blob: 92db37720085637041d2a956a3f08194c733fe4c [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Hal Finkel60db0582014-09-07 18:57:58 +000016#include "llvm/Analysis/AssumptionTracker.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000018#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000019#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000020#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000021#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000024#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000025#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000033#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000034#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000035#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000036#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000037using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000038using namespace llvm::PatternMatch;
39
40const unsigned MaxDepth = 6;
41
42/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
43/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000044static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000045 if (unsigned BitWidth = Ty->getScalarSizeInBits())
46 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000047
48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000049}
Chris Lattner965c7692008-06-02 01:18:21 +000050
Hal Finkel60db0582014-09-07 18:57:58 +000051// Many of these functions have internal versions that take an assumption
52// exclusion set. This is because of the potential for mutual recursion to
53// cause computeKnownBits to repeatedly visit the same assume intrinsic. The
54// classic case of this is assume(x = y), which will attempt to determine
55// bits in x from bits in y, which will attempt to determine bits in y from
56// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
57// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
58// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
59typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
60
61// Simplifying using an assume can only be done in a particular control-flow
62// context (the context instruction provides that context). If an assume and
63// the context instruction are not in the same block then the DT helps in
64// figuring out if we can use it.
65struct Query {
66 ExclInvsSet ExclInvs;
67 AssumptionTracker *AT;
68 const Instruction *CxtI;
69 const DominatorTree *DT;
70
71 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr,
72 const DominatorTree *DT = nullptr)
73 : AT(AT), CxtI(CxtI), DT(DT) {}
74
75 Query(const Query &Q, const Value *NewExcl)
76 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) {
77 ExclInvs.insert(NewExcl);
78 }
79};
80
81// Given the provided Value and, potentially, a context instruction, returned
82// the preferred context instruction (if any).
83static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
84 // If we've been provided with a context instruction, then use that (provided
85 // it has been inserted).
86 if (CxtI && CxtI->getParent())
87 return CxtI;
88
89 // If the value is really an already-inserted instruction, then use that.
90 CxtI = dyn_cast<Instruction>(V);
91 if (CxtI && CxtI->getParent())
92 return CxtI;
93
94 return nullptr;
95}
96
97static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
98 const DataLayout *TD, unsigned Depth,
99 const Query &Q);
100
101void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
102 const DataLayout *TD, unsigned Depth,
103 AssumptionTracker *AT, const Instruction *CxtI,
104 const DominatorTree *DT) {
105 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth,
106 Query(AT, safeCxtI(V, CxtI), DT));
107}
108
109static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
110 const DataLayout *TD, unsigned Depth,
111 const Query &Q);
112
113void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
114 const DataLayout *TD, unsigned Depth,
115 AssumptionTracker *AT, const Instruction *CxtI,
116 const DominatorTree *DT) {
117 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth,
118 Query(AT, safeCxtI(V, CxtI), DT));
119}
120
121static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
122 const Query &Q);
123
124bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
125 AssumptionTracker *AT,
126 const Instruction *CxtI,
127 const DominatorTree *DT) {
128 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
129 Query(AT, safeCxtI(V, CxtI), DT));
130}
131
132static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
133 const Query &Q);
134
135bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
136 AssumptionTracker *AT, const Instruction *CxtI,
137 const DominatorTree *DT) {
138 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
139}
140
141static bool MaskedValueIsZero(Value *V, const APInt &Mask,
142 const DataLayout *TD, unsigned Depth,
143 const Query &Q);
144
145bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
146 const DataLayout *TD, unsigned Depth,
147 AssumptionTracker *AT, const Instruction *CxtI,
148 const DominatorTree *DT) {
149 return ::MaskedValueIsZero(V, Mask, TD, Depth,
150 Query(AT, safeCxtI(V, CxtI), DT));
151}
152
153static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
154 unsigned Depth, const Query &Q);
155
156unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
157 unsigned Depth, AssumptionTracker *AT,
158 const Instruction *CxtI,
159 const DominatorTree *DT) {
160 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT));
161}
162
Jay Foada0653a32014-05-14 21:14:37 +0000163static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
164 APInt &KnownZero, APInt &KnownOne,
165 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 const DataLayout *TD, unsigned Depth,
167 const Query &Q) {
168 if (!Add) {
169 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
170 // We know that the top bits of C-X are clear if X contains less bits
171 // than C (i.e. no wrap-around can happen). For example, 20-X is
172 // positive if we can prove that X is >= 0 and < 16.
173 if (!CLHS->getValue().isNegative()) {
174 unsigned BitWidth = KnownZero.getBitWidth();
175 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
176 // NLZ can't be BitWidth with no sign bit
177 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
178 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
179
180 // If all of the MaskV bits are known to be zero, then we know the
181 // output top bits are zero, because we now know that the output is
182 // from [0-C].
183 if ((KnownZero2 & MaskV) == MaskV) {
184 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
185 // Top bits known zero.
186 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
187 }
188 }
189 }
190 }
191
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000192 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000193
David Majnemer97ddca32014-08-22 00:40:43 +0000194 // If an initial sequence of bits in the result is not needed, the
195 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000196 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000197 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q);
198 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000199
David Majnemer97ddca32014-08-22 00:40:43 +0000200 // Carry in a 1 for a subtract, rather than a 0.
201 APInt CarryIn(BitWidth, 0);
202 if (!Add) {
203 // Sum = LHS + ~RHS + 1
204 std::swap(KnownZero2, KnownOne2);
205 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000206 }
207
David Majnemer97ddca32014-08-22 00:40:43 +0000208 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
209 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
210
211 // Compute known bits of the carry.
212 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
213 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
214
215 // Compute set of known bits (where all three relevant bits are known).
216 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
217 APInt RHSKnown = KnownZero2 | KnownOne2;
218 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
219 APInt Known = LHSKnown & RHSKnown & CarryKnown;
220
221 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
222 "known bits of sum differ");
223
224 // Compute known bits of the result.
225 KnownZero = ~PossibleSumOne & Known;
226 KnownOne = PossibleSumOne & Known;
227
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000228 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000229 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000230 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000231 // Adding two non-negative numbers, or subtracting a negative number from
232 // a non-negative one, can't wrap into negative.
233 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
234 KnownZero |= APInt::getSignBit(BitWidth);
235 // Adding two negative numbers, or subtracting a non-negative number from
236 // a negative one, can't wrap into non-negative.
237 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
238 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000239 }
240 }
241}
242
Jay Foada0653a32014-05-14 21:14:37 +0000243static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
244 APInt &KnownZero, APInt &KnownOne,
245 APInt &KnownZero2, APInt &KnownOne2,
Hal Finkel60db0582014-09-07 18:57:58 +0000246 const DataLayout *TD, unsigned Depth,
247 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000248 unsigned BitWidth = KnownZero.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000249 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q);
250 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000251
252 bool isKnownNegative = false;
253 bool isKnownNonNegative = false;
254 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000255 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000256 if (Op0 == Op1) {
257 // The product of a number with itself is non-negative.
258 isKnownNonNegative = true;
259 } else {
260 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
261 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
262 bool isKnownNegativeOp1 = KnownOne.isNegative();
263 bool isKnownNegativeOp0 = KnownOne2.isNegative();
264 // The product of two numbers with the same sign is non-negative.
265 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
266 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
267 // The product of a negative number and a non-negative number is either
268 // negative or zero.
269 if (!isKnownNonNegative)
270 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000271 isKnownNonZero(Op0, TD, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000272 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Hal Finkel60db0582014-09-07 18:57:58 +0000273 isKnownNonZero(Op1, TD, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000274 }
275 }
276
277 // If low bits are zero in either operand, output low known-0 bits.
278 // Also compute a conserative estimate for high known-0 bits.
279 // More trickiness is possible, but this is sufficient for the
280 // interesting case of alignment computation.
281 KnownOne.clearAllBits();
282 unsigned TrailZ = KnownZero.countTrailingOnes() +
283 KnownZero2.countTrailingOnes();
284 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
285 KnownZero2.countLeadingOnes(),
286 BitWidth) - BitWidth;
287
288 TrailZ = std::min(TrailZ, BitWidth);
289 LeadZ = std::min(LeadZ, BitWidth);
290 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
291 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000292
293 // Only make use of no-wrap flags if we failed to compute the sign bit
294 // directly. This matters if the multiplication always overflows, in
295 // which case we prefer to follow the result of the direct computation,
296 // though as the program is invoking undefined behaviour we can choose
297 // whatever we like here.
298 if (isKnownNonNegative && !KnownOne.isNegative())
299 KnownZero.setBit(BitWidth - 1);
300 else if (isKnownNegative && !KnownZero.isNegative())
301 KnownOne.setBit(BitWidth - 1);
302}
303
Jingyue Wu37fcb592014-06-19 16:50:16 +0000304void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
305 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000306 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000307 unsigned NumRanges = Ranges.getNumOperands() / 2;
308 assert(NumRanges >= 1);
309
310 // Use the high end of the ranges to find leading zeros.
311 unsigned MinLeadingZeros = BitWidth;
312 for (unsigned i = 0; i < NumRanges; ++i) {
313 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
314 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
315 ConstantRange Range(Lower->getValue(), Upper->getValue());
316 if (Range.isWrappedSet())
317 MinLeadingZeros = 0; // -1 has no zeros
318 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
319 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
320 }
321
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000322 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000323}
Jay Foad5a29c362014-05-15 12:12:55 +0000324
Hal Finkel60db0582014-09-07 18:57:58 +0000325static bool isEphemeralValueOf(Instruction *I, const Value *E) {
326 SmallVector<const Value *, 16> WorkSet(1, I);
327 SmallPtrSet<const Value *, 32> Visited;
328 SmallPtrSet<const Value *, 16> EphValues;
329
330 while (!WorkSet.empty()) {
331 const Value *V = WorkSet.pop_back_val();
332 if (!Visited.insert(V))
333 continue;
334
335 // If all uses of this value are ephemeral, then so is this value.
336 bool FoundNEUse = false;
337 for (const User *I : V->users())
338 if (!EphValues.count(I)) {
339 FoundNEUse = true;
340 break;
341 }
342
343 if (!FoundNEUse) {
344 if (V == E)
345 return true;
346
347 EphValues.insert(V);
348 if (const User *U = dyn_cast<User>(V))
349 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
350 J != JE; ++J) {
351 if (isSafeToSpeculativelyExecute(*J))
352 WorkSet.push_back(*J);
353 }
354 }
355 }
356
357 return false;
358}
359
360// Is this an intrinsic that cannot be speculated but also cannot trap?
361static bool isAssumeLikeIntrinsic(const Instruction *I) {
362 if (const CallInst *CI = dyn_cast<CallInst>(I))
363 if (Function *F = CI->getCalledFunction())
364 switch (F->getIntrinsicID()) {
365 default: break;
366 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
367 case Intrinsic::assume:
368 case Intrinsic::dbg_declare:
369 case Intrinsic::dbg_value:
370 case Intrinsic::invariant_start:
371 case Intrinsic::invariant_end:
372 case Intrinsic::lifetime_start:
373 case Intrinsic::lifetime_end:
374 case Intrinsic::objectsize:
375 case Intrinsic::ptr_annotation:
376 case Intrinsic::var_annotation:
377 return true;
378 }
379
380 return false;
381}
382
383static bool isValidAssumeForContext(Value *V, const Query &Q,
384 const DataLayout *DL) {
385 Instruction *Inv = cast<Instruction>(V);
386
387 // There are two restrictions on the use of an assume:
388 // 1. The assume must dominate the context (or the control flow must
389 // reach the assume whenever it reaches the context).
390 // 2. The context must not be in the assume's set of ephemeral values
391 // (otherwise we will use the assume to prove that the condition
392 // feeding the assume is trivially true, thus causing the removal of
393 // the assume).
394
395 if (Q.DT) {
396 if (Q.DT->dominates(Inv, Q.CxtI)) {
397 return true;
398 } else if (Inv->getParent() == Q.CxtI->getParent()) {
399 // The context comes first, but they're both in the same block. Make sure
400 // there is nothing in between that might interrupt the control flow.
401 for (BasicBlock::const_iterator I =
402 std::next(BasicBlock::const_iterator(Q.CxtI)),
403 IE(Inv); I != IE; ++I)
404 if (!isSafeToSpeculativelyExecute(I, DL) &&
405 !isAssumeLikeIntrinsic(I))
406 return false;
407
408 return !isEphemeralValueOf(Inv, Q.CxtI);
409 }
410
411 return false;
412 }
413
414 // When we don't have a DT, we do a limited search...
415 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
416 return true;
417 } else if (Inv->getParent() == Q.CxtI->getParent()) {
418 // Search forward from the assume until we reach the context (or the end
419 // of the block); the common case is that the assume will come first.
420 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
421 IE = Inv->getParent()->end(); I != IE; ++I)
422 if (I == Q.CxtI)
423 return true;
424
425 // The context must come first...
426 for (BasicBlock::const_iterator I =
427 std::next(BasicBlock::const_iterator(Q.CxtI)),
428 IE(Inv); I != IE; ++I)
429 if (!isSafeToSpeculativelyExecute(I, DL) &&
430 !isAssumeLikeIntrinsic(I))
431 return false;
432
433 return !isEphemeralValueOf(Inv, Q.CxtI);
434 }
435
436 return false;
437}
438
439bool llvm::isValidAssumeForContext(const Instruction *I,
440 const Instruction *CxtI,
441 const DataLayout *DL,
442 const DominatorTree *DT) {
443 return ::isValidAssumeForContext(const_cast<Instruction*>(I),
444 Query(nullptr, CxtI, DT), DL);
445}
446
447template<typename LHS, typename RHS>
448inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
449 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
450m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
451 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
452}
453
454template<typename LHS, typename RHS>
455inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
456 BinaryOp_match<RHS, LHS, Instruction::And>>
457m_c_And(const LHS &L, const RHS &R) {
458 return m_CombineOr(m_And(L, R), m_And(R, L));
459}
460
461static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
462 APInt &KnownOne,
463 const DataLayout *DL,
464 unsigned Depth, const Query &Q) {
465 // Use of assumptions is context-sensitive. If we don't have a context, we
466 // cannot use them!
467 if (!Q.AT || !Q.CxtI)
468 return;
469
470 unsigned BitWidth = KnownZero.getBitWidth();
471
472 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent());
473 for (auto &CI : Q.AT->assumptions(F)) {
474 CallInst *I = CI;
475 if (Q.ExclInvs.count(I))
476 continue;
477
478 if (match(I, m_Intrinsic<Intrinsic::assume>(m_Specific(V))) &&
479 isValidAssumeForContext(I, Q, DL)) {
480 assert(BitWidth == 1 && "assume operand is not i1?");
481 KnownZero.clearAllBits();
482 KnownOne.setAllBits();
483 return;
484 }
485
486 Value *A, *B;
487 auto m_V = m_CombineOr(m_Specific(V),
488 m_CombineOr(m_PtrToInt(m_Specific(V)),
489 m_BitCast(m_Specific(V))));
490
491 CmpInst::Predicate Pred;
492 // assume(v = a)
493 if (match(I, m_Intrinsic<Intrinsic::assume>(
494 m_c_ICmp(Pred, m_V, m_Value(A)))) &&
495 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
496 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
497 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
498 KnownZero |= RHSKnownZero;
499 KnownOne |= RHSKnownOne;
500 // assume(v & b = a)
501 } else if (match(I, m_Intrinsic<Intrinsic::assume>(
502 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A)))) &&
503 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
504 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
505 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
506 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
507 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
508
509 // For those bits in the mask that are known to be one, we can propagate
510 // known bits from the RHS to V.
511 KnownZero |= RHSKnownZero & MaskKnownOne;
512 KnownOne |= RHSKnownOne & MaskKnownOne;
513 }
514 }
515}
516
Jay Foada0653a32014-05-14 21:14:37 +0000517/// Determine which bits of V are known to be either zero or one and return
518/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000519///
Chris Lattner965c7692008-06-02 01:18:21 +0000520/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
521/// we cannot optimize based on the assumption that it is zero without changing
522/// it to be an explicit zero. If we don't change it to zero, other code could
523/// optimized based on the contradictory assumption that it is non-zero.
524/// Because instcombine aggressively folds operations with undef args anyway,
525/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000526///
527/// This function is defined on values with integer type, values with pointer
528/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000529/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000530/// same width as the vector element, and the bit is set only if it is true
531/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +0000532void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
533 const DataLayout *TD, unsigned Depth,
534 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +0000535 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000536 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000537 unsigned BitWidth = KnownZero.getBitWidth();
538
Nadav Rotem3924cb02011-12-05 06:29:09 +0000539 assert((V->getType()->isIntOrIntVectorTy() ||
540 V->getType()->getScalarType()->isPointerTy()) &&
541 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000542 assert((!TD ||
543 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000544 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000545 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000546 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000547 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000548 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000549
550 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
551 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000552 KnownOne = CI->getValue();
553 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000554 return;
555 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000556 // Null and aggregate-zero are all-zeros.
557 if (isa<ConstantPointerNull>(V) ||
558 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000559 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000560 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000561 return;
562 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000563 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000564 // each element. There is no real need to handle ConstantVector here, because
565 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000566 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
567 // We know that CDS must be a vector of integers. Take the intersection of
568 // each element.
569 KnownZero.setAllBits(); KnownOne.setAllBits();
570 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000571 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000572 Elt = CDS->getElementAsInteger(i);
573 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000574 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000575 }
576 return;
577 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000578
Chris Lattner965c7692008-06-02 01:18:21 +0000579 // The address of an aligned GlobalValue has trailing zeros.
580 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
581 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000582 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000583 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
584 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000585 if (ObjectType->isSized()) {
586 // If the object is defined in the current Module, we'll be giving
587 // it the preferred alignment. Otherwise, we have to assume that it
588 // may only have the minimum ABI alignment.
589 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
590 Align = TD->getPreferredAlignment(GVar);
591 else
592 Align = TD->getABITypeAlignment(ObjectType);
593 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000594 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000595 }
Chris Lattner965c7692008-06-02 01:18:21 +0000596 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000597 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000598 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000599 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000600 KnownZero.clearAllBits();
601 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000602 return;
603 }
Dan Gohman94262db2009-09-15 16:14:44 +0000604 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
605 // the bits of its aliasee.
606 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
607 if (GA->mayBeOverridden()) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000608 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman94262db2009-09-15 16:14:44 +0000609 } else {
Hal Finkel60db0582014-09-07 18:57:58 +0000610 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q);
Dan Gohman94262db2009-09-15 16:14:44 +0000611 }
612 return;
613 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000614
Chris Lattner83791ce2011-05-23 00:03:39 +0000615 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000616 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000617
Hal Finkelccc70902014-07-22 16:58:55 +0000618 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000619 // An sret parameter has at least the ABI alignment of the return type.
620 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
621 if (EltTy->isSized())
622 Align = TD->getABITypeAlignment(EltTy);
623 }
624
625 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000626 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Hal Finkel60db0582014-09-07 18:57:58 +0000627
628 // Don't give up yet... there might be an assumption that provides more
629 // information...
630 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner83791ce2011-05-23 00:03:39 +0000631 return;
632 }
Chris Lattner965c7692008-06-02 01:18:21 +0000633
Chris Lattner83791ce2011-05-23 00:03:39 +0000634 // Start out not knowing anything.
635 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000636
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000637 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000638 return; // Limit search depth.
639
Hal Finkel60db0582014-09-07 18:57:58 +0000640 // Check whether a nearby assume intrinsic can determine some known bits.
641 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q);
642
Dan Gohman80ca01c2009-07-17 20:47:02 +0000643 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000644 if (!I) return;
645
646 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000647 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000648 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000649 case Instruction::Load:
650 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000651 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000652 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000653 case Instruction::And: {
654 // If either the LHS or the RHS are Zero, the result is zero.
Hal Finkel60db0582014-09-07 18:57:58 +0000655 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
656 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000657
Chris Lattner965c7692008-06-02 01:18:21 +0000658 // Output known-1 bits are only known if set in both the LHS & RHS.
659 KnownOne &= KnownOne2;
660 // Output known-0 are known to be clear if zero in either the LHS | RHS.
661 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000662 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000663 }
664 case Instruction::Or: {
Hal Finkel60db0582014-09-07 18:57:58 +0000665 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
666 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000667
Chris Lattner965c7692008-06-02 01:18:21 +0000668 // Output known-0 bits are only known if clear in both the LHS & RHS.
669 KnownZero &= KnownZero2;
670 // Output known-1 are known to be set if set in either the LHS | RHS.
671 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000672 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000673 }
674 case Instruction::Xor: {
Hal Finkel60db0582014-09-07 18:57:58 +0000675 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
676 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000677
Chris Lattner965c7692008-06-02 01:18:21 +0000678 // Output known-0 bits are known if clear or set in both the LHS & RHS.
679 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
680 // Output known-1 are known to be set if set in only one of the LHS, RHS.
681 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
682 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000683 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000684 }
685 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000686 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000687 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Hal Finkel60db0582014-09-07 18:57:58 +0000688 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
689 Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000690 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000691 }
692 case Instruction::UDiv: {
693 // For the purposes of computing leading zeros we can conservatively
694 // treat a udiv as a logical right shift by the power of 2 known to
695 // be less than the denominator.
Hal Finkel60db0582014-09-07 18:57:58 +0000696 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000697 unsigned LeadZ = KnownZero2.countLeadingOnes();
698
Jay Foad25a5e4c2010-12-01 08:53:58 +0000699 KnownOne2.clearAllBits();
700 KnownZero2.clearAllBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000701 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000702 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
703 if (RHSUnknownLeadingOnes != BitWidth)
704 LeadZ = std::min(BitWidth,
705 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
706
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000707 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000708 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000709 }
710 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +0000711 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q);
712 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000713
714 // Only known if known in both the LHS and RHS.
715 KnownOne &= KnownOne2;
716 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000717 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000718 case Instruction::FPTrunc:
719 case Instruction::FPExt:
720 case Instruction::FPToUI:
721 case Instruction::FPToSI:
722 case Instruction::SIToFP:
723 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000724 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000725 case Instruction::PtrToInt:
726 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000727 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000728 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000729 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000730 // FALL THROUGH and handle them the same as zext/trunc.
731 case Instruction::ZExt:
732 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000733 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000734
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000735 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000736 // Note that we handle pointer operands here because of inttoptr/ptrtoint
737 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000738 if(TD) {
739 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
740 } else {
741 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000742 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000743 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000744
745 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000746 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
747 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000748 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000749 KnownZero = KnownZero.zextOrTrunc(BitWidth);
750 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000751 // Any top bits are known to be zero.
752 if (BitWidth > SrcBitWidth)
753 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000754 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000755 }
756 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000757 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000758 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000759 // TODO: For now, not handling conversions like:
760 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000761 !I->getType()->isVectorTy()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000762 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +0000763 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000764 }
765 break;
766 }
767 case Instruction::SExt: {
768 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000769 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000770
Jay Foad583abbc2010-12-07 08:25:19 +0000771 KnownZero = KnownZero.trunc(SrcBitWidth);
772 KnownOne = KnownOne.trunc(SrcBitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000773 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000774 KnownZero = KnownZero.zext(BitWidth);
775 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000776
777 // If the sign bit of the input is known set or clear, then we know the
778 // top bits of the result.
779 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
780 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
781 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
782 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000783 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000784 }
785 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000786 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000787 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
788 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000789 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000790 KnownZero <<= ShiftAmt;
791 KnownOne <<= ShiftAmt;
792 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Jay Foad5a29c362014-05-15 12:12:55 +0000793 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000794 }
795 break;
796 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000797 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000798 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 // Compute the new bits that are at the top now.
800 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +0000801
Chris Lattner965c7692008-06-02 01:18:21 +0000802 // Unsigned shift right.
Hal Finkel60db0582014-09-07 18:57:58 +0000803 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000804 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
805 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
806 // high bits known zero.
807 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Jay Foad5a29c362014-05-15 12:12:55 +0000808 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000809 }
810 break;
811 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000812 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000813 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
814 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +0000815 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000816
Chris Lattner965c7692008-06-02 01:18:21 +0000817 // Signed shift right.
Hal Finkel60db0582014-09-07 18:57:58 +0000818 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000819 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
820 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +0000821
Chris Lattner965c7692008-06-02 01:18:21 +0000822 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
823 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
824 KnownZero |= HighBits;
825 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
826 KnownOne |= HighBits;
Jay Foad5a29c362014-05-15 12:12:55 +0000827 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000828 }
829 break;
830 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000831 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000832 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000833 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +0000834 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000835 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000836 }
Chris Lattner965c7692008-06-02 01:18:21 +0000837 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000838 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000839 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000840 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +0000841 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000842 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000843 }
844 case Instruction::SRem:
845 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000846 APInt RA = Rem->getValue().abs();
847 if (RA.isPowerOf2()) {
848 APInt LowBits = RA - 1;
Hal Finkel60db0582014-09-07 18:57:58 +0000849 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD,
850 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000851
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000852 // The low bits of the first operand are unchanged by the srem.
853 KnownZero = KnownZero2 & LowBits;
854 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000855
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000856 // If the first operand is non-negative or has all low bits zero, then
857 // the upper bits are all zero.
858 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
859 KnownZero |= ~LowBits;
860
861 // If the first operand is negative and not all low bits are zero, then
862 // the upper bits are all one.
863 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
864 KnownOne |= ~LowBits;
865
Craig Topper1bef2c82012-12-22 19:15:35 +0000866 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +0000867 }
868 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000869
870 // The sign bit is the LHS's sign bit, except when the result of the
871 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +0000873 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000874 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +0000875 Depth+1, Q);
Nick Lewyckye4679792011-03-07 01:50:10 +0000876 // If it's known zero, our sign bit is also zero.
877 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +0000878 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000879 }
880
Chris Lattner965c7692008-06-02 01:18:21 +0000881 break;
882 case Instruction::URem: {
883 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
884 APInt RA = Rem->getValue();
885 if (RA.isPowerOf2()) {
886 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +0000887 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +0000888 Depth+1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000889 KnownZero |= ~LowBits;
890 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000891 break;
892 }
893 }
894
895 // Since the result is less than or equal to either operand, any leading
896 // zero bits in either operand must also exist in the result.
Hal Finkel60db0582014-09-07 18:57:58 +0000897 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
898 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000899
Chris Lattner4612ae12009-01-20 18:22:57 +0000900 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +0000901 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +0000902 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000903 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +0000904 break;
905 }
906
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000907 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +0000908 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000909 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000910 if (Align == 0 && TD)
911 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +0000912
Chris Lattner965c7692008-06-02 01:18:21 +0000913 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000914 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000915 break;
916 }
917 case Instruction::GetElementPtr: {
918 // Analyze all of the subscripts of this getelementptr instruction
919 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +0000920 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000921 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
Hal Finkel60db0582014-09-07 18:57:58 +0000922 Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000923 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
924
925 gep_type_iterator GTI = gep_type_begin(I);
926 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
927 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +0000928 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +0000929 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +0000930 if (!TD) {
931 TrailZ = 0;
932 break;
933 }
Matt Arsenault74742a12013-08-19 21:43:16 +0000934
935 // Handle case when index is vector zeroinitializer
936 Constant *CIndex = cast<Constant>(Index);
937 if (CIndex->isZeroValue())
938 continue;
939
940 if (CIndex->getType()->isVectorTy())
941 Index = CIndex->getSplatValue();
942
Chris Lattner965c7692008-06-02 01:18:21 +0000943 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +0000944 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000946 TrailZ = std::min<unsigned>(TrailZ,
947 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +0000948 } else {
949 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +0000950 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +0000951 if (!IndexedTy->isSized()) {
952 TrailZ = 0;
953 break;
954 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000955 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +0000956 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +0000957 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000958 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000959 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000960 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +0000961 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +0000962 }
963 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000964
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000965 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +0000966 break;
967 }
968 case Instruction::PHI: {
969 PHINode *P = cast<PHINode>(I);
970 // Handle the case of a simple two-predecessor recurrence PHI.
971 // There's a lot more that could theoretically be done here, but
972 // this is sufficient to catch some interesting cases.
973 if (P->getNumIncomingValues() == 2) {
974 for (unsigned i = 0; i != 2; ++i) {
975 Value *L = P->getIncomingValue(i);
976 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000977 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +0000978 if (!LU)
979 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +0000980 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +0000981 // Check for operations that have the property that if
982 // both their operands have low zero bits, the result
983 // will have low zero bits.
984 if (Opcode == Instruction::Add ||
985 Opcode == Instruction::Sub ||
986 Opcode == Instruction::And ||
987 Opcode == Instruction::Or ||
988 Opcode == Instruction::Mul) {
989 Value *LL = LU->getOperand(0);
990 Value *LR = LU->getOperand(1);
991 // Find a recurrence.
992 if (LL == I)
993 L = LR;
994 else if (LR == I)
995 L = LL;
996 else
997 break;
998 // Ok, we have a PHI of the form L op= R. Check for low
999 // zero bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001000 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001001
1002 // We need to take the minimum number of known bits
1003 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Hal Finkel60db0582014-09-07 18:57:58 +00001004 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001005
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001006 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001007 std::min(KnownZero2.countTrailingOnes(),
1008 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001009 break;
1010 }
1011 }
1012 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001013
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001014 // Unreachable blocks may have zero-operand PHI nodes.
1015 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001016 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001017
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001018 // Otherwise take the unions of the known bit sets of the operands,
1019 // taking conservative care to avoid excessive recursion.
1020 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001021 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001022 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001023 break;
1024
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001025 KnownZero = APInt::getAllOnesValue(BitWidth);
1026 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001027 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
1028 // Skip direct self references.
1029 if (P->getIncomingValue(i) == P) continue;
1030
1031 KnownZero2 = APInt(BitWidth, 0);
1032 KnownOne2 = APInt(BitWidth, 0);
1033 // Recurse, but cap the recursion to one level, because we don't
1034 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +00001035 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
Hal Finkel60db0582014-09-07 18:57:58 +00001036 MaxDepth-1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001037 KnownZero &= KnownZero2;
1038 KnownOne &= KnownOne2;
1039 // If all bits have been ruled out, there's no need to check
1040 // more operands.
1041 if (!KnownZero && !KnownOne)
1042 break;
1043 }
1044 }
Chris Lattner965c7692008-06-02 01:18:21 +00001045 break;
1046 }
1047 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001048 case Instruction::Invoke:
1049 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1050 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
1051 // If a range metadata is attached to this IntrinsicInst, intersect the
1052 // explicit range specified by the metadata and the implicit range of
1053 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001054 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1055 switch (II->getIntrinsicID()) {
1056 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +00001057 case Intrinsic::ctlz:
1058 case Intrinsic::cttz: {
1059 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001060 // If this call is undefined for 0, the result will be less than 2^n.
1061 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1062 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001064 break;
1065 }
1066 case Intrinsic::ctpop: {
1067 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001068 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +00001069 break;
1070 }
Chad Rosierb3628842011-05-26 23:13:19 +00001071 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001072 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001073 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001074 }
1075 }
1076 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001077 case Instruction::ExtractValue:
1078 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1079 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1080 if (EVI->getNumIndices() != 1) break;
1081 if (EVI->getIndices()[0] == 0) {
1082 switch (II->getIntrinsicID()) {
1083 default: break;
1084 case Intrinsic::uadd_with_overflow:
1085 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001086 computeKnownBitsAddSub(true, II->getArgOperand(0),
1087 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001088 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001089 break;
1090 case Intrinsic::usub_with_overflow:
1091 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001092 computeKnownBitsAddSub(false, II->getArgOperand(0),
1093 II->getArgOperand(1), false, KnownZero,
Hal Finkel60db0582014-09-07 18:57:58 +00001094 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001095 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001096 case Intrinsic::umul_with_overflow:
1097 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001098 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
1099 false, KnownZero, KnownOne,
Hal Finkel60db0582014-09-07 18:57:58 +00001100 KnownZero2, KnownOne2, TD, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001101 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001102 }
1103 }
1104 }
Chris Lattner965c7692008-06-02 01:18:21 +00001105 }
Jay Foad5a29c362014-05-15 12:12:55 +00001106
1107 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001108}
1109
Duncan Sandsd3951082011-01-25 09:38:29 +00001110/// ComputeSignBit - Determine whether the sign bit is known to be zero or
Jay Foada0653a32014-05-14 21:14:37 +00001111/// one. Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001112void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1113 const DataLayout *TD, unsigned Depth,
1114 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001115 unsigned BitWidth = getBitWidth(V->getType(), TD);
1116 if (!BitWidth) {
1117 KnownZero = false;
1118 KnownOne = false;
1119 return;
1120 }
1121 APInt ZeroBits(BitWidth, 0);
1122 APInt OneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001123 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001124 KnownOne = OneBits[BitWidth - 1];
1125 KnownZero = ZeroBits[BitWidth - 1];
1126}
1127
Rafael Espindola319f74c2012-12-13 03:37:24 +00001128/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001129/// bit set when defined. For vectors return true if every element is known to
1130/// be a power of two when defined. Supports values with integer or pointer
1131/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001132bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1133 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001134 if (Constant *C = dyn_cast<Constant>(V)) {
1135 if (C->isNullValue())
1136 return OrZero;
1137 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1138 return CI->getValue().isPowerOf2();
1139 // TODO: Handle vector constants.
1140 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001141
1142 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1143 // it is shifted off the end then the result is undefined.
1144 if (match(V, m_Shl(m_One(), m_Value())))
1145 return true;
1146
1147 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1148 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001149 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001150 return true;
1151
1152 // The remaining tests are all recursive, so bail out if we hit the limit.
1153 if (Depth++ == MaxDepth)
1154 return false;
1155
Craig Topper9f008862014-04-15 04:59:12 +00001156 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +00001157 // A shift of a power of two is a power of two or zero.
1158 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1159 match(V, m_Shr(m_Value(X), m_Value()))))
Hal Finkel60db0582014-09-07 18:57:58 +00001160 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001161
Duncan Sandsd3951082011-01-25 09:38:29 +00001162 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001163 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001164
1165 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001166 return
1167 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1168 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001169
Duncan Sandsba286d72011-10-26 20:55:21 +00001170 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1171 // A power of two and'd with anything is a power of two or zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001172 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) ||
1173 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001174 return true;
1175 // X & (-X) is always a power of two or zero.
1176 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1177 return true;
1178 return false;
1179 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001180
David Majnemerb7d54092013-07-30 21:01:36 +00001181 // Adding a power-of-two or zero to the same power-of-two or zero yields
1182 // either the original power-of-two, a larger power-of-two or zero.
1183 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1184 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1185 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1186 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1187 match(X, m_And(m_Value(), m_Specific(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001188 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001189 return true;
1190 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1191 match(Y, m_And(m_Value(), m_Specific(X))))
Hal Finkel60db0582014-09-07 18:57:58 +00001192 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001193 return true;
1194
1195 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1196 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001197 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001198
1199 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001200 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001201 // If i8 V is a power of two or zero:
1202 // ZeroBits: 1 1 1 0 1 1 1 1
1203 // ~ZeroBits: 0 0 0 1 0 0 0 0
1204 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1205 // If OrZero isn't set, we cannot give back a zero result.
1206 // Make sure either the LHS or RHS has a bit set.
1207 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1208 return true;
1209 }
1210 }
David Majnemerbeab5672013-05-18 19:30:37 +00001211
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001212 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001213 // is a power of two only if the first operand is a power of two and not
1214 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001215 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1216 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001217 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1218 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001219 }
1220
Duncan Sandsd3951082011-01-25 09:38:29 +00001221 return false;
1222}
1223
Chandler Carruth80d3e562012-12-07 02:08:58 +00001224/// \brief Test whether a GEP's result is known to be non-null.
1225///
1226/// Uses properties inherent in a GEP to try to determine whether it is known
1227/// to be non-null.
1228///
1229/// Currently this routine does not support vector GEPs.
1230static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
Hal Finkel60db0582014-09-07 18:57:58 +00001231 unsigned Depth, const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001232 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1233 return false;
1234
1235 // FIXME: Support vector-GEPs.
1236 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1237
1238 // If the base pointer is non-null, we cannot walk to a null address with an
1239 // inbounds GEP in address space zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001240 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001241 return true;
1242
1243 // Past this, if we don't have DataLayout, we can't do much.
1244 if (!DL)
1245 return false;
1246
1247 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1248 // If so, then the GEP cannot produce a null pointer, as doing so would
1249 // inherently violate the inbounds contract within address space zero.
1250 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1251 GTI != GTE; ++GTI) {
1252 // Struct types are easy -- they must always be indexed by a constant.
1253 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1254 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1255 unsigned ElementIdx = OpC->getZExtValue();
1256 const StructLayout *SL = DL->getStructLayout(STy);
1257 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1258 if (ElementOffset > 0)
1259 return true;
1260 continue;
1261 }
1262
1263 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1264 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
1265 continue;
1266
1267 // Fast path the constant operand case both for efficiency and so we don't
1268 // increment Depth when just zipping down an all-constant GEP.
1269 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1270 if (!OpC->isZero())
1271 return true;
1272 continue;
1273 }
1274
1275 // We post-increment Depth here because while isKnownNonZero increments it
1276 // as well, when we pop back up that increment won't persist. We don't want
1277 // to recurse 10k times just because we have 10k GEP operands. We don't
1278 // bail completely out because we want to handle constant GEPs regardless
1279 // of depth.
1280 if (Depth++ >= MaxDepth)
1281 continue;
1282
Hal Finkel60db0582014-09-07 18:57:58 +00001283 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001284 return true;
1285 }
1286
1287 return false;
1288}
1289
Duncan Sandsd3951082011-01-25 09:38:29 +00001290/// isKnownNonZero - Return true if the given value is known to be non-zero
1291/// when defined. For vectors return true if every element is known to be
1292/// non-zero when defined. Supports values with integer or pointer type and
1293/// vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001294bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth,
1295 const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001296 if (Constant *C = dyn_cast<Constant>(V)) {
1297 if (C->isNullValue())
1298 return false;
1299 if (isa<ConstantInt>(C))
1300 // Must be non-zero due to null test above.
1301 return true;
1302 // TODO: Handle vectors
1303 return false;
1304 }
1305
1306 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001307 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001308 return false;
1309
Chandler Carruth80d3e562012-12-07 02:08:58 +00001310 // Check for pointer simplifications.
1311 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001312 if (isKnownNonNull(V))
1313 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001314 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001315 if (isGEPKnownNonNull(GEP, TD, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001316 return true;
1317 }
1318
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001319 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001320
1321 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001322 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001323 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Hal Finkel60db0582014-09-07 18:57:58 +00001324 return isKnownNonZero(X, TD, Depth, Q) ||
1325 isKnownNonZero(Y, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001326
1327 // ext X != 0 if X != 0.
1328 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00001329 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001330
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001331 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001332 // if the lowest bit is shifted off the end.
1333 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001334 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001335 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001336 if (BO->hasNoUnsignedWrap())
Hal Finkel60db0582014-09-07 18:57:58 +00001337 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001338
Duncan Sandsd3951082011-01-25 09:38:29 +00001339 APInt KnownZero(BitWidth, 0);
1340 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001341 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001342 if (KnownOne[0])
1343 return true;
1344 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001345 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001346 // defined if the sign bit is shifted off the end.
1347 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001348 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001349 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001350 if (BO->isExact())
Hal Finkel60db0582014-09-07 18:57:58 +00001351 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001352
Duncan Sandsd3951082011-01-25 09:38:29 +00001353 bool XKnownNonNegative, XKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001354 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001355 if (XKnownNegative)
1356 return true;
1357 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001358 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001359 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001360 return isKnownNonZero(X, TD, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001361 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001362 // X + Y.
1363 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1364 bool XKnownNonNegative, XKnownNegative;
1365 bool YKnownNonNegative, YKnownNegative;
Hal Finkel60db0582014-09-07 18:57:58 +00001366 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q);
1367 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001368
1369 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001370 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001371 if (XKnownNonNegative && YKnownNonNegative)
Hal Finkel60db0582014-09-07 18:57:58 +00001372 if (isKnownNonZero(X, TD, Depth, Q) ||
1373 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001374 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001375
1376 // If X and Y are both negative (as signed values) then their sum is not
1377 // zero unless both X and Y equal INT_MIN.
1378 if (BitWidth && XKnownNegative && YKnownNegative) {
1379 APInt KnownZero(BitWidth, 0);
1380 APInt KnownOne(BitWidth, 0);
1381 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1382 // The sign bit of X is set. If some other bit is set then X is not equal
1383 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001384 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001385 if ((KnownOne & Mask) != 0)
1386 return true;
1387 // The sign bit of Y is set. If some other bit is set then Y is not equal
1388 // to INT_MIN.
Hal Finkel60db0582014-09-07 18:57:58 +00001389 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001390 if ((KnownOne & Mask) != 0)
1391 return true;
1392 }
1393
1394 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001395 if (XKnownNonNegative &&
1396 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001397 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001398 if (YKnownNonNegative &&
1399 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001400 return true;
1401 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001402 // X * Y.
1403 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1404 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1405 // If X and Y are non-zero then so is X * Y as long as the multiplication
1406 // does not overflow.
1407 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Hal Finkel60db0582014-09-07 18:57:58 +00001408 isKnownNonZero(X, TD, Depth, Q) &&
1409 isKnownNonZero(Y, TD, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001410 return true;
1411 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001412 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1413 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Hal Finkel60db0582014-09-07 18:57:58 +00001414 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) &&
1415 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001416 return true;
1417 }
1418
1419 if (!BitWidth) return false;
1420 APInt KnownZero(BitWidth, 0);
1421 APInt KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001422 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001423 return KnownOne != 0;
1424}
1425
Chris Lattner965c7692008-06-02 01:18:21 +00001426/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1427/// this predicate to simplify operations downstream. Mask is known to be zero
1428/// for bits that V cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001429///
1430/// This function is defined on values with integer type, values with pointer
1431/// type (but only if TD is non-null), and vectors of integers. In the case
1432/// where V is a vector, the mask, known zero, and known one values are the
1433/// same width as the vector element, and the bit is set only if it is true
1434/// for all of the elements in the vector.
Hal Finkel60db0582014-09-07 18:57:58 +00001435bool MaskedValueIsZero(Value *V, const APInt &Mask,
1436 const DataLayout *TD, unsigned Depth,
1437 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001438 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001439 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001440 return (KnownZero & Mask) == Mask;
1441}
1442
1443
1444
1445/// ComputeNumSignBits - Return the number of times the sign bit of the
1446/// register is replicated into the other bits. We know that at least 1 bit
1447/// is always equal to the sign bit (itself), but other cases can give us
1448/// information. For example, immediately after an "ashr X, 2", we know that
1449/// the top 3 bits are all equal to each other, so we return 3.
1450///
1451/// 'Op' must have a scalar integer type.
1452///
Hal Finkel60db0582014-09-07 18:57:58 +00001453unsigned ComputeNumSignBits(Value *V, const DataLayout *TD,
1454 unsigned Depth, const Query &Q) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001455 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001456 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001457 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001458 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001459 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1460 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001461 unsigned Tmp, Tmp2;
1462 unsigned FirstAnswer = 1;
1463
Jay Foada0653a32014-05-14 21:14:37 +00001464 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001465 // below.
1466
Chris Lattner965c7692008-06-02 01:18:21 +00001467 if (Depth == 6)
1468 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001469
Dan Gohman80ca01c2009-07-17 20:47:02 +00001470 Operator *U = dyn_cast<Operator>(V);
1471 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001472 default: break;
1473 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001474 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +00001475 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001476
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001477 case Instruction::AShr: {
Hal Finkel60db0582014-09-07 18:57:58 +00001478 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001479 // ashr X, C -> adds C sign bits. Vectors too.
1480 const APInt *ShAmt;
1481 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1482 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001483 if (Tmp > TyBits) Tmp = TyBits;
1484 }
1485 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001486 }
1487 case Instruction::Shl: {
1488 const APInt *ShAmt;
1489 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001490 // shl destroys sign bits.
Hal Finkel60db0582014-09-07 18:57:58 +00001491 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001492 Tmp2 = ShAmt->getZExtValue();
1493 if (Tmp2 >= TyBits || // Bad shift.
1494 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1495 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001496 }
1497 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001498 }
Chris Lattner965c7692008-06-02 01:18:21 +00001499 case Instruction::And:
1500 case Instruction::Or:
1501 case Instruction::Xor: // NOT is handled here.
1502 // Logical binary ops preserve the number of sign bits at the worst.
Hal Finkel60db0582014-09-07 18:57:58 +00001503 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001504 if (Tmp != 1) {
Hal Finkel60db0582014-09-07 18:57:58 +00001505 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001506 FirstAnswer = std::min(Tmp, Tmp2);
1507 // We computed what we know about the sign bits as our first
1508 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001509 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001510 }
1511 break;
1512
1513 case Instruction::Select:
Hal Finkel60db0582014-09-07 18:57:58 +00001514 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001515 if (Tmp == 1) return 1; // Early out.
Hal Finkel60db0582014-09-07 18:57:58 +00001516 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001517 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001518
Chris Lattner965c7692008-06-02 01:18:21 +00001519 case Instruction::Add:
1520 // Add can have at most one carry bit. Thus we know that the output
1521 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001522 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001523 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001524
Chris Lattner965c7692008-06-02 01:18:21 +00001525 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001526 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001527 if (CRHS->isAllOnesValue()) {
1528 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001529 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001530
Chris Lattner965c7692008-06-02 01:18:21 +00001531 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1532 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001533 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001534 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001535
Chris Lattner965c7692008-06-02 01:18:21 +00001536 // If we are subtracting one from a positive number, there is no carry
1537 // out of the result.
1538 if (KnownZero.isNegative())
1539 return Tmp;
1540 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001541
Hal Finkel60db0582014-09-07 18:57:58 +00001542 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001543 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001544 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001545
Chris Lattner965c7692008-06-02 01:18:21 +00001546 case Instruction::Sub:
Hal Finkel60db0582014-09-07 18:57:58 +00001547 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001548 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001549
Chris Lattner965c7692008-06-02 01:18:21 +00001550 // Handle NEG.
1551 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1552 if (CLHS->isNullValue()) {
1553 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001554 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001555 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1556 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001557 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001558 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001559
Chris Lattner965c7692008-06-02 01:18:21 +00001560 // If the input is known to be positive (the sign bit is known clear),
1561 // the output of the NEG has the same number of sign bits as the input.
1562 if (KnownZero.isNegative())
1563 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001564
Chris Lattner965c7692008-06-02 01:18:21 +00001565 // Otherwise, we treat this like a SUB.
1566 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001567
Chris Lattner965c7692008-06-02 01:18:21 +00001568 // Sub can have at most one carry bit. Thus we know that the output
1569 // is, at worst, one more bit than the inputs.
Hal Finkel60db0582014-09-07 18:57:58 +00001570 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001571 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001572 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001573
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001574 case Instruction::PHI: {
1575 PHINode *PN = cast<PHINode>(U);
1576 // Don't analyze large in-degree PHIs.
1577 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001578
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001579 // Take the minimum of all incoming values. This can't infinitely loop
1580 // because of our depth threshold.
Hal Finkel60db0582014-09-07 18:57:58 +00001581 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q);
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001582 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1583 if (Tmp == 1) return Tmp;
1584 Tmp = std::min(Tmp,
Hal Finkel60db0582014-09-07 18:57:58 +00001585 ComputeNumSignBits(PN->getIncomingValue(i), TD,
1586 Depth+1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001587 }
1588 return Tmp;
1589 }
1590
Chris Lattner965c7692008-06-02 01:18:21 +00001591 case Instruction::Trunc:
1592 // FIXME: it's tricky to do anything useful for this, but it is an important
1593 // case for targets like X86.
1594 break;
1595 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001596
Chris Lattner965c7692008-06-02 01:18:21 +00001597 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1598 // use this information.
1599 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001600 APInt Mask;
Hal Finkel60db0582014-09-07 18:57:58 +00001601 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001602
Chris Lattner965c7692008-06-02 01:18:21 +00001603 if (KnownZero.isNegative()) { // sign bit is 0
1604 Mask = KnownZero;
1605 } else if (KnownOne.isNegative()) { // sign bit is 1;
1606 Mask = KnownOne;
1607 } else {
1608 // Nothing known.
1609 return FirstAnswer;
1610 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001611
Chris Lattner965c7692008-06-02 01:18:21 +00001612 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1613 // the number of identical bits in the top of the input value.
1614 Mask = ~Mask;
1615 Mask <<= Mask.getBitWidth()-TyBits;
1616 // Return # leading zeros. We use 'min' here in case Val was zero before
1617 // shifting. We don't want to return '64' as for an i32 "0".
1618 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1619}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001620
Victor Hernandez47444882009-11-10 08:28:35 +00001621/// ComputeMultiple - This function computes the integer multiple of Base that
1622/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman6a976bb2009-11-18 00:58:27 +00001623/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001624/// through SExt instructions only if LookThroughSExt is true.
1625bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001626 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001627 const unsigned MaxDepth = 6;
1628
Dan Gohman6a976bb2009-11-18 00:58:27 +00001629 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001630 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001631 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001632
Chris Lattner229907c2011-07-18 04:54:35 +00001633 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001634
Dan Gohman6a976bb2009-11-18 00:58:27 +00001635 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001636
1637 if (Base == 0)
1638 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001639
Victor Hernandez47444882009-11-10 08:28:35 +00001640 if (Base == 1) {
1641 Multiple = V;
1642 return true;
1643 }
1644
1645 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1646 Constant *BaseVal = ConstantInt::get(T, Base);
1647 if (CO && CO == BaseVal) {
1648 // Multiple is 1.
1649 Multiple = ConstantInt::get(T, 1);
1650 return true;
1651 }
1652
1653 if (CI && CI->getZExtValue() % Base == 0) {
1654 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001655 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001656 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001657
Victor Hernandez47444882009-11-10 08:28:35 +00001658 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001659
Victor Hernandez47444882009-11-10 08:28:35 +00001660 Operator *I = dyn_cast<Operator>(V);
1661 if (!I) return false;
1662
1663 switch (I->getOpcode()) {
1664 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001665 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001666 if (!LookThroughSExt) return false;
1667 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001668 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001669 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1670 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001671 case Instruction::Shl:
1672 case Instruction::Mul: {
1673 Value *Op0 = I->getOperand(0);
1674 Value *Op1 = I->getOperand(1);
1675
1676 if (I->getOpcode() == Instruction::Shl) {
1677 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1678 if (!Op1CI) return false;
1679 // Turn Op0 << Op1 into Op0 * 2^Op1
1680 APInt Op1Int = Op1CI->getValue();
1681 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001682 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001683 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001684 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001685 }
1686
Craig Topper9f008862014-04-15 04:59:12 +00001687 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001688 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1689 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1690 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001691 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001692 MulC->getType()->getPrimitiveSizeInBits())
1693 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001694 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001695 MulC->getType()->getPrimitiveSizeInBits())
1696 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001697
Chris Lattner72d283c2010-09-05 17:20:46 +00001698 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1699 Multiple = ConstantExpr::getMul(MulC, Op1C);
1700 return true;
1701 }
Victor Hernandez47444882009-11-10 08:28:35 +00001702
1703 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1704 if (Mul0CI->getValue() == 1) {
1705 // V == Base * Op1, so return Op1
1706 Multiple = Op1;
1707 return true;
1708 }
1709 }
1710
Craig Topper9f008862014-04-15 04:59:12 +00001711 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001712 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1713 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1714 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001715 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001716 MulC->getType()->getPrimitiveSizeInBits())
1717 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001718 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001719 MulC->getType()->getPrimitiveSizeInBits())
1720 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001721
Chris Lattner72d283c2010-09-05 17:20:46 +00001722 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1723 Multiple = ConstantExpr::getMul(MulC, Op0C);
1724 return true;
1725 }
Victor Hernandez47444882009-11-10 08:28:35 +00001726
1727 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1728 if (Mul1CI->getValue() == 1) {
1729 // V == Base * Op0, so return Op0
1730 Multiple = Op0;
1731 return true;
1732 }
1733 }
Victor Hernandez47444882009-11-10 08:28:35 +00001734 }
1735 }
1736
1737 // We could not determine if V is a multiple of Base.
1738 return false;
1739}
1740
Craig Topper1bef2c82012-12-22 19:15:35 +00001741/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattnera12a6de2008-06-02 01:29:46 +00001742/// value is never equal to -0.0.
1743///
1744/// NOTE: this function will need to be revisited when we support non-default
1745/// rounding modes!
1746///
1747bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1748 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1749 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001750
Chris Lattnera12a6de2008-06-02 01:29:46 +00001751 if (Depth == 6)
1752 return 1; // Limit search depth.
1753
Dan Gohman80ca01c2009-07-17 20:47:02 +00001754 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001755 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001756
1757 // Check if the nsz fast-math flag is set
1758 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1759 if (FPO->hasNoSignedZeros())
1760 return true;
1761
Chris Lattnera12a6de2008-06-02 01:29:46 +00001762 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00001763 if (I->getOpcode() == Instruction::FAdd)
1764 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1765 if (CFP->isNullValue())
1766 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001767
Chris Lattnera12a6de2008-06-02 01:29:46 +00001768 // sitofp and uitofp turn into +0.0 for zero.
1769 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1770 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001771
Chris Lattnera12a6de2008-06-02 01:29:46 +00001772 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1773 // sqrt(-0.0) = -0.0, no other negative results are possible.
1774 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00001775 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001776
Chris Lattnera12a6de2008-06-02 01:29:46 +00001777 if (const CallInst *CI = dyn_cast<CallInst>(I))
1778 if (const Function *F = CI->getCalledFunction()) {
1779 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00001780 // abs(x) != -0.0
1781 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00001782 // fabs[lf](x) != -0.0
1783 if (F->getName() == "fabs") return true;
1784 if (F->getName() == "fabsf") return true;
1785 if (F->getName() == "fabsl") return true;
1786 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1787 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00001788 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00001789 }
1790 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001791
Chris Lattnera12a6de2008-06-02 01:29:46 +00001792 return false;
1793}
1794
Chris Lattner9cb10352010-12-26 20:15:01 +00001795/// isBytewiseValue - If the specified value can be set by repeating the same
1796/// byte in memory, return the i8 value that it is represented with. This is
1797/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1798/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1799/// byte store (e.g. i16 0x1234), return null.
1800Value *llvm::isBytewiseValue(Value *V) {
1801 // All byte-wide stores are splatable, even of arbitrary variables.
1802 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00001803
1804 // Handle 'null' ConstantArrayZero etc.
1805 if (Constant *C = dyn_cast<Constant>(V))
1806 if (C->isNullValue())
1807 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00001808
Chris Lattner9cb10352010-12-26 20:15:01 +00001809 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00001810 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00001811 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1812 if (CFP->getType()->isFloatTy())
1813 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1814 if (CFP->getType()->isDoubleTy())
1815 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1816 // Don't handle long double formats, which have strange constraints.
1817 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001818
1819 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00001820 // multiple of 8 bits.
1821 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1822 unsigned Width = CI->getBitWidth();
1823 if (isPowerOf2_32(Width) && Width > 8) {
1824 // We can handle this value if the recursive binary decomposition is the
1825 // same at all levels.
1826 APInt Val = CI->getValue();
1827 APInt Val2;
1828 while (Val.getBitWidth() != 8) {
1829 unsigned NextWidth = Val.getBitWidth()/2;
1830 Val2 = Val.lshr(NextWidth);
1831 Val2 = Val2.trunc(Val.getBitWidth()/2);
1832 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001833
Chris Lattner9cb10352010-12-26 20:15:01 +00001834 // If the top/bottom halves aren't the same, reject it.
1835 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00001836 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001837 }
1838 return ConstantInt::get(V->getContext(), Val);
1839 }
1840 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001841
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001842 // A ConstantDataArray/Vector is splatable if all its members are equal and
1843 // also splatable.
1844 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1845 Value *Elt = CA->getElementAsConstant(0);
1846 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00001847 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00001848 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001849
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001850 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1851 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00001852 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001853
Chris Lattner9cb10352010-12-26 20:15:01 +00001854 return Val;
1855 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00001856
Chris Lattner9cb10352010-12-26 20:15:01 +00001857 // Conceptually, we could handle things like:
1858 // %a = zext i8 %X to i16
1859 // %b = shl i16 %a, 8
1860 // %c = or i16 %a, %b
1861 // but until there is an example that actually needs this, it doesn't seem
1862 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00001863 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001864}
1865
1866
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001867// This is the recursive version of BuildSubAggregate. It takes a few different
1868// arguments. Idxs is the index within the nested struct From that we are
1869// looking at now (which is of type IndexedType). IdxSkip is the number of
1870// indices from Idxs that should be left out when inserting into the resulting
1871// struct. To is the result struct built so far, new insertvalue instructions
1872// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00001873static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001874 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001875 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001876 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00001877 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001878 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001879 // Save the original To argument so we can modify it
1880 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001881 // General case, the type indexed by Idxs is a struct
1882 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1883 // Process each struct element recursively
1884 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001885 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001886 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001887 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001888 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001889 if (!To) {
1890 // Couldn't find any inserted value for this index? Cleanup
1891 while (PrevTo != OrigTo) {
1892 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1893 PrevTo = Del->getAggregateOperand();
1894 Del->eraseFromParent();
1895 }
1896 // Stop processing elements
1897 break;
1898 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001899 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001900 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001901 if (To)
1902 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001903 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001904 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1905 // the struct's elements had a value that was inserted directly. In the latter
1906 // case, perhaps we can't determine each of the subelements individually, but
1907 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00001908
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001909 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00001910 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001911
1912 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00001913 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001914
1915 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001916 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00001917 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001918}
1919
1920// This helper takes a nested struct and extracts a part of it (which is again a
1921// struct) into a new value. For example, given the struct:
1922// { a, { b, { c, d }, e } }
1923// and the indices "1, 1" this returns
1924// { c, d }.
1925//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001926// It does this by inserting an insertvalue for each element in the resulting
1927// struct, as opposed to just inserting a single struct. This will only work if
1928// each of the elements of the substruct are known (ie, inserted into From by an
1929// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001930//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001931// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00001932static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001933 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00001934 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00001935 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00001936 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00001937 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00001938 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001939 unsigned IdxSkip = Idxs.size();
1940
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001941 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001942}
1943
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001944/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1945/// the scalar value indexed is already around as a register, for example if it
1946/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001947///
1948/// If InsertBefore is not null, this function will duplicate (modified)
1949/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00001950Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1951 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001952 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001953 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00001954 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001955 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001956 // We have indices, so V should have an indexable type.
1957 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1958 "Not looking at a struct or array?");
1959 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1960 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00001961
Chris Lattner67058832012-01-25 06:48:06 +00001962 if (Constant *C = dyn_cast<Constant>(V)) {
1963 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00001964 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00001965 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1966 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001967
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001968 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001969 // Loop the indices for the insertvalue instruction in parallel with the
1970 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00001971 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001972 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1973 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00001974 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001975 // We can't handle this without inserting insertvalues
1976 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00001977 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001978
1979 // The requested index identifies a part of a nested aggregate. Handle
1980 // this specially. For example,
1981 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1982 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1983 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1984 // This can be changed into
1985 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1986 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1987 // which allows the unused 0,0 element from the nested struct to be
1988 // removed.
1989 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1990 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00001991 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001992
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001993 // This insert value inserts something else than what we are looking for.
1994 // See if the (aggregrate) value inserted into has the value we are
1995 // looking for, then.
1996 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00001997 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001998 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001999 }
2000 // If we end up here, the indices of the insertvalue match with those
2001 // requested (though possibly only partially). Now we recursively look at
2002 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002003 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002004 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002005 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002006 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002007
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002008 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002009 // If we're extracting a value from an aggregrate that was extracted from
2010 // something else, we can extract from that something else directly instead.
2011 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002012
2013 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002014 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002015 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002016 SmallVector<unsigned, 5> Idxs;
2017 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002018 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002019 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002020
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002021 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002022 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002023
Craig Topper1bef2c82012-12-22 19:15:35 +00002024 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002025 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002026
Jay Foad57aa6362011-07-13 10:26:04 +00002027 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002028 }
2029 // Otherwise, we don't know (such as, extracting from a function return value
2030 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002031 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002032}
Evan Chengda3db112008-06-30 07:31:25 +00002033
Chris Lattnere28618d2010-11-30 22:25:26 +00002034/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
2035/// it can be expressed as a base pointer plus a constant offset. Return the
2036/// base and offset to the caller.
2037Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002038 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00002039 // Without DataLayout, conservatively assume 64-bit offsets, which is
2040 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002041 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00002042 APInt ByteOffset(BitWidth, 0);
2043 while (1) {
2044 if (Ptr->getType()->isVectorTy())
2045 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002046
Nuno Lopes368c4d02012-12-31 20:48:35 +00002047 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002048 if (DL) {
2049 APInt GEPOffset(BitWidth, 0);
2050 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
2051 break;
2052
2053 ByteOffset += GEPOffset;
2054 }
2055
Nuno Lopes368c4d02012-12-31 20:48:35 +00002056 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002057 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2058 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002059 Ptr = cast<Operator>(Ptr)->getOperand(0);
2060 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2061 if (GA->mayBeOverridden())
2062 break;
2063 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002064 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002065 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002066 }
2067 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002068 Offset = ByteOffset.getSExtValue();
2069 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002070}
2071
2072
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002073/// getConstantStringInfo - This function computes the length of a
Evan Chengda3db112008-06-30 07:31:25 +00002074/// null-terminated C string pointed to by V. If successful, it returns true
2075/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002076bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2077 uint64_t Offset, bool TrimAtNul) {
2078 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002079
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002080 // Look through bitcast instructions and geps.
2081 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002082
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002083 // If the value is a GEP instructionor constant expression, treat it as an
2084 // offset.
2085 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002086 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002087 if (GEP->getNumOperands() != 3)
2088 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Evan Chengda3db112008-06-30 07:31:25 +00002090 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00002091 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2092 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002093 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002094 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002095
Evan Chengda3db112008-06-30 07:31:25 +00002096 // Check to make sure that the first operand of the GEP is an integer and
2097 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002098 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002099 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002100 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002101
Evan Chengda3db112008-06-30 07:31:25 +00002102 // If the second index isn't a ConstantInt, then this is a variable index
2103 // into the array. If this occurs, we can't say anything meaningful about
2104 // the string.
2105 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002106 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002107 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002108 else
2109 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002110 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00002111 }
Nick Lewycky46209882011-10-20 00:34:35 +00002112
Evan Chengda3db112008-06-30 07:31:25 +00002113 // The GEP instruction, constant or instruction, must reference a global
2114 // variable that is a constant and is initialized. The referenced constant
2115 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002116 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002117 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002118 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002119
Nick Lewycky46209882011-10-20 00:34:35 +00002120 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002121 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002122 // This is a degenerate case. The initializer is constant zero so the
2123 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002124 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002125 return true;
2126 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002127
Evan Chengda3db112008-06-30 07:31:25 +00002128 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002129 const ConstantDataArray *Array =
2130 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002131 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002132 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002133
Evan Chengda3db112008-06-30 07:31:25 +00002134 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002135 uint64_t NumElts = Array->getType()->getArrayNumElements();
2136
2137 // Start out with the entire array in the StringRef.
2138 Str = Array->getAsString();
2139
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002140 if (Offset > NumElts)
2141 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002142
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002143 // Skip over 'offset' bytes.
2144 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002145
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002146 if (TrimAtNul) {
2147 // Trim off the \0 and anything after it. If the array is not nul
2148 // terminated, we just return the whole end of string. The client may know
2149 // some other way that the string is length-bound.
2150 Str = Str.substr(0, Str.find('\0'));
2151 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002152 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002153}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002154
2155// These next two are very similar to the above, but also look through PHI
2156// nodes.
2157// TODO: See if we can integrate these two together.
2158
2159/// GetStringLengthH - If we can compute the length of the string pointed to by
2160/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002161static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002162 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002163 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002164
2165 // If this is a PHI node, there are two cases: either we have already seen it
2166 // or we haven't.
2167 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2168 if (!PHIs.insert(PN))
2169 return ~0ULL; // already in the set.
2170
2171 // If it was new, see if all the input strings are the same length.
2172 uint64_t LenSoFar = ~0ULL;
2173 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2174 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
2175 if (Len == 0) return 0; // Unknown length -> unknown.
2176
2177 if (Len == ~0ULL) continue;
2178
2179 if (Len != LenSoFar && LenSoFar != ~0ULL)
2180 return 0; // Disagree -> unknown.
2181 LenSoFar = Len;
2182 }
2183
2184 // Success, all agree.
2185 return LenSoFar;
2186 }
2187
2188 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2189 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2190 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2191 if (Len1 == 0) return 0;
2192 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2193 if (Len2 == 0) return 0;
2194 if (Len1 == ~0ULL) return Len2;
2195 if (Len2 == ~0ULL) return Len1;
2196 if (Len1 != Len2) return 0;
2197 return Len1;
2198 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002199
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002200 // Otherwise, see if we can read the string.
2201 StringRef StrData;
2202 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002203 return 0;
2204
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002205 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002206}
2207
2208/// GetStringLength - If we can compute the length of the string pointed to by
2209/// the specified pointer, return 'len+1'. If we can't, return 0.
2210uint64_t llvm::GetStringLength(Value *V) {
2211 if (!V->getType()->isPointerTy()) return 0;
2212
2213 SmallPtrSet<PHINode*, 32> PHIs;
2214 uint64_t Len = GetStringLengthH(V, PHIs);
2215 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2216 // an empty string as a length.
2217 return Len == ~0ULL ? 1 : Len;
2218}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002219
Dan Gohman0f124e12011-01-24 18:53:32 +00002220Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002221llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002222 if (!V->getType()->isPointerTy())
2223 return V;
2224 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2225 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2226 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002227 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2228 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002229 V = cast<Operator>(V)->getOperand(0);
2230 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2231 if (GA->mayBeOverridden())
2232 return V;
2233 V = GA->getAliasee();
2234 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002235 // See if InstructionSimplify knows any relevant tricks.
2236 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel60db0582014-09-07 18:57:58 +00002237 // TODO: Acquire a DominatorTree and AssumptionTracker and use them.
Craig Topper9f008862014-04-15 04:59:12 +00002238 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002239 V = Simplified;
2240 continue;
2241 }
2242
Dan Gohmana4fcd242010-12-15 20:02:24 +00002243 return V;
2244 }
2245 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2246 }
2247 return V;
2248}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002249
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002250void
2251llvm::GetUnderlyingObjects(Value *V,
2252 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002253 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002254 unsigned MaxLookup) {
2255 SmallPtrSet<Value *, 4> Visited;
2256 SmallVector<Value *, 4> Worklist;
2257 Worklist.push_back(V);
2258 do {
2259 Value *P = Worklist.pop_back_val();
2260 P = GetUnderlyingObject(P, TD, MaxLookup);
2261
2262 if (!Visited.insert(P))
2263 continue;
2264
2265 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2266 Worklist.push_back(SI->getTrueValue());
2267 Worklist.push_back(SI->getFalseValue());
2268 continue;
2269 }
2270
2271 if (PHINode *PN = dyn_cast<PHINode>(P)) {
2272 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2273 Worklist.push_back(PN->getIncomingValue(i));
2274 continue;
2275 }
2276
2277 Objects.push_back(P);
2278 } while (!Worklist.empty());
2279}
2280
Nick Lewycky3e334a42011-06-27 04:20:45 +00002281/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
2282/// are lifetime markers.
2283///
2284bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002285 for (const User *U : V->users()) {
2286 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002287 if (!II) return false;
2288
2289 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2290 II->getIntrinsicID() != Intrinsic::lifetime_end)
2291 return false;
2292 }
2293 return true;
2294}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002295
Dan Gohman7ac046a2012-01-04 23:01:09 +00002296bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002297 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002298 const Operator *Inst = dyn_cast<Operator>(V);
2299 if (!Inst)
2300 return false;
2301
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002302 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2303 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2304 if (C->canTrap())
2305 return false;
2306
2307 switch (Inst->getOpcode()) {
2308 default:
2309 return true;
2310 case Instruction::UDiv:
2311 case Instruction::URem:
Sanjay Patel784a5a42014-07-06 23:24:53 +00002312 // x / y is undefined if y == 0, but calculations like x / 3 are safe.
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002313 return isKnownNonZero(Inst->getOperand(1), TD);
2314 case Instruction::SDiv:
2315 case Instruction::SRem: {
2316 Value *Op = Inst->getOperand(1);
2317 // x / y is undefined if y == 0
2318 if (!isKnownNonZero(Op, TD))
2319 return false;
2320 // x / y might be undefined if y == -1
2321 unsigned BitWidth = getBitWidth(Op->getType(), TD);
2322 if (BitWidth == 0)
2323 return false;
2324 APInt KnownZero(BitWidth, 0);
2325 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00002326 computeKnownBits(Op, KnownZero, KnownOne, TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002327 return !!KnownZero;
2328 }
2329 case Instruction::Load: {
2330 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002331 if (!LI->isUnordered() ||
2332 // Speculative load may create a race that did not exist in the source.
2333 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002334 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002335 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002336 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002337 case Instruction::Call: {
2338 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2339 switch (II->getIntrinsicID()) {
Sanjay Patel784a5a42014-07-06 23:24:53 +00002340 // These synthetic intrinsics have no side-effects and just mark
Chandler Carruth28192c92012-04-07 19:22:18 +00002341 // information about their operands.
2342 // FIXME: There are other no-op synthetic instructions that potentially
2343 // should be considered at least *safe* to speculate...
2344 case Intrinsic::dbg_declare:
2345 case Intrinsic::dbg_value:
2346 return true;
2347
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002348 case Intrinsic::bswap:
2349 case Intrinsic::ctlz:
2350 case Intrinsic::ctpop:
2351 case Intrinsic::cttz:
2352 case Intrinsic::objectsize:
2353 case Intrinsic::sadd_with_overflow:
2354 case Intrinsic::smul_with_overflow:
2355 case Intrinsic::ssub_with_overflow:
2356 case Intrinsic::uadd_with_overflow:
2357 case Intrinsic::umul_with_overflow:
2358 case Intrinsic::usub_with_overflow:
2359 return true;
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002360 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2361 // errno like libm sqrt would.
2362 case Intrinsic::sqrt:
2363 case Intrinsic::fma:
2364 case Intrinsic::fmuladd:
Matt Arsenault85cbc7e2014-08-29 16:01:17 +00002365 case Intrinsic::fabs:
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002366 return true;
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002367 // TODO: some fp intrinsics are marked as having the same error handling
2368 // as libm. They're safe to speculate when they won't error.
2369 // TODO: are convert_{from,to}_fp16 safe?
2370 // TODO: can we list target-specific intrinsics here?
2371 default: break;
2372 }
2373 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002374 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002375 // side-effects, even if marked readnone nounwind.
2376 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002377 case Instruction::VAArg:
2378 case Instruction::Alloca:
2379 case Instruction::Invoke:
2380 case Instruction::PHI:
2381 case Instruction::Store:
2382 case Instruction::Ret:
2383 case Instruction::Br:
2384 case Instruction::IndirectBr:
2385 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002386 case Instruction::Unreachable:
2387 case Instruction::Fence:
2388 case Instruction::LandingPad:
2389 case Instruction::AtomicRMW:
2390 case Instruction::AtomicCmpXchg:
2391 case Instruction::Resume:
2392 return false; // Misc instructions which have effects
2393 }
2394}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002395
2396/// isKnownNonNull - Return true if we know that the specified value is never
2397/// null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002398bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002399 // Alloca never returns null, malloc might.
2400 if (isa<AllocaInst>(V)) return true;
2401
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002402 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002403 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002404 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002405
2406 // Global values are not null unless extern weak.
2407 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2408 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002409
Nick Lewyckyec373542014-05-20 05:13:21 +00002410 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002411 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002412 return true;
2413
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002414 // operator new never returns null.
2415 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2416 return true;
2417
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002418 return false;
2419}