (CVal64 < -6 || CVal64 > 5)
1954 return;
1955 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1956 break;
1957 }
1958
1959 break;
1960 }
1961 case 'G':
1962 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1963 if (!FC || !FC->isZero())
1964 return;
1965 // Soften float to i8 0
1966 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1967 break;
1968 }
1969
1970 if (Result.getNode()) {
1971 Ops.push_back(Result);
1972 return;
1973 }
1974
1975 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1976}
1977
Dylan McKay8fa6d8d2017-01-07 23:39:47 +00001978unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
1979 EVT VT,
1980 SelectionDAG &DAG) const {
1981 unsigned Reg;
1982
1983 if (VT == MVT::i8) {
1984 Reg = StringSwitch<unsigned>(RegName)
1985 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1986 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1987 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1988 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1989 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1990 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1991 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1992 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1993 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
1994 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
1995 .Case("r30", AVR::R30).Case("r31", AVR::R31)
1996 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1997 .Default(0);
1998 } else {
1999 Reg = StringSwitch<unsigned>(RegName)
2000 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2001 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2002 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2003 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2004 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2005 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2006 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2007 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2008 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2009 .Default(0);
2010 }
2011
2012 if (Reg)
2013 return Reg;
2014
2015 report_fatal_error("Invalid register name global variable");
2016}
2017
Dylan McKay7549b0a2016-11-02 06:47:40 +00002018} // end of namespace llvm