blob: 5a84d74683a7430fbc086af2fcce297e268b9e07 [file] [log] [blame]
Eugene Zelenkoa369a452017-05-16 23:10:25 +00001//===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Chandler Carruth6bda14b2017-06-06 11:49:48 +000010#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000011#include "llvm/ADT/DenseMap.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000012#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000013#include "llvm/ADT/Sequence.h"
14#include "llvm/ADT/SetVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000015#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000016#include "llvm/ADT/SmallVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000017#include "llvm/ADT/Statistic.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000018#include "llvm/ADT/Twine.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000019#include "llvm/Analysis/AssumptionCache.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000020#include "llvm/Analysis/CFG.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000021#include "llvm/Analysis/CodeMetrics.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000022#include "llvm/Analysis/InstructionSimplify.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000023#include "llvm/Analysis/LoopAnalysisManager.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000024#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth32e62f92018-04-19 18:44:25 +000025#include "llvm/Analysis/LoopIterator.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000026#include "llvm/Analysis/LoopPass.h"
Chandler Carruth4da33312018-06-20 18:57:07 +000027#include "llvm/Analysis/Utils/Local.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000028#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/Constant.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/Function.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000033#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000035#include "llvm/IR/Instructions.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000036#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000037#include "llvm/IR/Use.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Casting.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000041#include "llvm/Support/Debug.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GenericDomTree.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000044#include "llvm/Support/raw_ostream.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000045#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000046#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000047#include "llvm/Transforms/Utils/Cloning.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000048#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000049#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000050#include <algorithm>
51#include <cassert>
52#include <iterator>
Chandler Carruth693eedb2017-11-17 19:58:36 +000053#include <numeric>
Eugene Zelenkoa369a452017-05-16 23:10:25 +000054#include <utility>
Chandler Carruth1353f9a2017-04-27 18:45:20 +000055
56#define DEBUG_TYPE "simple-loop-unswitch"
57
58using namespace llvm;
59
60STATISTIC(NumBranches, "Number of branches unswitched");
61STATISTIC(NumSwitches, "Number of switches unswitched");
62STATISTIC(NumTrivial, "Number of unswitches that are trivial");
63
Chandler Carruth693eedb2017-11-17 19:58:36 +000064static cl::opt<bool> EnableNonTrivialUnswitch(
65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
66 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
67 "following the configuration passed into the pass."));
68
69static cl::opt<int>
70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
71 cl::desc("The cost threshold for unswitching a loop."));
72
Chandler Carruth4da33312018-06-20 18:57:07 +000073/// Collect all of the loop invariant input values transitively used by the
74/// homogeneous instruction graph from a given root.
75///
76/// This essentially walks from a root recursively through loop variant operands
77/// which have the exact same opcode and finds all inputs which are loop
78/// invariant. For some operations these can be re-associated and unswitched out
79/// of the loop entirely.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000080static TinyPtrVector<Value *>
Chandler Carruth4da33312018-06-20 18:57:07 +000081collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
82 LoopInfo &LI) {
Chandler Carruth4da33312018-06-20 18:57:07 +000083 assert(!L.isLoopInvariant(&Root) &&
84 "Only need to walk the graph if root itself is not invariant.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +000085 TinyPtrVector<Value *> Invariants;
Chandler Carruth4da33312018-06-20 18:57:07 +000086
87 // Build a worklist and recurse through operators collecting invariants.
88 SmallVector<Instruction *, 4> Worklist;
89 SmallPtrSet<Instruction *, 8> Visited;
90 Worklist.push_back(&Root);
91 Visited.insert(&Root);
92 do {
93 Instruction &I = *Worklist.pop_back_val();
94 for (Value *OpV : I.operand_values()) {
95 // Skip constants as unswitching isn't interesting for them.
96 if (isa<Constant>(OpV))
97 continue;
98
99 // Add it to our result if loop invariant.
100 if (L.isLoopInvariant(OpV)) {
101 Invariants.push_back(OpV);
102 continue;
103 }
104
105 // If not an instruction with the same opcode, nothing we can do.
106 Instruction *OpI = dyn_cast<Instruction>(OpV);
107 if (!OpI || OpI->getOpcode() != Root.getOpcode())
108 continue;
109
110 // Visit this operand.
111 if (Visited.insert(OpI).second)
112 Worklist.push_back(OpI);
113 }
114 } while (!Worklist.empty());
115
116 return Invariants;
117}
118
119static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
120 Constant &Replacement) {
121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000122
123 // Replace uses of LIC in the loop with the given constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000125 // Grab the use and walk past it so we can clobber it in the use list.
126 Use *U = &*UI++;
127 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000128
129 // Replace this use within the loop body.
Chandler Carruth4da33312018-06-20 18:57:07 +0000130 if (UserI && L.contains(UserI))
131 U->set(&Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000132 }
133}
134
Chandler Carruthd869b182017-05-12 02:19:59 +0000135/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
136/// incoming values along this edge.
137static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
138 BasicBlock &ExitBB) {
139 for (Instruction &I : ExitBB) {
140 auto *PN = dyn_cast<PHINode>(&I);
141 if (!PN)
142 // No more PHIs to check.
143 return true;
144
145 // If the incoming value for this edge isn't loop invariant the unswitch
146 // won't be trivial.
147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
148 return false;
149 }
150 llvm_unreachable("Basic blocks should never be empty!");
151}
152
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000153/// Insert code to test a set of loop invariant values, and conditionally branch
154/// on them.
155static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
156 ArrayRef<Value *> Invariants,
157 bool Direction,
158 BasicBlock &UnswitchedSucc,
159 BasicBlock &NormalSucc) {
160 IRBuilder<> IRB(&BB);
161 Value *Cond = Invariants.front();
162 for (Value *Invariant :
163 make_range(std::next(Invariants.begin()), Invariants.end()))
164 if (Direction)
165 Cond = IRB.CreateOr(Cond, Invariant);
166 else
167 Cond = IRB.CreateAnd(Cond, Invariant);
168
169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
170 Direction ? &NormalSucc : &UnswitchedSucc);
171}
172
Chandler Carruthd869b182017-05-12 02:19:59 +0000173/// Rewrite the PHI nodes in an unswitched loop exit basic block.
174///
175/// Requires that the loop exit and unswitched basic block are the same, and
176/// that the exiting block was a unique predecessor of that block. Rewrites the
177/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
178/// PHI nodes from the old preheader that now contains the unswitched
179/// terminator.
180static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
181 BasicBlock &OldExitingBB,
182 BasicBlock &OldPH) {
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000183 for (PHINode &PN : UnswitchedBB.phis()) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000184 // When the loop exit is directly unswitched we just need to update the
185 // incoming basic block. We loop to handle weird cases with repeated
186 // incoming blocks, but expect to typically only have one operand here.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000187 for (auto i : seq<int>(0, PN.getNumOperands())) {
188 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000189 "Found incoming block different from unique predecessor!");
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000190 PN.setIncomingBlock(i, &OldPH);
Chandler Carruthd869b182017-05-12 02:19:59 +0000191 }
192 }
193}
194
195/// Rewrite the PHI nodes in the loop exit basic block and the split off
196/// unswitched block.
197///
198/// Because the exit block remains an exit from the loop, this rewrites the
199/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
200/// nodes into the unswitched basic block to select between the value in the
201/// old preheader and the loop exit.
202static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
203 BasicBlock &UnswitchedBB,
204 BasicBlock &OldExitingBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000205 BasicBlock &OldPH,
206 bool FullUnswitch) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000207 assert(&ExitBB != &UnswitchedBB &&
208 "Must have different loop exit and unswitched blocks!");
209 Instruction *InsertPt = &*UnswitchedBB.begin();
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000210 for (PHINode &PN : ExitBB.phis()) {
211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
212 PN.getName() + ".split", InsertPt);
Chandler Carruthd869b182017-05-12 02:19:59 +0000213
214 // Walk backwards over the old PHI node's inputs to minimize the cost of
215 // removing each one. We have to do this weird loop manually so that we
216 // create the same number of new incoming edges in the new PHI as we expect
217 // each case-based edge to be included in the unswitched switch in some
218 // cases.
219 // FIXME: This is really, really gross. It would be much cleaner if LLVM
220 // allowed us to create a single entry for a predecessor block without
221 // having separate entries for each "edge" even though these edges are
222 // required to produce identical results.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
224 if (PN.getIncomingBlock(i) != &OldExitingBB)
Chandler Carruthd869b182017-05-12 02:19:59 +0000225 continue;
226
Chandler Carruth4da33312018-06-20 18:57:07 +0000227 Value *Incoming = PN.getIncomingValue(i);
228 if (FullUnswitch)
229 // No more edge from the old exiting block to the exit block.
230 PN.removeIncomingValue(i);
231
Chandler Carruthd869b182017-05-12 02:19:59 +0000232 NewPN->addIncoming(Incoming, &OldPH);
233 }
234
235 // Now replace the old PHI with the new one and wire the old one in as an
236 // input to the new one.
Benjamin Kramerc7fc81e2017-12-30 15:27:33 +0000237 PN.replaceAllUsesWith(NewPN);
238 NewPN->addIncoming(&PN, &ExitBB);
Chandler Carruthd869b182017-05-12 02:19:59 +0000239 }
240}
241
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000242/// Unswitch a trivial branch if the condition is loop invariant.
243///
244/// This routine should only be called when loop code leading to the branch has
245/// been validated as trivial (no side effects). This routine checks if the
246/// condition is invariant and one of the successors is a loop exit. This
247/// allows us to unswitch without duplicating the loop, making it trivial.
248///
249/// If this routine fails to unswitch the branch it returns false.
250///
251/// If the branch can be unswitched, this routine splits the preheader and
252/// hoists the branch above that split. Preserves loop simplified form
253/// (splitting the exit block as necessary). It simplifies the branch within
254/// the loop to an unconditional branch but doesn't remove it entirely. Further
255/// cleanup can be done with some simplify-cfg like pass.
256static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
257 LoopInfo &LI) {
258 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000259 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000260
Chandler Carruth4da33312018-06-20 18:57:07 +0000261 // The loop invariant values that we want to unswitch.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000262 TinyPtrVector<Value *> Invariants;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000263
Chandler Carruth4da33312018-06-20 18:57:07 +0000264 // When true, we're fully unswitching the branch rather than just unswitching
265 // some input conditions to the branch.
266 bool FullUnswitch = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000267
Chandler Carruth4da33312018-06-20 18:57:07 +0000268 if (L.isLoopInvariant(BI.getCondition())) {
269 Invariants.push_back(BI.getCondition());
270 FullUnswitch = true;
271 } else {
272 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
273 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
274 if (Invariants.empty())
275 // Couldn't find invariant inputs!
276 return false;
277 }
278
279 // Check that one of the branch's successors exits, and which one.
280 bool ExitDirection = true;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000281 int LoopExitSuccIdx = 0;
282 auto *LoopExitBB = BI.getSuccessor(0);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000283 if (L.contains(LoopExitBB)) {
Chandler Carruth4da33312018-06-20 18:57:07 +0000284 ExitDirection = false;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000285 LoopExitSuccIdx = 1;
286 LoopExitBB = BI.getSuccessor(1);
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000287 if (L.contains(LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000288 return false;
289 }
290 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
Chandler Carruthd869b182017-05-12 02:19:59 +0000291 auto *ParentBB = BI.getParent();
292 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000293 return false;
294
Chandler Carruth4da33312018-06-20 18:57:07 +0000295 // When unswitching only part of the branch's condition, we need the exit
296 // block to be reached directly from the partially unswitched input. This can
297 // be done when the exit block is along the true edge and the branch condition
298 // is a graph of `or` operations, or the exit block is along the false edge
299 // and the condition is a graph of `and` operations.
300 if (!FullUnswitch) {
301 if (ExitDirection) {
302 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
303 return false;
304 } else {
305 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
306 return false;
307 }
308 }
309
310 LLVM_DEBUG({
311 dbgs() << " unswitching trivial invariant conditions for: " << BI
312 << "\n";
313 for (Value *Invariant : Invariants) {
314 dbgs() << " " << *Invariant << " == true";
315 if (Invariant != Invariants.back())
316 dbgs() << " ||";
317 dbgs() << "\n";
318 }
319 });
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000320
321 // Split the preheader, so that we know that there is a safe place to insert
322 // the conditional branch. We will change the preheader to have a conditional
323 // branch on LoopCond.
324 BasicBlock *OldPH = L.getLoopPreheader();
325 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
326
327 // Now that we have a place to insert the conditional branch, create a place
328 // to branch to: this is the exit block out of the loop that we are
329 // unswitching. We need to split this if there are other loop predecessors.
330 // Because the loop is in simplified form, *any* other predecessor is enough.
331 BasicBlock *UnswitchedBB;
Chandler Carruth4da33312018-06-20 18:57:07 +0000332 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
333 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000334 "A branch's parent isn't a predecessor!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000335 UnswitchedBB = LoopExitBB;
336 } else {
337 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
338 }
339
Chandler Carruth4da33312018-06-20 18:57:07 +0000340 // Actually move the invariant uses into the unswitched position. If possible,
341 // we do this by moving the instructions, but when doing partial unswitching
342 // we do it by building a new merge of the values in the unswitched position.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000343 OldPH->getTerminator()->eraseFromParent();
Chandler Carruth4da33312018-06-20 18:57:07 +0000344 if (FullUnswitch) {
345 // If fully unswitching, we can use the existing branch instruction.
346 // Splice it into the old PH to gate reaching the new preheader and re-point
347 // its successors.
348 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
349 BI);
350 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
351 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000352
Chandler Carruth4da33312018-06-20 18:57:07 +0000353 // Create a new unconditional branch that will continue the loop as a new
354 // terminator.
355 BranchInst::Create(ContinueBB, ParentBB);
356 } else {
357 // Only unswitching a subset of inputs to the condition, so we will need to
358 // build a new branch that merges the invariant inputs.
Chandler Carruth4da33312018-06-20 18:57:07 +0000359 if (ExitDirection)
360 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
361 Instruction::Or &&
362 "Must have an `or` of `i1`s for the condition!");
363 else
364 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
365 Instruction::And &&
366 "Must have an `and` of `i1`s for the condition!");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +0000367 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
368 *UnswitchedBB, *NewPH);
Chandler Carruth4da33312018-06-20 18:57:07 +0000369 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000370
Chandler Carruthd869b182017-05-12 02:19:59 +0000371 // Rewrite the relevant PHI nodes.
372 if (UnswitchedBB == LoopExitBB)
373 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
374 else
375 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
Chandler Carruth4da33312018-06-20 18:57:07 +0000376 *ParentBB, *OldPH, FullUnswitch);
Chandler Carruthd869b182017-05-12 02:19:59 +0000377
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000378 // Now we need to update the dominator tree.
Chandler Carruth4da33312018-06-20 18:57:07 +0000379 DT.insertEdge(OldPH, UnswitchedBB);
380 if (FullUnswitch)
381 DT.deleteEdge(ParentBB, UnswitchedBB);
382
383 // The constant we can replace all of our invariants with inside the loop
384 // body. If any of the invariants have a value other than this the loop won't
385 // be entered.
386 ConstantInt *Replacement = ExitDirection
387 ? ConstantInt::getFalse(BI.getContext())
388 : ConstantInt::getTrue(BI.getContext());
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000389
390 // Since this is an i1 condition we can also trivially replace uses of it
391 // within the loop with a constant.
Chandler Carruth4da33312018-06-20 18:57:07 +0000392 for (Value *Invariant : Invariants)
393 replaceLoopInvariantUses(L, Invariant, *Replacement);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000394
395 ++NumTrivial;
396 ++NumBranches;
397 return true;
398}
399
400/// Unswitch a trivial switch if the condition is loop invariant.
401///
402/// This routine should only be called when loop code leading to the switch has
403/// been validated as trivial (no side effects). This routine checks if the
404/// condition is invariant and that at least one of the successors is a loop
405/// exit. This allows us to unswitch without duplicating the loop, making it
406/// trivial.
407///
408/// If this routine fails to unswitch the switch it returns false.
409///
410/// If the switch can be unswitched, this routine splits the preheader and
411/// copies the switch above that split. If the default case is one of the
412/// exiting cases, it copies the non-exiting cases and points them at the new
413/// preheader. If the default case is not exiting, it copies the exiting cases
414/// and points the default at the preheader. It preserves loop simplified form
415/// (splitting the exit blocks as necessary). It simplifies the switch within
416/// the loop by removing now-dead cases. If the default case is one of those
417/// unswitched, it replaces its destination with a new basic block containing
418/// only unreachable. Such basic blocks, while technically loop exits, are not
419/// considered for unswitching so this is a stable transform and the same
420/// switch will not be revisited. If after unswitching there is only a single
421/// in-loop successor, the switch is further simplified to an unconditional
422/// branch. Still more cleanup can be done with some simplify-cfg like pass.
423static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
424 LoopInfo &LI) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000425 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000426 Value *LoopCond = SI.getCondition();
427
428 // If this isn't switching on an invariant condition, we can't unswitch it.
429 if (!L.isLoopInvariant(LoopCond))
430 return false;
431
Chandler Carruthd869b182017-05-12 02:19:59 +0000432 auto *ParentBB = SI.getParent();
433
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000434 SmallVector<int, 4> ExitCaseIndices;
435 for (auto Case : SI.cases()) {
436 auto *SuccBB = Case.getCaseSuccessor();
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000437 if (!L.contains(SuccBB) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000438 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000439 ExitCaseIndices.push_back(Case.getCaseIndex());
440 }
441 BasicBlock *DefaultExitBB = nullptr;
Chandler Carruthbaf045f2018-05-10 17:33:20 +0000442 if (!L.contains(SI.getDefaultDest()) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000443 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000444 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
445 DefaultExitBB = SI.getDefaultDest();
446 else if (ExitCaseIndices.empty())
447 return false;
448
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000449 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000450
451 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
452 ExitCases.reserve(ExitCaseIndices.size());
453 // We walk the case indices backwards so that we remove the last case first
454 // and don't disrupt the earlier indices.
455 for (unsigned Index : reverse(ExitCaseIndices)) {
456 auto CaseI = SI.case_begin() + Index;
457 // Save the value of this case.
458 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
459 // Delete the unswitched cases.
460 SI.removeCase(CaseI);
461 }
462
463 // Check if after this all of the remaining cases point at the same
464 // successor.
465 BasicBlock *CommonSuccBB = nullptr;
466 if (SI.getNumCases() > 0 &&
467 std::all_of(std::next(SI.case_begin()), SI.case_end(),
468 [&SI](const SwitchInst::CaseHandle &Case) {
469 return Case.getCaseSuccessor() ==
470 SI.case_begin()->getCaseSuccessor();
471 }))
472 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
473
474 if (DefaultExitBB) {
475 // We can't remove the default edge so replace it with an edge to either
476 // the single common remaining successor (if we have one) or an unreachable
477 // block.
478 if (CommonSuccBB) {
479 SI.setDefaultDest(CommonSuccBB);
480 } else {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000481 BasicBlock *UnreachableBB = BasicBlock::Create(
482 ParentBB->getContext(),
483 Twine(ParentBB->getName()) + ".unreachable_default",
484 ParentBB->getParent());
485 new UnreachableInst(ParentBB->getContext(), UnreachableBB);
486 SI.setDefaultDest(UnreachableBB);
487 DT.addNewBlock(UnreachableBB, ParentBB);
488 }
489 } else {
490 // If we're not unswitching the default, we need it to match any cases to
491 // have a common successor or if we have no cases it is the common
492 // successor.
493 if (SI.getNumCases() == 0)
494 CommonSuccBB = SI.getDefaultDest();
495 else if (SI.getDefaultDest() != CommonSuccBB)
496 CommonSuccBB = nullptr;
497 }
498
499 // Split the preheader, so that we know that there is a safe place to insert
500 // the switch.
501 BasicBlock *OldPH = L.getLoopPreheader();
502 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
503 OldPH->getTerminator()->eraseFromParent();
504
505 // Now add the unswitched switch.
506 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
507
Chandler Carruthd869b182017-05-12 02:19:59 +0000508 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
509 // First, we split any exit blocks with remaining in-loop predecessors. Then
510 // we update the PHIs in one of two ways depending on if there was a split.
511 // We walk in reverse so that we split in the same order as the cases
512 // appeared. This is purely for convenience of reading the resulting IR, but
513 // it doesn't cost anything really.
514 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000515 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
516 // Handle the default exit if necessary.
517 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
518 // ranges aren't quite powerful enough yet.
Chandler Carruthd869b182017-05-12 02:19:59 +0000519 if (DefaultExitBB) {
520 if (pred_empty(DefaultExitBB)) {
521 UnswitchedExitBBs.insert(DefaultExitBB);
522 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
523 } else {
524 auto *SplitBB =
525 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000526 rewritePHINodesForExitAndUnswitchedBlocks(
527 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruthd869b182017-05-12 02:19:59 +0000528 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
529 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000530 }
531 // Note that we must use a reference in the for loop so that we update the
532 // container.
533 for (auto &CasePair : reverse(ExitCases)) {
534 // Grab a reference to the exit block in the pair so that we can update it.
Chandler Carruthd869b182017-05-12 02:19:59 +0000535 BasicBlock *ExitBB = CasePair.second;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000536
537 // If this case is the last edge into the exit block, we can simply reuse it
538 // as it will no longer be a loop exit. No mapping necessary.
Chandler Carruthd869b182017-05-12 02:19:59 +0000539 if (pred_empty(ExitBB)) {
540 // Only rewrite once.
541 if (UnswitchedExitBBs.insert(ExitBB).second)
542 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000543 continue;
Chandler Carruthd869b182017-05-12 02:19:59 +0000544 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000545
546 // Otherwise we need to split the exit block so that we retain an exit
547 // block from the loop and a target for the unswitched condition.
548 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
549 if (!SplitExitBB) {
550 // If this is the first time we see this, do the split and remember it.
551 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
Chandler Carruth4da33312018-06-20 18:57:07 +0000552 rewritePHINodesForExitAndUnswitchedBlocks(
553 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000554 }
Chandler Carruthd869b182017-05-12 02:19:59 +0000555 // Update the case pair to point to the split block.
556 CasePair.second = SplitExitBB;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000557 }
558
559 // Now add the unswitched cases. We do this in reverse order as we built them
560 // in reverse order.
561 for (auto CasePair : reverse(ExitCases)) {
562 ConstantInt *CaseVal = CasePair.first;
563 BasicBlock *UnswitchedBB = CasePair.second;
564
565 NewSI->addCase(CaseVal, UnswitchedBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000566 }
567
568 // If the default was unswitched, re-point it and add explicit cases for
569 // entering the loop.
570 if (DefaultExitBB) {
571 NewSI->setDefaultDest(DefaultExitBB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000572
573 // We removed all the exit cases, so we just copy the cases to the
574 // unswitched switch.
575 for (auto Case : SI.cases())
576 NewSI->addCase(Case.getCaseValue(), NewPH);
577 }
578
579 // If we ended up with a common successor for every path through the switch
580 // after unswitching, rewrite it to an unconditional branch to make it easy
581 // to recognize. Otherwise we potentially have to recognize the default case
582 // pointing at unreachable and other complexity.
583 if (CommonSuccBB) {
584 BasicBlock *BB = SI.getParent();
585 SI.eraseFromParent();
586 BranchInst::Create(CommonSuccBB, BB);
587 }
588
Chandler Carruth2c85a232018-05-01 09:54:39 +0000589 // Walk the unswitched exit blocks and the unswitched split blocks and update
590 // the dominator tree based on the CFG edits. While we are walking unordered
591 // containers here, the API for applyUpdates takes an unordered list of
592 // updates and requires them to not contain duplicates.
593 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
594 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
595 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
596 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
597 }
598 for (auto SplitUnswitchedPair : SplitExitBBMap) {
599 auto *UnswitchedBB = SplitUnswitchedPair.second;
600 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
601 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
602 }
603 DT.applyUpdates(DTUpdates);
604
David Green7c35de12018-02-28 11:00:08 +0000605 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000606 ++NumTrivial;
607 ++NumSwitches;
608 return true;
609}
610
611/// This routine scans the loop to find a branch or switch which occurs before
612/// any side effects occur. These can potentially be unswitched without
613/// duplicating the loop. If a branch or switch is successfully unswitched the
614/// scanning continues to see if subsequent branches or switches have become
615/// trivial. Once all trivial candidates have been unswitched, this routine
616/// returns.
617///
618/// The return value indicates whether anything was unswitched (and therefore
619/// changed).
620static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
621 LoopInfo &LI) {
622 bool Changed = false;
623
624 // If loop header has only one reachable successor we should keep looking for
625 // trivial condition candidates in the successor as well. An alternative is
626 // to constant fold conditions and merge successors into loop header (then we
627 // only need to check header's terminator). The reason for not doing this in
628 // LoopUnswitch pass is that it could potentially break LoopPassManager's
629 // invariants. Folding dead branches could either eliminate the current loop
630 // or make other loops unreachable. LCSSA form might also not be preserved
631 // after deleting branches. The following code keeps traversing loop header's
632 // successors until it finds the trivial condition candidate (condition that
633 // is not a constant). Since unswitching generates branches with constant
634 // conditions, this scenario could be very common in practice.
635 BasicBlock *CurrentBB = L.getHeader();
636 SmallPtrSet<BasicBlock *, 8> Visited;
637 Visited.insert(CurrentBB);
638 do {
639 // Check if there are any side-effecting instructions (e.g. stores, calls,
640 // volatile loads) in the part of the loop that the code *would* execute
641 // without unswitching.
642 if (llvm::any_of(*CurrentBB,
643 [](Instruction &I) { return I.mayHaveSideEffects(); }))
644 return Changed;
645
646 TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
647
648 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
649 // Don't bother trying to unswitch past a switch with a constant
650 // condition. This should be removed prior to running this pass by
651 // simplify-cfg.
652 if (isa<Constant>(SI->getCondition()))
653 return Changed;
654
655 if (!unswitchTrivialSwitch(L, *SI, DT, LI))
Hiroshi Inouef2096492018-06-14 05:41:49 +0000656 // Couldn't unswitch this one so we're done.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000657 return Changed;
658
659 // Mark that we managed to unswitch something.
660 Changed = true;
661
662 // If unswitching turned the terminator into an unconditional branch then
663 // we can continue. The unswitching logic specifically works to fold any
664 // cases it can into an unconditional branch to make it easier to
665 // recognize here.
666 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
667 if (!BI || BI->isConditional())
668 return Changed;
669
670 CurrentBB = BI->getSuccessor(0);
671 continue;
672 }
673
674 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
675 if (!BI)
676 // We do not understand other terminator instructions.
677 return Changed;
678
679 // Don't bother trying to unswitch past an unconditional branch or a branch
680 // with a constant value. These should be removed by simplify-cfg prior to
681 // running this pass.
682 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
683 return Changed;
684
685 // Found a trivial condition candidate: non-foldable conditional branch. If
686 // we fail to unswitch this, we can't do anything else that is trivial.
687 if (!unswitchTrivialBranch(L, *BI, DT, LI))
688 return Changed;
689
690 // Mark that we managed to unswitch something.
691 Changed = true;
692
Chandler Carruth4da33312018-06-20 18:57:07 +0000693 // If we only unswitched some of the conditions feeding the branch, we won't
694 // have collapsed it to a single successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000695 BI = cast<BranchInst>(CurrentBB->getTerminator());
Chandler Carruth4da33312018-06-20 18:57:07 +0000696 if (BI->isConditional())
697 return Changed;
698
699 // Follow the newly unconditional branch into its successor.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000700 CurrentBB = BI->getSuccessor(0);
701
702 // When continuing, if we exit the loop or reach a previous visited block,
703 // then we can not reach any trivial condition candidates (unfoldable
704 // branch instructions or switch instructions) and no unswitch can happen.
705 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
706
707 return Changed;
708}
709
Chandler Carruth693eedb2017-11-17 19:58:36 +0000710/// Build the cloned blocks for an unswitched copy of the given loop.
711///
712/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
713/// after the split block (`SplitBB`) that will be used to select between the
714/// cloned and original loop.
715///
716/// This routine handles cloning all of the necessary loop blocks and exit
717/// blocks including rewriting their instructions and the relevant PHI nodes.
Chandler Carruth16529962018-06-25 23:32:54 +0000718/// Any loop blocks or exit blocks which are dominated by a different successor
719/// than the one for this clone of the loop blocks can be trivially skipped. We
720/// use the `DominatingSucc` map to determine whether a block satisfies that
721/// property with a simple map lookup.
722///
723/// It also correctly creates the unconditional branch in the cloned
Chandler Carruth693eedb2017-11-17 19:58:36 +0000724/// unswitched parent block to only point at the unswitched successor.
725///
726/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
727/// block splitting is correctly reflected in `LoopInfo`, essentially all of
728/// the cloned blocks (and their loops) are left without full `LoopInfo`
729/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
730/// blocks to them but doesn't create the cloned `DominatorTree` structure and
731/// instead the caller must recompute an accurate DT. It *does* correctly
732/// update the `AssumptionCache` provided in `AC`.
733static BasicBlock *buildClonedLoopBlocks(
734 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
735 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
736 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
Chandler Carruth16529962018-06-25 23:32:54 +0000737 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
Chandler Carruth69e68f82018-04-25 00:18:07 +0000738 ValueToValueMapTy &VMap,
739 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
740 DominatorTree &DT, LoopInfo &LI) {
Chandler Carruth693eedb2017-11-17 19:58:36 +0000741 SmallVector<BasicBlock *, 4> NewBlocks;
742 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
743
744 // We will need to clone a bunch of blocks, wrap up the clone operation in
745 // a helper.
746 auto CloneBlock = [&](BasicBlock *OldBB) {
747 // Clone the basic block and insert it before the new preheader.
748 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
749 NewBB->moveBefore(LoopPH);
750
751 // Record this block and the mapping.
752 NewBlocks.push_back(NewBB);
753 VMap[OldBB] = NewBB;
754
Chandler Carruth693eedb2017-11-17 19:58:36 +0000755 return NewBB;
756 };
757
Chandler Carruth16529962018-06-25 23:32:54 +0000758 // We skip cloning blocks when they have a dominating succ that is not the
759 // succ we are cloning for.
760 auto SkipBlock = [&](BasicBlock *BB) {
761 auto It = DominatingSucc.find(BB);
762 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
763 };
764
Chandler Carruth693eedb2017-11-17 19:58:36 +0000765 // First, clone the preheader.
766 auto *ClonedPH = CloneBlock(LoopPH);
767
768 // Then clone all the loop blocks, skipping the ones that aren't necessary.
769 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000770 if (!SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000771 CloneBlock(LoopBB);
772
773 // Split all the loop exit edges so that when we clone the exit blocks, if
774 // any of the exit blocks are *also* a preheader for some other loop, we
775 // don't create multiple predecessors entering the loop header.
776 for (auto *ExitBB : ExitBlocks) {
Chandler Carruth16529962018-06-25 23:32:54 +0000777 if (SkipBlock(ExitBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000778 continue;
779
780 // When we are going to clone an exit, we don't need to clone all the
781 // instructions in the exit block and we want to ensure we have an easy
782 // place to merge the CFG, so split the exit first. This is always safe to
783 // do because there cannot be any non-loop predecessors of a loop exit in
784 // loop simplified form.
785 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
786
787 // Rearrange the names to make it easier to write test cases by having the
788 // exit block carry the suffix rather than the merge block carrying the
789 // suffix.
790 MergeBB->takeName(ExitBB);
791 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
792
793 // Now clone the original exit block.
794 auto *ClonedExitBB = CloneBlock(ExitBB);
795 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
796 "Exit block should have been split to have one successor!");
797 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
798 "Cloned exit block has the wrong successor!");
799
Chandler Carruth693eedb2017-11-17 19:58:36 +0000800 // Remap any cloned instructions and create a merge phi node for them.
801 for (auto ZippedInsts : llvm::zip_first(
802 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
803 llvm::make_range(ClonedExitBB->begin(),
804 std::prev(ClonedExitBB->end())))) {
805 Instruction &I = std::get<0>(ZippedInsts);
806 Instruction &ClonedI = std::get<1>(ZippedInsts);
807
808 // The only instructions in the exit block should be PHI nodes and
809 // potentially a landing pad.
810 assert(
811 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
812 "Bad instruction in exit block!");
813 // We should have a value map between the instruction and its clone.
814 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
815
816 auto *MergePN =
817 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
818 &*MergeBB->getFirstInsertionPt());
819 I.replaceAllUsesWith(MergePN);
820 MergePN->addIncoming(&I, ExitBB);
821 MergePN->addIncoming(&ClonedI, ClonedExitBB);
822 }
823 }
824
825 // Rewrite the instructions in the cloned blocks to refer to the instructions
826 // in the cloned blocks. We have to do this as a second pass so that we have
827 // everything available. Also, we have inserted new instructions which may
828 // include assume intrinsics, so we update the assumption cache while
829 // processing this.
830 for (auto *ClonedBB : NewBlocks)
831 for (Instruction &I : *ClonedBB) {
832 RemapInstruction(&I, VMap,
833 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
834 if (auto *II = dyn_cast<IntrinsicInst>(&I))
835 if (II->getIntrinsicID() == Intrinsic::assume)
836 AC.registerAssumption(II);
837 }
838
839 // Remove the cloned parent as a predecessor of the cloned continue successor
840 // if we did in fact clone it.
841 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
842 if (auto *ClonedContinueSuccBB =
843 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
844 ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
845 /*DontDeleteUselessPHIs*/ true);
Chandler Carruthb5254242018-04-23 00:48:42 +0000846 // Replace the cloned branch with an unconditional branch to the cloned
Chandler Carruth693eedb2017-11-17 19:58:36 +0000847 // unswitched successor.
848 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
849 ClonedParentBB->getTerminator()->eraseFromParent();
850 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
851
852 // Update any PHI nodes in the cloned successors of the skipped blocks to not
853 // have spurious incoming values.
854 for (auto *LoopBB : L.blocks())
Chandler Carruth16529962018-06-25 23:32:54 +0000855 if (SkipBlock(LoopBB))
Chandler Carruth693eedb2017-11-17 19:58:36 +0000856 for (auto *SuccBB : successors(LoopBB))
857 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
858 for (PHINode &PN : ClonedSuccBB->phis())
859 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
860
Chandler Carruth69e68f82018-04-25 00:18:07 +0000861 // Record the domtree updates for the new blocks.
Chandler Carruth44aab922018-05-01 09:42:09 +0000862 SmallPtrSet<BasicBlock *, 4> SuccSet;
863 for (auto *ClonedBB : NewBlocks) {
Chandler Carruth69e68f82018-04-25 00:18:07 +0000864 for (auto *SuccBB : successors(ClonedBB))
Chandler Carruth44aab922018-05-01 09:42:09 +0000865 if (SuccSet.insert(SuccBB).second)
866 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
867 SuccSet.clear();
868 }
Chandler Carruth69e68f82018-04-25 00:18:07 +0000869
Chandler Carruth693eedb2017-11-17 19:58:36 +0000870 return ClonedPH;
871}
872
873/// Recursively clone the specified loop and all of its children.
874///
875/// The target parent loop for the clone should be provided, or can be null if
876/// the clone is a top-level loop. While cloning, all the blocks are mapped
877/// with the provided value map. The entire original loop must be present in
878/// the value map. The cloned loop is returned.
879static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
880 const ValueToValueMapTy &VMap, LoopInfo &LI) {
881 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
882 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
883 ClonedL.reserveBlocks(OrigL.getNumBlocks());
884 for (auto *BB : OrigL.blocks()) {
885 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
886 ClonedL.addBlockEntry(ClonedBB);
Chandler Carruth0ace1482018-04-24 03:27:00 +0000887 if (LI.getLoopFor(BB) == &OrigL)
Chandler Carruth693eedb2017-11-17 19:58:36 +0000888 LI.changeLoopFor(ClonedBB, &ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +0000889 }
890 };
891
892 // We specially handle the first loop because it may get cloned into
893 // a different parent and because we most commonly are cloning leaf loops.
894 Loop *ClonedRootL = LI.AllocateLoop();
895 if (RootParentL)
896 RootParentL->addChildLoop(ClonedRootL);
897 else
898 LI.addTopLevelLoop(ClonedRootL);
899 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
900
901 if (OrigRootL.empty())
902 return ClonedRootL;
903
904 // If we have a nest, we can quickly clone the entire loop nest using an
905 // iterative approach because it is a tree. We keep the cloned parent in the
906 // data structure to avoid repeatedly querying through a map to find it.
907 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
908 // Build up the loops to clone in reverse order as we'll clone them from the
909 // back.
910 for (Loop *ChildL : llvm::reverse(OrigRootL))
911 LoopsToClone.push_back({ClonedRootL, ChildL});
912 do {
913 Loop *ClonedParentL, *L;
914 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
915 Loop *ClonedL = LI.AllocateLoop();
916 ClonedParentL->addChildLoop(ClonedL);
917 AddClonedBlocksToLoop(*L, *ClonedL);
918 for (Loop *ChildL : llvm::reverse(*L))
919 LoopsToClone.push_back({ClonedL, ChildL});
920 } while (!LoopsToClone.empty());
921
922 return ClonedRootL;
923}
924
925/// Build the cloned loops of an original loop from unswitching.
926///
927/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
928/// operation. We need to re-verify that there even is a loop (as the backedge
929/// may not have been cloned), and even if there are remaining backedges the
930/// backedge set may be different. However, we know that each child loop is
931/// undisturbed, we only need to find where to place each child loop within
932/// either any parent loop or within a cloned version of the original loop.
933///
934/// Because child loops may end up cloned outside of any cloned version of the
935/// original loop, multiple cloned sibling loops may be created. All of them
936/// are returned so that the newly introduced loop nest roots can be
937/// identified.
Chandler Carruth92815032018-06-02 01:29:01 +0000938static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
939 const ValueToValueMapTy &VMap, LoopInfo &LI,
940 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +0000941 Loop *ClonedL = nullptr;
942
943 auto *OrigPH = OrigL.getLoopPreheader();
944 auto *OrigHeader = OrigL.getHeader();
945
946 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
947 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
948
949 // We need to know the loops of the cloned exit blocks to even compute the
950 // accurate parent loop. If we only clone exits to some parent of the
951 // original parent, we want to clone into that outer loop. We also keep track
952 // of the loops that our cloned exit blocks participate in.
953 Loop *ParentL = nullptr;
954 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
955 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
956 ClonedExitsInLoops.reserve(ExitBlocks.size());
957 for (auto *ExitBB : ExitBlocks)
958 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
959 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
960 ExitLoopMap[ClonedExitBB] = ExitL;
961 ClonedExitsInLoops.push_back(ClonedExitBB);
962 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
963 ParentL = ExitL;
964 }
965 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
966 ParentL->contains(OrigL.getParentLoop())) &&
967 "The computed parent loop should always contain (or be) the parent of "
968 "the original loop.");
969
970 // We build the set of blocks dominated by the cloned header from the set of
971 // cloned blocks out of the original loop. While not all of these will
972 // necessarily be in the cloned loop, it is enough to establish that they
973 // aren't in unreachable cycles, etc.
974 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
975 for (auto *BB : OrigL.blocks())
976 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
977 ClonedLoopBlocks.insert(ClonedBB);
978
979 // Rebuild the set of blocks that will end up in the cloned loop. We may have
980 // skipped cloning some region of this loop which can in turn skip some of
981 // the backedges so we have to rebuild the blocks in the loop based on the
982 // backedges that remain after cloning.
983 SmallVector<BasicBlock *, 16> Worklist;
984 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
985 for (auto *Pred : predecessors(ClonedHeader)) {
986 // The only possible non-loop header predecessor is the preheader because
987 // we know we cloned the loop in simplified form.
988 if (Pred == ClonedPH)
989 continue;
990
991 // Because the loop was in simplified form, the only non-loop predecessor
992 // should be the preheader.
993 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
994 "header other than the preheader "
995 "that is not part of the loop!");
996
997 // Insert this block into the loop set and on the first visit (and if it
998 // isn't the header we're currently walking) put it into the worklist to
999 // recurse through.
1000 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1001 Worklist.push_back(Pred);
1002 }
1003
1004 // If we had any backedges then there *is* a cloned loop. Put the header into
1005 // the loop set and then walk the worklist backwards to find all the blocks
1006 // that remain within the loop after cloning.
1007 if (!BlocksInClonedLoop.empty()) {
1008 BlocksInClonedLoop.insert(ClonedHeader);
1009
1010 while (!Worklist.empty()) {
1011 BasicBlock *BB = Worklist.pop_back_val();
1012 assert(BlocksInClonedLoop.count(BB) &&
1013 "Didn't put block into the loop set!");
1014
1015 // Insert any predecessors that are in the possible set into the cloned
1016 // set, and if the insert is successful, add them to the worklist. Note
1017 // that we filter on the blocks that are definitely reachable via the
1018 // backedge to the loop header so we may prune out dead code within the
1019 // cloned loop.
1020 for (auto *Pred : predecessors(BB))
1021 if (ClonedLoopBlocks.count(Pred) &&
1022 BlocksInClonedLoop.insert(Pred).second)
1023 Worklist.push_back(Pred);
1024 }
1025
1026 ClonedL = LI.AllocateLoop();
1027 if (ParentL) {
1028 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1029 ParentL->addChildLoop(ClonedL);
1030 } else {
1031 LI.addTopLevelLoop(ClonedL);
1032 }
Chandler Carruth92815032018-06-02 01:29:01 +00001033 NonChildClonedLoops.push_back(ClonedL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001034
1035 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1036 // We don't want to just add the cloned loop blocks based on how we
1037 // discovered them. The original order of blocks was carefully built in
1038 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1039 // that logic, we just re-walk the original blocks (and those of the child
1040 // loops) and filter them as we add them into the cloned loop.
1041 for (auto *BB : OrigL.blocks()) {
1042 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1043 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1044 continue;
1045
1046 // Directly add the blocks that are only in this loop.
1047 if (LI.getLoopFor(BB) == &OrigL) {
1048 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1049 continue;
1050 }
1051
1052 // We want to manually add it to this loop and parents.
1053 // Registering it with LoopInfo will happen when we clone the top
1054 // loop for this block.
1055 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1056 PL->addBlockEntry(ClonedBB);
1057 }
1058
1059 // Now add each child loop whose header remains within the cloned loop. All
1060 // of the blocks within the loop must satisfy the same constraints as the
1061 // header so once we pass the header checks we can just clone the entire
1062 // child loop nest.
1063 for (Loop *ChildL : OrigL) {
1064 auto *ClonedChildHeader =
1065 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1066 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1067 continue;
1068
1069#ifndef NDEBUG
1070 // We should never have a cloned child loop header but fail to have
1071 // all of the blocks for that child loop.
1072 for (auto *ChildLoopBB : ChildL->blocks())
1073 assert(BlocksInClonedLoop.count(
1074 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1075 "Child cloned loop has a header within the cloned outer "
1076 "loop but not all of its blocks!");
1077#endif
1078
1079 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1080 }
1081 }
1082
1083 // Now that we've handled all the components of the original loop that were
1084 // cloned into a new loop, we still need to handle anything from the original
1085 // loop that wasn't in a cloned loop.
1086
1087 // Figure out what blocks are left to place within any loop nest containing
1088 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1089 // them.
1090 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1091 if (BlocksInClonedLoop.empty())
1092 UnloopedBlockSet.insert(ClonedPH);
1093 for (auto *ClonedBB : ClonedLoopBlocks)
1094 if (!BlocksInClonedLoop.count(ClonedBB))
1095 UnloopedBlockSet.insert(ClonedBB);
1096
1097 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1098 // backwards across these to process them inside out. The order shouldn't
1099 // matter as we're just trying to build up the map from inside-out; we use
1100 // the map in a more stably ordered way below.
1101 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
Chandler Carruth4da33312018-06-20 18:57:07 +00001102 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
Mandeep Singh Grang636d94d2018-04-13 19:47:57 +00001103 [&](BasicBlock *LHS, BasicBlock *RHS) {
1104 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1105 ExitLoopMap.lookup(RHS)->getLoopDepth();
1106 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001107
1108 // Populate the existing ExitLoopMap with everything reachable from each
1109 // exit, starting from the inner most exit.
1110 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1111 assert(Worklist.empty() && "Didn't clear worklist!");
1112
1113 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1114 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1115
1116 // Walk the CFG back until we hit the cloned PH adding everything reachable
1117 // and in the unlooped set to this exit block's loop.
1118 Worklist.push_back(ExitBB);
1119 do {
1120 BasicBlock *BB = Worklist.pop_back_val();
1121 // We can stop recursing at the cloned preheader (if we get there).
1122 if (BB == ClonedPH)
1123 continue;
1124
1125 for (BasicBlock *PredBB : predecessors(BB)) {
1126 // If this pred has already been moved to our set or is part of some
1127 // (inner) loop, no update needed.
1128 if (!UnloopedBlockSet.erase(PredBB)) {
1129 assert(
1130 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1131 "Predecessor not mapped to a loop!");
1132 continue;
1133 }
1134
1135 // We just insert into the loop set here. We'll add these blocks to the
1136 // exit loop after we build up the set in an order that doesn't rely on
1137 // predecessor order (which in turn relies on use list order).
1138 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1139 (void)Inserted;
1140 assert(Inserted && "Should only visit an unlooped block once!");
1141
1142 // And recurse through to its predecessors.
1143 Worklist.push_back(PredBB);
1144 }
1145 } while (!Worklist.empty());
1146 }
1147
1148 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1149 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1150 // in their original order adding them to the correct loop.
1151
1152 // We need a stable insertion order. We use the order of the original loop
1153 // order and map into the correct parent loop.
1154 for (auto *BB : llvm::concat<BasicBlock *const>(
1155 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1156 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1157 OuterL->addBasicBlockToLoop(BB, LI);
1158
1159#ifndef NDEBUG
1160 for (auto &BBAndL : ExitLoopMap) {
1161 auto *BB = BBAndL.first;
1162 auto *OuterL = BBAndL.second;
1163 assert(LI.getLoopFor(BB) == OuterL &&
1164 "Failed to put all blocks into outer loops!");
1165 }
1166#endif
1167
1168 // Now that all the blocks are placed into the correct containing loop in the
1169 // absence of child loops, find all the potentially cloned child loops and
1170 // clone them into whatever outer loop we placed their header into.
1171 for (Loop *ChildL : OrigL) {
1172 auto *ClonedChildHeader =
1173 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1174 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1175 continue;
1176
1177#ifndef NDEBUG
1178 for (auto *ChildLoopBB : ChildL->blocks())
1179 assert(VMap.count(ChildLoopBB) &&
1180 "Cloned a child loop header but not all of that loops blocks!");
1181#endif
1182
1183 NonChildClonedLoops.push_back(cloneLoopNest(
1184 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1185 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001186}
1187
Chandler Carruth69e68f82018-04-25 00:18:07 +00001188static void
Chandler Carruth16529962018-06-25 23:32:54 +00001189deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1190 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1191 DominatorTree &DT) {
1192 // Find all the dead clones, and remove them from their successors.
1193 SmallVector<BasicBlock *, 16> DeadBlocks;
1194 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1195 for (auto &VMap : VMaps)
1196 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1197 if (!DT.isReachableFromEntry(ClonedBB)) {
1198 for (BasicBlock *SuccBB : successors(ClonedBB))
1199 SuccBB->removePredecessor(ClonedBB);
1200 DeadBlocks.push_back(ClonedBB);
1201 }
1202
1203 // Drop any remaining references to break cycles.
1204 for (BasicBlock *BB : DeadBlocks)
1205 BB->dropAllReferences();
1206 // Erase them from the IR.
1207 for (BasicBlock *BB : DeadBlocks)
1208 BB->eraseFromParent();
1209}
1210
1211static void
Chandler Carruth69e68f82018-04-25 00:18:07 +00001212deleteDeadBlocksFromLoop(Loop &L,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001213 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1214 DominatorTree &DT, LoopInfo &LI) {
Chandler Carruth16529962018-06-25 23:32:54 +00001215 // Find all the dead blocks, and remove them from their successors.
1216 SmallVector<BasicBlock *, 16> DeadBlocks;
1217 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1218 if (!DT.isReachableFromEntry(BB)) {
1219 for (BasicBlock *SuccBB : successors(BB))
1220 SuccBB->removePredecessor(BB);
1221 DeadBlocks.push_back(BB);
1222 }
1223
Chandler Carruth69e68f82018-04-25 00:18:07 +00001224 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1225 DeadBlocks.end());
Chandler Carruth693eedb2017-11-17 19:58:36 +00001226
1227 // Filter out the dead blocks from the exit blocks list so that it can be
1228 // used in the caller.
1229 llvm::erase_if(ExitBlocks,
Chandler Carruth69e68f82018-04-25 00:18:07 +00001230 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001231
Chandler Carruth693eedb2017-11-17 19:58:36 +00001232 // Walk from this loop up through its parents removing all of the dead blocks.
1233 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1234 for (auto *BB : DeadBlocks)
1235 ParentL->getBlocksSet().erase(BB);
1236 llvm::erase_if(ParentL->getBlocksVector(),
Chandler Carruth69e68f82018-04-25 00:18:07 +00001237 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001238 }
1239
1240 // Now delete the dead child loops. This raw delete will clear them
1241 // recursively.
1242 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001243 if (!DeadBlockSet.count(ChildL->getHeader()))
Chandler Carruth693eedb2017-11-17 19:58:36 +00001244 return false;
1245
1246 assert(llvm::all_of(ChildL->blocks(),
1247 [&](BasicBlock *ChildBB) {
Chandler Carruth69e68f82018-04-25 00:18:07 +00001248 return DeadBlockSet.count(ChildBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001249 }) &&
1250 "If the child loop header is dead all blocks in the child loop must "
1251 "be dead as well!");
1252 LI.destroy(ChildL);
1253 return true;
1254 });
1255
Chandler Carruth69e68f82018-04-25 00:18:07 +00001256 // Remove the loop mappings for the dead blocks and drop all the references
1257 // from these blocks to others to handle cyclic references as we start
1258 // deleting the blocks themselves.
1259 for (auto *BB : DeadBlocks) {
1260 // Check that the dominator tree has already been updated.
1261 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001262 LI.changeLoopFor(BB, nullptr);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001263 BB->dropAllReferences();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001264 }
Chandler Carruth69e68f82018-04-25 00:18:07 +00001265
1266 // Actually delete the blocks now that they've been fully unhooked from the
1267 // IR.
1268 for (auto *BB : DeadBlocks)
1269 BB->eraseFromParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001270}
1271
1272/// Recompute the set of blocks in a loop after unswitching.
1273///
1274/// This walks from the original headers predecessors to rebuild the loop. We
1275/// take advantage of the fact that new blocks can't have been added, and so we
1276/// filter by the original loop's blocks. This also handles potentially
1277/// unreachable code that we don't want to explore but might be found examining
1278/// the predecessors of the header.
1279///
1280/// If the original loop is no longer a loop, this will return an empty set. If
1281/// it remains a loop, all the blocks within it will be added to the set
1282/// (including those blocks in inner loops).
1283static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1284 LoopInfo &LI) {
1285 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1286
1287 auto *PH = L.getLoopPreheader();
1288 auto *Header = L.getHeader();
1289
1290 // A worklist to use while walking backwards from the header.
1291 SmallVector<BasicBlock *, 16> Worklist;
1292
1293 // First walk the predecessors of the header to find the backedges. This will
1294 // form the basis of our walk.
1295 for (auto *Pred : predecessors(Header)) {
1296 // Skip the preheader.
1297 if (Pred == PH)
1298 continue;
1299
1300 // Because the loop was in simplified form, the only non-loop predecessor
1301 // is the preheader.
1302 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1303 "than the preheader that is not part of the "
1304 "loop!");
1305
1306 // Insert this block into the loop set and on the first visit and, if it
1307 // isn't the header we're currently walking, put it into the worklist to
1308 // recurse through.
1309 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1310 Worklist.push_back(Pred);
1311 }
1312
1313 // If no backedges were found, we're done.
1314 if (LoopBlockSet.empty())
1315 return LoopBlockSet;
1316
Chandler Carruth693eedb2017-11-17 19:58:36 +00001317 // We found backedges, recurse through them to identify the loop blocks.
1318 while (!Worklist.empty()) {
1319 BasicBlock *BB = Worklist.pop_back_val();
1320 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1321
Chandler Carruth43acdb32018-04-24 10:33:08 +00001322 // No need to walk past the header.
1323 if (BB == Header)
1324 continue;
1325
Chandler Carruth693eedb2017-11-17 19:58:36 +00001326 // Because we know the inner loop structure remains valid we can use the
1327 // loop structure to jump immediately across the entire nested loop.
1328 // Further, because it is in loop simplified form, we can directly jump
1329 // to its preheader afterward.
1330 if (Loop *InnerL = LI.getLoopFor(BB))
1331 if (InnerL != &L) {
1332 assert(L.contains(InnerL) &&
1333 "Should not reach a loop *outside* this loop!");
1334 // The preheader is the only possible predecessor of the loop so
1335 // insert it into the set and check whether it was already handled.
1336 auto *InnerPH = InnerL->getLoopPreheader();
1337 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1338 "but not contain the inner loop "
1339 "preheader!");
1340 if (!LoopBlockSet.insert(InnerPH).second)
1341 // The only way to reach the preheader is through the loop body
1342 // itself so if it has been visited the loop is already handled.
1343 continue;
1344
1345 // Insert all of the blocks (other than those already present) into
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001346 // the loop set. We expect at least the block that led us to find the
1347 // inner loop to be in the block set, but we may also have other loop
1348 // blocks if they were already enqueued as predecessors of some other
1349 // outer loop block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001350 for (auto *InnerBB : InnerL->blocks()) {
1351 if (InnerBB == BB) {
1352 assert(LoopBlockSet.count(InnerBB) &&
1353 "Block should already be in the set!");
1354 continue;
1355 }
1356
Chandler Carruthbf7190a2018-04-23 06:58:36 +00001357 LoopBlockSet.insert(InnerBB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001358 }
1359
1360 // Add the preheader to the worklist so we will continue past the
1361 // loop body.
1362 Worklist.push_back(InnerPH);
1363 continue;
1364 }
1365
1366 // Insert any predecessors that were in the original loop into the new
1367 // set, and if the insert is successful, add them to the worklist.
1368 for (auto *Pred : predecessors(BB))
1369 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1370 Worklist.push_back(Pred);
1371 }
1372
Chandler Carruth43acdb32018-04-24 10:33:08 +00001373 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1374
Chandler Carruth693eedb2017-11-17 19:58:36 +00001375 // We've found all the blocks participating in the loop, return our completed
1376 // set.
1377 return LoopBlockSet;
1378}
1379
1380/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1381///
1382/// The removal may have removed some child loops entirely but cannot have
1383/// disturbed any remaining child loops. However, they may need to be hoisted
1384/// to the parent loop (or to be top-level loops). The original loop may be
1385/// completely removed.
1386///
1387/// The sibling loops resulting from this update are returned. If the original
1388/// loop remains a valid loop, it will be the first entry in this list with all
1389/// of the newly sibling loops following it.
1390///
1391/// Returns true if the loop remains a loop after unswitching, and false if it
1392/// is no longer a loop after unswitching (and should not continue to be
1393/// referenced).
1394static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1395 LoopInfo &LI,
1396 SmallVectorImpl<Loop *> &HoistedLoops) {
1397 auto *PH = L.getLoopPreheader();
1398
1399 // Compute the actual parent loop from the exit blocks. Because we may have
1400 // pruned some exits the loop may be different from the original parent.
1401 Loop *ParentL = nullptr;
1402 SmallVector<Loop *, 4> ExitLoops;
1403 SmallVector<BasicBlock *, 4> ExitsInLoops;
1404 ExitsInLoops.reserve(ExitBlocks.size());
1405 for (auto *ExitBB : ExitBlocks)
1406 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1407 ExitLoops.push_back(ExitL);
1408 ExitsInLoops.push_back(ExitBB);
1409 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1410 ParentL = ExitL;
1411 }
1412
1413 // Recompute the blocks participating in this loop. This may be empty if it
1414 // is no longer a loop.
1415 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1416
1417 // If we still have a loop, we need to re-set the loop's parent as the exit
1418 // block set changing may have moved it within the loop nest. Note that this
1419 // can only happen when this loop has a parent as it can only hoist the loop
1420 // *up* the nest.
1421 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1422 // Remove this loop's (original) blocks from all of the intervening loops.
1423 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1424 IL = IL->getParentLoop()) {
1425 IL->getBlocksSet().erase(PH);
1426 for (auto *BB : L.blocks())
1427 IL->getBlocksSet().erase(BB);
1428 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1429 return BB == PH || L.contains(BB);
1430 });
1431 }
1432
1433 LI.changeLoopFor(PH, ParentL);
1434 L.getParentLoop()->removeChildLoop(&L);
1435 if (ParentL)
1436 ParentL->addChildLoop(&L);
1437 else
1438 LI.addTopLevelLoop(&L);
1439 }
1440
1441 // Now we update all the blocks which are no longer within the loop.
1442 auto &Blocks = L.getBlocksVector();
1443 auto BlocksSplitI =
1444 LoopBlockSet.empty()
1445 ? Blocks.begin()
1446 : std::stable_partition(
1447 Blocks.begin(), Blocks.end(),
1448 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1449
1450 // Before we erase the list of unlooped blocks, build a set of them.
1451 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1452 if (LoopBlockSet.empty())
1453 UnloopedBlocks.insert(PH);
1454
1455 // Now erase these blocks from the loop.
1456 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1457 L.getBlocksSet().erase(BB);
1458 Blocks.erase(BlocksSplitI, Blocks.end());
1459
1460 // Sort the exits in ascending loop depth, we'll work backwards across these
1461 // to process them inside out.
1462 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1463 [&](BasicBlock *LHS, BasicBlock *RHS) {
1464 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1465 });
1466
1467 // We'll build up a set for each exit loop.
1468 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1469 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1470
1471 auto RemoveUnloopedBlocksFromLoop =
1472 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1473 for (auto *BB : UnloopedBlocks)
1474 L.getBlocksSet().erase(BB);
1475 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1476 return UnloopedBlocks.count(BB);
1477 });
1478 };
1479
1480 SmallVector<BasicBlock *, 16> Worklist;
1481 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1482 assert(Worklist.empty() && "Didn't clear worklist!");
1483 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1484
1485 // Grab the next exit block, in decreasing loop depth order.
1486 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1487 Loop &ExitL = *LI.getLoopFor(ExitBB);
1488 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1489
1490 // Erase all of the unlooped blocks from the loops between the previous
1491 // exit loop and this exit loop. This works because the ExitInLoops list is
1492 // sorted in increasing order of loop depth and thus we visit loops in
1493 // decreasing order of loop depth.
1494 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1495 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1496
1497 // Walk the CFG back until we hit the cloned PH adding everything reachable
1498 // and in the unlooped set to this exit block's loop.
1499 Worklist.push_back(ExitBB);
1500 do {
1501 BasicBlock *BB = Worklist.pop_back_val();
1502 // We can stop recursing at the cloned preheader (if we get there).
1503 if (BB == PH)
1504 continue;
1505
1506 for (BasicBlock *PredBB : predecessors(BB)) {
1507 // If this pred has already been moved to our set or is part of some
1508 // (inner) loop, no update needed.
1509 if (!UnloopedBlocks.erase(PredBB)) {
1510 assert((NewExitLoopBlocks.count(PredBB) ||
1511 ExitL.contains(LI.getLoopFor(PredBB))) &&
1512 "Predecessor not in a nested loop (or already visited)!");
1513 continue;
1514 }
1515
1516 // We just insert into the loop set here. We'll add these blocks to the
1517 // exit loop after we build up the set in a deterministic order rather
1518 // than the predecessor-influenced visit order.
1519 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1520 (void)Inserted;
1521 assert(Inserted && "Should only visit an unlooped block once!");
1522
1523 // And recurse through to its predecessors.
1524 Worklist.push_back(PredBB);
1525 }
1526 } while (!Worklist.empty());
1527
1528 // If blocks in this exit loop were directly part of the original loop (as
1529 // opposed to a child loop) update the map to point to this exit loop. This
1530 // just updates a map and so the fact that the order is unstable is fine.
1531 for (auto *BB : NewExitLoopBlocks)
1532 if (Loop *BBL = LI.getLoopFor(BB))
1533 if (BBL == &L || !L.contains(BBL))
1534 LI.changeLoopFor(BB, &ExitL);
1535
1536 // We will remove the remaining unlooped blocks from this loop in the next
1537 // iteration or below.
1538 NewExitLoopBlocks.clear();
1539 }
1540
1541 // Any remaining unlooped blocks are no longer part of any loop unless they
1542 // are part of some child loop.
1543 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1544 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1545 for (auto *BB : UnloopedBlocks)
1546 if (Loop *BBL = LI.getLoopFor(BB))
1547 if (BBL == &L || !L.contains(BBL))
1548 LI.changeLoopFor(BB, nullptr);
1549
1550 // Sink all the child loops whose headers are no longer in the loop set to
1551 // the parent (or to be top level loops). We reach into the loop and directly
1552 // update its subloop vector to make this batch update efficient.
1553 auto &SubLoops = L.getSubLoopsVector();
1554 auto SubLoopsSplitI =
1555 LoopBlockSet.empty()
1556 ? SubLoops.begin()
1557 : std::stable_partition(
1558 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1559 return LoopBlockSet.count(SubL->getHeader());
1560 });
1561 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1562 HoistedLoops.push_back(HoistedL);
1563 HoistedL->setParentLoop(nullptr);
1564
1565 // To compute the new parent of this hoisted loop we look at where we
1566 // placed the preheader above. We can't lookup the header itself because we
1567 // retained the mapping from the header to the hoisted loop. But the
1568 // preheader and header should have the exact same new parent computed
1569 // based on the set of exit blocks from the original loop as the preheader
1570 // is a predecessor of the header and so reached in the reverse walk. And
1571 // because the loops were all in simplified form the preheader of the
1572 // hoisted loop can't be part of some *other* loop.
1573 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1574 NewParentL->addChildLoop(HoistedL);
1575 else
1576 LI.addTopLevelLoop(HoistedL);
1577 }
1578 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1579
1580 // Actually delete the loop if nothing remained within it.
1581 if (Blocks.empty()) {
1582 assert(SubLoops.empty() &&
1583 "Failed to remove all subloops from the original loop!");
1584 if (Loop *ParentL = L.getParentLoop())
1585 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1586 else
1587 LI.removeLoop(llvm::find(LI, &L));
1588 LI.destroy(&L);
1589 return false;
1590 }
1591
1592 return true;
1593}
1594
1595/// Helper to visit a dominator subtree, invoking a callable on each node.
1596///
1597/// Returning false at any point will stop walking past that node of the tree.
1598template <typename CallableT>
1599void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1600 SmallVector<DomTreeNode *, 4> DomWorklist;
1601 DomWorklist.push_back(DT[BB]);
1602#ifndef NDEBUG
1603 SmallPtrSet<DomTreeNode *, 4> Visited;
1604 Visited.insert(DT[BB]);
1605#endif
1606 do {
1607 DomTreeNode *N = DomWorklist.pop_back_val();
1608
1609 // Visit this node.
1610 if (!Callable(N->getBlock()))
1611 continue;
1612
1613 // Accumulate the child nodes.
1614 for (DomTreeNode *ChildN : *N) {
1615 assert(Visited.insert(ChildN).second &&
1616 "Cannot visit a node twice when walking a tree!");
1617 DomWorklist.push_back(ChildN);
1618 }
1619 } while (!DomWorklist.empty());
1620}
1621
Chandler Carruth16529962018-06-25 23:32:54 +00001622static bool unswitchNontrivialInvariants(
1623 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
1624 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
Chandler Carruth71fd2702018-05-30 02:46:45 +00001625 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) {
Chandler Carruth16529962018-06-25 23:32:54 +00001626 auto *ParentBB = TI.getParent();
1627 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1628 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001629
Chandler Carruth16529962018-06-25 23:32:54 +00001630 // We can only unswitch switches, conditional branches with an invariant
1631 // condition, or combining invariant conditions with an instruction.
1632 assert((SI || BI->isConditional()) &&
1633 "Can only unswitch switches and conditional branch!");
1634 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001635 if (FullUnswitch)
1636 assert(Invariants.size() == 1 &&
1637 "Cannot have other invariants with full unswitching!");
1638 else
Chandler Carruth16529962018-06-25 23:32:54 +00001639 assert(isa<Instruction>(BI->getCondition()) &&
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001640 "Partial unswitching requires an instruction as the condition!");
1641
1642 // Constant and BBs tracking the cloned and continuing successor. When we are
1643 // unswitching the entire condition, this can just be trivially chosen to
1644 // unswitch towards `true`. However, when we are unswitching a set of
1645 // invariants combined with `and` or `or`, the combining operation determines
1646 // the best direction to unswitch: we want to unswitch the direction that will
1647 // collapse the branch.
1648 bool Direction = true;
1649 int ClonedSucc = 0;
1650 if (!FullUnswitch) {
Chandler Carruth16529962018-06-25 23:32:54 +00001651 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1652 assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1653 Instruction::And &&
1654 "Only `or` and `and` instructions can combine invariants being "
1655 "unswitched.");
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001656 Direction = false;
1657 ClonedSucc = 1;
1658 }
1659 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001660
Chandler Carruth16529962018-06-25 23:32:54 +00001661 BasicBlock *RetainedSuccBB =
1662 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1663 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1664 if (BI)
1665 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1666 else
1667 for (auto Case : SI->cases())
1668 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1669
1670 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1671 "Should not unswitch the same successor we are retaining!");
Chandler Carruth693eedb2017-11-17 19:58:36 +00001672
1673 // The branch should be in this exact loop. Any inner loop's invariant branch
1674 // should be handled by unswitching that inner loop. The caller of this
1675 // routine should filter out any candidates that remain (but were skipped for
1676 // whatever reason).
1677 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1678
1679 SmallVector<BasicBlock *, 4> ExitBlocks;
1680 L.getUniqueExitBlocks(ExitBlocks);
1681
1682 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1683 // don't know how to split those exit blocks.
1684 // FIXME: We should teach SplitBlock to handle this and remove this
1685 // restriction.
1686 for (auto *ExitBB : ExitBlocks)
1687 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1688 return false;
1689
Chandler Carruth693eedb2017-11-17 19:58:36 +00001690 // Compute the parent loop now before we start hacking on things.
1691 Loop *ParentL = L.getParentLoop();
1692
1693 // Compute the outer-most loop containing one of our exit blocks. This is the
1694 // furthest up our loopnest which can be mutated, which we will use below to
1695 // update things.
1696 Loop *OuterExitL = &L;
1697 for (auto *ExitBB : ExitBlocks) {
1698 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1699 if (!NewOuterExitL) {
1700 // We exited the entire nest with this block, so we're done.
1701 OuterExitL = nullptr;
1702 break;
1703 }
1704 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1705 OuterExitL = NewOuterExitL;
1706 }
1707
Chandler Carruth16529962018-06-25 23:32:54 +00001708 // If the edge from this terminator to a successor dominates that successor,
1709 // store a map from each block in its dominator subtree to it. This lets us
1710 // tell when cloning for a particular successor if a block is dominated by
1711 // some *other* successor with a single data structure. We use this to
1712 // significantly reduce cloning.
1713 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1714 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1715 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1716 if (SuccBB->getUniquePredecessor() ||
1717 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1718 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1719 }))
1720 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1721 DominatingSucc[BB] = SuccBB;
1722 return true;
1723 });
Chandler Carruth693eedb2017-11-17 19:58:36 +00001724
1725 // Split the preheader, so that we know that there is a safe place to insert
1726 // the conditional branch. We will change the preheader to have a conditional
1727 // branch on LoopCond. The original preheader will become the split point
1728 // between the unswitched versions, and we will have a new preheader for the
1729 // original loop.
1730 BasicBlock *SplitBB = L.getLoopPreheader();
1731 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1732
Chandler Carruth69e68f82018-04-25 00:18:07 +00001733 // Keep track of the dominator tree updates needed.
1734 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1735
Chandler Carruth16529962018-06-25 23:32:54 +00001736 // Clone the loop for each unswitched successor.
1737 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1738 VMaps.reserve(UnswitchedSuccBBs.size());
1739 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1740 for (auto *SuccBB : UnswitchedSuccBBs) {
1741 VMaps.emplace_back(new ValueToValueMapTy());
1742 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1743 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1744 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1745 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001746
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001747 // The stitching of the branched code back together depends on whether we're
1748 // doing full unswitching or not with the exception that we always want to
1749 // nuke the initial terminator placed in the split block.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001750 SplitBB->getTerminator()->eraseFromParent();
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001751 if (FullUnswitch) {
Chandler Carruth16529962018-06-25 23:32:54 +00001752 for (BasicBlock *SuccBB : UnswitchedSuccBBs) {
1753 // Remove the parent as a predecessor of the unswitched successor.
1754 SuccBB->removePredecessor(ParentBB,
1755 /*DontDeleteUselessPHIs*/ true);
1756 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1757 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001758
Chandler Carruth16529962018-06-25 23:32:54 +00001759 // Now splice the terminator from the original loop and rewrite its
1760 // successors.
1761 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1762 if (BI) {
1763 assert(UnswitchedSuccBBs.size() == 1 &&
1764 "Only one possible unswitched block for a branch!");
1765 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1766 BI->setSuccessor(ClonedSucc, ClonedPH);
1767 BI->setSuccessor(1 - ClonedSucc, LoopPH);
1768 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1769 } else {
1770 assert(SI && "Must either be a branch or switch!");
1771
1772 // Walk the cases and directly update their successors.
1773 for (auto &Case : SI->cases())
1774 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1775 // We need to use the set to populate domtree updates as even when there
1776 // are multiple cases pointing at the same successor we only want to
1777 // insert one edge in the domtree.
1778 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1779 DTUpdates.push_back(
1780 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
1781
1782 SI->setDefaultDest(LoopPH);
1783 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001784
1785 // Create a new unconditional branch to the continuing block (as opposed to
1786 // the one cloned).
Chandler Carruth16529962018-06-25 23:32:54 +00001787 BranchInst::Create(RetainedSuccBB, ParentBB);
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001788 } else {
Chandler Carruth16529962018-06-25 23:32:54 +00001789 assert(BI && "Only branches have partial unswitching.");
1790 assert(UnswitchedSuccBBs.size() == 1 &&
1791 "Only one possible unswitched block for a branch!");
1792 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001793 // When doing a partial unswitch, we have to do a bit more work to build up
1794 // the branch in the split block.
1795 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
1796 *ClonedPH, *LoopPH);
Chandler Carruth16529962018-06-25 23:32:54 +00001797 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001798 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001799
Chandler Carruth16529962018-06-25 23:32:54 +00001800 // Apply the updates accumulated above to get an up-to-date dominator tree.
Chandler Carruth69e68f82018-04-25 00:18:07 +00001801 DT.applyUpdates(DTUpdates);
1802
Chandler Carruth16529962018-06-25 23:32:54 +00001803 // Now that we have an accurate dominator tree, first delete the dead cloned
1804 // blocks so that we can accurately build any cloned loops. It is important to
1805 // not delete the blocks from the original loop yet because we still want to
1806 // reference the original loop to understand the cloned loop's structure.
1807 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
1808
Chandler Carruth69e68f82018-04-25 00:18:07 +00001809 // Build the cloned loop structure itself. This may be substantially
1810 // different from the original structure due to the simplified CFG. This also
1811 // handles inserting all the cloned blocks into the correct loops.
1812 SmallVector<Loop *, 4> NonChildClonedLoops;
Chandler Carruth16529962018-06-25 23:32:54 +00001813 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
1814 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
Chandler Carruth69e68f82018-04-25 00:18:07 +00001815
Chandler Carruth16529962018-06-25 23:32:54 +00001816 // Now that our cloned loops have been built, we can update the original loop.
1817 // First we delete the dead blocks from it and then we rebuild the loop
1818 // structure taking these deletions into account.
1819 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001820 SmallVector<Loop *, 4> HoistedLoops;
1821 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1822
Chandler Carruth69e68f82018-04-25 00:18:07 +00001823 // This transformation has a high risk of corrupting the dominator tree, and
1824 // the below steps to rebuild loop structures will result in hard to debug
1825 // errors in that case so verify that the dominator tree is sane first.
1826 // FIXME: Remove this when the bugs stop showing up and rely on existing
1827 // verification steps.
1828 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth693eedb2017-11-17 19:58:36 +00001829
Chandler Carruth16529962018-06-25 23:32:54 +00001830 if (BI) {
1831 // If we unswitched a branch which collapses the condition to a known
1832 // constant we want to replace all the uses of the invariants within both
1833 // the original and cloned blocks. We do this here so that we can use the
1834 // now updated dominator tree to identify which side the users are on.
1835 assert(UnswitchedSuccBBs.size() == 1 &&
1836 "Only one possible unswitched block for a branch!");
1837 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1838 ConstantInt *UnswitchedReplacement =
1839 Direction ? ConstantInt::getTrue(BI->getContext())
1840 : ConstantInt::getFalse(BI->getContext());
1841 ConstantInt *ContinueReplacement =
1842 Direction ? ConstantInt::getFalse(BI->getContext())
1843 : ConstantInt::getTrue(BI->getContext());
1844 for (Value *Invariant : Invariants)
1845 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
1846 UI != UE;) {
1847 // Grab the use and walk past it so we can clobber it in the use list.
1848 Use *U = &*UI++;
1849 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
1850 if (!UserI)
1851 continue;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001852
Chandler Carruth16529962018-06-25 23:32:54 +00001853 // Replace it with the 'continue' side if in the main loop body, and the
1854 // unswitched if in the cloned blocks.
1855 if (DT.dominates(LoopPH, UserI->getParent()))
1856 U->set(ContinueReplacement);
1857 else if (DT.dominates(ClonedPH, UserI->getParent()))
1858 U->set(UnswitchedReplacement);
1859 }
1860 }
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001861
Chandler Carruth693eedb2017-11-17 19:58:36 +00001862 // We can change which blocks are exit blocks of all the cloned sibling
1863 // loops, the current loop, and any parent loops which shared exit blocks
1864 // with the current loop. As a consequence, we need to re-form LCSSA for
1865 // them. But we shouldn't need to re-form LCSSA for any child loops.
1866 // FIXME: This could be made more efficient by tracking which exit blocks are
1867 // new, and focusing on them, but that isn't likely to be necessary.
1868 //
1869 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1870 // loop nest and update every loop that could have had its exits changed. We
1871 // also need to cover any intervening loops. We add all of these loops to
1872 // a list and sort them by loop depth to achieve this without updating
1873 // unnecessary loops.
Chandler Carruth92815032018-06-02 01:29:01 +00001874 auto UpdateLoop = [&](Loop &UpdateL) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00001875#ifndef NDEBUG
Chandler Carruth43acdb32018-04-24 10:33:08 +00001876 UpdateL.verifyLoop();
1877 for (Loop *ChildL : UpdateL) {
1878 ChildL->verifyLoop();
Chandler Carruth693eedb2017-11-17 19:58:36 +00001879 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1880 "Perturbed a child loop's LCSSA form!");
Chandler Carruth43acdb32018-04-24 10:33:08 +00001881 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001882#endif
Chandler Carruth92815032018-06-02 01:29:01 +00001883 // First build LCSSA for this loop so that we can preserve it when
1884 // forming dedicated exits. We don't want to perturb some other loop's
1885 // LCSSA while doing that CFG edit.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001886 formLCSSA(UpdateL, DT, &LI, nullptr);
Chandler Carruth92815032018-06-02 01:29:01 +00001887
1888 // For loops reached by this loop's original exit blocks we may
1889 // introduced new, non-dedicated exits. At least try to re-form dedicated
1890 // exits for these loops. This may fail if they couldn't have dedicated
1891 // exits to start with.
1892 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001893 };
1894
1895 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1896 // and we can do it in any order as they don't nest relative to each other.
Chandler Carruth92815032018-06-02 01:29:01 +00001897 //
1898 // Also check if any of the loops we have updated have become top-level loops
1899 // as that will necessitate widening the outer loop scope.
1900 for (Loop *UpdatedL :
1901 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
1902 UpdateLoop(*UpdatedL);
1903 if (!UpdatedL->getParentLoop())
1904 OuterExitL = nullptr;
1905 }
1906 if (IsStillLoop) {
1907 UpdateLoop(L);
1908 if (!L.getParentLoop())
1909 OuterExitL = nullptr;
1910 }
Chandler Carruth693eedb2017-11-17 19:58:36 +00001911
1912 // If the original loop had exit blocks, walk up through the outer most loop
1913 // of those exit blocks to update LCSSA and form updated dedicated exits.
Chandler Carruth92815032018-06-02 01:29:01 +00001914 if (OuterExitL != &L)
Chandler Carruth693eedb2017-11-17 19:58:36 +00001915 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1916 OuterL = OuterL->getParentLoop())
Chandler Carruth92815032018-06-02 01:29:01 +00001917 UpdateLoop(*OuterL);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001918
1919#ifndef NDEBUG
1920 // Verify the entire loop structure to catch any incorrect updates before we
1921 // progress in the pass pipeline.
1922 LI.verify(DT);
1923#endif
1924
1925 // Now that we've unswitched something, make callbacks to report the changes.
1926 // For that we need to merge together the updated loops and the cloned loops
1927 // and check whether the original loop survived.
1928 SmallVector<Loop *, 4> SibLoops;
1929 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1930 if (UpdatedL->getParentLoop() == ParentL)
1931 SibLoops.push_back(UpdatedL);
Chandler Carruth71fd2702018-05-30 02:46:45 +00001932 UnswitchCB(IsStillLoop, SibLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00001933
1934 ++NumBranches;
1935 return true;
1936}
1937
1938/// Recursively compute the cost of a dominator subtree based on the per-block
1939/// cost map provided.
1940///
1941/// The recursive computation is memozied into the provided DT-indexed cost map
1942/// to allow querying it for most nodes in the domtree without it becoming
1943/// quadratic.
1944static int
1945computeDomSubtreeCost(DomTreeNode &N,
1946 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1947 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1948 // Don't accumulate cost (or recurse through) blocks not in our block cost
1949 // map and thus not part of the duplication cost being considered.
1950 auto BBCostIt = BBCostMap.find(N.getBlock());
1951 if (BBCostIt == BBCostMap.end())
1952 return 0;
1953
1954 // Lookup this node to see if we already computed its cost.
1955 auto DTCostIt = DTCostMap.find(&N);
1956 if (DTCostIt != DTCostMap.end())
1957 return DTCostIt->second;
1958
1959 // If not, we have to compute it. We can't use insert above and update
1960 // because computing the cost may insert more things into the map.
1961 int Cost = std::accumulate(
1962 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1963 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1964 });
1965 bool Inserted = DTCostMap.insert({&N, Cost}).second;
1966 (void)Inserted;
1967 assert(Inserted && "Should not insert a node while visiting children!");
1968 return Cost;
1969}
1970
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001971static bool unswitchBestCondition(
1972 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1973 TargetTransformInfo &TTI,
1974 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) {
1975 // Collect all invariant conditions within this loop (as opposed to an inner
1976 // loop which would be handled when visiting that inner loop).
1977 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
1978 UnswitchCandidates;
1979 for (auto *BB : L.blocks()) {
1980 if (LI.getLoopFor(BB) != &L)
1981 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00001982
Chandler Carruth16529962018-06-25 23:32:54 +00001983 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1984 // We can only consider fully loop-invariant switch conditions as we need
1985 // to completely eliminate the switch after unswitching.
1986 if (!isa<Constant>(SI->getCondition()) &&
1987 L.isLoopInvariant(SI->getCondition()))
1988 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
1989 continue;
1990 }
1991
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001992 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001993 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
1994 BI->getSuccessor(0) == BI->getSuccessor(1))
1995 continue;
Chandler Carruth1353f9a2017-04-27 18:45:20 +00001996
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00001997 if (L.isLoopInvariant(BI->getCondition())) {
1998 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
1999 continue;
2000 }
2001
2002 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2003 if (CondI.getOpcode() != Instruction::And &&
2004 CondI.getOpcode() != Instruction::Or)
2005 continue;
2006
2007 TinyPtrVector<Value *> Invariants =
2008 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2009 if (Invariants.empty())
2010 continue;
2011
2012 UnswitchCandidates.push_back({BI, std::move(Invariants)});
Chandler Carruth71fd2702018-05-30 02:46:45 +00002013 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002014
Chandler Carruth693eedb2017-11-17 19:58:36 +00002015 // If we didn't find any candidates, we're done.
2016 if (UnswitchCandidates.empty())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002017 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002018
Chandler Carruth32e62f92018-04-19 18:44:25 +00002019 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2020 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2021 // irreducible control flow into reducible control flow and introduce new
2022 // loops "out of thin air". If we ever discover important use cases for doing
2023 // this, we can add support to loop unswitch, but it is a lot of complexity
Hiroshi Inouef2096492018-06-14 05:41:49 +00002024 // for what seems little or no real world benefit.
Chandler Carruth32e62f92018-04-19 18:44:25 +00002025 LoopBlocksRPO RPOT(&L);
2026 RPOT.perform(&LI);
2027 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002028 return false;
Chandler Carruth32e62f92018-04-19 18:44:25 +00002029
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002030 LLVM_DEBUG(
2031 dbgs() << "Considering " << UnswitchCandidates.size()
2032 << " non-trivial loop invariant conditions for unswitching.\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002033
2034 // Given that unswitching these terminators will require duplicating parts of
2035 // the loop, so we need to be able to model that cost. Compute the ephemeral
2036 // values and set up a data structure to hold per-BB costs. We cache each
2037 // block's cost so that we don't recompute this when considering different
2038 // subsets of the loop for duplication during unswitching.
2039 SmallPtrSet<const Value *, 4> EphValues;
2040 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2041 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2042
2043 // Compute the cost of each block, as well as the total loop cost. Also, bail
2044 // out if we see instructions which are incompatible with loop unswitching
2045 // (convergent, noduplicate, or cross-basic-block tokens).
2046 // FIXME: We might be able to safely handle some of these in non-duplicated
2047 // regions.
2048 int LoopCost = 0;
2049 for (auto *BB : L.blocks()) {
2050 int Cost = 0;
2051 for (auto &I : *BB) {
2052 if (EphValues.count(&I))
2053 continue;
2054
2055 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
Chandler Carruth71fd2702018-05-30 02:46:45 +00002056 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002057 if (auto CS = CallSite(&I))
2058 if (CS.isConvergent() || CS.cannotDuplicate())
Chandler Carruth71fd2702018-05-30 02:46:45 +00002059 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002060
2061 Cost += TTI.getUserCost(&I);
2062 }
2063 assert(Cost >= 0 && "Must not have negative costs!");
2064 LoopCost += Cost;
2065 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2066 BBCostMap[BB] = Cost;
2067 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002068 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002069
2070 // Now we find the best candidate by searching for the one with the following
2071 // properties in order:
2072 //
2073 // 1) An unswitching cost below the threshold
2074 // 2) The smallest number of duplicated unswitch candidates (to avoid
2075 // creating redundant subsequent unswitching)
2076 // 3) The smallest cost after unswitching.
2077 //
2078 // We prioritize reducing fanout of unswitch candidates provided the cost
2079 // remains below the threshold because this has a multiplicative effect.
2080 //
2081 // This requires memoizing each dominator subtree to avoid redundant work.
2082 //
2083 // FIXME: Need to actually do the number of candidates part above.
2084 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2085 // Given a terminator which might be unswitched, computes the non-duplicated
2086 // cost for that terminator.
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002087 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
2088 BasicBlock &BB = *TI.getParent();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002089 SmallPtrSet<BasicBlock *, 4> Visited;
2090
2091 int Cost = LoopCost;
2092 for (BasicBlock *SuccBB : successors(&BB)) {
2093 // Don't count successors more than once.
2094 if (!Visited.insert(SuccBB).second)
2095 continue;
2096
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002097 // If this is a partial unswitch candidate, then it must be a conditional
2098 // branch with a condition of either `or` or `and`. In that case, one of
2099 // the successors is necessarily duplicated, so don't even try to remove
2100 // its cost.
2101 if (!FullUnswitch) {
2102 auto &BI = cast<BranchInst>(TI);
2103 if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2104 Instruction::And) {
2105 if (SuccBB == BI.getSuccessor(1))
2106 continue;
2107 } else {
2108 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2109 Instruction::Or &&
2110 "Only `and` and `or` conditions can result in a partial "
2111 "unswitch!");
2112 if (SuccBB == BI.getSuccessor(0))
2113 continue;
2114 }
2115 }
2116
Chandler Carruth693eedb2017-11-17 19:58:36 +00002117 // This successor's domtree will not need to be duplicated after
2118 // unswitching if the edge to the successor dominates it (and thus the
2119 // entire tree). This essentially means there is no other path into this
2120 // subtree and so it will end up live in only one clone of the loop.
2121 if (SuccBB->getUniquePredecessor() ||
2122 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2123 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2124 })) {
2125 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2126 assert(Cost >= 0 &&
2127 "Non-duplicated cost should never exceed total loop cost!");
2128 }
2129 }
2130
2131 // Now scale the cost by the number of unique successors minus one. We
2132 // subtract one because there is already at least one copy of the entire
2133 // loop. This is computing the new cost of unswitching a condition.
2134 assert(Visited.size() > 1 &&
2135 "Cannot unswitch a condition without multiple distinct successors!");
2136 return Cost * (Visited.size() - 1);
2137 };
2138 TerminatorInst *BestUnswitchTI = nullptr;
2139 int BestUnswitchCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002140 ArrayRef<Value *> BestUnswitchInvariants;
2141 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2142 TerminatorInst &TI = *TerminatorAndInvariants.first;
2143 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2144 BranchInst *BI = dyn_cast<BranchInst>(&TI);
Chandler Carruth16529962018-06-25 23:32:54 +00002145 int CandidateCost = ComputeUnswitchedCost(
2146 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2147 Invariants[0] == BI->getCondition()));
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002148 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002149 << " for unswitch candidate: " << TI << "\n");
Chandler Carruth693eedb2017-11-17 19:58:36 +00002150 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002151 BestUnswitchTI = &TI;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002152 BestUnswitchCost = CandidateCost;
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002153 BestUnswitchInvariants = Invariants;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002154 }
2155 }
2156
Chandler Carruth71fd2702018-05-30 02:46:45 +00002157 if (BestUnswitchCost >= UnswitchThreshold) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002158 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2159 << BestUnswitchCost << "\n");
Chandler Carruth71fd2702018-05-30 02:46:45 +00002160 return false;
Chandler Carruth693eedb2017-11-17 19:58:36 +00002161 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002162
Chandler Carruth71fd2702018-05-30 02:46:45 +00002163 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
Chandler Carruth16529962018-06-25 23:32:54 +00002164 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2165 << "\n");
2166 return unswitchNontrivialInvariants(
2167 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002168}
2169
Chandler Carruthd1dab0c2018-06-21 06:14:03 +00002170/// Unswitch control flow predicated on loop invariant conditions.
2171///
2172/// This first hoists all branches or switches which are trivial (IE, do not
2173/// require duplicating any part of the loop) out of the loop body. It then
2174/// looks at other loop invariant control flows and tries to unswitch those as
2175/// well by cloning the loop if the result is small enough.
2176static bool
2177unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2178 TargetTransformInfo &TTI, bool NonTrivial,
2179 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) {
2180 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2181 "Loops must be in LCSSA form before unswitching.");
2182 bool Changed = false;
2183
2184 // Must be in loop simplified form: we need a preheader and dedicated exits.
2185 if (!L.isLoopSimplifyForm())
2186 return false;
2187
2188 // Try trivial unswitch first before loop over other basic blocks in the loop.
2189 if (unswitchAllTrivialConditions(L, DT, LI)) {
2190 // If we unswitched successfully we will want to clean up the loop before
2191 // processing it further so just mark it as unswitched and return.
2192 UnswitchCB(/*CurrentLoopValid*/ true, {});
2193 return true;
2194 }
2195
2196 // If we're not doing non-trivial unswitching, we're done. We both accept
2197 // a parameter but also check a local flag that can be used for testing
2198 // a debugging.
2199 if (!NonTrivial && !EnableNonTrivialUnswitch)
2200 return false;
2201
2202 // For non-trivial unswitching, because it often creates new loops, we rely on
2203 // the pass manager to iterate on the loops rather than trying to immediately
2204 // reach a fixed point. There is no substantial advantage to iterating
2205 // internally, and if any of the new loops are simplified enough to contain
2206 // trivial unswitching we want to prefer those.
2207
2208 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2209 // a partial unswitch when possible below the threshold.
2210 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB))
2211 return true;
2212
2213 // No other opportunities to unswitch.
2214 return Changed;
2215}
2216
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002217PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2218 LoopStandardAnalysisResults &AR,
2219 LPMUpdater &U) {
2220 Function &F = *L.getHeader()->getParent();
2221 (void)F;
2222
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002223 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2224 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002225
Chandler Carruth693eedb2017-11-17 19:58:36 +00002226 // Save the current loop name in a variable so that we can report it even
2227 // after it has been deleted.
2228 std::string LoopName = L.getName();
2229
Chandler Carruth71fd2702018-05-30 02:46:45 +00002230 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2231 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002232 // If we did a non-trivial unswitch, we have added new (cloned) loops.
Chandler Carruth71fd2702018-05-30 02:46:45 +00002233 if (!NewLoops.empty())
2234 U.addSiblingLoops(NewLoops);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002235
2236 // If the current loop remains valid, we should revisit it to catch any
2237 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2238 if (CurrentLoopValid)
2239 U.revisitCurrentLoop();
2240 else
2241 U.markLoopAsDeleted(L, LoopName);
2242 };
2243
2244 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
Chandler Carruth71fd2702018-05-30 02:46:45 +00002245 UnswitchCB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002246 return PreservedAnalyses::all();
2247
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002248 // Historically this pass has had issues with the dominator tree so verify it
2249 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002250 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002251 return getLoopPassPreservedAnalyses();
2252}
2253
2254namespace {
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002255
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002256class SimpleLoopUnswitchLegacyPass : public LoopPass {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002257 bool NonTrivial;
2258
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002259public:
2260 static char ID; // Pass ID, replacement for typeid
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002261
Chandler Carruth693eedb2017-11-17 19:58:36 +00002262 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2263 : LoopPass(ID), NonTrivial(NonTrivial) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002264 initializeSimpleLoopUnswitchLegacyPassPass(
2265 *PassRegistry::getPassRegistry());
2266 }
2267
2268 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2269
2270 void getAnalysisUsage(AnalysisUsage &AU) const override {
2271 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002272 AU.addRequired<TargetTransformInfoWrapperPass>();
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002273 getLoopAnalysisUsage(AU);
2274 }
2275};
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002276
2277} // end anonymous namespace
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002278
2279bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2280 if (skipLoop(L))
2281 return false;
2282
2283 Function &F = *L->getHeader()->getParent();
2284
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002285 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2286 << "\n");
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002287
2288 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2289 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2290 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002291 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002292
Chandler Carruth71fd2702018-05-30 02:46:45 +00002293 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2294 ArrayRef<Loop *> NewLoops) {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002295 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2296 for (auto *NewL : NewLoops)
2297 LPM.addLoop(*NewL);
2298
2299 // If the current loop remains valid, re-add it to the queue. This is
2300 // a little wasteful as we'll finish processing the current loop as well,
2301 // but it is the best we can do in the old PM.
2302 if (CurrentLoopValid)
2303 LPM.addLoop(*L);
2304 else
2305 LPM.markLoopAsDeleted(*L);
2306 };
2307
2308 bool Changed =
Chandler Carruth71fd2702018-05-30 02:46:45 +00002309 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002310
2311 // If anything was unswitched, also clear any cached information about this
2312 // loop.
2313 LPM.deleteSimpleAnalysisLoop(L);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002314
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002315 // Historically this pass has had issues with the dominator tree so verify it
2316 // in asserts builds.
David Green7c35de12018-02-28 11:00:08 +00002317 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2318
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002319 return Changed;
2320}
2321
2322char SimpleLoopUnswitchLegacyPass::ID = 0;
2323INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2324 "Simple unswitch loops", false, false)
2325INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002326INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2327INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002328INITIALIZE_PASS_DEPENDENCY(LoopPass)
2329INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2330INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2331 "Simple unswitch loops", false, false)
2332
Chandler Carruth693eedb2017-11-17 19:58:36 +00002333Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2334 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002335}