blob: 5716e24d5f4ba3a0aadbbca6d6fdc142ea4e191d [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000017#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000018#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000019#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000020#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000021#include "llvm/IR/Constants.h"
22#include "llvm/IR/DataLayout.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000023#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/GlobalAlias.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000031#include "llvm/IR/PatternMatch.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000032#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000033#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000034#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000035using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000036using namespace llvm::PatternMatch;
37
38const unsigned MaxDepth = 6;
39
40/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
41/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000042static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000043 if (unsigned BitWidth = Ty->getScalarSizeInBits())
44 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000045
46 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000047}
Chris Lattner965c7692008-06-02 01:18:21 +000048
Jay Foada0653a32014-05-14 21:14:37 +000049static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
50 APInt &KnownZero, APInt &KnownOne,
51 APInt &KnownZero2, APInt &KnownOne2,
52 const DataLayout *TD, unsigned Depth) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +000053 if (!Add) {
54 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
55 // We know that the top bits of C-X are clear if X contains less bits
56 // than C (i.e. no wrap-around can happen). For example, 20-X is
57 // positive if we can prove that X is >= 0 and < 16.
58 if (!CLHS->getValue().isNegative()) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000059 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +000060 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
61 // NLZ can't be BitWidth with no sign bit
62 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Jay Foada0653a32014-05-14 21:14:37 +000063 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +000064
Nick Lewyckyfea3e002012-03-09 09:23:50 +000065 // If all of the MaskV bits are known to be zero, then we know the
66 // output top bits are zero, because we now know that the output is
67 // from [0-C].
68 if ((KnownZero2 & MaskV) == MaskV) {
69 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
70 // Top bits known zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000071 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000072 }
73 }
74 }
75 }
76
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000077 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +000078
79 // If one of the operands has trailing zeros, then the bits that the
80 // other operand has in those bit positions will be preserved in the
81 // result. For an add, this works with either operand. For a subtract,
82 // this only works if the known zeros are in the right operand.
83 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +000084 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000085 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
86
Jay Foada0653a32014-05-14 21:14:37 +000087 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000088 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130}
131
Jay Foada0653a32014-05-14 21:14:37 +0000132static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
135 const DataLayout *TD, unsigned Depth) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000136 unsigned BitWidth = KnownZero.getBitWidth();
Jay Foada0653a32014-05-14 21:14:37 +0000137 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000139
140 bool isKnownNegative = false;
141 bool isKnownNonNegative = false;
142 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000143 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000144 if (Op0 == Op1) {
145 // The product of a number with itself is non-negative.
146 isKnownNonNegative = true;
147 } else {
148 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
149 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
150 bool isKnownNegativeOp1 = KnownOne.isNegative();
151 bool isKnownNegativeOp0 = KnownOne2.isNegative();
152 // The product of two numbers with the same sign is non-negative.
153 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
154 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
155 // The product of a negative number and a non-negative number is either
156 // negative or zero.
157 if (!isKnownNonNegative)
158 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
159 isKnownNonZero(Op0, TD, Depth)) ||
160 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
161 isKnownNonZero(Op1, TD, Depth));
162 }
163 }
164
165 // If low bits are zero in either operand, output low known-0 bits.
166 // Also compute a conserative estimate for high known-0 bits.
167 // More trickiness is possible, but this is sufficient for the
168 // interesting case of alignment computation.
169 KnownOne.clearAllBits();
170 unsigned TrailZ = KnownZero.countTrailingOnes() +
171 KnownZero2.countTrailingOnes();
172 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
173 KnownZero2.countLeadingOnes(),
174 BitWidth) - BitWidth;
175
176 TrailZ = std::min(TrailZ, BitWidth);
177 LeadZ = std::min(LeadZ, BitWidth);
178 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
179 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000180
181 // Only make use of no-wrap flags if we failed to compute the sign bit
182 // directly. This matters if the multiplication always overflows, in
183 // which case we prefer to follow the result of the direct computation,
184 // though as the program is invoking undefined behaviour we can choose
185 // whatever we like here.
186 if (isKnownNonNegative && !KnownOne.isNegative())
187 KnownZero.setBit(BitWidth - 1);
188 else if (isKnownNegative && !KnownZero.isNegative())
189 KnownOne.setBit(BitWidth - 1);
190}
191
Jingyue Wu37fcb592014-06-19 16:50:16 +0000192void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
193 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000194 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000195 unsigned NumRanges = Ranges.getNumOperands() / 2;
196 assert(NumRanges >= 1);
197
198 // Use the high end of the ranges to find leading zeros.
199 unsigned MinLeadingZeros = BitWidth;
200 for (unsigned i = 0; i < NumRanges; ++i) {
201 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
202 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
203 ConstantRange Range(Lower->getValue(), Upper->getValue());
204 if (Range.isWrappedSet())
205 MinLeadingZeros = 0; // -1 has no zeros
206 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
207 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
208 }
209
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000210 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000211}
Jay Foad5a29c362014-05-15 12:12:55 +0000212
Jay Foada0653a32014-05-14 21:14:37 +0000213/// Determine which bits of V are known to be either zero or one and return
214/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000215///
Chris Lattner965c7692008-06-02 01:18:21 +0000216/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero. If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000225/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
Jay Foada0653a32014-05-14 21:14:37 +0000228void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229 const DataLayout *TD, unsigned Depth) {
Chris Lattner965c7692008-06-02 01:18:21 +0000230 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000231 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000232 unsigned BitWidth = KnownZero.getBitWidth();
233
Nadav Rotem3924cb02011-12-05 06:29:09 +0000234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000239 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000240 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000241 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000242 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000243 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000249 return;
250 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000254 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000255 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000256 return;
257 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000258 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000269 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000270 }
271 return;
272 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000273
Chris Lattner965c7692008-06-02 01:18:21 +0000274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000277 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000289 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000290 }
Chris Lattner965c7692008-06-02 01:18:21 +0000291 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000292 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000293 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000294 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000297 return;
298 }
Dan Gohman94262db2009-09-15 16:14:44 +0000299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman94262db2009-09-15 16:14:44 +0000304 } else {
Jay Foada0653a32014-05-14 21:14:37 +0000305 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman94262db2009-09-15 16:14:44 +0000306 }
307 return;
308 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000309
Chris Lattner83791ce2011-05-23 00:03:39 +0000310 if (Argument *A = dyn_cast<Argument>(V)) {
Hal Finkelccc70902014-07-22 16:58:55 +0000311 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
Duncan Sands271ea6c2012-10-04 13:36:31 +0000312
Hal Finkelccc70902014-07-22 16:58:55 +0000313 if (!Align && TD && A->hasStructRetAttr()) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000314 // An sret parameter has at least the ABI alignment of the return type.
315 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
316 if (EltTy->isSized())
317 Align = TD->getABITypeAlignment(EltTy);
318 }
319
320 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000321 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner83791ce2011-05-23 00:03:39 +0000322 return;
323 }
Chris Lattner965c7692008-06-02 01:18:21 +0000324
Chris Lattner83791ce2011-05-23 00:03:39 +0000325 // Start out not knowing anything.
326 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000327
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000328 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000329 return; // Limit search depth.
330
Dan Gohman80ca01c2009-07-17 20:47:02 +0000331 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000332 if (!I) return;
333
334 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000335 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000336 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000337 case Instruction::Load:
338 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000339 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000340 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000341 case Instruction::And: {
342 // If either the LHS or the RHS are Zero, the result is zero.
Jay Foada0653a32014-05-14 21:14:37 +0000343 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
344 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000345
Chris Lattner965c7692008-06-02 01:18:21 +0000346 // Output known-1 bits are only known if set in both the LHS & RHS.
347 KnownOne &= KnownOne2;
348 // Output known-0 are known to be clear if zero in either the LHS | RHS.
349 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000350 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000351 }
352 case Instruction::Or: {
Jay Foada0653a32014-05-14 21:14:37 +0000353 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
354 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000355
Chris Lattner965c7692008-06-02 01:18:21 +0000356 // Output known-0 bits are only known if clear in both the LHS & RHS.
357 KnownZero &= KnownZero2;
358 // Output known-1 are known to be set if set in either the LHS | RHS.
359 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000360 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000361 }
362 case Instruction::Xor: {
Jay Foada0653a32014-05-14 21:14:37 +0000363 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
364 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000365
Chris Lattner965c7692008-06-02 01:18:21 +0000366 // Output known-0 bits are known if clear or set in both the LHS & RHS.
367 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
368 // Output known-1 are known to be set if set in only one of the LHS, RHS.
369 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
370 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000371 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000372 }
373 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000374 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000375 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000376 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000377 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000378 }
379 case Instruction::UDiv: {
380 // For the purposes of computing leading zeros we can conservatively
381 // treat a udiv as a logical right shift by the power of 2 known to
382 // be less than the denominator.
Jay Foada0653a32014-05-14 21:14:37 +0000383 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000384 unsigned LeadZ = KnownZero2.countLeadingOnes();
385
Jay Foad25a5e4c2010-12-01 08:53:58 +0000386 KnownOne2.clearAllBits();
387 KnownZero2.clearAllBits();
Jay Foada0653a32014-05-14 21:14:37 +0000388 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000389 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
390 if (RHSUnknownLeadingOnes != BitWidth)
391 LeadZ = std::min(BitWidth,
392 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
393
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000394 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000395 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000396 }
397 case Instruction::Select:
Jay Foada0653a32014-05-14 21:14:37 +0000398 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
399 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner965c7692008-06-02 01:18:21 +0000400 Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000401
402 // Only known if known in both the LHS and RHS.
403 KnownOne &= KnownOne2;
404 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000405 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000406 case Instruction::FPTrunc:
407 case Instruction::FPExt:
408 case Instruction::FPToUI:
409 case Instruction::FPToSI:
410 case Instruction::SIToFP:
411 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000412 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000413 case Instruction::PtrToInt:
414 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000415 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000416 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000417 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000418 // FALL THROUGH and handle them the same as zext/trunc.
419 case Instruction::ZExt:
420 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000421 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000422
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000423 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000424 // Note that we handle pointer operands here because of inttoptr/ptrtoint
425 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000426 if(TD) {
427 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
428 } else {
429 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000430 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000431 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000432
433 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000434 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
435 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000436 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad583abbc2010-12-07 08:25:19 +0000437 KnownZero = KnownZero.zextOrTrunc(BitWidth);
438 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000439 // Any top bits are known to be zero.
440 if (BitWidth > SrcBitWidth)
441 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000442 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000443 }
444 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000445 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000446 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000447 // TODO: For now, not handling conversions like:
448 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000449 !I->getType()->isVectorTy()) {
Jay Foada0653a32014-05-14 21:14:37 +0000450 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad5a29c362014-05-15 12:12:55 +0000451 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000452 }
453 break;
454 }
455 case Instruction::SExt: {
456 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000457 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000458
Jay Foad583abbc2010-12-07 08:25:19 +0000459 KnownZero = KnownZero.trunc(SrcBitWidth);
460 KnownOne = KnownOne.trunc(SrcBitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000461 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad583abbc2010-12-07 08:25:19 +0000462 KnownZero = KnownZero.zext(BitWidth);
463 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000464
465 // If the sign bit of the input is known set or clear, then we know the
466 // top bits of the result.
467 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
468 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
469 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
470 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000471 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000472 }
473 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000474 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000475 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
476 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000477 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000478 KnownZero <<= ShiftAmt;
479 KnownOne <<= ShiftAmt;
480 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Jay Foad5a29c362014-05-15 12:12:55 +0000481 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000482 }
483 break;
484 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000485 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 // Compute the new bits that are at the top now.
488 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +0000489
Chris Lattner965c7692008-06-02 01:18:21 +0000490 // Unsigned shift right.
Jay Foada0653a32014-05-14 21:14:37 +0000491 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000492 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
493 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
494 // high bits known zero.
495 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Jay Foad5a29c362014-05-15 12:12:55 +0000496 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000497 }
498 break;
499 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000500 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000501 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
502 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +0000503 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000504
Chris Lattner965c7692008-06-02 01:18:21 +0000505 // Signed shift right.
Jay Foada0653a32014-05-14 21:14:37 +0000506 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000507 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
508 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +0000509
Chris Lattner965c7692008-06-02 01:18:21 +0000510 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
511 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
512 KnownZero |= HighBits;
513 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
514 KnownOne |= HighBits;
Jay Foad5a29c362014-05-15 12:12:55 +0000515 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000516 }
517 break;
518 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000519 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000520 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000521 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
522 Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000523 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000524 }
Chris Lattner965c7692008-06-02 01:18:21 +0000525 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000526 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000527 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000528 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
529 Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000530 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000531 }
532 case Instruction::SRem:
533 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000534 APInt RA = Rem->getValue().abs();
535 if (RA.isPowerOf2()) {
536 APInt LowBits = RA - 1;
Jay Foada0653a32014-05-14 21:14:37 +0000537 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000538
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000539 // The low bits of the first operand are unchanged by the srem.
540 KnownZero = KnownZero2 & LowBits;
541 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000542
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000543 // If the first operand is non-negative or has all low bits zero, then
544 // the upper bits are all zero.
545 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
546 KnownZero |= ~LowBits;
547
548 // If the first operand is negative and not all low bits are zero, then
549 // the upper bits are all one.
550 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
551 KnownOne |= ~LowBits;
552
Craig Topper1bef2c82012-12-22 19:15:35 +0000553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +0000554 }
555 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000556
557 // The sign bit is the LHS's sign bit, except when the result of the
558 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000559 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +0000560 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000561 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
562 Depth+1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000563 // If it's known zero, our sign bit is also zero.
564 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +0000565 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000566 }
567
Chris Lattner965c7692008-06-02 01:18:21 +0000568 break;
569 case Instruction::URem: {
570 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
571 APInt RA = Rem->getValue();
572 if (RA.isPowerOf2()) {
573 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +0000574 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
575 Depth+1);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000576 KnownZero |= ~LowBits;
577 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000578 break;
579 }
580 }
581
582 // Since the result is less than or equal to either operand, any leading
583 // zero bits in either operand must also exist in the result.
Jay Foada0653a32014-05-14 21:14:37 +0000584 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
585 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000586
Chris Lattner4612ae12009-01-20 18:22:57 +0000587 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +0000588 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +0000589 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000590 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +0000591 break;
592 }
593
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000594 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +0000595 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000596 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000597 if (Align == 0 && TD)
598 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +0000599
Chris Lattner965c7692008-06-02 01:18:21 +0000600 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000601 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000602 break;
603 }
604 case Instruction::GetElementPtr: {
605 // Analyze all of the subscripts of this getelementptr instruction
606 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +0000607 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000608 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
609 Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000610 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
611
612 gep_type_iterator GTI = gep_type_begin(I);
613 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
614 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +0000615 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +0000616 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +0000617 if (!TD) {
618 TrailZ = 0;
619 break;
620 }
Matt Arsenault74742a12013-08-19 21:43:16 +0000621
622 // Handle case when index is vector zeroinitializer
623 Constant *CIndex = cast<Constant>(Index);
624 if (CIndex->isZeroValue())
625 continue;
626
627 if (CIndex->getType()->isVectorTy())
628 Index = CIndex->getSplatValue();
629
Chris Lattner965c7692008-06-02 01:18:21 +0000630 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +0000631 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +0000632 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000633 TrailZ = std::min<unsigned>(TrailZ,
634 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +0000635 } else {
636 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +0000637 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +0000638 if (!IndexedTy->isSized()) {
639 TrailZ = 0;
640 break;
641 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +0000643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +0000644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000645 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000646 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000647 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +0000648 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +0000649 }
650 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000651
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +0000653 break;
654 }
655 case Instruction::PHI: {
656 PHINode *P = cast<PHINode>(I);
657 // Handle the case of a simple two-predecessor recurrence PHI.
658 // There's a lot more that could theoretically be done here, but
659 // this is sufficient to catch some interesting cases.
660 if (P->getNumIncomingValues() == 2) {
661 for (unsigned i = 0; i != 2; ++i) {
662 Value *L = P->getIncomingValue(i);
663 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000664 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +0000665 if (!LU)
666 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +0000667 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +0000668 // Check for operations that have the property that if
669 // both their operands have low zero bits, the result
670 // will have low zero bits.
671 if (Opcode == Instruction::Add ||
672 Opcode == Instruction::Sub ||
673 Opcode == Instruction::And ||
674 Opcode == Instruction::Or ||
675 Opcode == Instruction::Mul) {
676 Value *LL = LU->getOperand(0);
677 Value *LR = LU->getOperand(1);
678 // Find a recurrence.
679 if (LL == I)
680 L = LR;
681 else if (LR == I)
682 L = LL;
683 else
684 break;
685 // Ok, we have a PHI of the form L op= R. Check for low
686 // zero bits.
Jay Foada0653a32014-05-14 21:14:37 +0000687 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greeneaebd9e02008-10-27 23:24:03 +0000688
689 // We need to take the minimum number of known bits
690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Jay Foada0653a32014-05-14 21:14:37 +0000691 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greeneaebd9e02008-10-27 23:24:03 +0000692
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000693 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +0000694 std::min(KnownZero2.countTrailingOnes(),
695 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +0000696 break;
697 }
698 }
699 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000700
Nick Lewyckyac0b62c2011-02-10 23:54:10 +0000701 // Unreachable blocks may have zero-operand PHI nodes.
702 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +0000703 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +0000704
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000705 // Otherwise take the unions of the known bit sets of the operands,
706 // taking conservative care to avoid excessive recursion.
707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +0000708 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +0000709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +0000710 break;
711
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000712 KnownZero = APInt::getAllOnesValue(BitWidth);
713 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
715 // Skip direct self references.
716 if (P->getIncomingValue(i) == P) continue;
717
718 KnownZero2 = APInt(BitWidth, 0);
719 KnownOne2 = APInt(BitWidth, 0);
720 // Recurse, but cap the recursion to one level, because we don't
721 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +0000722 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
723 MaxDepth-1);
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000724 KnownZero &= KnownZero2;
725 KnownOne &= KnownOne2;
726 // If all bits have been ruled out, there's no need to check
727 // more operands.
728 if (!KnownZero && !KnownOne)
729 break;
730 }
731 }
Chris Lattner965c7692008-06-02 01:18:21 +0000732 break;
733 }
734 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +0000735 case Instruction::Invoke:
736 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
737 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
738 // If a range metadata is attached to this IntrinsicInst, intersect the
739 // explicit range specified by the metadata and the implicit range of
740 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +0000741 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
742 switch (II->getIntrinsicID()) {
743 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +0000744 case Intrinsic::ctlz:
745 case Intrinsic::cttz: {
746 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +0000747 // If this call is undefined for 0, the result will be less than 2^n.
748 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
749 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +0000750 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +0000751 break;
752 }
753 case Intrinsic::ctpop: {
754 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +0000755 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +0000756 break;
757 }
Chad Rosierb3628842011-05-26 23:13:19 +0000758 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +0000759 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +0000760 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000761 }
762 }
763 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000764 case Instruction::ExtractValue:
765 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
766 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
767 if (EVI->getNumIndices() != 1) break;
768 if (EVI->getIndices()[0] == 0) {
769 switch (II->getIntrinsicID()) {
770 default: break;
771 case Intrinsic::uadd_with_overflow:
772 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000773 computeKnownBitsAddSub(true, II->getArgOperand(0),
774 II->getArgOperand(1), false, KnownZero,
775 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000776 break;
777 case Intrinsic::usub_with_overflow:
778 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000779 computeKnownBitsAddSub(false, II->getArgOperand(0),
780 II->getArgOperand(1), false, KnownZero,
781 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000782 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000783 case Intrinsic::umul_with_overflow:
784 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000785 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
786 false, KnownZero, KnownOne,
787 KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000788 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000789 }
790 }
791 }
Chris Lattner965c7692008-06-02 01:18:21 +0000792 }
Jay Foad5a29c362014-05-15 12:12:55 +0000793
794 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +0000795}
796
Duncan Sandsd3951082011-01-25 09:38:29 +0000797/// ComputeSignBit - Determine whether the sign bit is known to be zero or
Jay Foada0653a32014-05-14 21:14:37 +0000798/// one. Convenience wrapper around computeKnownBits.
Duncan Sandsd3951082011-01-25 09:38:29 +0000799void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Micah Villmowcdfe20b2012-10-08 16:38:25 +0000800 const DataLayout *TD, unsigned Depth) {
Duncan Sandsd3951082011-01-25 09:38:29 +0000801 unsigned BitWidth = getBitWidth(V->getType(), TD);
802 if (!BitWidth) {
803 KnownZero = false;
804 KnownOne = false;
805 return;
806 }
807 APInt ZeroBits(BitWidth, 0);
808 APInt OneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000809 computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +0000810 KnownOne = OneBits[BitWidth - 1];
811 KnownZero = ZeroBits[BitWidth - 1];
812}
813
Rafael Espindola319f74c2012-12-13 03:37:24 +0000814/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +0000815/// bit set when defined. For vectors return true if every element is known to
816/// be a power of two when defined. Supports values with integer or pointer
817/// types and vectors of integers.
Rafael Espindola319f74c2012-12-13 03:37:24 +0000818bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
Duncan Sandsba286d72011-10-26 20:55:21 +0000819 if (Constant *C = dyn_cast<Constant>(V)) {
820 if (C->isNullValue())
821 return OrZero;
822 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
823 return CI->getValue().isPowerOf2();
824 // TODO: Handle vector constants.
825 }
Duncan Sandsd3951082011-01-25 09:38:29 +0000826
827 // 1 << X is clearly a power of two if the one is not shifted off the end. If
828 // it is shifted off the end then the result is undefined.
829 if (match(V, m_Shl(m_One(), m_Value())))
830 return true;
831
832 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
833 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +0000834 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +0000835 return true;
836
837 // The remaining tests are all recursive, so bail out if we hit the limit.
838 if (Depth++ == MaxDepth)
839 return false;
840
Craig Topper9f008862014-04-15 04:59:12 +0000841 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +0000842 // A shift of a power of two is a power of two or zero.
843 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
844 match(V, m_Shr(m_Value(X), m_Value()))))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000845 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
Duncan Sands985ba632011-10-28 18:30:05 +0000846
Duncan Sandsd3951082011-01-25 09:38:29 +0000847 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000848 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +0000849
850 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000851 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
852 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
Duncan Sandsba286d72011-10-26 20:55:21 +0000853
Duncan Sandsba286d72011-10-26 20:55:21 +0000854 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
855 // A power of two and'd with anything is a power of two or zero.
Rafael Espindola319f74c2012-12-13 03:37:24 +0000856 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
857 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
Duncan Sandsba286d72011-10-26 20:55:21 +0000858 return true;
859 // X & (-X) is always a power of two or zero.
860 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
861 return true;
862 return false;
863 }
Duncan Sandsd3951082011-01-25 09:38:29 +0000864
David Majnemerb7d54092013-07-30 21:01:36 +0000865 // Adding a power-of-two or zero to the same power-of-two or zero yields
866 // either the original power-of-two, a larger power-of-two or zero.
867 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
868 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
869 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
870 if (match(X, m_And(m_Specific(Y), m_Value())) ||
871 match(X, m_And(m_Value(), m_Specific(Y))))
872 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
873 return true;
874 if (match(Y, m_And(m_Specific(X), m_Value())) ||
875 match(Y, m_And(m_Value(), m_Specific(X))))
876 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
877 return true;
878
879 unsigned BitWidth = V->getType()->getScalarSizeInBits();
880 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000881 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
David Majnemerb7d54092013-07-30 21:01:36 +0000882
883 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000884 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
David Majnemerb7d54092013-07-30 21:01:36 +0000885 // If i8 V is a power of two or zero:
886 // ZeroBits: 1 1 1 0 1 1 1 1
887 // ~ZeroBits: 0 0 0 1 0 0 0 0
888 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
889 // If OrZero isn't set, we cannot give back a zero result.
890 // Make sure either the LHS or RHS has a bit set.
891 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
892 return true;
893 }
894 }
David Majnemerbeab5672013-05-18 19:30:37 +0000895
Nick Lewyckyc9aab852011-02-28 08:02:21 +0000896 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +0000897 // is a power of two only if the first operand is a power of two and not
898 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +0000899 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
900 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Rafael Espindola319f74c2012-12-13 03:37:24 +0000901 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
Nick Lewyckyc9aab852011-02-28 08:02:21 +0000902 }
903
Duncan Sandsd3951082011-01-25 09:38:29 +0000904 return false;
905}
906
Chandler Carruth80d3e562012-12-07 02:08:58 +0000907/// \brief Test whether a GEP's result is known to be non-null.
908///
909/// Uses properties inherent in a GEP to try to determine whether it is known
910/// to be non-null.
911///
912/// Currently this routine does not support vector GEPs.
913static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
914 unsigned Depth) {
915 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
916 return false;
917
918 // FIXME: Support vector-GEPs.
919 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
920
921 // If the base pointer is non-null, we cannot walk to a null address with an
922 // inbounds GEP in address space zero.
923 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
924 return true;
925
926 // Past this, if we don't have DataLayout, we can't do much.
927 if (!DL)
928 return false;
929
930 // Walk the GEP operands and see if any operand introduces a non-zero offset.
931 // If so, then the GEP cannot produce a null pointer, as doing so would
932 // inherently violate the inbounds contract within address space zero.
933 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
934 GTI != GTE; ++GTI) {
935 // Struct types are easy -- they must always be indexed by a constant.
936 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
937 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
938 unsigned ElementIdx = OpC->getZExtValue();
939 const StructLayout *SL = DL->getStructLayout(STy);
940 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
941 if (ElementOffset > 0)
942 return true;
943 continue;
944 }
945
946 // If we have a zero-sized type, the index doesn't matter. Keep looping.
947 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
948 continue;
949
950 // Fast path the constant operand case both for efficiency and so we don't
951 // increment Depth when just zipping down an all-constant GEP.
952 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
953 if (!OpC->isZero())
954 return true;
955 continue;
956 }
957
958 // We post-increment Depth here because while isKnownNonZero increments it
959 // as well, when we pop back up that increment won't persist. We don't want
960 // to recurse 10k times just because we have 10k GEP operands. We don't
961 // bail completely out because we want to handle constant GEPs regardless
962 // of depth.
963 if (Depth++ >= MaxDepth)
964 continue;
965
966 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
967 return true;
968 }
969
970 return false;
971}
972
Duncan Sandsd3951082011-01-25 09:38:29 +0000973/// isKnownNonZero - Return true if the given value is known to be non-zero
974/// when defined. For vectors return true if every element is known to be
975/// non-zero when defined. Supports values with integer or pointer type and
976/// vectors of integers.
Micah Villmowcdfe20b2012-10-08 16:38:25 +0000977bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
Duncan Sandsd3951082011-01-25 09:38:29 +0000978 if (Constant *C = dyn_cast<Constant>(V)) {
979 if (C->isNullValue())
980 return false;
981 if (isa<ConstantInt>(C))
982 // Must be non-zero due to null test above.
983 return true;
984 // TODO: Handle vectors
985 return false;
986 }
987
988 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +0000989 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +0000990 return false;
991
Chandler Carruth80d3e562012-12-07 02:08:58 +0000992 // Check for pointer simplifications.
993 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +0000994 if (isKnownNonNull(V))
995 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +0000996 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
997 if (isGEPKnownNonNull(GEP, TD, Depth))
998 return true;
999 }
1000
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001001 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001002
1003 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001004 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001005 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1006 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1007
1008 // ext X != 0 if X != 0.
1009 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1010 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1011
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001012 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001013 // if the lowest bit is shifted off the end.
1014 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001015 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001016 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001017 if (BO->hasNoUnsignedWrap())
1018 return isKnownNonZero(X, TD, Depth);
1019
Duncan Sandsd3951082011-01-25 09:38:29 +00001020 APInt KnownZero(BitWidth, 0);
1021 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001022 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001023 if (KnownOne[0])
1024 return true;
1025 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001026 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001027 // defined if the sign bit is shifted off the end.
1028 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001029 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001030 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001031 if (BO->isExact())
1032 return isKnownNonZero(X, TD, Depth);
1033
Duncan Sandsd3951082011-01-25 09:38:29 +00001034 bool XKnownNonNegative, XKnownNegative;
1035 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1036 if (XKnownNegative)
1037 return true;
1038 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001039 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001040 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1041 return isKnownNonZero(X, TD, Depth);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001042 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001043 // X + Y.
1044 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1045 bool XKnownNonNegative, XKnownNegative;
1046 bool YKnownNonNegative, YKnownNegative;
1047 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1048 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1049
1050 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001051 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001052 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001053 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1054 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001055
1056 // If X and Y are both negative (as signed values) then their sum is not
1057 // zero unless both X and Y equal INT_MIN.
1058 if (BitWidth && XKnownNegative && YKnownNegative) {
1059 APInt KnownZero(BitWidth, 0);
1060 APInt KnownOne(BitWidth, 0);
1061 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1062 // The sign bit of X is set. If some other bit is set then X is not equal
1063 // to INT_MIN.
Jay Foada0653a32014-05-14 21:14:37 +00001064 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001065 if ((KnownOne & Mask) != 0)
1066 return true;
1067 // The sign bit of Y is set. If some other bit is set then Y is not equal
1068 // to INT_MIN.
Jay Foada0653a32014-05-14 21:14:37 +00001069 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001070 if ((KnownOne & Mask) != 0)
1071 return true;
1072 }
1073
1074 // The sum of a non-negative number and a power of two is not zero.
Rafael Espindola319f74c2012-12-13 03:37:24 +00001075 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
Duncan Sandsd3951082011-01-25 09:38:29 +00001076 return true;
Rafael Espindola319f74c2012-12-13 03:37:24 +00001077 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
Duncan Sandsd3951082011-01-25 09:38:29 +00001078 return true;
1079 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001080 // X * Y.
1081 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1082 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1083 // If X and Y are non-zero then so is X * Y as long as the multiplication
1084 // does not overflow.
1085 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1086 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1087 return true;
1088 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001089 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1090 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1091 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1092 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1093 return true;
1094 }
1095
1096 if (!BitWidth) return false;
1097 APInt KnownZero(BitWidth, 0);
1098 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001099 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001100 return KnownOne != 0;
1101}
1102
Chris Lattner965c7692008-06-02 01:18:21 +00001103/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1104/// this predicate to simplify operations downstream. Mask is known to be zero
1105/// for bits that V cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001106///
1107/// This function is defined on values with integer type, values with pointer
1108/// type (but only if TD is non-null), and vectors of integers. In the case
1109/// where V is a vector, the mask, known zero, and known one values are the
1110/// same width as the vector element, and the bit is set only if it is true
1111/// for all of the elements in the vector.
Chris Lattner965c7692008-06-02 01:18:21 +00001112bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001113 const DataLayout *TD, unsigned Depth) {
Chris Lattner965c7692008-06-02 01:18:21 +00001114 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Jay Foada0653a32014-05-14 21:14:37 +00001115 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner965c7692008-06-02 01:18:21 +00001116 return (KnownZero & Mask) == Mask;
1117}
1118
1119
1120
1121/// ComputeNumSignBits - Return the number of times the sign bit of the
1122/// register is replicated into the other bits. We know that at least 1 bit
1123/// is always equal to the sign bit (itself), but other cases can give us
1124/// information. For example, immediately after an "ashr X, 2", we know that
1125/// the top 3 bits are all equal to each other, so we return 3.
1126///
1127/// 'Op' must have a scalar integer type.
1128///
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001129unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Dan Gohman05f11352009-08-27 17:51:25 +00001130 unsigned Depth) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001131 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001132 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001133 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001134 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001135 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1136 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001137 unsigned Tmp, Tmp2;
1138 unsigned FirstAnswer = 1;
1139
Jay Foada0653a32014-05-14 21:14:37 +00001140 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001141 // below.
1142
Chris Lattner965c7692008-06-02 01:18:21 +00001143 if (Depth == 6)
1144 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001145
Dan Gohman80ca01c2009-07-17 20:47:02 +00001146 Operator *U = dyn_cast<Operator>(V);
1147 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001148 default: break;
1149 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001150 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001151 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001152
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001153 case Instruction::AShr: {
Chris Lattner965c7692008-06-02 01:18:21 +00001154 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001155 // ashr X, C -> adds C sign bits. Vectors too.
1156 const APInt *ShAmt;
1157 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1158 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001159 if (Tmp > TyBits) Tmp = TyBits;
1160 }
1161 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001162 }
1163 case Instruction::Shl: {
1164 const APInt *ShAmt;
1165 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001166 // shl destroys sign bits.
1167 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001168 Tmp2 = ShAmt->getZExtValue();
1169 if (Tmp2 >= TyBits || // Bad shift.
1170 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1171 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001172 }
1173 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001174 }
Chris Lattner965c7692008-06-02 01:18:21 +00001175 case Instruction::And:
1176 case Instruction::Or:
1177 case Instruction::Xor: // NOT is handled here.
1178 // Logical binary ops preserve the number of sign bits at the worst.
1179 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1180 if (Tmp != 1) {
1181 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1182 FirstAnswer = std::min(Tmp, Tmp2);
1183 // We computed what we know about the sign bits as our first
1184 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001185 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001186 }
1187 break;
1188
1189 case Instruction::Select:
1190 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1191 if (Tmp == 1) return 1; // Early out.
1192 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1193 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001194
Chris Lattner965c7692008-06-02 01:18:21 +00001195 case Instruction::Add:
1196 // Add can have at most one carry bit. Thus we know that the output
1197 // is, at worst, one more bit than the inputs.
1198 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1199 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001200
Chris Lattner965c7692008-06-02 01:18:21 +00001201 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001202 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001203 if (CRHS->isAllOnesValue()) {
1204 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001205 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001206
Chris Lattner965c7692008-06-02 01:18:21 +00001207 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1208 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001209 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001210 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001211
Chris Lattner965c7692008-06-02 01:18:21 +00001212 // If we are subtracting one from a positive number, there is no carry
1213 // out of the result.
1214 if (KnownZero.isNegative())
1215 return Tmp;
1216 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001217
Chris Lattner965c7692008-06-02 01:18:21 +00001218 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1219 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001220 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001221
Chris Lattner965c7692008-06-02 01:18:21 +00001222 case Instruction::Sub:
1223 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1224 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001225
Chris Lattner965c7692008-06-02 01:18:21 +00001226 // Handle NEG.
1227 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1228 if (CLHS->isNullValue()) {
1229 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001230 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +00001231 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1232 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001233 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001234 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001235
Chris Lattner965c7692008-06-02 01:18:21 +00001236 // If the input is known to be positive (the sign bit is known clear),
1237 // the output of the NEG has the same number of sign bits as the input.
1238 if (KnownZero.isNegative())
1239 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001240
Chris Lattner965c7692008-06-02 01:18:21 +00001241 // Otherwise, we treat this like a SUB.
1242 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001243
Chris Lattner965c7692008-06-02 01:18:21 +00001244 // Sub can have at most one carry bit. Thus we know that the output
1245 // is, at worst, one more bit than the inputs.
1246 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1247 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001248 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001249
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001250 case Instruction::PHI: {
1251 PHINode *PN = cast<PHINode>(U);
1252 // Don't analyze large in-degree PHIs.
1253 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001254
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001255 // Take the minimum of all incoming values. This can't infinitely loop
1256 // because of our depth threshold.
1257 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1258 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1259 if (Tmp == 1) return Tmp;
1260 Tmp = std::min(Tmp,
Evan Cheng2a654292010-03-13 02:20:29 +00001261 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001262 }
1263 return Tmp;
1264 }
1265
Chris Lattner965c7692008-06-02 01:18:21 +00001266 case Instruction::Trunc:
1267 // FIXME: it's tricky to do anything useful for this, but it is an important
1268 // case for targets like X86.
1269 break;
1270 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001271
Chris Lattner965c7692008-06-02 01:18:21 +00001272 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1273 // use this information.
1274 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001275 APInt Mask;
Jay Foada0653a32014-05-14 21:14:37 +00001276 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001277
Chris Lattner965c7692008-06-02 01:18:21 +00001278 if (KnownZero.isNegative()) { // sign bit is 0
1279 Mask = KnownZero;
1280 } else if (KnownOne.isNegative()) { // sign bit is 1;
1281 Mask = KnownOne;
1282 } else {
1283 // Nothing known.
1284 return FirstAnswer;
1285 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001286
Chris Lattner965c7692008-06-02 01:18:21 +00001287 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1288 // the number of identical bits in the top of the input value.
1289 Mask = ~Mask;
1290 Mask <<= Mask.getBitWidth()-TyBits;
1291 // Return # leading zeros. We use 'min' here in case Val was zero before
1292 // shifting. We don't want to return '64' as for an i32 "0".
1293 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1294}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001295
Victor Hernandez47444882009-11-10 08:28:35 +00001296/// ComputeMultiple - This function computes the integer multiple of Base that
1297/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman6a976bb2009-11-18 00:58:27 +00001298/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001299/// through SExt instructions only if LookThroughSExt is true.
1300bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001301 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001302 const unsigned MaxDepth = 6;
1303
Dan Gohman6a976bb2009-11-18 00:58:27 +00001304 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001305 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001306 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001307
Chris Lattner229907c2011-07-18 04:54:35 +00001308 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001309
Dan Gohman6a976bb2009-11-18 00:58:27 +00001310 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001311
1312 if (Base == 0)
1313 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001314
Victor Hernandez47444882009-11-10 08:28:35 +00001315 if (Base == 1) {
1316 Multiple = V;
1317 return true;
1318 }
1319
1320 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1321 Constant *BaseVal = ConstantInt::get(T, Base);
1322 if (CO && CO == BaseVal) {
1323 // Multiple is 1.
1324 Multiple = ConstantInt::get(T, 1);
1325 return true;
1326 }
1327
1328 if (CI && CI->getZExtValue() % Base == 0) {
1329 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001330 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001331 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001332
Victor Hernandez47444882009-11-10 08:28:35 +00001333 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001334
Victor Hernandez47444882009-11-10 08:28:35 +00001335 Operator *I = dyn_cast<Operator>(V);
1336 if (!I) return false;
1337
1338 switch (I->getOpcode()) {
1339 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001340 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001341 if (!LookThroughSExt) return false;
1342 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001343 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001344 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1345 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001346 case Instruction::Shl:
1347 case Instruction::Mul: {
1348 Value *Op0 = I->getOperand(0);
1349 Value *Op1 = I->getOperand(1);
1350
1351 if (I->getOpcode() == Instruction::Shl) {
1352 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1353 if (!Op1CI) return false;
1354 // Turn Op0 << Op1 into Op0 * 2^Op1
1355 APInt Op1Int = Op1CI->getValue();
1356 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001357 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001358 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001359 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001360 }
1361
Craig Topper9f008862014-04-15 04:59:12 +00001362 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001363 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1364 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1365 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001366 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001367 MulC->getType()->getPrimitiveSizeInBits())
1368 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001369 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001370 MulC->getType()->getPrimitiveSizeInBits())
1371 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001372
Chris Lattner72d283c2010-09-05 17:20:46 +00001373 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1374 Multiple = ConstantExpr::getMul(MulC, Op1C);
1375 return true;
1376 }
Victor Hernandez47444882009-11-10 08:28:35 +00001377
1378 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1379 if (Mul0CI->getValue() == 1) {
1380 // V == Base * Op1, so return Op1
1381 Multiple = Op1;
1382 return true;
1383 }
1384 }
1385
Craig Topper9f008862014-04-15 04:59:12 +00001386 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001387 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1388 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1389 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001390 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001391 MulC->getType()->getPrimitiveSizeInBits())
1392 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001393 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001394 MulC->getType()->getPrimitiveSizeInBits())
1395 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001396
Chris Lattner72d283c2010-09-05 17:20:46 +00001397 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1398 Multiple = ConstantExpr::getMul(MulC, Op0C);
1399 return true;
1400 }
Victor Hernandez47444882009-11-10 08:28:35 +00001401
1402 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1403 if (Mul1CI->getValue() == 1) {
1404 // V == Base * Op0, so return Op0
1405 Multiple = Op0;
1406 return true;
1407 }
1408 }
Victor Hernandez47444882009-11-10 08:28:35 +00001409 }
1410 }
1411
1412 // We could not determine if V is a multiple of Base.
1413 return false;
1414}
1415
Craig Topper1bef2c82012-12-22 19:15:35 +00001416/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattnera12a6de2008-06-02 01:29:46 +00001417/// value is never equal to -0.0.
1418///
1419/// NOTE: this function will need to be revisited when we support non-default
1420/// rounding modes!
1421///
1422bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1423 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1424 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001425
Chris Lattnera12a6de2008-06-02 01:29:46 +00001426 if (Depth == 6)
1427 return 1; // Limit search depth.
1428
Dan Gohman80ca01c2009-07-17 20:47:02 +00001429 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001430 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001431
1432 // Check if the nsz fast-math flag is set
1433 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1434 if (FPO->hasNoSignedZeros())
1435 return true;
1436
Chris Lattnera12a6de2008-06-02 01:29:46 +00001437 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00001438 if (I->getOpcode() == Instruction::FAdd)
1439 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1440 if (CFP->isNullValue())
1441 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001442
Chris Lattnera12a6de2008-06-02 01:29:46 +00001443 // sitofp and uitofp turn into +0.0 for zero.
1444 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1445 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001446
Chris Lattnera12a6de2008-06-02 01:29:46 +00001447 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1448 // sqrt(-0.0) = -0.0, no other negative results are possible.
1449 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00001450 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001451
Chris Lattnera12a6de2008-06-02 01:29:46 +00001452 if (const CallInst *CI = dyn_cast<CallInst>(I))
1453 if (const Function *F = CI->getCalledFunction()) {
1454 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00001455 // abs(x) != -0.0
1456 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00001457 // fabs[lf](x) != -0.0
1458 if (F->getName() == "fabs") return true;
1459 if (F->getName() == "fabsf") return true;
1460 if (F->getName() == "fabsl") return true;
1461 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1462 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00001463 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00001464 }
1465 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001466
Chris Lattnera12a6de2008-06-02 01:29:46 +00001467 return false;
1468}
1469
Chris Lattner9cb10352010-12-26 20:15:01 +00001470/// isBytewiseValue - If the specified value can be set by repeating the same
1471/// byte in memory, return the i8 value that it is represented with. This is
1472/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1473/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1474/// byte store (e.g. i16 0x1234), return null.
1475Value *llvm::isBytewiseValue(Value *V) {
1476 // All byte-wide stores are splatable, even of arbitrary variables.
1477 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00001478
1479 // Handle 'null' ConstantArrayZero etc.
1480 if (Constant *C = dyn_cast<Constant>(V))
1481 if (C->isNullValue())
1482 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00001483
Chris Lattner9cb10352010-12-26 20:15:01 +00001484 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00001485 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00001486 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1487 if (CFP->getType()->isFloatTy())
1488 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1489 if (CFP->getType()->isDoubleTy())
1490 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1491 // Don't handle long double formats, which have strange constraints.
1492 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001493
1494 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00001495 // multiple of 8 bits.
1496 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1497 unsigned Width = CI->getBitWidth();
1498 if (isPowerOf2_32(Width) && Width > 8) {
1499 // We can handle this value if the recursive binary decomposition is the
1500 // same at all levels.
1501 APInt Val = CI->getValue();
1502 APInt Val2;
1503 while (Val.getBitWidth() != 8) {
1504 unsigned NextWidth = Val.getBitWidth()/2;
1505 Val2 = Val.lshr(NextWidth);
1506 Val2 = Val2.trunc(Val.getBitWidth()/2);
1507 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001508
Chris Lattner9cb10352010-12-26 20:15:01 +00001509 // If the top/bottom halves aren't the same, reject it.
1510 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00001511 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001512 }
1513 return ConstantInt::get(V->getContext(), Val);
1514 }
1515 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001516
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001517 // A ConstantDataArray/Vector is splatable if all its members are equal and
1518 // also splatable.
1519 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1520 Value *Elt = CA->getElementAsConstant(0);
1521 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00001522 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00001523 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001524
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001525 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1526 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00001527 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001528
Chris Lattner9cb10352010-12-26 20:15:01 +00001529 return Val;
1530 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00001531
Chris Lattner9cb10352010-12-26 20:15:01 +00001532 // Conceptually, we could handle things like:
1533 // %a = zext i8 %X to i16
1534 // %b = shl i16 %a, 8
1535 // %c = or i16 %a, %b
1536 // but until there is an example that actually needs this, it doesn't seem
1537 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00001538 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001539}
1540
1541
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001542// This is the recursive version of BuildSubAggregate. It takes a few different
1543// arguments. Idxs is the index within the nested struct From that we are
1544// looking at now (which is of type IndexedType). IdxSkip is the number of
1545// indices from Idxs that should be left out when inserting into the resulting
1546// struct. To is the result struct built so far, new insertvalue instructions
1547// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00001548static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001549 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001550 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001551 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00001552 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001553 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001554 // Save the original To argument so we can modify it
1555 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001556 // General case, the type indexed by Idxs is a struct
1557 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1558 // Process each struct element recursively
1559 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001560 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001561 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001562 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001563 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001564 if (!To) {
1565 // Couldn't find any inserted value for this index? Cleanup
1566 while (PrevTo != OrigTo) {
1567 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1568 PrevTo = Del->getAggregateOperand();
1569 Del->eraseFromParent();
1570 }
1571 // Stop processing elements
1572 break;
1573 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001574 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001575 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001576 if (To)
1577 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001578 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001579 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1580 // the struct's elements had a value that was inserted directly. In the latter
1581 // case, perhaps we can't determine each of the subelements individually, but
1582 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00001583
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001584 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00001585 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001586
1587 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00001588 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001589
1590 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001591 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00001592 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001593}
1594
1595// This helper takes a nested struct and extracts a part of it (which is again a
1596// struct) into a new value. For example, given the struct:
1597// { a, { b, { c, d }, e } }
1598// and the indices "1, 1" this returns
1599// { c, d }.
1600//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001601// It does this by inserting an insertvalue for each element in the resulting
1602// struct, as opposed to just inserting a single struct. This will only work if
1603// each of the elements of the substruct are known (ie, inserted into From by an
1604// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001605//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001606// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00001607static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001608 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00001609 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00001610 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00001611 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00001612 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00001613 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001614 unsigned IdxSkip = Idxs.size();
1615
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001616 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001617}
1618
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001619/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1620/// the scalar value indexed is already around as a register, for example if it
1621/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001622///
1623/// If InsertBefore is not null, this function will duplicate (modified)
1624/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00001625Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1626 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001627 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001628 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00001629 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001630 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001631 // We have indices, so V should have an indexable type.
1632 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1633 "Not looking at a struct or array?");
1634 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1635 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00001636
Chris Lattner67058832012-01-25 06:48:06 +00001637 if (Constant *C = dyn_cast<Constant>(V)) {
1638 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00001639 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00001640 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1641 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001642
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001643 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001644 // Loop the indices for the insertvalue instruction in parallel with the
1645 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00001646 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001647 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1648 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00001649 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001650 // We can't handle this without inserting insertvalues
1651 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00001652 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001653
1654 // The requested index identifies a part of a nested aggregate. Handle
1655 // this specially. For example,
1656 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1657 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1658 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1659 // This can be changed into
1660 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1661 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1662 // which allows the unused 0,0 element from the nested struct to be
1663 // removed.
1664 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1665 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00001666 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001667
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001668 // This insert value inserts something else than what we are looking for.
1669 // See if the (aggregrate) value inserted into has the value we are
1670 // looking for, then.
1671 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00001672 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001673 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001674 }
1675 // If we end up here, the indices of the insertvalue match with those
1676 // requested (though possibly only partially). Now we recursively look at
1677 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00001678 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001679 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001680 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001681 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001682
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001683 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001684 // If we're extracting a value from an aggregrate that was extracted from
1685 // something else, we can extract from that something else directly instead.
1686 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00001687
1688 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00001689 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001690 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00001691 SmallVector<unsigned, 5> Idxs;
1692 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001693 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00001694 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00001695
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001696 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00001697 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001698
Craig Topper1bef2c82012-12-22 19:15:35 +00001699 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001700 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00001701
Jay Foad57aa6362011-07-13 10:26:04 +00001702 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001703 }
1704 // Otherwise, we don't know (such as, extracting from a function return value
1705 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00001706 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001707}
Evan Chengda3db112008-06-30 07:31:25 +00001708
Chris Lattnere28618d2010-11-30 22:25:26 +00001709/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1710/// it can be expressed as a base pointer plus a constant offset. Return the
1711/// base and offset to the caller.
1712Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001713 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00001714 // Without DataLayout, conservatively assume 64-bit offsets, which is
1715 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001716 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00001717 APInt ByteOffset(BitWidth, 0);
1718 while (1) {
1719 if (Ptr->getType()->isVectorTy())
1720 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001721
Nuno Lopes368c4d02012-12-31 20:48:35 +00001722 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001723 if (DL) {
1724 APInt GEPOffset(BitWidth, 0);
1725 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1726 break;
1727
1728 ByteOffset += GEPOffset;
1729 }
1730
Nuno Lopes368c4d02012-12-31 20:48:35 +00001731 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00001732 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
1733 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00001734 Ptr = cast<Operator>(Ptr)->getOperand(0);
1735 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1736 if (GA->mayBeOverridden())
1737 break;
1738 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00001739 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00001740 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00001741 }
1742 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00001743 Offset = ByteOffset.getSExtValue();
1744 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00001745}
1746
1747
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001748/// getConstantStringInfo - This function computes the length of a
Evan Chengda3db112008-06-30 07:31:25 +00001749/// null-terminated C string pointed to by V. If successful, it returns true
1750/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001751bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1752 uint64_t Offset, bool TrimAtNul) {
1753 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00001754
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001755 // Look through bitcast instructions and geps.
1756 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00001757
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001758 // If the value is a GEP instructionor constant expression, treat it as an
1759 // offset.
1760 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00001761 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001762 if (GEP->getNumOperands() != 3)
1763 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001764
Evan Chengda3db112008-06-30 07:31:25 +00001765 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00001766 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1767 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00001768 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001769 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001770
Evan Chengda3db112008-06-30 07:31:25 +00001771 // Check to make sure that the first operand of the GEP is an integer and
1772 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00001773 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00001774 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001775 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001776
Evan Chengda3db112008-06-30 07:31:25 +00001777 // If the second index isn't a ConstantInt, then this is a variable index
1778 // into the array. If this occurs, we can't say anything meaningful about
1779 // the string.
1780 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00001781 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00001782 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001783 else
1784 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001785 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00001786 }
Nick Lewycky46209882011-10-20 00:34:35 +00001787
Evan Chengda3db112008-06-30 07:31:25 +00001788 // The GEP instruction, constant or instruction, must reference a global
1789 // variable that is a constant and is initialized. The referenced constant
1790 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001791 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00001792 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001793 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001794
Nick Lewycky46209882011-10-20 00:34:35 +00001795 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001796 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00001797 // This is a degenerate case. The initializer is constant zero so the
1798 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001799 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001800 return true;
1801 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001802
Evan Chengda3db112008-06-30 07:31:25 +00001803 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001804 const ConstantDataArray *Array =
1805 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00001806 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001807 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001808
Evan Chengda3db112008-06-30 07:31:25 +00001809 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001810 uint64_t NumElts = Array->getType()->getArrayNumElements();
1811
1812 // Start out with the entire array in the StringRef.
1813 Str = Array->getAsString();
1814
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001815 if (Offset > NumElts)
1816 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001817
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001818 // Skip over 'offset' bytes.
1819 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00001820
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001821 if (TrimAtNul) {
1822 // Trim off the \0 and anything after it. If the array is not nul
1823 // terminated, we just return the whole end of string. The client may know
1824 // some other way that the string is length-bound.
1825 Str = Str.substr(0, Str.find('\0'));
1826 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001827 return true;
Evan Chengda3db112008-06-30 07:31:25 +00001828}
Eric Christopher4899cbc2010-03-05 06:58:57 +00001829
1830// These next two are very similar to the above, but also look through PHI
1831// nodes.
1832// TODO: See if we can integrate these two together.
1833
1834/// GetStringLengthH - If we can compute the length of the string pointed to by
1835/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00001836static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00001837 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001838 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00001839
1840 // If this is a PHI node, there are two cases: either we have already seen it
1841 // or we haven't.
1842 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1843 if (!PHIs.insert(PN))
1844 return ~0ULL; // already in the set.
1845
1846 // If it was new, see if all the input strings are the same length.
1847 uint64_t LenSoFar = ~0ULL;
1848 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1849 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1850 if (Len == 0) return 0; // Unknown length -> unknown.
1851
1852 if (Len == ~0ULL) continue;
1853
1854 if (Len != LenSoFar && LenSoFar != ~0ULL)
1855 return 0; // Disagree -> unknown.
1856 LenSoFar = Len;
1857 }
1858
1859 // Success, all agree.
1860 return LenSoFar;
1861 }
1862
1863 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1864 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1865 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1866 if (Len1 == 0) return 0;
1867 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1868 if (Len2 == 0) return 0;
1869 if (Len1 == ~0ULL) return Len2;
1870 if (Len2 == ~0ULL) return Len1;
1871 if (Len1 != Len2) return 0;
1872 return Len1;
1873 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001874
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001875 // Otherwise, see if we can read the string.
1876 StringRef StrData;
1877 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00001878 return 0;
1879
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001880 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00001881}
1882
1883/// GetStringLength - If we can compute the length of the string pointed to by
1884/// the specified pointer, return 'len+1'. If we can't, return 0.
1885uint64_t llvm::GetStringLength(Value *V) {
1886 if (!V->getType()->isPointerTy()) return 0;
1887
1888 SmallPtrSet<PHINode*, 32> PHIs;
1889 uint64_t Len = GetStringLengthH(V, PHIs);
1890 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1891 // an empty string as a length.
1892 return Len == ~0ULL ? 1 : Len;
1893}
Dan Gohmana4fcd242010-12-15 20:02:24 +00001894
Dan Gohman0f124e12011-01-24 18:53:32 +00001895Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001896llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00001897 if (!V->getType()->isPointerTy())
1898 return V;
1899 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1900 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1901 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00001902 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
1903 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00001904 V = cast<Operator>(V)->getOperand(0);
1905 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1906 if (GA->mayBeOverridden())
1907 return V;
1908 V = GA->getAliasee();
1909 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00001910 // See if InstructionSimplify knows any relevant tricks.
1911 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001912 // TODO: Acquire a DominatorTree and use it.
Craig Topper9f008862014-04-15 04:59:12 +00001913 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00001914 V = Simplified;
1915 continue;
1916 }
1917
Dan Gohmana4fcd242010-12-15 20:02:24 +00001918 return V;
1919 }
1920 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1921 }
1922 return V;
1923}
Nick Lewycky3e334a42011-06-27 04:20:45 +00001924
Dan Gohmaned7c24e22012-05-10 18:57:38 +00001925void
1926llvm::GetUnderlyingObjects(Value *V,
1927 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001928 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00001929 unsigned MaxLookup) {
1930 SmallPtrSet<Value *, 4> Visited;
1931 SmallVector<Value *, 4> Worklist;
1932 Worklist.push_back(V);
1933 do {
1934 Value *P = Worklist.pop_back_val();
1935 P = GetUnderlyingObject(P, TD, MaxLookup);
1936
1937 if (!Visited.insert(P))
1938 continue;
1939
1940 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1941 Worklist.push_back(SI->getTrueValue());
1942 Worklist.push_back(SI->getFalseValue());
1943 continue;
1944 }
1945
1946 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1948 Worklist.push_back(PN->getIncomingValue(i));
1949 continue;
1950 }
1951
1952 Objects.push_back(P);
1953 } while (!Worklist.empty());
1954}
1955
Nick Lewycky3e334a42011-06-27 04:20:45 +00001956/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1957/// are lifetime markers.
1958///
1959bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00001960 for (const User *U : V->users()) {
1961 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00001962 if (!II) return false;
1963
1964 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1965 II->getIntrinsicID() != Intrinsic::lifetime_end)
1966 return false;
1967 }
1968 return true;
1969}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00001970
Dan Gohman7ac046a2012-01-04 23:01:09 +00001971bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001972 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00001973 const Operator *Inst = dyn_cast<Operator>(V);
1974 if (!Inst)
1975 return false;
1976
Dan Gohman75d7d5e2011-12-14 23:49:11 +00001977 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1978 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1979 if (C->canTrap())
1980 return false;
1981
1982 switch (Inst->getOpcode()) {
1983 default:
1984 return true;
1985 case Instruction::UDiv:
1986 case Instruction::URem:
Sanjay Patel784a5a42014-07-06 23:24:53 +00001987 // x / y is undefined if y == 0, but calculations like x / 3 are safe.
Dan Gohman75d7d5e2011-12-14 23:49:11 +00001988 return isKnownNonZero(Inst->getOperand(1), TD);
1989 case Instruction::SDiv:
1990 case Instruction::SRem: {
1991 Value *Op = Inst->getOperand(1);
1992 // x / y is undefined if y == 0
1993 if (!isKnownNonZero(Op, TD))
1994 return false;
1995 // x / y might be undefined if y == -1
1996 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1997 if (BitWidth == 0)
1998 return false;
1999 APInt KnownZero(BitWidth, 0);
2000 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00002001 computeKnownBits(Op, KnownZero, KnownOne, TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002002 return !!KnownZero;
2003 }
2004 case Instruction::Load: {
2005 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002006 if (!LI->isUnordered() ||
2007 // Speculative load may create a race that did not exist in the source.
2008 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002009 return false;
Hal Finkel2e42c342014-07-10 05:27:53 +00002010 return LI->getPointerOperand()->isDereferenceablePointer(TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002011 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002012 case Instruction::Call: {
2013 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2014 switch (II->getIntrinsicID()) {
Sanjay Patel784a5a42014-07-06 23:24:53 +00002015 // These synthetic intrinsics have no side-effects and just mark
Chandler Carruth28192c92012-04-07 19:22:18 +00002016 // information about their operands.
2017 // FIXME: There are other no-op synthetic instructions that potentially
2018 // should be considered at least *safe* to speculate...
2019 case Intrinsic::dbg_declare:
2020 case Intrinsic::dbg_value:
2021 return true;
2022
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002023 case Intrinsic::bswap:
2024 case Intrinsic::ctlz:
2025 case Intrinsic::ctpop:
2026 case Intrinsic::cttz:
2027 case Intrinsic::objectsize:
2028 case Intrinsic::sadd_with_overflow:
2029 case Intrinsic::smul_with_overflow:
2030 case Intrinsic::ssub_with_overflow:
2031 case Intrinsic::uadd_with_overflow:
2032 case Intrinsic::umul_with_overflow:
2033 case Intrinsic::usub_with_overflow:
2034 return true;
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002035 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2036 // errno like libm sqrt would.
2037 case Intrinsic::sqrt:
2038 case Intrinsic::fma:
2039 case Intrinsic::fmuladd:
2040 return true;
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002041 // TODO: some fp intrinsics are marked as having the same error handling
2042 // as libm. They're safe to speculate when they won't error.
2043 // TODO: are convert_{from,to}_fp16 safe?
2044 // TODO: can we list target-specific intrinsics here?
2045 default: break;
2046 }
2047 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002048 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002049 // side-effects, even if marked readnone nounwind.
2050 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002051 case Instruction::VAArg:
2052 case Instruction::Alloca:
2053 case Instruction::Invoke:
2054 case Instruction::PHI:
2055 case Instruction::Store:
2056 case Instruction::Ret:
2057 case Instruction::Br:
2058 case Instruction::IndirectBr:
2059 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002060 case Instruction::Unreachable:
2061 case Instruction::Fence:
2062 case Instruction::LandingPad:
2063 case Instruction::AtomicRMW:
2064 case Instruction::AtomicCmpXchg:
2065 case Instruction::Resume:
2066 return false; // Misc instructions which have effects
2067 }
2068}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002069
2070/// isKnownNonNull - Return true if we know that the specified value is never
2071/// null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002072bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002073 // Alloca never returns null, malloc might.
2074 if (isa<AllocaInst>(V)) return true;
2075
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002076 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002077 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002078 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002079
2080 // Global values are not null unless extern weak.
2081 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2082 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002083
Nick Lewyckyec373542014-05-20 05:13:21 +00002084 if (ImmutableCallSite CS = V)
Hal Finkelb0407ba2014-07-18 15:51:28 +00002085 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00002086 return true;
2087
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002088 // operator new never returns null.
2089 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2090 return true;
2091
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002092 return false;
2093}