blob: e131326de098443f64f38813ca13750db745784a [file] [log] [blame]
Peter Collingbournedf49d1b2016-02-09 22:50:34 +00001//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements whole program optimization of virtual calls in cases
11// where we know (via bitset information) that the list of callee is fixed. This
12// includes the following:
13// - Single implementation devirtualization: if a virtual call has a single
14// possible callee, replace all calls with a direct call to that callee.
15// - Virtual constant propagation: if the virtual function's return type is an
16// integer <=64 bits and all possible callees are readnone, for each class and
17// each list of constant arguments: evaluate the function, store the return
18// value alongside the virtual table, and rewrite each virtual call as a load
19// from the virtual table.
20// - Uniform return value optimization: if the conditions for virtual constant
21// propagation hold and each function returns the same constant value, replace
22// each virtual call with that constant.
23// - Unique return value optimization for i1 return values: if the conditions
24// for virtual constant propagation hold and a single vtable's function
25// returns 0, or a single vtable's function returns 1, replace each virtual
26// call with a comparison of the vptr against that vtable's address.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31#include "llvm/Transforms/IPO.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/MapVector.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/Module.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Evaluator.h"
44#include "llvm/Transforms/Utils/Local.h"
45
46#include <set>
47
48using namespace llvm;
49using namespace wholeprogramdevirt;
50
51#define DEBUG_TYPE "wholeprogramdevirt"
52
53// Find the minimum offset that we may store a value of size Size bits at. If
54// IsAfter is set, look for an offset before the object, otherwise look for an
55// offset after the object.
56uint64_t
57wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
58 bool IsAfter, uint64_t Size) {
59 // Find a minimum offset taking into account only vtable sizes.
60 uint64_t MinByte = 0;
61 for (const VirtualCallTarget &Target : Targets) {
62 if (IsAfter)
63 MinByte = std::max(MinByte, Target.minAfterBytes());
64 else
65 MinByte = std::max(MinByte, Target.minBeforeBytes());
66 }
67
68 // Build a vector of arrays of bytes covering, for each target, a slice of the
69 // used region (see AccumBitVector::BytesUsed in
70 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
71 // this aligns the used regions to start at MinByte.
72 //
73 // In this example, A, B and C are vtables, # is a byte already allocated for
74 // a virtual function pointer, AAAA... (etc.) are the used regions for the
75 // vtables and Offset(X) is the value computed for the Offset variable below
76 // for X.
77 //
78 // Offset(A)
79 // | |
80 // |MinByte
81 // A: ################AAAAAAAA|AAAAAAAA
82 // B: ########BBBBBBBBBBBBBBBB|BBBB
83 // C: ########################|CCCCCCCCCCCCCCCC
84 // | Offset(B) |
85 //
86 // This code produces the slices of A, B and C that appear after the divider
87 // at MinByte.
88 std::vector<ArrayRef<uint8_t>> Used;
89 for (const VirtualCallTarget &Target : Targets) {
90 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
91 : Target.BS->Bits->Before.BytesUsed;
92 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
93 : MinByte - Target.minBeforeBytes();
94
95 // Disregard used regions that are smaller than Offset. These are
96 // effectively all-free regions that do not need to be checked.
97 if (VTUsed.size() > Offset)
98 Used.push_back(VTUsed.slice(Offset));
99 }
100
101 if (Size == 1) {
102 // Find a free bit in each member of Used.
103 for (unsigned I = 0;; ++I) {
104 uint8_t BitsUsed = 0;
105 for (auto &&B : Used)
106 if (I < B.size())
107 BitsUsed |= B[I];
108 if (BitsUsed != 0xff)
109 return (MinByte + I) * 8 +
110 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
111 }
112 } else {
113 // Find a free (Size/8) byte region in each member of Used.
114 // FIXME: see if alignment helps.
115 for (unsigned I = 0;; ++I) {
116 for (auto &&B : Used) {
117 unsigned Byte = 0;
118 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
119 if (B[I + Byte])
120 goto NextI;
121 ++Byte;
122 }
123 }
124 return (MinByte + I) * 8;
125 NextI:;
126 }
127 }
128}
129
130void wholeprogramdevirt::setBeforeReturnValues(
131 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
132 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
133 if (BitWidth == 1)
134 OffsetByte = -(AllocBefore / 8 + 1);
135 else
136 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
137 OffsetBit = AllocBefore % 8;
138
139 for (VirtualCallTarget &Target : Targets) {
140 if (BitWidth == 1)
141 Target.setBeforeBit(AllocBefore);
142 else
143 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
144 }
145}
146
147void wholeprogramdevirt::setAfterReturnValues(
148 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
149 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
150 if (BitWidth == 1)
151 OffsetByte = AllocAfter / 8;
152 else
153 OffsetByte = (AllocAfter + 7) / 8;
154 OffsetBit = AllocAfter % 8;
155
156 for (VirtualCallTarget &Target : Targets) {
157 if (BitWidth == 1)
158 Target.setAfterBit(AllocAfter);
159 else
160 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
161 }
162}
163
164VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
165 : Fn(Fn), BS(BS),
166 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
167
168namespace {
169
170// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
171// tables, and the ByteOffset is the offset in bytes from the address point to
172// the virtual function pointer.
173struct VTableSlot {
174 Metadata *BitSetID;
175 uint64_t ByteOffset;
176};
177
178}
179
Peter Collingbourne9b656522016-02-09 23:01:38 +0000180namespace llvm {
181
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000182template <> struct DenseMapInfo<VTableSlot> {
183 static VTableSlot getEmptyKey() {
184 return {DenseMapInfo<Metadata *>::getEmptyKey(),
185 DenseMapInfo<uint64_t>::getEmptyKey()};
186 }
187 static VTableSlot getTombstoneKey() {
188 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
189 DenseMapInfo<uint64_t>::getTombstoneKey()};
190 }
191 static unsigned getHashValue(const VTableSlot &I) {
192 return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
193 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
194 }
195 static bool isEqual(const VTableSlot &LHS,
196 const VTableSlot &RHS) {
197 return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
198 }
199};
200
Peter Collingbourne9b656522016-02-09 23:01:38 +0000201}
202
Peter Collingbournedf49d1b2016-02-09 22:50:34 +0000203namespace {
204
205// A virtual call site. VTable is the loaded virtual table pointer, and CS is
206// the indirect virtual call.
207struct VirtualCallSite {
208 Value *VTable;
209 CallSite CS;
210
211 void replaceAndErase(Value *New) {
212 CS->replaceAllUsesWith(New);
213 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
214 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
215 II->getUnwindDest()->removePredecessor(II->getParent());
216 }
217 CS->eraseFromParent();
218 }
219};
220
221struct DevirtModule {
222 Module &M;
223 IntegerType *Int8Ty;
224 PointerType *Int8PtrTy;
225 IntegerType *Int32Ty;
226
227 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
228
229 DevirtModule(Module &M)
230 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
231 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
232 Int32Ty(Type::getInt32Ty(M.getContext())) {}
233 void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
234 uint64_t Offset, Value *VTable);
235 void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
236 Value *VTable);
237
238 void buildBitSets(std::vector<VTableBits> &Bits,
239 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
240 bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
241 const std::set<BitSetInfo> &BitSetInfos,
242 uint64_t ByteOffset);
243 bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
244 MutableArrayRef<VirtualCallSite> CallSites);
245 bool tryEvaluateFunctionsWithArgs(
246 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
247 ArrayRef<ConstantInt *> Args);
248 bool tryUniformRetValOpt(IntegerType *RetType,
249 ArrayRef<VirtualCallTarget> TargetsForSlot,
250 MutableArrayRef<VirtualCallSite> CallSites);
251 bool tryUniqueRetValOpt(unsigned BitWidth,
252 ArrayRef<VirtualCallTarget> TargetsForSlot,
253 MutableArrayRef<VirtualCallSite> CallSites);
254 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
255 ArrayRef<VirtualCallSite> CallSites);
256
257 void rebuildGlobal(VTableBits &B);
258
259 bool run();
260};
261
262struct WholeProgramDevirt : public ModulePass {
263 static char ID;
264 WholeProgramDevirt() : ModulePass(ID) {
265 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
266 }
267 bool runOnModule(Module &M) { return DevirtModule(M).run(); }
268};
269
270} // anonymous namespace
271
272INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
273 "Whole program devirtualization", false, false)
274char WholeProgramDevirt::ID = 0;
275
276ModulePass *llvm::createWholeProgramDevirtPass() {
277 return new WholeProgramDevirt;
278}
279
280// Search for virtual calls that call FPtr and add them to CallSlots.
281void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
282 uint64_t Offset, Value *VTable) {
283 for (const Use &U : FPtr->uses()) {
284 Value *User = U.getUser();
285 if (isa<BitCastInst>(User)) {
286 findCallsAtConstantOffset(BitSet, User, Offset, VTable);
287 } else if (auto CI = dyn_cast<CallInst>(User)) {
288 CallSlots[{BitSet, Offset}].push_back({VTable, CI});
289 } else if (auto II = dyn_cast<InvokeInst>(User)) {
290 CallSlots[{BitSet, Offset}].push_back({VTable, II});
291 }
292 }
293}
294
295// Search for virtual calls that load from VPtr and add them to CallSlots.
296void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
297 uint64_t Offset,
298 Value *VTable) {
299 for (const Use &U : VPtr->uses()) {
300 Value *User = U.getUser();
301 if (isa<BitCastInst>(User)) {
302 findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
303 } else if (isa<LoadInst>(User)) {
304 findCallsAtConstantOffset(BitSet, User, Offset, VTable);
305 } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
306 // Take into account the GEP offset.
307 if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
308 SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
309 uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
310 GEP->getSourceElementType(), Indices);
311 findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
312 }
313 }
314 }
315}
316
317void DevirtModule::buildBitSets(
318 std::vector<VTableBits> &Bits,
319 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
320 NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
321 if (!BitSetNM)
322 return;
323
324 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
325 Bits.reserve(BitSetNM->getNumOperands());
326 for (auto Op : BitSetNM->operands()) {
327 auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
328 if (!OpConstMD)
329 continue;
330 auto BitSetID = Op->getOperand(0).get();
331
332 Constant *OpConst = OpConstMD->getValue();
333 if (auto GA = dyn_cast<GlobalAlias>(OpConst))
334 OpConst = GA->getAliasee();
335 auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
336 if (!OpGlobal)
337 continue;
338
339 uint64_t Offset =
340 cast<ConstantInt>(
341 cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
342 ->getZExtValue();
343
344 VTableBits *&BitsPtr = GVToBits[OpGlobal];
345 if (!BitsPtr) {
346 Bits.emplace_back();
347 Bits.back().GV = OpGlobal;
348 Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
349 OpGlobal->getInitializer()->getType());
350 BitsPtr = &Bits.back();
351 }
352 BitSets[BitSetID].insert({BitsPtr, Offset});
353 }
354}
355
356bool DevirtModule::tryFindVirtualCallTargets(
357 std::vector<VirtualCallTarget> &TargetsForSlot,
358 const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
359 for (const BitSetInfo &BS : BitSetInfos) {
360 if (!BS.Bits->GV->isConstant())
361 return false;
362
363 auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
364 if (!Init)
365 return false;
366 ArrayType *VTableTy = Init->getType();
367
368 uint64_t ElemSize =
369 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
370 uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
371 if (GlobalSlotOffset % ElemSize != 0)
372 return false;
373
374 unsigned Op = GlobalSlotOffset / ElemSize;
375 if (Op >= Init->getNumOperands())
376 return false;
377
378 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
379 if (!Fn)
380 return false;
381
382 // We can disregard __cxa_pure_virtual as a possible call target, as
383 // calls to pure virtuals are UB.
384 if (Fn->getName() == "__cxa_pure_virtual")
385 continue;
386
387 TargetsForSlot.push_back({Fn, &BS});
388 }
389
390 // Give up if we couldn't find any targets.
391 return !TargetsForSlot.empty();
392}
393
394bool DevirtModule::trySingleImplDevirt(
395 ArrayRef<VirtualCallTarget> TargetsForSlot,
396 MutableArrayRef<VirtualCallSite> CallSites) {
397 // See if the program contains a single implementation of this virtual
398 // function.
399 Function *TheFn = TargetsForSlot[0].Fn;
400 for (auto &&Target : TargetsForSlot)
401 if (TheFn != Target.Fn)
402 return false;
403
404 // If so, update each call site to call that implementation directly.
405 for (auto &&VCallSite : CallSites) {
406 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
407 TheFn, VCallSite.CS.getCalledValue()->getType()));
408 }
409 return true;
410}
411
412bool DevirtModule::tryEvaluateFunctionsWithArgs(
413 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
414 ArrayRef<ConstantInt *> Args) {
415 // Evaluate each function and store the result in each target's RetVal
416 // field.
417 for (VirtualCallTarget &Target : TargetsForSlot) {
418 if (Target.Fn->arg_size() != Args.size() + 1)
419 return false;
420 for (unsigned I = 0; I != Args.size(); ++I)
421 if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
422 Args[I]->getType())
423 return false;
424
425 Evaluator Eval(M.getDataLayout(), nullptr);
426 SmallVector<Constant *, 2> EvalArgs;
427 EvalArgs.push_back(
428 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
429 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
430 Constant *RetVal;
431 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
432 !isa<ConstantInt>(RetVal))
433 return false;
434 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
435 }
436 return true;
437}
438
439bool DevirtModule::tryUniformRetValOpt(
440 IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
441 MutableArrayRef<VirtualCallSite> CallSites) {
442 // Uniform return value optimization. If all functions return the same
443 // constant, replace all calls with that constant.
444 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
445 for (const VirtualCallTarget &Target : TargetsForSlot)
446 if (Target.RetVal != TheRetVal)
447 return false;
448
449 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
450 for (auto Call : CallSites)
451 Call.replaceAndErase(TheRetValConst);
452 return true;
453}
454
455bool DevirtModule::tryUniqueRetValOpt(
456 unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
457 MutableArrayRef<VirtualCallSite> CallSites) {
458 // IsOne controls whether we look for a 0 or a 1.
459 auto tryUniqueRetValOptFor = [&](bool IsOne) {
460 const BitSetInfo *UniqueBitSet = 0;
461 for (const VirtualCallTarget &Target : TargetsForSlot) {
462 if (Target.RetVal == IsOne ? 1 : 0) {
463 if (UniqueBitSet)
464 return false;
465 UniqueBitSet = Target.BS;
466 }
467 }
468
469 // We should have found a unique bit set or bailed out by now. We already
470 // checked for a uniform return value in tryUniformRetValOpt.
471 assert(UniqueBitSet);
472
473 // Replace each call with the comparison.
474 for (auto &&Call : CallSites) {
475 IRBuilder<> B(Call.CS.getInstruction());
476 Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
477 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
478 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
479 Call.VTable, OneAddr);
480 Call.replaceAndErase(Cmp);
481 }
482 return true;
483 };
484
485 if (BitWidth == 1) {
486 if (tryUniqueRetValOptFor(true))
487 return true;
488 if (tryUniqueRetValOptFor(false))
489 return true;
490 }
491 return false;
492}
493
494bool DevirtModule::tryVirtualConstProp(
495 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
496 ArrayRef<VirtualCallSite> CallSites) {
497 // This only works if the function returns an integer.
498 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
499 if (!RetType)
500 return false;
501 unsigned BitWidth = RetType->getBitWidth();
502 if (BitWidth > 64)
503 return false;
504
505 // Make sure that each function does not access memory, takes at least one
506 // argument, does not use its first argument (which we assume is 'this'),
507 // and has the same return type.
508 for (VirtualCallTarget &Target : TargetsForSlot) {
509 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
510 !Target.Fn->arg_begin()->use_empty() ||
511 Target.Fn->getReturnType() != RetType)
512 return false;
513 }
514
515 // Group call sites by the list of constant arguments they pass.
516 // The comparator ensures deterministic ordering.
517 struct ByAPIntValue {
518 bool operator()(const std::vector<ConstantInt *> &A,
519 const std::vector<ConstantInt *> &B) const {
520 return std::lexicographical_compare(
521 A.begin(), A.end(), B.begin(), B.end(),
522 [](ConstantInt *AI, ConstantInt *BI) {
523 return AI->getValue().ult(BI->getValue());
524 });
525 }
526 };
527 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
528 ByAPIntValue>
529 VCallSitesByConstantArg;
530 for (auto &&VCallSite : CallSites) {
531 std::vector<ConstantInt *> Args;
532 if (VCallSite.CS.getType() != RetType)
533 continue;
534 for (auto &&Arg :
535 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
536 if (!isa<ConstantInt>(Arg))
537 break;
538 Args.push_back(cast<ConstantInt>(&Arg));
539 }
540 if (Args.size() + 1 != VCallSite.CS.arg_size())
541 continue;
542
543 VCallSitesByConstantArg[Args].push_back(VCallSite);
544 }
545
546 for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
547 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
548 continue;
549
550 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
551 continue;
552
553 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
554 continue;
555
556 // Find an allocation offset in bits in all vtables in the bitset.
557 uint64_t AllocBefore =
558 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
559 uint64_t AllocAfter =
560 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
561
562 // Calculate the total amount of padding needed to store a value at both
563 // ends of the object.
564 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
565 for (auto &&Target : TargetsForSlot) {
566 TotalPaddingBefore += std::max<int64_t>(
567 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
568 TotalPaddingAfter += std::max<int64_t>(
569 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
570 }
571
572 // If the amount of padding is too large, give up.
573 // FIXME: do something smarter here.
574 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
575 continue;
576
577 // Calculate the offset to the value as a (possibly negative) byte offset
578 // and (if applicable) a bit offset, and store the values in the targets.
579 int64_t OffsetByte;
580 uint64_t OffsetBit;
581 if (TotalPaddingBefore <= TotalPaddingAfter)
582 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
583 OffsetBit);
584 else
585 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
586 OffsetBit);
587
588 // Rewrite each call to a load from OffsetByte/OffsetBit.
589 for (auto Call : CSByConstantArg.second) {
590 IRBuilder<> B(Call.CS.getInstruction());
591 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
592 if (BitWidth == 1) {
593 Value *Bits = B.CreateLoad(Addr);
594 Value *Bit = ConstantInt::get(Int8Ty, 1 << OffsetBit);
595 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
596 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
597 Call.replaceAndErase(IsBitSet);
598 } else {
599 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
600 Value *Val = B.CreateLoad(RetType, ValAddr);
601 Call.replaceAndErase(Val);
602 }
603 }
604 }
605 return true;
606}
607
608void DevirtModule::rebuildGlobal(VTableBits &B) {
609 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
610 return;
611
612 // Align each byte array to pointer width.
613 unsigned PointerSize = M.getDataLayout().getPointerSize();
614 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
615 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
616
617 // Before was stored in reverse order; flip it now.
618 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
619 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
620
621 // Build an anonymous global containing the before bytes, followed by the
622 // original initializer, followed by the after bytes.
623 auto NewInit = ConstantStruct::getAnon(
624 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
625 B.GV->getInitializer(),
626 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
627 auto NewGV =
628 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
629 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
630 NewGV->setSection(B.GV->getSection());
631 NewGV->setComdat(B.GV->getComdat());
632
633 // Build an alias named after the original global, pointing at the second
634 // element (the original initializer).
635 auto Alias = GlobalAlias::create(
636 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
637 ConstantExpr::getGetElementPtr(
638 NewInit->getType(), NewGV,
639 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
640 ConstantInt::get(Int32Ty, 1)}),
641 &M);
642 Alias->setVisibility(B.GV->getVisibility());
643 Alias->takeName(B.GV);
644
645 B.GV->replaceAllUsesWith(Alias);
646 B.GV->eraseFromParent();
647}
648
649bool DevirtModule::run() {
650 Function *BitSetTestFunc =
651 M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
652 if (!BitSetTestFunc || BitSetTestFunc->use_empty())
653 return false;
654
655 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
656 if (!AssumeFunc || AssumeFunc->use_empty())
657 return false;
658
659 // Find all virtual calls via a virtual table pointer %p under an assumption
660 // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
661 // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
662 // (effectively the identity of the virtual function) and store to CallSlots.
663 DenseSet<Value *> SeenPtrs;
664 for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
665 I != E;) {
666 auto CI = dyn_cast<CallInst>(I->getUser());
667 ++I;
668 if (!CI)
669 continue;
670
671 // Find llvm.assume intrinsics for this llvm.bitset.test call.
672 SmallVector<CallInst *, 1> Assumes;
673 for (const Use &CIU : CI->uses()) {
674 auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
675 if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
676 Assumes.push_back(AssumeCI);
677 }
678
679 // If we found any, search for virtual calls based on %p and add them to
680 // CallSlots.
681 if (!Assumes.empty()) {
682 Metadata *BitSet =
683 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
684 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
685 if (SeenPtrs.insert(Ptr).second)
686 findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
687 }
688
689 // We no longer need the assumes or the bitset test.
690 for (auto Assume : Assumes)
691 Assume->eraseFromParent();
692 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
693 // may use the vtable argument later.
694 if (CI->use_empty())
695 CI->eraseFromParent();
696 }
697
698 // Rebuild llvm.bitsets metadata into a map for easy lookup.
699 std::vector<VTableBits> Bits;
700 DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
701 buildBitSets(Bits, BitSets);
702 if (BitSets.empty())
703 return true;
704
705 // For each (bitset, offset) pair:
706 bool DidVirtualConstProp = false;
707 for (auto &S : CallSlots) {
708 // Search each of the vtables in the bitset for the virtual function
709 // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
710 std::vector<VirtualCallTarget> TargetsForSlot;
711 if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
712 S.first.ByteOffset))
713 continue;
714
715 if (trySingleImplDevirt(TargetsForSlot, S.second))
716 continue;
717
718 DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
719 }
720
721 // Rebuild each global we touched as part of virtual constant propagation to
722 // include the before and after bytes.
723 if (DidVirtualConstProp)
724 for (VTableBits &B : Bits)
725 rebuildGlobal(B);
726
727 return true;
728}