blob: 4a80e4f11c9e5cfbe8c50e9cf433f8151795e8fa [file] [log] [blame]
Peter Collingbournedf49d1b2016-02-09 22:50:34 +00001//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements whole program optimization of virtual calls in cases
11// where we know (via bitset information) that the list of callee is fixed. This
12// includes the following:
13// - Single implementation devirtualization: if a virtual call has a single
14// possible callee, replace all calls with a direct call to that callee.
15// - Virtual constant propagation: if the virtual function's return type is an
16// integer <=64 bits and all possible callees are readnone, for each class and
17// each list of constant arguments: evaluate the function, store the return
18// value alongside the virtual table, and rewrite each virtual call as a load
19// from the virtual table.
20// - Uniform return value optimization: if the conditions for virtual constant
21// propagation hold and each function returns the same constant value, replace
22// each virtual call with that constant.
23// - Unique return value optimization for i1 return values: if the conditions
24// for virtual constant propagation hold and a single vtable's function
25// returns 0, or a single vtable's function returns 1, replace each virtual
26// call with a comparison of the vptr against that vtable's address.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000031#include "llvm/ADT/ArrayRef.h"
Peter Collingbournedf49d1b2016-02-09 22:50:34 +000032#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/MapVector.h"
Peter Collingbourneccdc2252016-05-10 18:07:21 +000034#include "llvm/Analysis/BitSetUtils.h"
Peter Collingbournedf49d1b2016-02-09 22:50:34 +000035#include "llvm/IR/CallSite.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Module.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/raw_ostream.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000044#include "llvm/Transforms/IPO.h"
Peter Collingbournedf49d1b2016-02-09 22:50:34 +000045#include "llvm/Transforms/Utils/Evaluator.h"
46#include "llvm/Transforms/Utils/Local.h"
47
48#include <set>
49
50using namespace llvm;
51using namespace wholeprogramdevirt;
52
53#define DEBUG_TYPE "wholeprogramdevirt"
54
55// Find the minimum offset that we may store a value of size Size bits at. If
56// IsAfter is set, look for an offset before the object, otherwise look for an
57// offset after the object.
58uint64_t
59wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
60 bool IsAfter, uint64_t Size) {
61 // Find a minimum offset taking into account only vtable sizes.
62 uint64_t MinByte = 0;
63 for (const VirtualCallTarget &Target : Targets) {
64 if (IsAfter)
65 MinByte = std::max(MinByte, Target.minAfterBytes());
66 else
67 MinByte = std::max(MinByte, Target.minBeforeBytes());
68 }
69
70 // Build a vector of arrays of bytes covering, for each target, a slice of the
71 // used region (see AccumBitVector::BytesUsed in
72 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
73 // this aligns the used regions to start at MinByte.
74 //
75 // In this example, A, B and C are vtables, # is a byte already allocated for
76 // a virtual function pointer, AAAA... (etc.) are the used regions for the
77 // vtables and Offset(X) is the value computed for the Offset variable below
78 // for X.
79 //
80 // Offset(A)
81 // | |
82 // |MinByte
83 // A: ################AAAAAAAA|AAAAAAAA
84 // B: ########BBBBBBBBBBBBBBBB|BBBB
85 // C: ########################|CCCCCCCCCCCCCCCC
86 // | Offset(B) |
87 //
88 // This code produces the slices of A, B and C that appear after the divider
89 // at MinByte.
90 std::vector<ArrayRef<uint8_t>> Used;
91 for (const VirtualCallTarget &Target : Targets) {
92 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
93 : Target.BS->Bits->Before.BytesUsed;
94 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
95 : MinByte - Target.minBeforeBytes();
96
97 // Disregard used regions that are smaller than Offset. These are
98 // effectively all-free regions that do not need to be checked.
99 if (VTUsed.size() > Offset)
100 Used.push_back(VTUsed.slice(Offset));
101 }
102
103 if (Size == 1) {
104 // Find a free bit in each member of Used.
105 for (unsigned I = 0;; ++I) {
106 uint8_t BitsUsed = 0;
107 for (auto &&B : Used)
108 if (I < B.size())
109 BitsUsed |= B[I];
110 if (BitsUsed != 0xff)
111 return (MinByte + I) * 8 +
112 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
113 }
114 } else {
115 // Find a free (Size/8) byte region in each member of Used.
116 // FIXME: see if alignment helps.
117 for (unsigned I = 0;; ++I) {
118 for (auto &&B : Used) {
119 unsigned Byte = 0;
120 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
121 if (B[I + Byte])
122 goto NextI;
123 ++Byte;
124 }
125 }
126 return (MinByte + I) * 8;
127 NextI:;
128 }
129 }
130}
131
132void wholeprogramdevirt::setBeforeReturnValues(
133 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
134 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
135 if (BitWidth == 1)
136 OffsetByte = -(AllocBefore / 8 + 1);
137 else
138 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
139 OffsetBit = AllocBefore % 8;
140
141 for (VirtualCallTarget &Target : Targets) {
142 if (BitWidth == 1)
143 Target.setBeforeBit(AllocBefore);
144 else
145 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
146 }
147}
148
149void wholeprogramdevirt::setAfterReturnValues(
150 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
151 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
152 if (BitWidth == 1)
153 OffsetByte = AllocAfter / 8;
154 else
155 OffsetByte = (AllocAfter + 7) / 8;
156 OffsetBit = AllocAfter % 8;
157
158 for (VirtualCallTarget &Target : Targets) {
159 if (BitWidth == 1)
160 Target.setAfterBit(AllocAfter);
161 else
162 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
163 }
164}
165
166VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
167 : Fn(Fn), BS(BS),
168 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
169
170namespace {
171
172// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
173// tables, and the ByteOffset is the offset in bytes from the address point to
174// the virtual function pointer.
175struct VTableSlot {
176 Metadata *BitSetID;
177 uint64_t ByteOffset;
178};
179
180}
181
Peter Collingbourne9b656522016-02-09 23:01:38 +0000182namespace llvm {
183
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000184template <> struct DenseMapInfo<VTableSlot> {
185 static VTableSlot getEmptyKey() {
186 return {DenseMapInfo<Metadata *>::getEmptyKey(),
187 DenseMapInfo<uint64_t>::getEmptyKey()};
188 }
189 static VTableSlot getTombstoneKey() {
190 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
191 DenseMapInfo<uint64_t>::getTombstoneKey()};
192 }
193 static unsigned getHashValue(const VTableSlot &I) {
194 return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
195 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
196 }
197 static bool isEqual(const VTableSlot &LHS,
198 const VTableSlot &RHS) {
199 return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
200 }
201};
202
Peter Collingbourne9b656522016-02-09 23:01:38 +0000203}
204
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000205namespace {
206
207// A virtual call site. VTable is the loaded virtual table pointer, and CS is
208// the indirect virtual call.
209struct VirtualCallSite {
210 Value *VTable;
211 CallSite CS;
212
213 void replaceAndErase(Value *New) {
214 CS->replaceAllUsesWith(New);
215 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
216 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
217 II->getUnwindDest()->removePredecessor(II->getParent());
218 }
219 CS->eraseFromParent();
220 }
221};
222
223struct DevirtModule {
224 Module &M;
225 IntegerType *Int8Ty;
226 PointerType *Int8PtrTy;
227 IntegerType *Int32Ty;
228
229 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
230
231 DevirtModule(Module &M)
232 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
233 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
234 Int32Ty(Type::getInt32Ty(M.getContext())) {}
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000235
236 void buildBitSets(std::vector<VTableBits> &Bits,
237 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
238 bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
239 const std::set<BitSetInfo> &BitSetInfos,
240 uint64_t ByteOffset);
241 bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
242 MutableArrayRef<VirtualCallSite> CallSites);
243 bool tryEvaluateFunctionsWithArgs(
244 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
245 ArrayRef<ConstantInt *> Args);
246 bool tryUniformRetValOpt(IntegerType *RetType,
247 ArrayRef<VirtualCallTarget> TargetsForSlot,
248 MutableArrayRef<VirtualCallSite> CallSites);
249 bool tryUniqueRetValOpt(unsigned BitWidth,
250 ArrayRef<VirtualCallTarget> TargetsForSlot,
251 MutableArrayRef<VirtualCallSite> CallSites);
252 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
253 ArrayRef<VirtualCallSite> CallSites);
254
255 void rebuildGlobal(VTableBits &B);
256
257 bool run();
258};
259
260struct WholeProgramDevirt : public ModulePass {
261 static char ID;
262 WholeProgramDevirt() : ModulePass(ID) {
263 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
264 }
Andrew Kayloraa641a52016-04-22 22:06:11 +0000265 bool runOnModule(Module &M) {
266 if (skipModule(M))
267 return false;
268
269 return DevirtModule(M).run();
270 }
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000271};
272
273} // anonymous namespace
274
275INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
276 "Whole program devirtualization", false, false)
277char WholeProgramDevirt::ID = 0;
278
279ModulePass *llvm::createWholeProgramDevirtPass() {
280 return new WholeProgramDevirt;
281}
282
Davide Italianod737dd22016-06-14 21:44:19 +0000283PreservedAnalyses WholeProgramDevirtPass::run(Module &M) {
284 if (!DevirtModule(M).run())
285 return PreservedAnalyses::all();
286 return PreservedAnalyses::none();
287}
288
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000289void DevirtModule::buildBitSets(
290 std::vector<VTableBits> &Bits,
291 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
292 NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
293 if (!BitSetNM)
294 return;
295
296 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
297 Bits.reserve(BitSetNM->getNumOperands());
298 for (auto Op : BitSetNM->operands()) {
299 auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
300 if (!OpConstMD)
301 continue;
302 auto BitSetID = Op->getOperand(0).get();
303
304 Constant *OpConst = OpConstMD->getValue();
305 if (auto GA = dyn_cast<GlobalAlias>(OpConst))
306 OpConst = GA->getAliasee();
307 auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
308 if (!OpGlobal)
309 continue;
310
311 uint64_t Offset =
312 cast<ConstantInt>(
313 cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
314 ->getZExtValue();
315
316 VTableBits *&BitsPtr = GVToBits[OpGlobal];
317 if (!BitsPtr) {
318 Bits.emplace_back();
319 Bits.back().GV = OpGlobal;
320 Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
321 OpGlobal->getInitializer()->getType());
322 BitsPtr = &Bits.back();
323 }
324 BitSets[BitSetID].insert({BitsPtr, Offset});
325 }
326}
327
328bool DevirtModule::tryFindVirtualCallTargets(
329 std::vector<VirtualCallTarget> &TargetsForSlot,
330 const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
331 for (const BitSetInfo &BS : BitSetInfos) {
332 if (!BS.Bits->GV->isConstant())
333 return false;
334
335 auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
336 if (!Init)
337 return false;
338 ArrayType *VTableTy = Init->getType();
339
340 uint64_t ElemSize =
341 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
342 uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
343 if (GlobalSlotOffset % ElemSize != 0)
344 return false;
345
346 unsigned Op = GlobalSlotOffset / ElemSize;
347 if (Op >= Init->getNumOperands())
348 return false;
349
350 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
351 if (!Fn)
352 return false;
353
354 // We can disregard __cxa_pure_virtual as a possible call target, as
355 // calls to pure virtuals are UB.
356 if (Fn->getName() == "__cxa_pure_virtual")
357 continue;
358
359 TargetsForSlot.push_back({Fn, &BS});
360 }
361
362 // Give up if we couldn't find any targets.
363 return !TargetsForSlot.empty();
364}
365
366bool DevirtModule::trySingleImplDevirt(
367 ArrayRef<VirtualCallTarget> TargetsForSlot,
368 MutableArrayRef<VirtualCallSite> CallSites) {
369 // See if the program contains a single implementation of this virtual
370 // function.
371 Function *TheFn = TargetsForSlot[0].Fn;
372 for (auto &&Target : TargetsForSlot)
373 if (TheFn != Target.Fn)
374 return false;
375
376 // If so, update each call site to call that implementation directly.
377 for (auto &&VCallSite : CallSites) {
378 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
379 TheFn, VCallSite.CS.getCalledValue()->getType()));
380 }
381 return true;
382}
383
384bool DevirtModule::tryEvaluateFunctionsWithArgs(
385 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
386 ArrayRef<ConstantInt *> Args) {
387 // Evaluate each function and store the result in each target's RetVal
388 // field.
389 for (VirtualCallTarget &Target : TargetsForSlot) {
390 if (Target.Fn->arg_size() != Args.size() + 1)
391 return false;
392 for (unsigned I = 0; I != Args.size(); ++I)
393 if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
394 Args[I]->getType())
395 return false;
396
397 Evaluator Eval(M.getDataLayout(), nullptr);
398 SmallVector<Constant *, 2> EvalArgs;
399 EvalArgs.push_back(
400 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
401 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
402 Constant *RetVal;
403 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
404 !isa<ConstantInt>(RetVal))
405 return false;
406 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
407 }
408 return true;
409}
410
411bool DevirtModule::tryUniformRetValOpt(
412 IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
413 MutableArrayRef<VirtualCallSite> CallSites) {
414 // Uniform return value optimization. If all functions return the same
415 // constant, replace all calls with that constant.
416 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
417 for (const VirtualCallTarget &Target : TargetsForSlot)
418 if (Target.RetVal != TheRetVal)
419 return false;
420
421 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
422 for (auto Call : CallSites)
423 Call.replaceAndErase(TheRetValConst);
424 return true;
425}
426
427bool DevirtModule::tryUniqueRetValOpt(
428 unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
429 MutableArrayRef<VirtualCallSite> CallSites) {
430 // IsOne controls whether we look for a 0 or a 1.
431 auto tryUniqueRetValOptFor = [&](bool IsOne) {
432 const BitSetInfo *UniqueBitSet = 0;
433 for (const VirtualCallTarget &Target : TargetsForSlot) {
Peter Collingbourne3866cc52016-03-08 03:50:36 +0000434 if (Target.RetVal == (IsOne ? 1 : 0)) {
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000435 if (UniqueBitSet)
436 return false;
437 UniqueBitSet = Target.BS;
438 }
439 }
440
441 // We should have found a unique bit set or bailed out by now. We already
442 // checked for a uniform return value in tryUniformRetValOpt.
443 assert(UniqueBitSet);
444
445 // Replace each call with the comparison.
446 for (auto &&Call : CallSites) {
447 IRBuilder<> B(Call.CS.getInstruction());
448 Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
449 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
450 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
451 Call.VTable, OneAddr);
452 Call.replaceAndErase(Cmp);
453 }
454 return true;
455 };
456
457 if (BitWidth == 1) {
458 if (tryUniqueRetValOptFor(true))
459 return true;
460 if (tryUniqueRetValOptFor(false))
461 return true;
462 }
463 return false;
464}
465
466bool DevirtModule::tryVirtualConstProp(
467 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
468 ArrayRef<VirtualCallSite> CallSites) {
469 // This only works if the function returns an integer.
470 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
471 if (!RetType)
472 return false;
473 unsigned BitWidth = RetType->getBitWidth();
474 if (BitWidth > 64)
475 return false;
476
477 // Make sure that each function does not access memory, takes at least one
478 // argument, does not use its first argument (which we assume is 'this'),
479 // and has the same return type.
480 for (VirtualCallTarget &Target : TargetsForSlot) {
481 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
482 !Target.Fn->arg_begin()->use_empty() ||
483 Target.Fn->getReturnType() != RetType)
484 return false;
485 }
486
487 // Group call sites by the list of constant arguments they pass.
488 // The comparator ensures deterministic ordering.
489 struct ByAPIntValue {
490 bool operator()(const std::vector<ConstantInt *> &A,
491 const std::vector<ConstantInt *> &B) const {
492 return std::lexicographical_compare(
493 A.begin(), A.end(), B.begin(), B.end(),
494 [](ConstantInt *AI, ConstantInt *BI) {
495 return AI->getValue().ult(BI->getValue());
496 });
497 }
498 };
499 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
500 ByAPIntValue>
501 VCallSitesByConstantArg;
502 for (auto &&VCallSite : CallSites) {
503 std::vector<ConstantInt *> Args;
504 if (VCallSite.CS.getType() != RetType)
505 continue;
506 for (auto &&Arg :
507 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
508 if (!isa<ConstantInt>(Arg))
509 break;
510 Args.push_back(cast<ConstantInt>(&Arg));
511 }
512 if (Args.size() + 1 != VCallSite.CS.arg_size())
513 continue;
514
515 VCallSitesByConstantArg[Args].push_back(VCallSite);
516 }
517
518 for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
519 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
520 continue;
521
522 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
523 continue;
524
525 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
526 continue;
527
528 // Find an allocation offset in bits in all vtables in the bitset.
529 uint64_t AllocBefore =
530 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
531 uint64_t AllocAfter =
532 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
533
534 // Calculate the total amount of padding needed to store a value at both
535 // ends of the object.
536 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
537 for (auto &&Target : TargetsForSlot) {
538 TotalPaddingBefore += std::max<int64_t>(
539 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
540 TotalPaddingAfter += std::max<int64_t>(
541 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
542 }
543
544 // If the amount of padding is too large, give up.
545 // FIXME: do something smarter here.
546 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
547 continue;
548
549 // Calculate the offset to the value as a (possibly negative) byte offset
550 // and (if applicable) a bit offset, and store the values in the targets.
551 int64_t OffsetByte;
552 uint64_t OffsetBit;
553 if (TotalPaddingBefore <= TotalPaddingAfter)
554 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
555 OffsetBit);
556 else
557 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
558 OffsetBit);
559
560 // Rewrite each call to a load from OffsetByte/OffsetBit.
561 for (auto Call : CSByConstantArg.second) {
562 IRBuilder<> B(Call.CS.getInstruction());
563 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
564 if (BitWidth == 1) {
565 Value *Bits = B.CreateLoad(Addr);
Aaron Ballmanef0fe1e2016-03-30 21:30:00 +0000566 Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000567 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
568 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
569 Call.replaceAndErase(IsBitSet);
570 } else {
571 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
572 Value *Val = B.CreateLoad(RetType, ValAddr);
573 Call.replaceAndErase(Val);
574 }
575 }
576 }
577 return true;
578}
579
580void DevirtModule::rebuildGlobal(VTableBits &B) {
581 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
582 return;
583
584 // Align each byte array to pointer width.
585 unsigned PointerSize = M.getDataLayout().getPointerSize();
586 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
587 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
588
589 // Before was stored in reverse order; flip it now.
590 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
591 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
592
593 // Build an anonymous global containing the before bytes, followed by the
594 // original initializer, followed by the after bytes.
595 auto NewInit = ConstantStruct::getAnon(
596 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
597 B.GV->getInitializer(),
598 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
599 auto NewGV =
600 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
601 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
602 NewGV->setSection(B.GV->getSection());
603 NewGV->setComdat(B.GV->getComdat());
604
605 // Build an alias named after the original global, pointing at the second
606 // element (the original initializer).
607 auto Alias = GlobalAlias::create(
608 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
609 ConstantExpr::getGetElementPtr(
610 NewInit->getType(), NewGV,
611 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
612 ConstantInt::get(Int32Ty, 1)}),
613 &M);
614 Alias->setVisibility(B.GV->getVisibility());
615 Alias->takeName(B.GV);
616
617 B.GV->replaceAllUsesWith(Alias);
618 B.GV->eraseFromParent();
619}
620
621bool DevirtModule::run() {
622 Function *BitSetTestFunc =
623 M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
624 if (!BitSetTestFunc || BitSetTestFunc->use_empty())
625 return false;
626
627 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
628 if (!AssumeFunc || AssumeFunc->use_empty())
629 return false;
630
631 // Find all virtual calls via a virtual table pointer %p under an assumption
632 // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
633 // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
634 // (effectively the identity of the virtual function) and store to CallSlots.
635 DenseSet<Value *> SeenPtrs;
636 for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
637 I != E;) {
638 auto CI = dyn_cast<CallInst>(I->getUser());
639 ++I;
640 if (!CI)
641 continue;
642
Peter Collingbourneccdc2252016-05-10 18:07:21 +0000643 // Search for virtual calls based on %p and add them to DevirtCalls.
644 SmallVector<DevirtCallSite, 1> DevirtCalls;
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000645 SmallVector<CallInst *, 1> Assumes;
Peter Collingbourneccdc2252016-05-10 18:07:21 +0000646 findDevirtualizableCalls(DevirtCalls, Assumes, CI);
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000647
Peter Collingbourneccdc2252016-05-10 18:07:21 +0000648 // If we found any, add them to CallSlots. Only do this if we haven't seen
649 // the vtable pointer before, as it may have been CSE'd with pointers from
650 // other call sites, and we don't want to process call sites multiple times.
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000651 if (!Assumes.empty()) {
652 Metadata *BitSet =
653 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
654 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
Peter Collingbourneccdc2252016-05-10 18:07:21 +0000655 if (SeenPtrs.insert(Ptr).second) {
656 for (DevirtCallSite Call : DevirtCalls) {
657 CallSlots[{BitSet, Call.Offset}].push_back(
658 {CI->getArgOperand(0), Call.CS});
659 }
660 }
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000661 }
662
663 // We no longer need the assumes or the bitset test.
664 for (auto Assume : Assumes)
665 Assume->eraseFromParent();
666 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
667 // may use the vtable argument later.
668 if (CI->use_empty())
669 CI->eraseFromParent();
670 }
671
672 // Rebuild llvm.bitsets metadata into a map for easy lookup.
673 std::vector<VTableBits> Bits;
674 DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
675 buildBitSets(Bits, BitSets);
676 if (BitSets.empty())
677 return true;
678
679 // For each (bitset, offset) pair:
680 bool DidVirtualConstProp = false;
681 for (auto &S : CallSlots) {
682 // Search each of the vtables in the bitset for the virtual function
683 // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
684 std::vector<VirtualCallTarget> TargetsForSlot;
685 if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
686 S.first.ByteOffset))
687 continue;
688
689 if (trySingleImplDevirt(TargetsForSlot, S.second))
690 continue;
691
692 DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
693 }
694
695 // Rebuild each global we touched as part of virtual constant propagation to
696 // include the before and after bytes.
697 if (DidVirtualConstProp)
698 for (VTableBits &B : Bits)
699 rebuildGlobal(B);
700
701 return true;
702}