blob: ee8db96d40f4c84b56f38ad4aef3c92ef2736f4a [file] [log] [blame]
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001//===--- RDFGraph.cpp -----------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF).
11//
12#include "RDFGraph.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000013#include "llvm/ADT/SetVector.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000014#include "llvm/ADT/STLExtras.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000015#include "llvm/CodeGen/MachineBasicBlock.h"
16#include "llvm/CodeGen/MachineDominanceFrontier.h"
17#include "llvm/CodeGen/MachineDominators.h"
18#include "llvm/CodeGen/MachineFunction.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000019#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineOperand.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000021#include "llvm/CodeGen/MachineRegisterInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000022#include "llvm/IR/Function.h"
23#include "llvm/MC/LaneBitmask.h"
24#include "llvm/MC/MCInstrDesc.h"
25#include "llvm/MC/MCRegisterInfo.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000028#include "llvm/Target/TargetInstrInfo.h"
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +000029#include "llvm/Target/TargetLowering.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000030#include "llvm/Target/TargetRegisterInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000031#include <algorithm>
32#include <cassert>
33#include <cstdint>
34#include <cstring>
35#include <iterator>
36#include <utility>
37#include <vector>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000038
39using namespace llvm;
40using namespace rdf;
41
42// Printing functions. Have them here first, so that the rest of the code
43// can use them.
Benjamin Kramer922efd72016-05-27 10:06:40 +000044namespace llvm {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000045namespace rdf {
46
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000047raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +000048 if (!P.Mask.all())
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000049 OS << ':' << PrintLaneMask(P.Mask);
50 return OS;
51}
52
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000053template<>
54raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
55 auto &TRI = P.G.getTRI();
56 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
57 OS << TRI.getName(P.Obj.Reg);
58 else
59 OS << '#' << P.Obj.Reg;
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +000060 OS << PrintLaneMaskOpt(P.Obj.Mask);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000061 return OS;
62}
63
64template<>
65raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
66 auto NA = P.G.addr<NodeBase*>(P.Obj);
67 uint16_t Attrs = NA.Addr->getAttrs();
68 uint16_t Kind = NodeAttrs::kind(Attrs);
69 uint16_t Flags = NodeAttrs::flags(Attrs);
70 switch (NodeAttrs::type(Attrs)) {
71 case NodeAttrs::Code:
72 switch (Kind) {
73 case NodeAttrs::Func: OS << 'f'; break;
74 case NodeAttrs::Block: OS << 'b'; break;
75 case NodeAttrs::Stmt: OS << 's'; break;
76 case NodeAttrs::Phi: OS << 'p'; break;
77 default: OS << "c?"; break;
78 }
79 break;
80 case NodeAttrs::Ref:
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +000081 if (Flags & NodeAttrs::Undef)
82 OS << '/';
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +000083 if (Flags & NodeAttrs::Dead)
84 OS << '\\';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000085 if (Flags & NodeAttrs::Preserving)
86 OS << '+';
87 if (Flags & NodeAttrs::Clobbering)
88 OS << '~';
89 switch (Kind) {
90 case NodeAttrs::Use: OS << 'u'; break;
91 case NodeAttrs::Def: OS << 'd'; break;
92 case NodeAttrs::Block: OS << 'b'; break;
93 default: OS << "r?"; break;
94 }
95 break;
96 default:
97 OS << '?';
98 break;
99 }
100 OS << P.Obj;
101 if (Flags & NodeAttrs::Shadow)
102 OS << '"';
103 return OS;
104}
105
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000106static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
107 const DataFlowGraph &G) {
108 OS << Print<NodeId>(RA.Id, G) << '<'
109 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
110 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
111 OS << '!';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000112}
113
114template<>
115raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
116 printRefHeader(OS, P.Obj, P.G);
117 OS << '(';
118 if (NodeId N = P.Obj.Addr->getReachingDef())
119 OS << Print<NodeId>(N, P.G);
120 OS << ',';
121 if (NodeId N = P.Obj.Addr->getReachedDef())
122 OS << Print<NodeId>(N, P.G);
123 OS << ',';
124 if (NodeId N = P.Obj.Addr->getReachedUse())
125 OS << Print<NodeId>(N, P.G);
126 OS << "):";
127 if (NodeId N = P.Obj.Addr->getSibling())
128 OS << Print<NodeId>(N, P.G);
129 return OS;
130}
131
132template<>
133raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
134 printRefHeader(OS, P.Obj, P.G);
135 OS << '(';
136 if (NodeId N = P.Obj.Addr->getReachingDef())
137 OS << Print<NodeId>(N, P.G);
138 OS << "):";
139 if (NodeId N = P.Obj.Addr->getSibling())
140 OS << Print<NodeId>(N, P.G);
141 return OS;
142}
143
144template<>
145raw_ostream &operator<< (raw_ostream &OS,
146 const Print<NodeAddr<PhiUseNode*>> &P) {
147 printRefHeader(OS, P.Obj, P.G);
148 OS << '(';
149 if (NodeId N = P.Obj.Addr->getReachingDef())
150 OS << Print<NodeId>(N, P.G);
151 OS << ',';
152 if (NodeId N = P.Obj.Addr->getPredecessor())
153 OS << Print<NodeId>(N, P.G);
154 OS << "):";
155 if (NodeId N = P.Obj.Addr->getSibling())
156 OS << Print<NodeId>(N, P.G);
157 return OS;
158}
159
160template<>
161raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
162 switch (P.Obj.Addr->getKind()) {
163 case NodeAttrs::Def:
164 OS << PrintNode<DefNode*>(P.Obj, P.G);
165 break;
166 case NodeAttrs::Use:
167 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
168 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
169 else
170 OS << PrintNode<UseNode*>(P.Obj, P.G);
171 break;
172 }
173 return OS;
174}
175
176template<>
177raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
178 unsigned N = P.Obj.size();
179 for (auto I : P.Obj) {
180 OS << Print<NodeId>(I.Id, P.G);
181 if (--N)
182 OS << ' ';
183 }
184 return OS;
185}
186
187template<>
188raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
189 unsigned N = P.Obj.size();
190 for (auto I : P.Obj) {
191 OS << Print<NodeId>(I, P.G);
192 if (--N)
193 OS << ' ';
194 }
195 return OS;
196}
197
198namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000199
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000200 template <typename T>
201 struct PrintListV {
202 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000203
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000204 typedef T Type;
205 const NodeList &List;
206 const DataFlowGraph &G;
207 };
208
209 template <typename T>
210 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
211 unsigned N = P.List.size();
212 for (NodeAddr<T> A : P.List) {
213 OS << PrintNode<T>(A, P.G);
214 if (--N)
215 OS << ", ";
216 }
217 return OS;
218 }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000219
220} // end anonymous namespace
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000221
222template<>
223raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
224 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
225 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
226 return OS;
227}
228
229template<>
230raw_ostream &operator<< (raw_ostream &OS,
231 const Print<NodeAddr<StmtNode*>> &P) {
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000232 const MachineInstr &MI = *P.Obj.Addr->getCode();
233 unsigned Opc = MI.getOpcode();
234 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000235 // Print the target for calls and branches (for readability).
236 if (MI.isCall() || MI.isBranch()) {
237 MachineInstr::const_mop_iterator T =
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000238 llvm::find_if(MI.operands(),
239 [] (const MachineOperand &Op) -> bool {
240 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
241 });
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000242 if (T != MI.operands_end()) {
243 OS << ' ';
244 if (T->isMBB())
245 OS << "BB#" << T->getMBB()->getNumber();
246 else if (T->isGlobal())
247 OS << T->getGlobal()->getName();
248 else if (T->isSymbol())
249 OS << T->getSymbolName();
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000250 }
251 }
252 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000253 return OS;
254}
255
256template<>
257raw_ostream &operator<< (raw_ostream &OS,
258 const Print<NodeAddr<InstrNode*>> &P) {
259 switch (P.Obj.Addr->getKind()) {
260 case NodeAttrs::Phi:
261 OS << PrintNode<PhiNode*>(P.Obj, P.G);
262 break;
263 case NodeAttrs::Stmt:
264 OS << PrintNode<StmtNode*>(P.Obj, P.G);
265 break;
266 default:
267 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
268 break;
269 }
270 return OS;
271}
272
273template<>
274raw_ostream &operator<< (raw_ostream &OS,
275 const Print<NodeAddr<BlockNode*>> &P) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000276 MachineBasicBlock *BB = P.Obj.Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000277 unsigned NP = BB->pred_size();
278 std::vector<int> Ns;
Malcolm Parsons17d266b2017-01-13 17:12:16 +0000279 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000280 unsigned N = Ns.size();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000281 for (int I : Ns) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000282 OS << "BB#" << I;
283 if (--N)
284 OS << ", ";
285 }
286 };
287
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000288 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- BB#" << BB->getNumber()
289 << " --- preds(" << NP << "): ";
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000290 for (MachineBasicBlock *B : BB->predecessors())
291 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000292 PrintBBs(Ns);
293
294 unsigned NS = BB->succ_size();
295 OS << " succs(" << NS << "): ";
296 Ns.clear();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000297 for (MachineBasicBlock *B : BB->successors())
298 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000299 PrintBBs(Ns);
300 OS << '\n';
301
302 for (auto I : P.Obj.Addr->members(P.G))
303 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
304 return OS;
305}
306
307template<>
308raw_ostream &operator<< (raw_ostream &OS,
309 const Print<NodeAddr<FuncNode*>> &P) {
310 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
311 << P.Obj.Addr->getCode()->getName() << '\n';
312 for (auto I : P.Obj.Addr->members(P.G))
313 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
314 OS << "]\n";
315 return OS;
316}
317
318template<>
319raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
320 OS << '{';
321 for (auto I : P.Obj)
322 OS << ' ' << Print<RegisterRef>(I, P.G);
323 OS << " }";
324 return OS;
325}
326
327template<>
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000328raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
329 P.Obj.print(OS);
330 return OS;
331}
332
333template<>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000334raw_ostream &operator<< (raw_ostream &OS,
335 const Print<DataFlowGraph::DefStack> &P) {
336 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
337 OS << Print<NodeId>(I->Id, P.G)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000338 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000339 I.down();
340 if (I != E)
341 OS << ' ';
342 }
343 return OS;
344}
345
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000346} // end namespace rdf
347} // end namespace llvm
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000348
349// Node allocation functions.
350//
351// Node allocator is like a slab memory allocator: it allocates blocks of
352// memory in sizes that are multiples of the size of a node. Each block has
353// the same size. Nodes are allocated from the currently active block, and
354// when it becomes full, a new one is created.
355// There is a mapping scheme between node id and its location in a block,
356// and within that block is described in the header file.
357//
358void NodeAllocator::startNewBlock() {
359 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
360 char *P = static_cast<char*>(T);
361 Blocks.push_back(P);
362 // Check if the block index is still within the allowed range, i.e. less
363 // than 2^N, where N is the number of bits in NodeId for the block index.
364 // BitsPerIndex is the number of bits per node index.
Simon Pilgrim99c6c292016-01-18 21:11:19 +0000365 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000366 "Out of bits for block index");
367 ActiveEnd = P;
368}
369
370bool NodeAllocator::needNewBlock() {
371 if (Blocks.empty())
372 return true;
373
374 char *ActiveBegin = Blocks.back();
375 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
376 return Index >= NodesPerBlock;
377}
378
379NodeAddr<NodeBase*> NodeAllocator::New() {
380 if (needNewBlock())
381 startNewBlock();
382
383 uint32_t ActiveB = Blocks.size()-1;
384 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
385 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
386 makeId(ActiveB, Index) };
387 ActiveEnd += NodeMemSize;
388 return NA;
389}
390
391NodeId NodeAllocator::id(const NodeBase *P) const {
392 uintptr_t A = reinterpret_cast<uintptr_t>(P);
393 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
394 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
395 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
396 continue;
397 uint32_t Idx = (A-B)/NodeMemSize;
398 return makeId(i, Idx);
399 }
400 llvm_unreachable("Invalid node address");
401}
402
403void NodeAllocator::clear() {
404 MemPool.Reset();
405 Blocks.clear();
406 ActiveEnd = nullptr;
407}
408
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000409// Insert node NA after "this" in the circular chain.
410void NodeBase::append(NodeAddr<NodeBase*> NA) {
411 NodeId Nx = Next;
412 // If NA is already "next", do nothing.
413 if (Next != NA.Id) {
414 Next = NA.Id;
415 NA.Addr->Next = Nx;
416 }
417}
418
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000419// Fundamental node manipulator functions.
420
421// Obtain the register reference from a reference node.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000422RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000423 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
424 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000425 return G.unpack(Ref.PR);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000426 assert(Ref.Op != nullptr);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000427 return G.makeRegRef(Ref.Op->getReg(), Ref.Op->getSubReg());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000428}
429
430// Set the register reference in the reference node directly (for references
431// in phi nodes).
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000432void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000433 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
434 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000435 Ref.PR = G.pack(RR);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000436}
437
438// Set the register reference in the reference node based on a machine
439// operand (for references in statement nodes).
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000440void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000441 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
442 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000443 (void)G;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000444 Ref.Op = Op;
445}
446
447// Get the owner of a given reference node.
448NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
449 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
450
451 while (NA.Addr != this) {
452 if (NA.Addr->getType() == NodeAttrs::Code)
453 return NA;
454 NA = G.addr<NodeBase*>(NA.Addr->getNext());
455 }
456 llvm_unreachable("No owner in circular list");
457}
458
459// Connect the def node to the reaching def node.
460void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
461 Ref.RD = DA.Id;
462 Ref.Sib = DA.Addr->getReachedDef();
463 DA.Addr->setReachedDef(Self);
464}
465
466// Connect the use node to the reaching def node.
467void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
468 Ref.RD = DA.Id;
469 Ref.Sib = DA.Addr->getReachedUse();
470 DA.Addr->setReachedUse(Self);
471}
472
473// Get the first member of the code node.
474NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
475 if (Code.FirstM == 0)
476 return NodeAddr<NodeBase*>();
477 return G.addr<NodeBase*>(Code.FirstM);
478}
479
480// Get the last member of the code node.
481NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
482 if (Code.LastM == 0)
483 return NodeAddr<NodeBase*>();
484 return G.addr<NodeBase*>(Code.LastM);
485}
486
487// Add node NA at the end of the member list of the given code node.
488void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000489 NodeAddr<NodeBase*> ML = getLastMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000490 if (ML.Id != 0) {
491 ML.Addr->append(NA);
492 } else {
493 Code.FirstM = NA.Id;
494 NodeId Self = G.id(this);
495 NA.Addr->setNext(Self);
496 }
497 Code.LastM = NA.Id;
498}
499
500// Add node NA after member node MA in the given code node.
501void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
502 const DataFlowGraph &G) {
503 MA.Addr->append(NA);
504 if (Code.LastM == MA.Id)
505 Code.LastM = NA.Id;
506}
507
508// Remove member node NA from the given code node.
509void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000510 NodeAddr<NodeBase*> MA = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000511 assert(MA.Id != 0);
512
513 // Special handling if the member to remove is the first member.
514 if (MA.Id == NA.Id) {
515 if (Code.LastM == MA.Id) {
516 // If it is the only member, set both first and last to 0.
517 Code.FirstM = Code.LastM = 0;
518 } else {
519 // Otherwise, advance the first member.
520 Code.FirstM = MA.Addr->getNext();
521 }
522 return;
523 }
524
525 while (MA.Addr != this) {
526 NodeId MX = MA.Addr->getNext();
527 if (MX == NA.Id) {
528 MA.Addr->setNext(NA.Addr->getNext());
529 // If the member to remove happens to be the last one, update the
530 // LastM indicator.
531 if (Code.LastM == NA.Id)
532 Code.LastM = MA.Id;
533 return;
534 }
535 MA = G.addr<NodeBase*>(MX);
536 }
537 llvm_unreachable("No such member");
538}
539
540// Return the list of all members of the code node.
541NodeList CodeNode::members(const DataFlowGraph &G) const {
542 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
543 return members_if(True, G);
544}
545
546// Return the owner of the given instr node.
547NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
548 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
549
550 while (NA.Addr != this) {
551 assert(NA.Addr->getType() == NodeAttrs::Code);
552 if (NA.Addr->getKind() == NodeAttrs::Block)
553 return NA;
554 NA = G.addr<NodeBase*>(NA.Addr->getNext());
555 }
556 llvm_unreachable("No owner in circular list");
557}
558
559// Add the phi node PA to the given block node.
560void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000561 NodeAddr<NodeBase*> M = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000562 if (M.Id == 0) {
563 addMember(PA, G);
564 return;
565 }
566
567 assert(M.Addr->getType() == NodeAttrs::Code);
568 if (M.Addr->getKind() == NodeAttrs::Stmt) {
569 // If the first member of the block is a statement, insert the phi as
570 // the first member.
571 Code.FirstM = PA.Id;
572 PA.Addr->setNext(M.Id);
573 } else {
574 // If the first member is a phi, find the last phi, and append PA to it.
575 assert(M.Addr->getKind() == NodeAttrs::Phi);
576 NodeAddr<NodeBase*> MN = M;
577 do {
578 M = MN;
579 MN = G.addr<NodeBase*>(M.Addr->getNext());
580 assert(MN.Addr->getType() == NodeAttrs::Code);
581 } while (MN.Addr->getKind() == NodeAttrs::Phi);
582
583 // M is the last phi.
584 addMemberAfter(M, PA, G);
585 }
586}
587
588// Find the block node corresponding to the machine basic block BB in the
589// given func node.
590NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
591 const DataFlowGraph &G) const {
592 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
593 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
594 };
595 NodeList Ms = members_if(EqBB, G);
596 if (!Ms.empty())
597 return Ms[0];
598 return NodeAddr<BlockNode*>();
599}
600
601// Get the block node for the entry block in the given function.
602NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
603 MachineBasicBlock *EntryB = &getCode()->front();
604 return findBlock(EntryB, G);
605}
606
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000607// Target operand information.
608//
609
610// For a given instruction, check if there are any bits of RR that can remain
611// unchanged across this def.
612bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
613 const {
Duncan P. N. Exon Smith6307eb52016-02-23 02:46:52 +0000614 return TII.isPredicated(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000615}
616
617// Check if the definition of RR produces an unspecified value.
618bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
619 const {
620 if (In.isCall())
621 if (In.getOperand(OpNum).isImplicit())
622 return true;
623 return false;
624}
625
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000626// Check if the given instruction specifically requires
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000627bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
628 const {
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000629 if (In.isCall() || In.isReturn() || In.isInlineAsm())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000630 return true;
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000631 // Check for a tail call.
632 if (In.isBranch())
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000633 for (const MachineOperand &O : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000634 if (O.isGlobal() || O.isSymbol())
635 return true;
636
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000637 const MCInstrDesc &D = In.getDesc();
638 if (!D.getImplicitDefs() && !D.getImplicitUses())
639 return false;
640 const MachineOperand &Op = In.getOperand(OpNum);
641 // If there is a sub-register, treat the operand as non-fixed. Currently,
642 // fixed registers are those that are listed in the descriptor as implicit
643 // uses or defs, and those lists do not allow sub-registers.
644 if (Op.getSubReg() != 0)
645 return false;
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000646 RegisterId Reg = Op.getReg();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000647 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
648 : D.getImplicitUses();
649 if (!ImpR)
650 return false;
651 while (*ImpR)
652 if (*ImpR++ == Reg)
653 return true;
654 return false;
655}
656
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000657RegisterRef RegisterAggr::normalize(RegisterRef RR) const {
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000658 RegisterId SuperReg = RR.Reg;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000659 while (true) {
660 MCSuperRegIterator SR(SuperReg, &TRI, false);
661 if (!SR.isValid())
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000662 break;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000663 SuperReg = *SR;
664 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000665
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000666 const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg);
Krzysztof Parzyszek77a45572016-12-08 20:33:45 +0000667 LaneBitmask Common = RR.Mask & RC.LaneMask;
668 uint32_t Sub = TRI.getSubRegIndex(SuperReg, RR.Reg);
669 LaneBitmask SuperMask = TRI.composeSubRegIndexLaneMask(Sub, Common);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000670 return RegisterRef(SuperReg, SuperMask);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000671}
672
673bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000674 RegisterRef NR = normalize(RR);
675 auto F = Masks.find(NR.Reg);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000676 if (F != Masks.end()) {
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +0000677 if ((F->second & NR.Mask).any())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000678 return true;
679 }
680 if (CheckUnits) {
681 for (MCRegUnitIterator U(RR.Reg, &TRI); U.isValid(); ++U)
682 if (ExpAliasUnits.test(*U))
683 return true;
684 }
685 return false;
686}
687
688bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000689 // Always have a cover for empty lane mask.
690 RegisterRef NR = normalize(RR);
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000691 if (NR.Mask.none())
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000692 return true;
693 auto F = Masks.find(NR.Reg);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000694 if (F == Masks.end())
695 return false;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000696 return (NR.Mask & F->second) == NR.Mask;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000697}
698
699RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000700 RegisterRef NR = normalize(RR);
701 auto F = Masks.find(NR.Reg);
702 if (F == Masks.end())
703 Masks.insert({NR.Reg, NR.Mask});
704 else
705 F->second |= NR.Mask;
706
707 // Visit all register units to see if there are any that were created
708 // by explicit aliases. Add those that were to the bit vector.
709 for (MCRegUnitIterator U(RR.Reg, &TRI); U.isValid(); ++U) {
710 MCRegUnitRootIterator R(*U, &TRI);
711 ++R;
712 if (!R.isValid())
713 continue;
714 ExpAliasUnits.set(*U);
715 CheckUnits = true;
716 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000717 return *this;
718}
719
720RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000721 for (std::pair<RegisterId,LaneBitmask> P : RG.Masks)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000722 insert(RegisterRef(P.first, P.second));
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000723 return *this;
724}
725
726RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000727 RegisterRef NR = normalize(RR);
728 auto F = Masks.find(NR.Reg);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000729 if (F == Masks.end())
730 return *this;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000731 LaneBitmask NewM = F->second & ~NR.Mask;
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +0000732 if (NewM.none())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000733 Masks.erase(F);
734 else
735 F->second = NewM;
736 return *this;
737}
738
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000739RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) {
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000740 for (std::pair<RegisterId,LaneBitmask> P : RG.Masks)
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000741 clear(RegisterRef(P.first, P.second));
742 return *this;
743}
744
745RegisterRef RegisterAggr::clearIn(RegisterRef RR) const {
746 RegisterAggr T(TRI);
747 T.insert(RR).clear(*this);
748 if (T.empty())
749 return RegisterRef();
750 return RegisterRef(T.begin()->first, T.begin()->second);
751}
752
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000753void RegisterAggr::print(raw_ostream &OS) const {
754 OS << '{';
755 for (auto I : Masks)
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +0000756 OS << ' ' << PrintReg(I.first, &TRI) << PrintLaneMaskOpt(I.second);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000757 OS << " }";
758}
759
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000760//
761// The data flow graph construction.
762//
763
764DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
765 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000766 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000767 : MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), TOI(toi) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000768}
769
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000770// The implementation of the definition stack.
771// Each register reference has its own definition stack. In particular,
772// for a register references "Reg" and "Reg:subreg" will each have their
773// own definition stacks.
774
775// Construct a stack iterator.
776DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
777 bool Top) : DS(S) {
778 if (!Top) {
779 // Initialize to bottom.
780 Pos = 0;
781 return;
782 }
783 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
784 Pos = DS.Stack.size();
785 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
786 Pos--;
787}
788
789// Return the size of the stack, including block delimiters.
790unsigned DataFlowGraph::DefStack::size() const {
791 unsigned S = 0;
792 for (auto I = top(), E = bottom(); I != E; I.down())
793 S++;
794 return S;
795}
796
797// Remove the top entry from the stack. Remove all intervening delimiters
798// so that after this, the stack is either empty, or the top of the stack
799// is a non-delimiter.
800void DataFlowGraph::DefStack::pop() {
801 assert(!empty());
802 unsigned P = nextDown(Stack.size());
803 Stack.resize(P);
804}
805
806// Push a delimiter for block node N on the stack.
807void DataFlowGraph::DefStack::start_block(NodeId N) {
808 assert(N != 0);
809 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
810}
811
812// Remove all nodes from the top of the stack, until the delimited for
813// block node N is encountered. Remove the delimiter as well. In effect,
814// this will remove from the stack all definitions from block N.
815void DataFlowGraph::DefStack::clear_block(NodeId N) {
816 assert(N != 0);
817 unsigned P = Stack.size();
818 while (P > 0) {
819 bool Found = isDelimiter(Stack[P-1], N);
820 P--;
821 if (Found)
822 break;
823 }
824 // This will also remove the delimiter, if found.
825 Stack.resize(P);
826}
827
828// Move the stack iterator up by one.
829unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
830 // Get the next valid position after P (skipping all delimiters).
831 // The input position P does not have to point to a non-delimiter.
832 unsigned SS = Stack.size();
833 bool IsDelim;
Krzysztof Parzyszek8dca45e2016-01-12 16:51:55 +0000834 assert(P < SS);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000835 do {
836 P++;
837 IsDelim = isDelimiter(Stack[P-1]);
838 } while (P < SS && IsDelim);
839 assert(!IsDelim);
840 return P;
841}
842
843// Move the stack iterator down by one.
844unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
845 // Get the preceding valid position before P (skipping all delimiters).
846 // The input position P does not have to point to a non-delimiter.
847 assert(P > 0 && P <= Stack.size());
848 bool IsDelim = isDelimiter(Stack[P-1]);
849 do {
850 if (--P == 0)
851 break;
852 IsDelim = isDelimiter(Stack[P-1]);
853 } while (P > 0 && IsDelim);
854 assert(!IsDelim);
855 return P;
856}
857
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000858// Register information.
859
860// Get the list of references aliased to RR. Lane masks are ignored.
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000861RegisterSet DataFlowGraph::getAliasSet(RegisterId Reg) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000862 // Do not include RR in the alias set.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000863 RegisterSet AS;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000864 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
865
866 for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000867 AS.insert(RegisterRef(*AI));
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000868 return AS;
869}
870
871RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
872 RegisterSet LR;
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000873 const Function &F = *MF.getFunction();
874 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
875 : nullptr;
876 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000877 if (RegisterId R = TLI.getExceptionPointerRegister(PF))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000878 LR.insert(RegisterRef(R));
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +0000879 if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000880 LR.insert(RegisterRef(R));
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000881 return LR;
882}
883
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000884// Node management functions.
885
886// Get the pointer to the node with the id N.
887NodeBase *DataFlowGraph::ptr(NodeId N) const {
888 if (N == 0)
889 return nullptr;
890 return Memory.ptr(N);
891}
892
893// Get the id of the node at the address P.
894NodeId DataFlowGraph::id(const NodeBase *P) const {
895 if (P == nullptr)
896 return 0;
897 return Memory.id(P);
898}
899
900// Allocate a new node and set the attributes to Attrs.
901NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
902 NodeAddr<NodeBase*> P = Memory.New();
903 P.Addr->init();
904 P.Addr->setAttrs(Attrs);
905 return P;
906}
907
908// Make a copy of the given node B, except for the data-flow links, which
909// are set to 0.
910NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
911 NodeAddr<NodeBase*> NA = newNode(0);
912 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
913 // Ref nodes need to have the data-flow links reset.
914 if (NA.Addr->getType() == NodeAttrs::Ref) {
915 NodeAddr<RefNode*> RA = NA;
916 RA.Addr->setReachingDef(0);
917 RA.Addr->setSibling(0);
918 if (NA.Addr->getKind() == NodeAttrs::Def) {
919 NodeAddr<DefNode*> DA = NA;
920 DA.Addr->setReachedDef(0);
921 DA.Addr->setReachedUse(0);
922 }
923 }
924 return NA;
925}
926
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000927// Allocation routines for specific node types/kinds.
928
929NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
930 MachineOperand &Op, uint16_t Flags) {
931 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000932 UA.Addr->setRegRef(&Op, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000933 return UA;
934}
935
936NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
937 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
938 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
939 assert(Flags & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000940 PUA.Addr->setRegRef(RR, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000941 PUA.Addr->setPredecessor(PredB.Id);
942 return PUA;
943}
944
945NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
946 MachineOperand &Op, uint16_t Flags) {
947 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000948 DA.Addr->setRegRef(&Op, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000949 return DA;
950}
951
952NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
953 RegisterRef RR, uint16_t Flags) {
954 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
955 assert(Flags & NodeAttrs::PhiRef);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +0000956 DA.Addr->setRegRef(RR, *this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000957 return DA;
958}
959
960NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
961 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
962 Owner.Addr->addPhi(PA, *this);
963 return PA;
964}
965
966NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
967 MachineInstr *MI) {
968 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
969 SA.Addr->setCode(MI);
970 Owner.Addr->addMember(SA, *this);
971 return SA;
972}
973
974NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
975 MachineBasicBlock *BB) {
976 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
977 BA.Addr->setCode(BB);
978 Owner.Addr->addMember(BA, *this);
979 return BA;
980}
981
982NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
983 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
984 FA.Addr->setCode(MF);
985 return FA;
986}
987
988// Build the data flow graph.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000989void DataFlowGraph::build(unsigned Options) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000990 reset();
991 Func = newFunc(&MF);
992
993 if (MF.empty())
994 return;
995
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000996 for (MachineBasicBlock &B : MF) {
997 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000998 BlockNodes.insert(std::make_pair(&B, BA));
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000999 for (MachineInstr &I : B) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001000 if (I.isDebugValue())
1001 continue;
1002 buildStmt(BA, I);
1003 }
1004 }
1005
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001006 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001007 NodeList Blocks = Func.Addr->members(*this);
1008
1009 // Collect information about block references.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001010 BlockRefsMap RefM;
1011 buildBlockRefs(EA, RefM);
1012
1013 // Add function-entry phi nodes.
1014 MachineRegisterInfo &MRI = MF.getRegInfo();
1015 for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1016 NodeAddr<PhiNode*> PA = newPhi(EA);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001017 RegisterRef RR = RegisterRef(I->first);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001018 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1019 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1020 PA.Addr->addMember(DA, *this);
1021 }
1022
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001023 // Add phis for landing pads.
1024 // Landing pads, unlike usual backs blocks, are not entered through
1025 // branches in the program, or fall-throughs from other blocks. They
1026 // are entered from the exception handling runtime and target's ABI
1027 // may define certain registers as defined on entry to such a block.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001028 RegisterSet EHRegs = getLandingPadLiveIns();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001029 if (!EHRegs.empty()) {
1030 for (NodeAddr<BlockNode*> BA : Blocks) {
1031 const MachineBasicBlock &B = *BA.Addr->getCode();
1032 if (!B.isEHPad())
1033 continue;
1034
1035 // Prepare a list of NodeIds of the block's predecessors.
1036 NodeList Preds;
1037 for (MachineBasicBlock *PB : B.predecessors())
1038 Preds.push_back(findBlock(PB));
1039
1040 // Build phi nodes for each live-in.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001041 for (RegisterRef RR : EHRegs) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001042 NodeAddr<PhiNode*> PA = newPhi(BA);
1043 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1044 // Add def:
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001045 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001046 PA.Addr->addMember(DA, *this);
1047 // Add uses (no reaching defs for phi uses):
1048 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001049 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001050 PA.Addr->addMember(PUA, *this);
1051 }
1052 }
1053 }
1054 }
1055
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001056 // Build a map "PhiM" which will contain, for each block, the set
1057 // of references that will require phi definitions in that block.
1058 BlockRefsMap PhiM;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001059 for (NodeAddr<BlockNode*> BA : Blocks)
1060 recordDefsForDF(PhiM, RefM, BA);
1061 for (NodeAddr<BlockNode*> BA : Blocks)
1062 buildPhis(PhiM, RefM, BA);
1063
1064 // Link all the refs. This will recursively traverse the dominator tree.
1065 DefStackMap DM;
1066 linkBlockRefs(DM, EA);
1067
1068 // Finally, remove all unused phi nodes.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +00001069 if (!(Options & BuildOptions::KeepDeadPhis))
1070 removeUnusedPhis();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001071}
1072
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001073RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
1074 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
Krzysztof Parzyszek775a2092016-10-14 19:06:25 +00001075 if (Sub != 0)
1076 Reg = TRI.getSubReg(Reg, Sub);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001077 return RegisterRef(Reg);
1078}
1079
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001080RegisterRef DataFlowGraph::normalizeRef(RegisterRef RR) const {
1081 // FIXME copied from RegisterAggr
Krzysztof Parzyszek6e7fa992016-10-21 19:12:13 +00001082 RegisterId SuperReg = RR.Reg;
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001083 while (true) {
1084 MCSuperRegIterator SR(SuperReg, &TRI, false);
1085 if (!SR.isValid())
1086 break;
1087 SuperReg = *SR;
1088 }
1089
1090 uint32_t Sub = TRI.getSubRegIndex(SuperReg, RR.Reg);
1091 const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg);
1092 LaneBitmask SuperMask = RR.Mask &
1093 TRI.composeSubRegIndexLaneMask(Sub, RC.LaneMask);
1094 return RegisterRef(SuperReg, SuperMask);
1095}
1096
1097RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
1098 if (AR.Reg == BR.Reg) {
1099 LaneBitmask M = AR.Mask & BR.Mask;
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +00001100 return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
Krzysztof Parzyszek7bb63ac2016-10-19 16:30:56 +00001101 }
1102#ifndef NDEBUG
1103 RegisterRef NAR = normalizeRef(AR);
1104 RegisterRef NBR = normalizeRef(BR);
1105 assert(NAR.Reg != NBR.Reg);
1106#endif
1107 // This isn't strictly correct, because the overlap may happen in the
1108 // part masked out.
1109 if (TRI.regsOverlap(AR.Reg, BR.Reg))
1110 return AR;
1111 return RegisterRef();
1112}
1113
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001114// For each stack in the map DefM, push the delimiter for block B on it.
1115void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1116 // Push block delimiters.
1117 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1118 I->second.start_block(B);
1119}
1120
1121// Remove all definitions coming from block B from each stack in DefM.
1122void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1123 // Pop all defs from this block from the definition stack. Defs that were
1124 // added to the map during the traversal of instructions will not have a
1125 // delimiter, but for those, the whole stack will be emptied.
1126 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1127 I->second.clear_block(B);
1128
1129 // Finally, remove empty stacks from the map.
1130 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1131 NextI = std::next(I);
1132 // This preserves the validity of iterators other than I.
1133 if (I->second.empty())
1134 DefM.erase(I);
1135 }
1136}
1137
1138// Push all definitions from the instruction node IA to an appropriate
1139// stack in DefM.
1140void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1141 NodeList Defs = IA.Addr->members_if(IsDef, *this);
1142 NodeSet Visited;
1143#ifndef NDEBUG
1144 RegisterSet Defined;
1145#endif
1146
1147 // The important objectives of this function are:
1148 // - to be able to handle instructions both while the graph is being
1149 // constructed, and after the graph has been constructed, and
1150 // - maintain proper ordering of definitions on the stack for each
1151 // register reference:
1152 // - if there are two or more related defs in IA (i.e. coming from
1153 // the same machine operand), then only push one def on the stack,
1154 // - if there are multiple unrelated defs of non-overlapping
1155 // subregisters of S, then the stack for S will have both (in an
1156 // unspecified order), but the order does not matter from the data-
1157 // -flow perspective.
1158
1159 for (NodeAddr<DefNode*> DA : Defs) {
1160 if (Visited.count(DA.Id))
1161 continue;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001162
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001163 NodeList Rel = getRelatedRefs(IA, DA);
1164 NodeAddr<DefNode*> PDA = Rel.front();
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001165 RegisterRef RR = PDA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001166#ifndef NDEBUG
1167 // Assert if the register is defined in two or more unrelated defs.
1168 // This could happen if there are two or more def operands defining it.
1169 if (!Defined.insert(RR).second) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001170 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001171 dbgs() << "Multiple definitions of register: "
1172 << Print<RegisterRef>(RR, *this) << " in\n " << *MI
1173 << "in BB#" << MI->getParent()->getNumber() << '\n';
1174 llvm_unreachable(nullptr);
1175 }
1176#endif
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001177 // Push the definition on the stack for the register and all aliases.
1178 // The def stack traversal in linkNodeUp will check the exact aliasing.
1179 DefM[RR.Reg].push(DA);
1180 for (RegisterRef A : getAliasSet(RR.Reg /*FIXME? use RegisterRef*/)) {
1181 // Check that we don't push the same def twice.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001182 assert(A != RR);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001183 DefM[A.Reg].push(DA);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001184 }
1185 // Mark all the related defs as visited.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001186 for (NodeAddr<NodeBase*> T : Rel)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001187 Visited.insert(T.Id);
1188 }
1189}
1190
1191// Return the list of all reference nodes related to RA, including RA itself.
1192// See "getNextRelated" for the meaning of a "related reference".
1193NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1194 NodeAddr<RefNode*> RA) const {
1195 assert(IA.Id != 0 && RA.Id != 0);
1196
1197 NodeList Refs;
1198 NodeId Start = RA.Id;
1199 do {
1200 Refs.push_back(RA);
1201 RA = getNextRelated(IA, RA);
1202 } while (RA.Id != 0 && RA.Id != Start);
1203 return Refs;
1204}
1205
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001206// Return true if RA and RB overlap, false otherwise.
1207bool DataFlowGraph::alias(RegisterRef RA, RegisterRef RB) const {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001208 assert(TargetRegisterInfo::isPhysicalRegister(RA.Reg));
1209 assert(TargetRegisterInfo::isPhysicalRegister(RB.Reg));
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001210
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001211 MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
1212 MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
1213 // Reg units are returned in the numerical order.
1214 while (UMA.isValid() && UMB.isValid()) {
1215 std::pair<uint32_t,LaneBitmask> PA = *UMA;
1216 std::pair<uint32_t,LaneBitmask> PB = *UMB;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001217 if (PA.first == PB.first) {
Krzysztof Parzyszek77a45572016-12-08 20:33:45 +00001218 // Lane mask of 0 (given by the iterator) should be treated as "full".
1219 // This can happen when the register has only one unit, or when the
1220 // unit corresponds to explicit aliasing. In such cases, the lane mask
1221 // from RegisterRef should be ignored.
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001222 if (PA.second.none() || PB.second.none())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001223 return true;
Krzysztof Parzyszek77a45572016-12-08 20:33:45 +00001224
1225 // At this point the common unit corresponds to a subregister. The lane
1226 // masks correspond to the lane mask of that unit within the original
1227 // register, for example assuming register quadruple q0 = r3:0, and
1228 // a register pair d1 = r3:2, the lane mask of r2 in q0 may be 0b0100,
1229 // while the lane mask of r2 in d1 may be 0b0001.
1230 LaneBitmask LA = PA.second & RA.Mask;
1231 LaneBitmask LB = PB.second & RB.Mask;
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +00001232 if (LA.any() && LB.any()) {
Krzysztof Parzyszek77a45572016-12-08 20:33:45 +00001233 unsigned Root = *MCRegUnitRootIterator(PA.first, &TRI);
1234 // If register units were guaranteed to only have 1 bit in any lane
1235 // mask, the code below would not be necessary. This is because LA
1236 // and LB would have at most 1 bit set each, and that bit would be
1237 // guaranteed to correspond to the given register unit.
1238 uint32_t SubA = TRI.getSubRegIndex(RA.Reg, Root);
1239 uint32_t SubB = TRI.getSubRegIndex(RB.Reg, Root);
1240 const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(Root);
1241 LaneBitmask MaskA = TRI.reverseComposeSubRegIndexLaneMask(SubA, LA);
1242 LaneBitmask MaskB = TRI.reverseComposeSubRegIndexLaneMask(SubB, LB);
Krzysztof Parzyszekea9f8ce2016-12-16 19:11:56 +00001243 if ((MaskA & MaskB & RC.LaneMask).any())
Krzysztof Parzyszek77a45572016-12-08 20:33:45 +00001244 return true;
1245 }
1246
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001247 ++UMA;
1248 ++UMB;
1249 continue;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001250 }
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001251 if (PA.first < PB.first)
1252 ++UMA;
1253 else if (PB.first < PA.first)
1254 ++UMB;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001255 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001256 return false;
1257}
1258
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001259// Clear all information in the graph.
1260void DataFlowGraph::reset() {
1261 Memory.clear();
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +00001262 BlockNodes.clear();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001263 Func = NodeAddr<FuncNode*>();
1264}
1265
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001266// Return the next reference node in the instruction node IA that is related
1267// to RA. Conceptually, two reference nodes are related if they refer to the
1268// same instance of a register access, but differ in flags or other minor
1269// characteristics. Specific examples of related nodes are shadow reference
1270// nodes.
1271// Return the equivalent of nullptr if there are no more related references.
1272NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1273 NodeAddr<RefNode*> RA) const {
1274 assert(IA.Id != 0 && RA.Id != 0);
1275
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001276 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001277 if (TA.Addr->getKind() != RA.Addr->getKind())
1278 return false;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001279 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001280 return false;
1281 return true;
1282 };
1283 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1284 return Related(TA) &&
1285 &RA.Addr->getOp() == &TA.Addr->getOp();
1286 };
1287 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1288 if (!Related(TA))
1289 return false;
1290 if (TA.Addr->getKind() != NodeAttrs::Use)
1291 return true;
1292 // For phi uses, compare predecessor blocks.
1293 const NodeAddr<const PhiUseNode*> TUA = TA;
1294 const NodeAddr<const PhiUseNode*> RUA = RA;
1295 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1296 };
1297
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001298 RegisterRef RR = RA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001299 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1300 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1301 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1302}
1303
1304// Find the next node related to RA in IA that satisfies condition P.
1305// If such a node was found, return a pair where the second element is the
1306// located node. If such a node does not exist, return a pair where the
1307// first element is the element after which such a node should be inserted,
1308// and the second element is a null-address.
1309template <typename Predicate>
1310std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1311DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1312 Predicate P) const {
1313 assert(IA.Id != 0 && RA.Id != 0);
1314
1315 NodeAddr<RefNode*> NA;
1316 NodeId Start = RA.Id;
1317 while (true) {
1318 NA = getNextRelated(IA, RA);
1319 if (NA.Id == 0 || NA.Id == Start)
1320 break;
1321 if (P(NA))
1322 break;
1323 RA = NA;
1324 }
1325
1326 if (NA.Id != 0 && NA.Id != Start)
1327 return std::make_pair(RA, NA);
1328 return std::make_pair(RA, NodeAddr<RefNode*>());
1329}
1330
1331// Get the next shadow node in IA corresponding to RA, and optionally create
1332// such a node if it does not exist.
1333NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1334 NodeAddr<RefNode*> RA, bool Create) {
1335 assert(IA.Id != 0 && RA.Id != 0);
1336
1337 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1338 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1339 return TA.Addr->getFlags() == Flags;
1340 };
1341 auto Loc = locateNextRef(IA, RA, IsShadow);
1342 if (Loc.second.Id != 0 || !Create)
1343 return Loc.second;
1344
1345 // Create a copy of RA and mark is as shadow.
1346 NodeAddr<RefNode*> NA = cloneNode(RA);
1347 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1348 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1349 return NA;
1350}
1351
1352// Get the next shadow node in IA corresponding to RA. Return null-address
1353// if such a node does not exist.
1354NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1355 NodeAddr<RefNode*> RA) const {
1356 assert(IA.Id != 0 && RA.Id != 0);
1357 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1358 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1359 return TA.Addr->getFlags() == Flags;
1360 };
1361 return locateNextRef(IA, RA, IsShadow).second;
1362}
1363
1364// Create a new statement node in the block node BA that corresponds to
1365// the machine instruction MI.
1366void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001367 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001368
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001369 auto isCall = [] (const MachineInstr &In) -> bool {
1370 if (In.isCall())
1371 return true;
1372 // Is tail call?
1373 if (In.isBranch())
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001374 for (const MachineOperand &Op : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001375 if (Op.isGlobal() || Op.isSymbol())
1376 return true;
1377 return false;
1378 };
1379
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001380 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1381 // This instruction defines DR. Check if there is a use operand that
1382 // would make DR live on entry to the instruction.
1383 for (const MachineOperand &UseOp : In.operands()) {
1384 if (!UseOp.isReg() || !UseOp.isUse() || UseOp.isUndef())
1385 continue;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001386 RegisterRef UR = makeRegRef(UseOp.getReg(), UseOp.getSubReg());
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001387 if (alias(DR, UR))
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001388 return false;
1389 }
1390 return true;
1391 };
1392
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001393 // Collect a set of registers that this instruction implicitly uses
1394 // or defines. Implicit operands from an instruction will be ignored
1395 // unless they are listed here.
1396 RegisterSet ImpUses, ImpDefs;
1397 if (const uint16_t *ImpD = In.getDesc().getImplicitDefs())
1398 while (uint16_t R = *ImpD++)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001399 ImpDefs.insert(RegisterRef(R));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001400 if (const uint16_t *ImpU = In.getDesc().getImplicitUses())
1401 while (uint16_t R = *ImpU++)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001402 ImpUses.insert(RegisterRef(R));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001403
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001404 bool IsCall = isCall(In);
1405 bool NeedsImplicit = IsCall || In.isInlineAsm() || In.isReturn();
Duncan P. N. Exon Smith6307eb52016-02-23 02:46:52 +00001406 bool IsPredicated = TII.isPredicated(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001407 unsigned NumOps = In.getNumOperands();
1408
1409 // Avoid duplicate implicit defs. This will not detect cases of implicit
1410 // defs that define registers that overlap, but it is not clear how to
1411 // interpret that in the absence of explicit defs. Overlapping explicit
1412 // defs are likely illegal already.
1413 RegisterSet DoneDefs;
1414 // Process explicit defs first.
1415 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1416 MachineOperand &Op = In.getOperand(OpN);
1417 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1418 continue;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001419 RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001420 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001421 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001422 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001423 // If the def is preserving, check if it is also undefined.
1424 if (isDefUndef(In, RR))
1425 Flags |= NodeAttrs::Undef;
1426 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001427 if (TOI.isClobbering(In, OpN))
1428 Flags |= NodeAttrs::Clobbering;
1429 if (TOI.isFixedReg(In, OpN))
1430 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001431 if (IsCall && Op.isDead())
1432 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001433 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1434 SA.Addr->addMember(DA, *this);
1435 DoneDefs.insert(RR);
1436 }
1437
1438 // Process implicit defs, skipping those that have already been added
1439 // as explicit.
1440 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1441 MachineOperand &Op = In.getOperand(OpN);
1442 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1443 continue;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001444 RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg());
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001445 if (!NeedsImplicit && !ImpDefs.count(RR))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001446 continue;
1447 if (DoneDefs.count(RR))
1448 continue;
1449 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001450 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001451 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001452 // If the def is preserving, check if it is also undefined.
1453 if (isDefUndef(In, RR))
1454 Flags |= NodeAttrs::Undef;
1455 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001456 if (TOI.isClobbering(In, OpN))
1457 Flags |= NodeAttrs::Clobbering;
1458 if (TOI.isFixedReg(In, OpN))
1459 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001460 if (IsCall && Op.isDead())
1461 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001462 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1463 SA.Addr->addMember(DA, *this);
1464 DoneDefs.insert(RR);
1465 }
1466
1467 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1468 MachineOperand &Op = In.getOperand(OpN);
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001469 if (!Op.isReg() || !Op.isUse())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001470 continue;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001471 RegisterRef RR = makeRegRef(Op.getReg(), Op.getSubReg());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001472 // Add implicit uses on return and call instructions, and on predicated
1473 // instructions regardless of whether or not they appear in the instruction
1474 // descriptor's list.
1475 bool Implicit = Op.isImplicit();
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001476 bool TakeImplicit = NeedsImplicit || IsPredicated;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001477 if (Implicit && !TakeImplicit && !ImpUses.count(RR))
1478 continue;
1479 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001480 if (Op.isUndef())
1481 Flags |= NodeAttrs::Undef;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001482 if (TOI.isFixedReg(In, OpN))
1483 Flags |= NodeAttrs::Fixed;
1484 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1485 SA.Addr->addMember(UA, *this);
1486 }
1487}
1488
1489// Build a map that for each block will have the set of all references from
1490// that block, and from all blocks dominated by it.
1491void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA,
1492 BlockRefsMap &RefM) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001493 RegisterSet &Refs = RefM[BA.Id];
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001494 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1495 assert(N);
1496 for (auto I : *N) {
1497 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001498 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001499 buildBlockRefs(SBA, RefM);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001500 const RegisterSet &RefsS = RefM[SBA.Id];
1501 Refs.insert(RefsS.begin(), RefsS.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001502 }
1503
1504 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1505 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001506 Refs.insert(RA.Addr->getRegRef(*this));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001507}
1508
1509// Scan all defs in the block node BA and record in PhiM the locations of
1510// phi nodes corresponding to these defs.
1511void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1512 NodeAddr<BlockNode*> BA) {
1513 // Check all defs from block BA and record them in each block in BA's
1514 // iterated dominance frontier. This information will later be used to
1515 // create phi nodes.
1516 MachineBasicBlock *BB = BA.Addr->getCode();
1517 assert(BB);
1518 auto DFLoc = MDF.find(BB);
1519 if (DFLoc == MDF.end() || DFLoc->second.empty())
1520 return;
1521
1522 // Traverse all instructions in the block and collect the set of all
1523 // defined references. For each reference there will be a phi created
1524 // in the block's iterated dominance frontier.
1525 // This is done to make sure that each defined reference gets only one
1526 // phi node, even if it is defined multiple times.
1527 RegisterSet Defs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001528 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001529 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001530 Defs.insert(RA.Addr->getRegRef(*this));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001531
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001532 // Calculate the iterated dominance frontier of BB.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001533 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1534 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1535 for (unsigned i = 0; i < IDF.size(); ++i) {
1536 auto F = MDF.find(IDF[i]);
1537 if (F != MDF.end())
1538 IDF.insert(F->second.begin(), F->second.end());
1539 }
1540
1541 // Get the register references that are reachable from this block.
1542 RegisterSet &Refs = RefM[BA.Id];
1543 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001544 NodeAddr<BlockNode*> DBA = findBlock(DB);
1545 const RegisterSet &RefsD = RefM[DBA.Id];
1546 Refs.insert(RefsD.begin(), RefsD.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001547 }
1548
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001549 // Finally, add the set of defs to each block in the iterated dominance
1550 // frontier.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001551 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001552 NodeAddr<BlockNode*> DBA = findBlock(DB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001553 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1554 }
1555}
1556
1557// Given the locations of phi nodes in the map PhiM, create the phi nodes
1558// that are located in the block node BA.
1559void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1560 NodeAddr<BlockNode*> BA) {
1561 // Check if this blocks has any DF defs, i.e. if there are any defs
1562 // that this block is in the iterated dominance frontier of.
1563 auto HasDF = PhiM.find(BA.Id);
1564 if (HasDF == PhiM.end() || HasDF->second.empty())
1565 return;
1566
1567 // First, remove all R in Refs in such that there exists T in Refs
1568 // such that T covers R. In other words, only leave those refs that
1569 // are not covered by another ref (i.e. maximal with respect to covering).
1570
1571 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001572 for (RegisterRef I : RRs)
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001573 if (I != RR && RegisterAggr::isCoverOf(I, RR, TRI))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001574 RR = I;
1575 return RR;
1576 };
1577
1578 RegisterSet MaxDF;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001579 for (RegisterRef I : HasDF->second)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001580 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1581
1582 std::vector<RegisterRef> MaxRefs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001583 RegisterSet &RefB = RefM[BA.Id];
1584 for (RegisterRef I : MaxDF)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001585 MaxRefs.push_back(MaxCoverIn(I, RefB));
1586
1587 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1588 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1589 // and add a def for each S in the closure.
1590
1591 // Sort the refs so that the phis will be created in a deterministic order.
1592 std::sort(MaxRefs.begin(), MaxRefs.end());
1593 // Remove duplicates.
1594 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1595 MaxRefs.erase(NewEnd, MaxRefs.end());
1596
1597 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1598 std::vector<unsigned> &Closure) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001599 for (unsigned I : Closure)
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001600 if (alias(RR, MaxRefs[I]))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001601 return true;
1602 return false;
1603 };
1604
1605 // Prepare a list of NodeIds of the block's predecessors.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001606 NodeList Preds;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001607 const MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001608 for (MachineBasicBlock *PB : MBB->predecessors())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001609 Preds.push_back(findBlock(PB));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001610
1611 while (!MaxRefs.empty()) {
1612 // Put the first element in the closure, and then add all subsequent
1613 // elements from MaxRefs to it, if they alias at least one element
1614 // already in the closure.
1615 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1616 std::vector<unsigned> ClosureIdx = { 0 };
1617 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1618 if (Aliased(MaxRefs[i], ClosureIdx))
1619 ClosureIdx.push_back(i);
1620
1621 // Build a phi for the closure.
1622 unsigned CS = ClosureIdx.size();
1623 NodeAddr<PhiNode*> PA = newPhi(BA);
1624
1625 // Add defs.
1626 for (unsigned X = 0; X != CS; ++X) {
1627 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1628 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1629 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1630 PA.Addr->addMember(DA, *this);
1631 }
1632 // Add phi uses.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001633 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001634 for (unsigned X = 0; X != CS; ++X) {
1635 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1636 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1637 PA.Addr->addMember(PUA, *this);
1638 }
1639 }
1640
1641 // Erase from MaxRefs all elements in the closure.
1642 auto Begin = MaxRefs.begin();
1643 for (unsigned i = ClosureIdx.size(); i != 0; --i)
1644 MaxRefs.erase(Begin + ClosureIdx[i-1]);
1645 }
1646}
1647
1648// Remove any unneeded phi nodes that were created during the build process.
1649void DataFlowGraph::removeUnusedPhis() {
1650 // This will remove unused phis, i.e. phis where each def does not reach
1651 // any uses or other defs. This will not detect or remove circular phi
1652 // chains that are otherwise dead. Unused/dead phis are created during
1653 // the build process and this function is intended to remove these cases
1654 // that are easily determinable to be unnecessary.
1655
1656 SetVector<NodeId> PhiQ;
1657 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1658 for (auto P : BA.Addr->members_if(IsPhi, *this))
1659 PhiQ.insert(P.Id);
1660 }
1661
1662 static auto HasUsedDef = [](NodeList &Ms) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001663 for (NodeAddr<NodeBase*> M : Ms) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001664 if (M.Addr->getKind() != NodeAttrs::Def)
1665 continue;
1666 NodeAddr<DefNode*> DA = M;
1667 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1668 return true;
1669 }
1670 return false;
1671 };
1672
1673 // Any phi, if it is removed, may affect other phis (make them dead).
1674 // For each removed phi, collect the potentially affected phis and add
1675 // them back to the queue.
1676 while (!PhiQ.empty()) {
1677 auto PA = addr<PhiNode*>(PhiQ[0]);
1678 PhiQ.remove(PA.Id);
1679 NodeList Refs = PA.Addr->members(*this);
1680 if (HasUsedDef(Refs))
1681 continue;
1682 for (NodeAddr<RefNode*> RA : Refs) {
1683 if (NodeId RD = RA.Addr->getReachingDef()) {
1684 auto RDA = addr<DefNode*>(RD);
1685 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1686 if (IsPhi(OA))
1687 PhiQ.insert(OA.Id);
1688 }
1689 if (RA.Addr->isDef())
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001690 unlinkDef(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001691 else
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001692 unlinkUse(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001693 }
1694 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1695 BA.Addr->removeMember(PA, *this);
1696 }
1697}
1698
1699// For a given reference node TA in an instruction node IA, connect the
1700// reaching def of TA to the appropriate def node. Create any shadow nodes
1701// as appropriate.
1702template <typename T>
1703void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1704 DefStack &DS) {
1705 if (DS.empty())
1706 return;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001707 RegisterRef RR = TA.Addr->getRegRef(*this);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001708 NodeAddr<T> TAP;
1709
1710 // References from the def stack that have been examined so far.
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001711 RegisterAggr Defs(TRI);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001712
1713 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001714 RegisterRef QR = I->Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001715
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001716 // Skip all defs that are aliased to any of the defs that we have already
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001717 // seen. If this completes a cover of RR, stop the stack traversal.
1718 bool Alias = Defs.hasAliasOf(QR);
1719 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1720 if (Alias) {
1721 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001722 break;
1723 continue;
1724 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001725
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001726 // The reaching def.
1727 NodeAddr<DefNode*> RDA = *I;
1728
1729 // Pick the reached node.
1730 if (TAP.Id == 0) {
1731 TAP = TA;
1732 } else {
1733 // Mark the existing ref as "shadow" and create a new shadow.
1734 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1735 TAP = getNextShadow(IA, TAP, true);
1736 }
1737
1738 // Create the link.
1739 TAP.Addr->linkToDef(TAP.Id, RDA);
1740
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001741 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001742 break;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001743 }
1744}
1745
1746// Create data-flow links for all reference nodes in the statement node SA.
1747void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001748#ifndef NDEBUG
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001749 RegisterSet Defs;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001750#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001751
1752 // Link all nodes (upwards in the data-flow) with their reaching defs.
1753 for (NodeAddr<RefNode*> RA : SA.Addr->members(*this)) {
1754 uint16_t Kind = RA.Addr->getKind();
1755 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001756 RegisterRef RR = RA.Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001757#ifndef NDEBUG
1758 // Do not expect multiple defs of the same reference.
1759 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001760 Defs.insert(RR);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001761#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001762
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001763 auto F = DefM.find(RR.Reg);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001764 if (F == DefM.end())
1765 continue;
1766 DefStack &DS = F->second;
1767 if (Kind == NodeAttrs::Use)
1768 linkRefUp<UseNode*>(SA, RA, DS);
1769 else if (Kind == NodeAttrs::Def)
1770 linkRefUp<DefNode*>(SA, RA, DS);
1771 else
1772 llvm_unreachable("Unexpected node in instruction");
1773 }
1774}
1775
1776// Create data-flow links for all instructions in the block node BA. This
1777// will include updating any phi nodes in BA.
1778void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1779 // Push block delimiters.
1780 markBlock(BA.Id, DefM);
1781
Krzysztof Parzyszek89757432016-05-05 22:00:44 +00001782 assert(BA.Addr && "block node address is needed to create a data-flow link");
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001783 // For each non-phi instruction in the block, link all the defs and uses
1784 // to their reaching defs. For any member of the block (including phis),
1785 // push the defs on the corresponding stacks.
1786 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1787 // Ignore phi nodes here. They will be linked part by part from the
1788 // predecessors.
1789 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1790 linkStmtRefs(DefM, IA);
1791
1792 // Push the definitions on the stack.
1793 pushDefs(IA, DefM);
1794 }
1795
1796 // Recursively process all children in the dominator tree.
1797 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1798 for (auto I : *N) {
1799 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001800 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001801 linkBlockRefs(DefM, SBA);
1802 }
1803
1804 // Link the phi uses from the successor blocks.
1805 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1806 if (NA.Addr->getKind() != NodeAttrs::Use)
1807 return false;
1808 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1809 NodeAddr<PhiUseNode*> PUA = NA;
1810 return PUA.Addr->getPredecessor() == BA.Id;
1811 };
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001812
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001813 RegisterSet EHLiveIns = getLandingPadLiveIns();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001814 MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001815
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001816 for (MachineBasicBlock *SB : MBB->successors()) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001817 bool IsEHPad = SB->isEHPad();
1818 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001819 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001820 // Do not link phi uses for landing pad live-ins.
1821 if (IsEHPad) {
1822 // Find what register this phi is for.
1823 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1824 assert(RA.Id != 0);
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001825 if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001826 continue;
1827 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001828 // Go over each phi use associated with MBB, and link it.
1829 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1830 NodeAddr<PhiUseNode*> PUA = U;
Krzysztof Parzyszek445bd122016-10-14 17:57:55 +00001831 RegisterRef RR = PUA.Addr->getRegRef(*this);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001832 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001833 }
1834 }
1835 }
1836
1837 // Pop all defs from this block from the definition stacks.
1838 releaseBlock(BA.Id, DefM);
1839}
1840
1841// Remove the use node UA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001842void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001843 NodeId RD = UA.Addr->getReachingDef();
1844 NodeId Sib = UA.Addr->getSibling();
1845
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001846 if (RD == 0) {
1847 assert(Sib == 0);
1848 return;
1849 }
1850
1851 auto RDA = addr<DefNode*>(RD);
1852 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1853 if (TA.Id == UA.Id) {
1854 RDA.Addr->setReachedUse(Sib);
1855 return;
1856 }
1857
1858 while (TA.Id != 0) {
1859 NodeId S = TA.Addr->getSibling();
1860 if (S == UA.Id) {
1861 TA.Addr->setSibling(UA.Addr->getSibling());
1862 return;
1863 }
1864 TA = addr<UseNode*>(S);
1865 }
1866}
1867
1868// Remove the def node DA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001869void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001870 //
1871 // RD
1872 // | reached
1873 // | def
1874 // :
1875 // .
1876 // +----+
1877 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1878 // +----+
1879 // | | reached
1880 // | : def
1881 // | .
1882 // | ... : Siblings (defs)
1883 // |
1884 // : reached
1885 // . use
1886 // ... : sibling chain of reached uses
1887
1888 NodeId RD = DA.Addr->getReachingDef();
1889
1890 // Visit all siblings of the reached def and reset their reaching defs.
1891 // Also, defs reached by DA are now "promoted" to being reached by RD,
1892 // so all of them will need to be spliced into the sibling chain where
1893 // DA belongs.
1894 auto getAllNodes = [this] (NodeId N) -> NodeList {
1895 NodeList Res;
1896 while (N) {
1897 auto RA = addr<RefNode*>(N);
1898 // Keep the nodes in the exact sibling order.
1899 Res.push_back(RA);
1900 N = RA.Addr->getSibling();
1901 }
1902 return Res;
1903 };
1904 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1905 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1906
1907 if (RD == 0) {
1908 for (NodeAddr<RefNode*> I : ReachedDefs)
1909 I.Addr->setSibling(0);
1910 for (NodeAddr<RefNode*> I : ReachedUses)
1911 I.Addr->setSibling(0);
1912 }
1913 for (NodeAddr<DefNode*> I : ReachedDefs)
1914 I.Addr->setReachingDef(RD);
1915 for (NodeAddr<UseNode*> I : ReachedUses)
1916 I.Addr->setReachingDef(RD);
1917
1918 NodeId Sib = DA.Addr->getSibling();
1919 if (RD == 0) {
1920 assert(Sib == 0);
1921 return;
1922 }
1923
1924 // Update the reaching def node and remove DA from the sibling list.
1925 auto RDA = addr<DefNode*>(RD);
1926 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1927 if (TA.Id == DA.Id) {
1928 // If DA is the first reached def, just update the RD's reached def
1929 // to the DA's sibling.
1930 RDA.Addr->setReachedDef(Sib);
1931 } else {
1932 // Otherwise, traverse the sibling list of the reached defs and remove
1933 // DA from it.
1934 while (TA.Id != 0) {
1935 NodeId S = TA.Addr->getSibling();
1936 if (S == DA.Id) {
1937 TA.Addr->setSibling(Sib);
1938 break;
1939 }
1940 TA = addr<DefNode*>(S);
1941 }
1942 }
1943
1944 // Splice the DA's reached defs into the RDA's reached def chain.
1945 if (!ReachedDefs.empty()) {
1946 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1947 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1948 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1949 }
1950 // Splice the DA's reached uses into the RDA's reached use chain.
1951 if (!ReachedUses.empty()) {
1952 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1953 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1954 RDA.Addr->setReachedUse(ReachedUses.front().Id);
1955 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001956}