blob: 95639940160fd5766008f517623593d94e704dc4 [file] [log] [blame]
Duncan Sandsdea551c2011-07-28 14:17:11 +00001//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Duncan Sandsdea551c2011-07-28 14:17:11 +000010#include "llvm/ADT/SCCIterator.h"
Chandler Carruth130cec22012-12-04 10:23:08 +000011#include "llvm/ADT/GraphTraits.h"
Duncan Sandsdea551c2011-07-28 14:17:11 +000012#include "gtest/gtest.h"
Eugene Zelenko1760dc22016-04-05 20:19:49 +000013#include <cassert>
14#include <climits>
15#include <utility>
16#include <vector>
Duncan Sandsdea551c2011-07-28 14:17:11 +000017
18using namespace llvm;
19
20namespace llvm {
21
22/// Graph<N> - A graph with N nodes. Note that N can be at most 8.
23template <unsigned N>
24class Graph {
25private:
26 // Disable copying.
27 Graph(const Graph&);
28 Graph& operator=(const Graph&);
29
30 static void ValidateIndex(unsigned Idx) {
31 assert(Idx < N && "Invalid node index!");
32 }
Duncan Sandsdea551c2011-07-28 14:17:11 +000033
Eugene Zelenko1760dc22016-04-05 20:19:49 +000034public:
Duncan Sandsdea551c2011-07-28 14:17:11 +000035 /// NodeSubset - A subset of the graph's nodes.
36 class NodeSubset {
37 typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
38 BitVector Elements;
Jakub Staszak9f56d022011-07-29 00:05:35 +000039 NodeSubset(BitVector e) : Elements(e) {}
Eugene Zelenko1760dc22016-04-05 20:19:49 +000040
Duncan Sandsdea551c2011-07-28 14:17:11 +000041 public:
42 /// NodeSubset - Default constructor, creates an empty subset.
43 NodeSubset() : Elements(0) {
44 assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
45 }
Duncan Sandsdea551c2011-07-28 14:17:11 +000046
47 /// Comparison operators.
48 bool operator==(const NodeSubset &other) const {
49 return other.Elements == this->Elements;
50 }
51 bool operator!=(const NodeSubset &other) const {
52 return !(*this == other);
53 }
54
55 /// AddNode - Add the node with the given index to the subset.
56 void AddNode(unsigned Idx) {
57 ValidateIndex(Idx);
58 Elements |= 1U << Idx;
59 }
60
61 /// DeleteNode - Remove the node with the given index from the subset.
62 void DeleteNode(unsigned Idx) {
63 ValidateIndex(Idx);
64 Elements &= ~(1U << Idx);
65 }
66
67 /// count - Return true if the node with the given index is in the subset.
68 bool count(unsigned Idx) {
69 ValidateIndex(Idx);
70 return (Elements & (1U << Idx)) != 0;
71 }
72
73 /// isEmpty - Return true if this is the empty set.
74 bool isEmpty() const {
75 return Elements == 0;
76 }
77
78 /// isSubsetOf - Return true if this set is a subset of the given one.
79 bool isSubsetOf(const NodeSubset &other) const {
80 return (this->Elements | other.Elements) == other.Elements;
81 }
82
83 /// Complement - Return the complement of this subset.
84 NodeSubset Complement() const {
85 return ~(unsigned)this->Elements & ((1U << N) - 1);
86 }
87
88 /// Join - Return the union of this subset and the given one.
89 NodeSubset Join(const NodeSubset &other) const {
90 return this->Elements | other.Elements;
91 }
92
93 /// Meet - Return the intersection of this subset and the given one.
94 NodeSubset Meet(const NodeSubset &other) const {
95 return this->Elements & other.Elements;
96 }
97 };
98
99 /// NodeType - Node index and set of children of the node.
100 typedef std::pair<unsigned, NodeSubset> NodeType;
101
102private:
103 /// Nodes - The list of nodes for this graph.
104 NodeType Nodes[N];
Duncan Sandsdea551c2011-07-28 14:17:11 +0000105
Eugene Zelenko1760dc22016-04-05 20:19:49 +0000106public:
Duncan Sandsdea551c2011-07-28 14:17:11 +0000107 /// Graph - Default constructor. Creates an empty graph.
108 Graph() {
109 // Let each node know which node it is. This allows us to find the start of
110 // the Nodes array given a pointer to any element of it.
111 for (unsigned i = 0; i != N; ++i)
112 Nodes[i].first = i;
113 }
114
115 /// AddEdge - Add an edge from the node with index FromIdx to the node with
116 /// index ToIdx.
117 void AddEdge(unsigned FromIdx, unsigned ToIdx) {
118 ValidateIndex(FromIdx);
119 Nodes[FromIdx].second.AddNode(ToIdx);
120 }
121
122 /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
123 /// the node with index ToIdx.
124 void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
125 ValidateIndex(FromIdx);
126 Nodes[FromIdx].second.DeleteNode(ToIdx);
127 }
128
129 /// AccessNode - Get a pointer to the node with the given index.
130 NodeType *AccessNode(unsigned Idx) const {
131 ValidateIndex(Idx);
132 // The constant cast is needed when working with GraphTraits, which insists
133 // on taking a constant Graph.
134 return const_cast<NodeType *>(&Nodes[Idx]);
135 }
136
137 /// NodesReachableFrom - Return the set of all nodes reachable from the given
138 /// node.
139 NodeSubset NodesReachableFrom(unsigned Idx) const {
140 // This algorithm doesn't scale, but that doesn't matter given the small
141 // size of our graphs.
142 NodeSubset Reachable;
143
144 // The initial node is reachable.
145 Reachable.AddNode(Idx);
146 do {
147 NodeSubset Previous(Reachable);
148
149 // Add in all nodes which are children of a reachable node.
150 for (unsigned i = 0; i != N; ++i)
151 if (Previous.count(i))
152 Reachable = Reachable.Join(Nodes[i].second);
153
154 // If nothing changed then we have found all reachable nodes.
155 if (Reachable == Previous)
156 return Reachable;
157
158 // Rinse and repeat.
159 } while (1);
160 }
161
162 /// ChildIterator - Visit all children of a node.
163 class ChildIterator {
164 friend class Graph;
165
166 /// FirstNode - Pointer to first node in the graph's Nodes array.
167 NodeType *FirstNode;
168 /// Children - Set of nodes which are children of this one and that haven't
169 /// yet been visited.
170 NodeSubset Children;
171
172 ChildIterator(); // Disable default constructor.
Eugene Zelenko1760dc22016-04-05 20:19:49 +0000173
Duncan Sandsdea551c2011-07-28 14:17:11 +0000174 protected:
175 ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
176
177 public:
178 /// ChildIterator - Copy constructor.
179 ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
180 Children(other.Children) {}
181
182 /// Comparison operators.
183 bool operator==(const ChildIterator &other) const {
184 return other.FirstNode == this->FirstNode &&
185 other.Children == this->Children;
186 }
187 bool operator!=(const ChildIterator &other) const {
188 return !(*this == other);
189 }
190
191 /// Prefix increment operator.
192 ChildIterator& operator++() {
193 // Find the next unvisited child node.
194 for (unsigned i = 0; i != N; ++i)
195 if (Children.count(i)) {
196 // Remove that child - it has been visited. This is the increment!
197 Children.DeleteNode(i);
198 return *this;
199 }
200 assert(false && "Incrementing end iterator!");
201 return *this; // Avoid compiler warnings.
202 }
203
204 /// Postfix increment operator.
205 ChildIterator operator++(int) {
206 ChildIterator Result(*this);
207 ++(*this);
208 return Result;
209 }
210
211 /// Dereference operator.
212 NodeType *operator*() {
213 // Find the next unvisited child node.
214 for (unsigned i = 0; i != N; ++i)
215 if (Children.count(i))
216 // Return a pointer to it.
217 return FirstNode + i;
218 assert(false && "Dereferencing end iterator!");
Craig Topper66f09ad2014-06-08 22:29:17 +0000219 return nullptr; // Avoid compiler warning.
Duncan Sandsdea551c2011-07-28 14:17:11 +0000220 }
221 };
222
223 /// child_begin - Return an iterator pointing to the first child of the given
224 /// node.
225 static ChildIterator child_begin(NodeType *Parent) {
226 return ChildIterator(Parent - Parent->first, Parent->second);
227 }
228
229 /// child_end - Return the end iterator for children of the given node.
230 static ChildIterator child_end(NodeType *Parent) {
231 return ChildIterator(Parent - Parent->first, NodeSubset());
232 }
233};
234
235template <unsigned N>
236struct GraphTraits<Graph<N> > {
237 typedef typename Graph<N>::NodeType NodeType;
238 typedef typename Graph<N>::ChildIterator ChildIteratorType;
239
240 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
241 static inline ChildIteratorType child_begin(NodeType *Node) {
242 return Graph<N>::child_begin(Node);
243 }
244 static inline ChildIteratorType child_end(NodeType *Node) {
245 return Graph<N>::child_end(Node);
246 }
247};
248
249TEST(SCCIteratorTest, AllSmallGraphs) {
250 // Test SCC computation against every graph with NUM_NODES nodes or less.
251 // Since SCC considers every node to have an implicit self-edge, we only
252 // create graphs for which every node has a self-edge.
253#define NUM_NODES 4
254#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000255 typedef Graph<NUM_NODES> GT;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000256
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000257 /// Enumerate all graphs using NUM_GRAPHS bits.
Gabor Horvathfee04342015-03-16 09:53:42 +0000258 static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000259 for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
260 ++GraphDescriptor) {
Duncan Sandsdea551c2011-07-28 14:17:11 +0000261 GT G;
262
263 // Add edges as specified by the descriptor.
Duncan Sands251daee2011-07-28 14:37:53 +0000264 unsigned DescriptorCopy = GraphDescriptor;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000265 for (unsigned i = 0; i != NUM_NODES; ++i)
266 for (unsigned j = 0; j != NUM_NODES; ++j) {
267 // Always add a self-edge.
268 if (i == j) {
269 G.AddEdge(i, j);
270 continue;
271 }
272 if (DescriptorCopy & 1)
273 G.AddEdge(i, j);
274 DescriptorCopy >>= 1;
275 }
276
277 // Test the SCC logic on this graph.
278
279 /// NodesInSomeSCC - Those nodes which are in some SCC.
280 GT::NodeSubset NodesInSomeSCC;
281
282 for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
Duncan P. N. Exon Smithd2b2fac2014-04-25 18:24:50 +0000283 const std::vector<GT::NodeType *> &SCC = *I;
Duncan Sandsdea551c2011-07-28 14:17:11 +0000284
285 // Get the nodes in this SCC as a NodeSubset rather than a vector.
286 GT::NodeSubset NodesInThisSCC;
287 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
288 NodesInThisSCC.AddNode(SCC[i]->first);
289
290 // There should be at least one node in every SCC.
291 EXPECT_FALSE(NodesInThisSCC.isEmpty());
292
293 // Check that every node in the SCC is reachable from every other node in
294 // the SCC.
295 for (unsigned i = 0; i != NUM_NODES; ++i)
296 if (NodesInThisSCC.count(i))
297 EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
298
299 // OK, now that we now that every node in the SCC is reachable from every
300 // other, this means that the set of nodes reachable from any node in the
301 // SCC is the same as the set of nodes reachable from every node in the
302 // SCC. Check that for every node N not in the SCC but reachable from the
303 // SCC, no element of the SCC is reachable from N.
304 for (unsigned i = 0; i != NUM_NODES; ++i)
305 if (NodesInThisSCC.count(i)) {
306 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
307 GT::NodeSubset ReachableButNotInSCC =
308 NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
309
310 for (unsigned j = 0; j != NUM_NODES; ++j)
311 if (ReachableButNotInSCC.count(j))
312 EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
313
314 // The result must be the same for all other nodes in this SCC, so
315 // there is no point in checking them.
316 break;
317 }
318
319 // This is indeed a SCC: a maximal set of nodes for which each node is
320 // reachable from every other.
321
322 // Check that we didn't already see this SCC.
323 EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
324
325 NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
Duncan Sands6d0f0ff2011-07-28 14:33:01 +0000326
327 // Check a property that is specific to the LLVM SCC iterator and
328 // guaranteed by it: if a node in SCC S1 has an edge to a node in
329 // SCC S2, then S1 is visited *after* S2. This means that the set
330 // of nodes reachable from this SCC must be contained either in the
331 // union of this SCC and all previously visited SCC's.
332
333 for (unsigned i = 0; i != NUM_NODES; ++i)
334 if (NodesInThisSCC.count(i)) {
335 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
336 EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
337 // The result must be the same for all other nodes in this SCC, so
338 // there is no point in checking them.
339 break;
340 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000341 }
342
343 // Finally, check that the nodes in some SCC are exactly those that are
344 // reachable from the initial node.
345 EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
Duncan Sandsbe64bbf2011-07-29 07:50:02 +0000346 }
Duncan Sandsdea551c2011-07-28 14:17:11 +0000347}
348
Eugene Zelenko1760dc22016-04-05 20:19:49 +0000349} // end namespace llvm