blob: 68c3f4387d20cc5c7a8b066b25c385bc7afb13fe [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
Tony Linthicum1213a7a2011-12-12 21:14:40 +000014#include "HexagonInstrInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000015#include "Hexagon.h"
Craig Topperb25fda92012-03-17 18:46:09 +000016#include "HexagonRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000017#include "HexagonSubtarget.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000018#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000020#include "llvm/CodeGen/DFAPacketizer.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000021#include "llvm/CodeGen/MachineFrameInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000023#include "llvm/CodeGen/MachineMemOperand.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000025#include "llvm/CodeGen/PseudoSourceValue.h"
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000026#include "llvm/MC/MCAsmInfo.h"
Jyotsna Verma5ed51812013-05-01 21:37:34 +000027#include "llvm/Support/Debug.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000028#include "llvm/Support/MathExtras.h"
Reid Kleckner1c76f1552013-05-03 00:54:56 +000029#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekaa935752015-11-24 15:11:13 +000030#include <cctype>
Tony Linthicum1213a7a2011-12-12 21:14:40 +000031
Tony Linthicum1213a7a2011-12-12 21:14:40 +000032using namespace llvm;
33
Chandler Carruthe96dd892014-04-21 22:55:11 +000034#define DEBUG_TYPE "hexagon-instrinfo"
35
Chandler Carruthd174b722014-04-22 02:03:14 +000036#define GET_INSTRINFO_CTOR_DTOR
37#define GET_INSTRMAP_INFO
38#include "HexagonGenInstrInfo.inc"
39#include "HexagonGenDFAPacketizer.inc"
40
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000041using namespace llvm;
42
43static cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
44 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
45 "packetization boundary."));
46
47static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
48 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
49
50static cl::opt<bool> EnableTimingClassLatency(
51 "enable-timing-class-latency", cl::Hidden, cl::init(false),
52 cl::desc("Enable timing class latency"));
53
54static cl::opt<bool> EnableALUForwarding(
55 "enable-alu-forwarding", cl::Hidden, cl::init(true),
56 cl::desc("Enable vec alu forwarding"));
57
58static cl::opt<bool> EnableACCForwarding(
59 "enable-acc-forwarding", cl::Hidden, cl::init(true),
60 cl::desc("Enable vec acc forwarding"));
61
62static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
63 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
64
Tony Linthicum1213a7a2011-12-12 21:14:40 +000065///
66/// Constants for Hexagon instructions.
67///
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000068const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
69const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
70const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
71const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
Tony Linthicum1213a7a2011-12-12 21:14:40 +000072const int Hexagon_MEMW_OFFSET_MAX = 4095;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000073const int Hexagon_MEMW_OFFSET_MIN = -4096;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000074const int Hexagon_MEMD_OFFSET_MAX = 8191;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000075const int Hexagon_MEMD_OFFSET_MIN = -8192;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000076const int Hexagon_MEMH_OFFSET_MAX = 2047;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000077const int Hexagon_MEMH_OFFSET_MIN = -2048;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000078const int Hexagon_MEMB_OFFSET_MAX = 1023;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000079const int Hexagon_MEMB_OFFSET_MIN = -1024;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000080const int Hexagon_ADDI_OFFSET_MAX = 32767;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000081const int Hexagon_ADDI_OFFSET_MIN = -32768;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000082const int Hexagon_MEMD_AUTOINC_MAX = 56;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000083const int Hexagon_MEMD_AUTOINC_MIN = -64;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000084const int Hexagon_MEMW_AUTOINC_MAX = 28;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000085const int Hexagon_MEMW_AUTOINC_MIN = -32;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000086const int Hexagon_MEMH_AUTOINC_MAX = 14;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000087const int Hexagon_MEMH_AUTOINC_MIN = -16;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000088const int Hexagon_MEMB_AUTOINC_MAX = 7;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000089const int Hexagon_MEMB_AUTOINC_MIN = -8;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000090const int Hexagon_MEMV_AUTOINC_MAX = 192;
91const int Hexagon_MEMV_AUTOINC_MIN = -256;
92const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
93const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000094
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000095// Pin the vtable to this file.
96void HexagonInstrInfo::anchor() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +000097
98HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
Eric Christopherc4d31402015-03-10 23:45:55 +000099 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000100 RI() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000101
102
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000103static bool isIntRegForSubInst(unsigned Reg) {
104 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
105 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000106}
107
108
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000109static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
110 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
111 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000112}
113
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000114
115/// Calculate number of instructions excluding the debug instructions.
116static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
117 MachineBasicBlock::const_instr_iterator MIE) {
118 unsigned Count = 0;
119 for (; MIB != MIE; ++MIB) {
120 if (!MIB->isDebugValue())
121 ++Count;
122 }
123 return Count;
124}
125
126
127/// Find the hardware loop instruction used to set-up the specified loop.
128/// On Hexagon, we have two instructions used to set-up the hardware loop
129/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
130/// to indicate the end of a loop.
131static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
132 SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000133 int LOOPi;
134 int LOOPr;
135 if (EndLoopOp == Hexagon::ENDLOOP0) {
136 LOOPi = Hexagon::J2_loop0i;
137 LOOPr = Hexagon::J2_loop0r;
138 } else { // EndLoopOp == Hexagon::EndLOOP1
139 LOOPi = Hexagon::J2_loop1i;
140 LOOPr = Hexagon::J2_loop1r;
141 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000142
Brendon Cahoondf43e682015-05-08 16:16:29 +0000143 // The loop set-up instruction will be in a predecessor block
144 for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
145 PE = BB->pred_end(); PB != PE; ++PB) {
146 // If this has been visited, already skip it.
147 if (!Visited.insert(*PB).second)
148 continue;
149 if (*PB == BB)
150 continue;
151 for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
152 E = (*PB)->instr_rend(); I != E; ++I) {
153 int Opc = I->getOpcode();
154 if (Opc == LOOPi || Opc == LOOPr)
155 return &*I;
156 // We've reached a different loop, which means the loop0 has been removed.
157 if (Opc == EndLoopOp)
158 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000159 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000160 // Check the predecessors for the LOOP instruction.
161 MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
162 if (loop)
163 return loop;
164 }
165 return 0;
166}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000167
Brendon Cahoondf43e682015-05-08 16:16:29 +0000168
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000169/// Gather register def/uses from MI.
170/// This treats possible (predicated) defs as actually happening ones
171/// (conservatively).
172static inline void parseOperands(const MachineInstr *MI,
173 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
174 Defs.clear();
175 Uses.clear();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000176
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178 const MachineOperand &MO = MI->getOperand(i);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000179
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000180 if (!MO.isReg())
181 continue;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000182
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000183 unsigned Reg = MO.getReg();
184 if (!Reg)
185 continue;
186
187 if (MO.isUse())
188 Uses.push_back(MO.getReg());
189
190 if (MO.isDef())
191 Defs.push_back(MO.getReg());
192 }
193}
194
195
196// Position dependent, so check twice for swap.
197static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
198 switch (Ga) {
199 case HexagonII::HSIG_None:
200 default:
201 return false;
202 case HexagonII::HSIG_L1:
203 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
204 case HexagonII::HSIG_L2:
205 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
206 Gb == HexagonII::HSIG_A);
207 case HexagonII::HSIG_S1:
208 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
209 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
210 case HexagonII::HSIG_S2:
211 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
212 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
213 Gb == HexagonII::HSIG_A);
214 case HexagonII::HSIG_A:
215 return (Gb == HexagonII::HSIG_A);
216 case HexagonII::HSIG_Compound:
217 return (Gb == HexagonII::HSIG_Compound);
218 }
219 return false;
220}
221
222
223
224/// isLoadFromStackSlot - If the specified machine instruction is a direct
225/// load from a stack slot, return the virtual or physical register number of
226/// the destination along with the FrameIndex of the loaded stack slot. If
227/// not, return 0. This predicate must return 0 if the instruction has
228/// any side effects other than loading from the stack slot.
229unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
230 int &FrameIndex) const {
231 switch (MI->getOpcode()) {
232 default: break;
233 case Hexagon::L2_loadri_io:
234 case Hexagon::L2_loadrd_io:
235 case Hexagon::L2_loadrh_io:
236 case Hexagon::L2_loadrb_io:
237 case Hexagon::L2_loadrub_io:
238 if (MI->getOperand(2).isFI() &&
239 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
240 FrameIndex = MI->getOperand(2).getIndex();
241 return MI->getOperand(0).getReg();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000242 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000243 break;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000244 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000245 return 0;
246}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000247
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000248
249/// isStoreToStackSlot - If the specified machine instruction is a direct
250/// store to a stack slot, return the virtual or physical register number of
251/// the source reg along with the FrameIndex of the loaded stack slot. If
252/// not, return 0. This predicate must return 0 if the instruction has
253/// any side effects other than storing to the stack slot.
254unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
255 int &FrameIndex) const {
256 switch (MI->getOpcode()) {
257 default: break;
258 case Hexagon::S2_storeri_io:
259 case Hexagon::S2_storerd_io:
260 case Hexagon::S2_storerh_io:
261 case Hexagon::S2_storerb_io:
262 if (MI->getOperand(2).isFI() &&
263 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
264 FrameIndex = MI->getOperand(0).getIndex();
265 return MI->getOperand(2).getReg();
266 }
267 break;
268 }
269 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000270}
271
272
Brendon Cahoondf43e682015-05-08 16:16:29 +0000273/// This function can analyze one/two way branching only and should (mostly) be
274/// called by target independent side.
275/// First entry is always the opcode of the branching instruction, except when
276/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
277/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
278/// e.g. Jump_c p will have
279/// Cond[0] = Jump_c
280/// Cond[1] = p
281/// HW-loop ENDLOOP:
282/// Cond[0] = ENDLOOP
283/// Cond[1] = MBB
284/// New value jump:
285/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
286/// Cond[1] = R
287/// Cond[2] = Imm
Brendon Cahoondf43e682015-05-08 16:16:29 +0000288///
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000289bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
290 MachineBasicBlock *&TBB,
Brendon Cahoondf43e682015-05-08 16:16:29 +0000291 MachineBasicBlock *&FBB,
292 SmallVectorImpl<MachineOperand> &Cond,
293 bool AllowModify) const {
Craig Topper062a2ba2014-04-25 05:30:21 +0000294 TBB = nullptr;
295 FBB = nullptr;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000296 Cond.clear();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000297
298 // If the block has no terminators, it just falls into the block after it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000299 MachineBasicBlock::instr_iterator I = MBB.instr_end();
300 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000301 return false;
302
303 // A basic block may looks like this:
304 //
305 // [ insn
306 // EH_LABEL
307 // insn
308 // insn
309 // insn
310 // EH_LABEL
311 // insn ]
312 //
313 // It has two succs but does not have a terminator
314 // Don't know how to handle it.
315 do {
316 --I;
317 if (I->isEHLabel())
Brendon Cahoondf43e682015-05-08 16:16:29 +0000318 // Don't analyze EH branches.
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000319 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000320 } while (I != MBB.instr_begin());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000321
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000322 I = MBB.instr_end();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000323 --I;
324
325 while (I->isDebugValue()) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000326 if (I == MBB.instr_begin())
327 return false;
328 --I;
329 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000330
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000331 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
332 I->getOperand(0).isMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000333 // Delete the J2_jump if it's equivalent to a fall-through.
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000334 if (AllowModify && JumpToBlock &&
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000335 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
336 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
337 I->eraseFromParent();
338 I = MBB.instr_end();
339 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000340 return false;
341 --I;
342 }
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000343 if (!isUnpredicatedTerminator(&*I))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000344 return false;
345
346 // Get the last instruction in the block.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000347 MachineInstr *LastInst = &*I;
Craig Topper062a2ba2014-04-25 05:30:21 +0000348 MachineInstr *SecondLastInst = nullptr;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000349 // Find one more terminator if present.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000350 for (;;) {
351 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000352 if (!SecondLastInst)
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000353 SecondLastInst = &*I;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000354 else
355 // This is a third branch.
356 return true;
357 }
358 if (I == MBB.instr_begin())
359 break;
360 --I;
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000361 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000362
363 int LastOpcode = LastInst->getOpcode();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000364 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
365 // If the branch target is not a basic block, it could be a tail call.
366 // (It is, if the target is a function.)
367 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
368 return true;
369 if (SecLastOpcode == Hexagon::J2_jump &&
370 !SecondLastInst->getOperand(0).isMBB())
371 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000372
373 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000374 bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000375
376 // If there is only one terminator instruction, process it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000377 if (LastInst && !SecondLastInst) {
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000378 if (LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000379 TBB = LastInst->getOperand(0).getMBB();
380 return false;
381 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000382 if (isEndLoopN(LastOpcode)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000383 TBB = LastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000384 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000385 Cond.push_back(LastInst->getOperand(0));
386 return false;
387 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000388 if (LastOpcodeHasJMP_c) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000389 TBB = LastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000390 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000391 Cond.push_back(LastInst->getOperand(0));
392 return false;
393 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000394 // Only supporting rr/ri versions of new-value jumps.
395 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
396 TBB = LastInst->getOperand(2).getMBB();
397 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
398 Cond.push_back(LastInst->getOperand(0));
399 Cond.push_back(LastInst->getOperand(1));
400 return false;
401 }
402 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
403 << " with one jump\n";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000404 // Otherwise, don't know what this is.
405 return true;
406 }
407
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000408 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000409 bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000410 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000411 TBB = SecondLastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000412 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000413 Cond.push_back(SecondLastInst->getOperand(0));
414 FBB = LastInst->getOperand(0).getMBB();
415 return false;
416 }
417
Brendon Cahoondf43e682015-05-08 16:16:29 +0000418 // Only supporting rr/ri versions of new-value jumps.
419 if (SecLastOpcodeHasNVJump &&
420 (SecondLastInst->getNumExplicitOperands() == 3) &&
421 (LastOpcode == Hexagon::J2_jump)) {
422 TBB = SecondLastInst->getOperand(2).getMBB();
423 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
424 Cond.push_back(SecondLastInst->getOperand(0));
425 Cond.push_back(SecondLastInst->getOperand(1));
426 FBB = LastInst->getOperand(0).getMBB();
427 return false;
428 }
429
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000430 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
431 // executed, so remove it.
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000432 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000433 TBB = SecondLastInst->getOperand(0).getMBB();
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000434 I = LastInst->getIterator();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000435 if (AllowModify)
436 I->eraseFromParent();
437 return false;
438 }
439
Brendon Cahoondf43e682015-05-08 16:16:29 +0000440 // If the block ends with an ENDLOOP, and J2_jump, handle it.
441 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000442 TBB = SecondLastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000443 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000444 Cond.push_back(SecondLastInst->getOperand(0));
445 FBB = LastInst->getOperand(0).getMBB();
446 return false;
447 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000448 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
449 << " with two jumps";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000450 // Otherwise, can't handle this.
451 return true;
452}
453
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000454
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000455unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000456 DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000457 MachineBasicBlock::iterator I = MBB.end();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000458 unsigned Count = 0;
459 while (I != MBB.begin()) {
460 --I;
461 if (I->isDebugValue())
462 continue;
463 // Only removing branches from end of MBB.
464 if (!I->isBranch())
465 return Count;
466 if (Count && (I->getOpcode() == Hexagon::J2_jump))
467 llvm_unreachable("Malformed basic block: unconditional branch not last");
468 MBB.erase(&MBB.back());
469 I = MBB.end();
470 ++Count;
Krzysztof Parzyszek78cc36f2015-03-18 15:56:43 +0000471 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000472 return Count;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000473}
474
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000475
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000476unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
477 MachineBasicBlock *TBB, MachineBasicBlock *FBB,
478 ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
479 unsigned BOpc = Hexagon::J2_jump;
480 unsigned BccOpc = Hexagon::J2_jumpt;
481 assert(validateBranchCond(Cond) && "Invalid branching condition");
482 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
483
484 // Check if ReverseBranchCondition has asked to reverse this branch
485 // If we want to reverse the branch an odd number of times, we want
486 // J2_jumpf.
487 if (!Cond.empty() && Cond[0].isImm())
488 BccOpc = Cond[0].getImm();
489
490 if (!FBB) {
491 if (Cond.empty()) {
492 // Due to a bug in TailMerging/CFG Optimization, we need to add a
493 // special case handling of a predicated jump followed by an
494 // unconditional jump. If not, Tail Merging and CFG Optimization go
495 // into an infinite loop.
496 MachineBasicBlock *NewTBB, *NewFBB;
497 SmallVector<MachineOperand, 4> Cond;
498 MachineInstr *Term = MBB.getFirstTerminator();
499 if (Term != MBB.end() && isPredicated(Term) &&
500 !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
501 MachineBasicBlock *NextBB = &*++MBB.getIterator();
502 if (NewTBB == NextBB) {
503 ReverseBranchCondition(Cond);
504 RemoveBranch(MBB);
505 return InsertBranch(MBB, TBB, nullptr, Cond, DL);
506 }
507 }
508 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
509 } else if (isEndLoopN(Cond[0].getImm())) {
510 int EndLoopOp = Cond[0].getImm();
511 assert(Cond[1].isMBB());
512 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
513 // Check for it, and change the BB target if needed.
514 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
515 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
516 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
517 Loop->getOperand(0).setMBB(TBB);
518 // Add the ENDLOOP after the finding the LOOP0.
519 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
520 } else if (isNewValueJump(Cond[0].getImm())) {
521 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
522 // New value jump
523 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
524 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
525 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
526 DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
527 if (Cond[2].isReg()) {
528 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
529 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
530 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
531 } else if(Cond[2].isImm()) {
532 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
533 addImm(Cond[2].getImm()).addMBB(TBB);
534 } else
535 llvm_unreachable("Invalid condition for branching");
536 } else {
537 assert((Cond.size() == 2) && "Malformed cond vector");
538 const MachineOperand &RO = Cond[1];
539 unsigned Flags = getUndefRegState(RO.isUndef());
540 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
541 }
542 return 1;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000543 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000544 assert((!Cond.empty()) &&
545 "Cond. cannot be empty when multiple branchings are required");
546 assert((!isNewValueJump(Cond[0].getImm())) &&
547 "NV-jump cannot be inserted with another branch");
548 // Special case for hardware loops. The condition is a basic block.
549 if (isEndLoopN(Cond[0].getImm())) {
550 int EndLoopOp = Cond[0].getImm();
551 assert(Cond[1].isMBB());
552 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
553 // Check for it, and change the BB target if needed.
554 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
555 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
556 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
557 Loop->getOperand(0).setMBB(TBB);
558 // Add the ENDLOOP after the finding the LOOP0.
559 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
560 } else {
561 const MachineOperand &RO = Cond[1];
562 unsigned Flags = getUndefRegState(RO.isUndef());
563 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000564 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000565 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000566
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000567 return 2;
568}
569
570
571bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
572 unsigned NumCycles, unsigned ExtraPredCycles,
573 BranchProbability Probability) const {
574 return nonDbgBBSize(&MBB) <= 3;
575}
576
577
578bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
579 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
580 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
581 const {
582 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
583}
584
585
586bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
587 unsigned NumInstrs, BranchProbability Probability) const {
588 return NumInstrs <= 4;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000589}
590
591
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000592void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000593 MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
594 unsigned SrcReg, bool KillSrc) const {
595 auto &HRI = getRegisterInfo();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000596 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000597 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000598 return;
599 }
600 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000601 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000602 return;
603 }
604 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
605 // Map Pd = Ps to Pd = or(Ps, Ps).
Colin LeMahieu5cf56322014-12-08 23:55:43 +0000606 BuildMI(MBB, I, DL, get(Hexagon::C2_or),
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000607 DestReg).addReg(SrcReg).addReg(SrcReg);
608 return;
609 }
Sirish Pande8bb97452012-05-12 05:54:15 +0000610 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
611 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000612 // We can have an overlap between single and double reg: r1:0 = r0.
613 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
614 // r1:0 = r0
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000615 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000616 Hexagon::subreg_hireg))).addImm(0);
617 } else {
618 // r1:0 = r1 or no overlap.
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000619 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000620 Hexagon::subreg_loreg))).addReg(SrcReg);
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000621 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000622 Hexagon::subreg_hireg))).addImm(0);
623 }
624 return;
625 }
Colin LeMahieu402f7722014-12-19 18:56:10 +0000626 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Sirish Pande8bb97452012-05-12 05:54:15 +0000627 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Colin LeMahieu0f850bd2014-12-19 20:29:29 +0000628 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000629 return;
Sirish Pande30804c22012-02-15 18:52:27 +0000630 }
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000631 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
632 Hexagon::IntRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000633 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000634 addReg(SrcReg, getKillRegState(KillSrc));
635 return;
636 }
637 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
638 Hexagon::PredRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000639 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000640 addReg(SrcReg, getKillRegState(KillSrc));
641 return;
642 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000643 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
644 Hexagon::IntRegsRegClass.contains(DestReg)) {
645 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
646 addReg(SrcReg, getKillRegState(KillSrc));
647 return;
648 }
649 if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
650 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
651 addReg(SrcReg, getKillRegState(KillSrc));
652 return;
653 }
654 if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
655 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
656 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
657 getKillRegState(KillSrc)).
658 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
659 getKillRegState(KillSrc));
660 return;
661 }
662 if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
663 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
664 addReg(SrcReg).
665 addReg(SrcReg, getKillRegState(KillSrc));
666 return;
667 }
668 if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
669 Hexagon::VectorRegsRegClass.contains(DestReg)) {
670 llvm_unreachable("Unimplemented pred to vec");
671 return;
672 }
673 if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
674 Hexagon::VectorRegsRegClass.contains(SrcReg)) {
675 llvm_unreachable("Unimplemented vec to pred");
676 return;
677 }
678 if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
679 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
680 HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
681 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
682 getKillRegState(KillSrc));
683 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
684 HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
685 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
686 getKillRegState(KillSrc));
687 return;
688 }
Sirish Pande30804c22012-02-15 18:52:27 +0000689
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000690#ifndef NDEBUG
691 // Show the invalid registers to ease debugging.
692 dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
693 << ": " << PrintReg(DestReg, &HRI)
694 << " = " << PrintReg(SrcReg, &HRI) << '\n';
695#endif
Sirish Pande30804c22012-02-15 18:52:27 +0000696 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000697}
698
699
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000700void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
701 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
702 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000703 DebugLoc DL = MBB.findDebugLoc(I);
704 MachineFunction &MF = *MBB.getParent();
705 MachineFrameInfo &MFI = *MF.getFrameInfo();
706 unsigned Align = MFI.getObjectAlignment(FI);
707
Alex Lorenze40c8a22015-08-11 23:09:45 +0000708 MachineMemOperand *MMO = MF.getMachineMemOperand(
709 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
710 MFI.getObjectSize(FI), Align);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000711
Craig Topperc7242e02012-04-20 07:30:17 +0000712 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000713 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000714 .addFrameIndex(FI).addImm(0)
715 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000716 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000717 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000718 .addFrameIndex(FI).addImm(0)
719 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000720 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000721 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
722 .addFrameIndex(FI).addImm(0)
723 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
724 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000725 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000726 }
727}
728
729
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000730void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
731 MachineBasicBlock::iterator I, unsigned DestReg, int FI,
732 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000733 DebugLoc DL = MBB.findDebugLoc(I);
734 MachineFunction &MF = *MBB.getParent();
735 MachineFrameInfo &MFI = *MF.getFrameInfo();
736 unsigned Align = MFI.getObjectAlignment(FI);
737
Alex Lorenze40c8a22015-08-11 23:09:45 +0000738 MachineMemOperand *MMO = MF.getMachineMemOperand(
739 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
740 MFI.getObjectSize(FI), Align);
Craig Topperc7242e02012-04-20 07:30:17 +0000741 if (RC == &Hexagon::IntRegsRegClass) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +0000742 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000743 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000744 } else if (RC == &Hexagon::DoubleRegsRegClass) {
Colin LeMahieu947cd702014-12-23 20:44:59 +0000745 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000746 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000747 } else if (RC == &Hexagon::PredRegsRegClass) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000748 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
749 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
750 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000751 llvm_unreachable("Can't store this register to stack slot");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000752 }
753}
754
755
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000756/// expandPostRAPseudo - This function is called for all pseudo instructions
757/// that remain after register allocation. Many pseudo instructions are
758/// created to help register allocation. This is the place to convert them
759/// into real instructions. The target can edit MI in place, or it can insert
760/// new instructions and erase MI. The function should return true if
761/// anything was changed.
762bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
763 const {
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000764 const HexagonRegisterInfo &HRI = getRegisterInfo();
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000765 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000766 MachineBasicBlock &MBB = *MI->getParent();
767 DebugLoc DL = MI->getDebugLoc();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000768 unsigned Opc = MI->getOpcode();
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000769 const unsigned VecOffset = 1;
770 bool Is128B = false;
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000771
772 switch (Opc) {
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000773 case Hexagon::ALIGNA:
774 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000775 .addReg(HRI.getFrameRegister())
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000776 .addImm(-MI->getOperand(1).getImm());
777 MBB.erase(MI);
778 return true;
Krzysztof Parzyszek195dc8d2015-11-26 04:33:11 +0000779 case Hexagon::STrivv_indexed_128B:
780 Is128B = true;
781 case Hexagon::STrivv_indexed: {
782 unsigned SrcReg = MI->getOperand(2).getReg();
783 unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
784 unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
785 unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
786 : Hexagon::V6_vS32b_ai;
787 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
788 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
789 .addOperand(MI->getOperand(0))
790 .addImm(MI->getOperand(1).getImm())
791 .addReg(SrcSubLo)
792 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
793 MI1New->getOperand(0).setIsKill(false);
794 BuildMI(MBB, MI, DL, get(NewOpcd))
795 .addOperand(MI->getOperand(0))
796 // The Vectors are indexed in multiples of vector size.
797 .addImm(MI->getOperand(1).getImm()+Offset)
798 .addReg(SrcSubHi)
799 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
800 MBB.erase(MI);
801 return true;
802 }
803 case Hexagon::LDrivv_pseudo_V6_128B:
804 case Hexagon::LDrivv_indexed_128B:
805 Is128B = true;
806 case Hexagon::LDrivv_pseudo_V6:
807 case Hexagon::LDrivv_indexed: {
808 unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
809 : Hexagon::V6_vL32b_ai;
810 unsigned DstReg = MI->getOperand(0).getReg();
811 unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
812 MachineInstr *MI1New =
813 BuildMI(MBB, MI, DL, get(NewOpcd),
814 HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
815 .addOperand(MI->getOperand(1))
816 .addImm(MI->getOperand(2).getImm());
817 MI1New->getOperand(1).setIsKill(false);
818 BuildMI(MBB, MI, DL, get(NewOpcd),
819 HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
820 .addOperand(MI->getOperand(1))
821 // The Vectors are indexed in multiples of vector size.
822 .addImm(MI->getOperand(2).getImm() + Offset)
823 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
824 MBB.erase(MI);
825 return true;
826 }
827 case Hexagon::LDriv_pseudo_V6_128B:
828 Is128B = true;
829 case Hexagon::LDriv_pseudo_V6: {
830 unsigned DstReg = MI->getOperand(0).getReg();
831 unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
832 : Hexagon::V6_vL32b_ai;
833 int32_t Off = MI->getOperand(2).getImm();
834 int32_t Idx = Off;
835 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
836 .addOperand(MI->getOperand(1))
837 .addImm(Idx)
838 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
839 MBB.erase(MI);
840 return true;
841 }
842 case Hexagon::STriv_pseudo_V6_128B:
843 Is128B = true;
844 case Hexagon::STriv_pseudo_V6: {
845 unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
846 : Hexagon::V6_vS32b_ai;
847 int32_t Off = MI->getOperand(1).getImm();
848 int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
849 BuildMI(MBB, MI, DL, get(NewOpc))
850 .addOperand(MI->getOperand(0))
851 .addImm(Idx)
852 .addOperand(MI->getOperand(2))
853 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
854 MBB.erase(MI);
855 return true;
856 }
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000857 case Hexagon::TFR_PdTrue: {
858 unsigned Reg = MI->getOperand(0).getReg();
859 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
860 .addReg(Reg, RegState::Undef)
861 .addReg(Reg, RegState::Undef);
862 MBB.erase(MI);
863 return true;
864 }
865 case Hexagon::TFR_PdFalse: {
866 unsigned Reg = MI->getOperand(0).getReg();
867 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
868 .addReg(Reg, RegState::Undef)
869 .addReg(Reg, RegState::Undef);
870 MBB.erase(MI);
871 return true;
872 }
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000873 case Hexagon::VMULW: {
874 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
875 unsigned DstReg = MI->getOperand(0).getReg();
876 unsigned Src1Reg = MI->getOperand(1).getReg();
877 unsigned Src2Reg = MI->getOperand(2).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000878 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
879 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
880 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
881 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000882 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000883 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000884 .addReg(Src2SubHi);
885 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000886 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000887 .addReg(Src2SubLo);
888 MBB.erase(MI);
889 MRI.clearKillFlags(Src1SubHi);
890 MRI.clearKillFlags(Src1SubLo);
891 MRI.clearKillFlags(Src2SubHi);
892 MRI.clearKillFlags(Src2SubLo);
893 return true;
894 }
895 case Hexagon::VMULW_ACC: {
896 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
897 unsigned DstReg = MI->getOperand(0).getReg();
898 unsigned Src1Reg = MI->getOperand(1).getReg();
899 unsigned Src2Reg = MI->getOperand(2).getReg();
900 unsigned Src3Reg = MI->getOperand(3).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000901 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
902 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
903 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
904 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
905 unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
906 unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000907 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000908 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000909 .addReg(Src2SubHi).addReg(Src3SubHi);
910 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000911 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000912 .addReg(Src2SubLo).addReg(Src3SubLo);
913 MBB.erase(MI);
914 MRI.clearKillFlags(Src1SubHi);
915 MRI.clearKillFlags(Src1SubLo);
916 MRI.clearKillFlags(Src2SubHi);
917 MRI.clearKillFlags(Src2SubLo);
918 MRI.clearKillFlags(Src3SubHi);
919 MRI.clearKillFlags(Src3SubLo);
920 return true;
921 }
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000922 case Hexagon::MUX64_rr: {
923 const MachineOperand &Op0 = MI->getOperand(0);
924 const MachineOperand &Op1 = MI->getOperand(1);
925 const MachineOperand &Op2 = MI->getOperand(2);
926 const MachineOperand &Op3 = MI->getOperand(3);
927 unsigned Rd = Op0.getReg();
928 unsigned Pu = Op1.getReg();
929 unsigned Rs = Op2.getReg();
930 unsigned Rt = Op3.getReg();
931 DebugLoc DL = MI->getDebugLoc();
932 unsigned K1 = getKillRegState(Op1.isKill());
933 unsigned K2 = getKillRegState(Op2.isKill());
934 unsigned K3 = getKillRegState(Op3.isKill());
935 if (Rd != Rs)
936 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
937 .addReg(Pu, (Rd == Rt) ? K1 : 0)
938 .addReg(Rs, K2);
939 if (Rd != Rt)
940 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
941 .addReg(Pu, K1)
942 .addReg(Rt, K3);
943 MBB.erase(MI);
944 return true;
945 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000946 case Hexagon::TCRETURNi:
947 MI->setDesc(get(Hexagon::J2_jump));
948 return true;
949 case Hexagon::TCRETURNr:
950 MI->setDesc(get(Hexagon::J2_jumpr));
951 return true;
Krzysztof Parzyszek70a134d2015-11-25 21:40:03 +0000952 case Hexagon::TFRI_f:
953 case Hexagon::TFRI_cPt_f:
954 case Hexagon::TFRI_cNotPt_f: {
955 unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
956 APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
957 APInt IVal = FVal.bitcastToAPInt();
958 MI->RemoveOperand(Opx);
959 unsigned NewOpc = (Opc == Hexagon::TFRI_f) ? Hexagon::A2_tfrsi :
960 (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
961 Hexagon::C2_cmoveif;
962 MI->setDesc(get(NewOpc));
963 MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
964 return true;
965 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000966 }
967
968 return false;
969}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000970
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000971
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000972// We indicate that we want to reverse the branch by
973// inserting the reversed branching opcode.
974bool HexagonInstrInfo::ReverseBranchCondition(
975 SmallVectorImpl<MachineOperand> &Cond) const {
976 if (Cond.empty())
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000977 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000978 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
979 unsigned opcode = Cond[0].getImm();
980 //unsigned temp;
981 assert(get(opcode).isBranch() && "Should be a branching condition.");
982 if (isEndLoopN(opcode))
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000983 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000984 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
985 Cond[0].setImm(NewOpcode);
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000986 return false;
987}
988
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000989
990void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
991 MachineBasicBlock::iterator MI) const {
992 DebugLoc DL;
993 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
994}
995
996
997// Returns true if an instruction is predicated irrespective of the predicate
998// sense. For example, all of the following will return true.
999// if (p0) R1 = add(R2, R3)
1000// if (!p0) R1 = add(R2, R3)
1001// if (p0.new) R1 = add(R2, R3)
1002// if (!p0.new) R1 = add(R2, R3)
1003// Note: New-value stores are not included here as in the current
1004// implementation, we don't need to check their predicate sense.
1005bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00001006 const uint64_t F = MI->getDesc().TSFlags;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001007 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001008}
1009
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001010
1011bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
1012 ArrayRef<MachineOperand> Cond) const {
1013 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1014 isEndLoopN(Cond[0].getImm())) {
1015 DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
1016 return false;
1017 }
1018 int Opc = MI->getOpcode();
1019 assert (isPredicable(MI) && "Expected predicable instruction");
1020 bool invertJump = predOpcodeHasNot(Cond);
1021
1022 // We have to predicate MI "in place", i.e. after this function returns,
1023 // MI will need to be transformed into a predicated form. To avoid com-
1024 // plicated manipulations with the operands (handling tied operands,
1025 // etc.), build a new temporary instruction, then overwrite MI with it.
1026
1027 MachineBasicBlock &B = *MI->getParent();
1028 DebugLoc DL = MI->getDebugLoc();
1029 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1030 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1031 unsigned NOp = 0, NumOps = MI->getNumOperands();
1032 while (NOp < NumOps) {
1033 MachineOperand &Op = MI->getOperand(NOp);
1034 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1035 break;
1036 T.addOperand(Op);
1037 NOp++;
1038 }
1039
1040 unsigned PredReg, PredRegPos, PredRegFlags;
1041 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1042 (void)GotPredReg;
1043 assert(GotPredReg);
1044 T.addReg(PredReg, PredRegFlags);
1045 while (NOp < NumOps)
1046 T.addOperand(MI->getOperand(NOp++));
1047
1048 MI->setDesc(get(PredOpc));
1049 while (unsigned n = MI->getNumOperands())
1050 MI->RemoveOperand(n-1);
1051 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1052 MI->addOperand(T->getOperand(i));
1053
1054 MachineBasicBlock::instr_iterator TI = T->getIterator();
1055 B.erase(TI);
1056
1057 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1058 MRI.clearKillFlags(PredReg);
1059 return true;
Brendon Cahoondf43e682015-05-08 16:16:29 +00001060}
1061
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001062
1063bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1064 ArrayRef<MachineOperand> Pred2) const {
1065 // TODO: Fix this
1066 return false;
1067}
1068
1069
1070bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1071 std::vector<MachineOperand> &Pred) const {
1072 auto &HRI = getRegisterInfo();
1073 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1074 MachineOperand MO = MI->getOperand(oper);
1075 if (MO.isReg() && MO.isDef()) {
1076 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1077 if (RC == &Hexagon::PredRegsRegClass) {
1078 Pred.push_back(MO);
1079 return true;
1080 }
1081 }
1082 }
1083 return false;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001084}
Andrew Trickd06df962012-02-01 22:13:57 +00001085
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001086bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
1087 bool isPred = MI->getDesc().isPredicable();
1088
1089 if (!isPred)
1090 return false;
1091
1092 const int Opc = MI->getOpcode();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001093 int NumOperands = MI->getNumOperands();
1094
1095 // Keep a flag for upto 4 operands in the instructions, to indicate if
1096 // that operand has been constant extended.
1097 bool OpCExtended[4];
1098 if (NumOperands > 4)
1099 NumOperands = 4;
1100
1101 for (int i = 0; i < NumOperands; i++)
1102 OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001103
1104 switch(Opc) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +00001105 case Hexagon::A2_tfrsi:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001106 return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
1107 isInt<12>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001108
Colin LeMahieubda31b42014-12-29 20:44:51 +00001109 case Hexagon::S2_storerd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001110 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001111
Colin LeMahieubda31b42014-12-29 20:44:51 +00001112 case Hexagon::S2_storeri_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001113 case Hexagon::S2_storerinew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001114 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001115
Colin LeMahieubda31b42014-12-29 20:44:51 +00001116 case Hexagon::S2_storerh_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001117 case Hexagon::S2_storerhnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001118 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001119
Colin LeMahieubda31b42014-12-29 20:44:51 +00001120 case Hexagon::S2_storerb_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001121 case Hexagon::S2_storerbnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001122 return isUInt<6>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001123
Colin LeMahieu947cd702014-12-23 20:44:59 +00001124 case Hexagon::L2_loadrd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001125 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001126
Colin LeMahieu026e88d2014-12-23 20:02:16 +00001127 case Hexagon::L2_loadri_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001128 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001129
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00001130 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00001131 case Hexagon::L2_loadruh_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001132 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001133
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00001134 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00001135 case Hexagon::L2_loadrub_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001136 return isUInt<6>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001137
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001138 case Hexagon::L2_loadrd_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001139 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001140
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001141 case Hexagon::L2_loadri_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001142 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001143
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001144 case Hexagon::L2_loadrh_pi:
1145 case Hexagon::L2_loadruh_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001146 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001147
Colin LeMahieu96976a12014-12-26 18:57:13 +00001148 case Hexagon::L2_loadrb_pi:
Colin LeMahieufe9612e2014-12-26 19:12:11 +00001149 case Hexagon::L2_loadrub_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001150 return isInt<4>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001151
Colin LeMahieu2bad4a72014-12-30 21:01:38 +00001152 case Hexagon::S4_storeirb_io:
1153 case Hexagon::S4_storeirh_io:
1154 case Hexagon::S4_storeiri_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001155 return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
1156 (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001157
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00001158 case Hexagon::A2_addi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001159 return isInt<8>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001160
Colin LeMahieu3b3197e2014-11-24 17:44:19 +00001161 case Hexagon::A2_aslh:
Colin LeMahieu397a25e2014-11-24 18:04:42 +00001162 case Hexagon::A2_asrh:
Colin LeMahieu91ffec92014-11-21 21:35:52 +00001163 case Hexagon::A2_sxtb:
Colin LeMahieu310991c2014-11-21 21:54:59 +00001164 case Hexagon::A2_sxth:
Colin LeMahieubb7d6f52014-11-24 16:48:43 +00001165 case Hexagon::A2_zxtb:
Colin LeMahieu098256c2014-11-24 17:11:34 +00001166 case Hexagon::A2_zxth:
Colin LeMahieu4fd203d2015-02-09 21:56:37 +00001167 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001168 }
1169
1170 return true;
1171}
1172
Jyotsna Verma84c47102013-05-06 18:49:23 +00001173
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001174bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1175 const MachineBasicBlock *MBB, const MachineFunction &MF) const {
1176 // Debug info is never a scheduling boundary. It's necessary to be explicit
1177 // due to the special treatment of IT instructions below, otherwise a
1178 // dbg_value followed by an IT will result in the IT instruction being
1179 // considered a scheduling hazard, which is wrong. It should be the actual
1180 // instruction preceding the dbg_value instruction(s), just like it is
1181 // when debug info is not present.
1182 if (MI->isDebugValue())
Brendon Cahoondf43e682015-05-08 16:16:29 +00001183 return false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001184
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001185 // Throwing call is a boundary.
1186 if (MI->isCall()) {
1187 // If any of the block's successors is a landing pad, this could be a
1188 // throwing call.
1189 for (auto I : MBB->successors())
1190 if (I->isEHPad())
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001191 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001192 }
1193
1194 // Don't mess around with no return calls.
1195 if (MI->getOpcode() == Hexagon::CALLv3nr)
1196 return true;
1197
1198 // Terminators and labels can't be scheduled around.
1199 if (MI->getDesc().isTerminator() || MI->isPosition())
1200 return true;
1201
1202 if (MI->isInlineAsm() && !ScheduleInlineAsm)
1203 return true;
1204
1205 return false;
1206}
1207
1208
1209/// Measure the specified inline asm to determine an approximation of its
1210/// length.
1211/// Comments (which run till the next SeparatorString or newline) do not
1212/// count as an instruction.
1213/// Any other non-whitespace text is considered an instruction, with
1214/// multiple instructions separated by SeparatorString or newlines.
1215/// Variable-length instructions are not handled here; this function
1216/// may be overloaded in the target code to do that.
1217/// Hexagon counts the number of ##'s and adjust for that many
1218/// constant exenders.
1219unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1220 const MCAsmInfo &MAI) const {
1221 StringRef AStr(Str);
1222 // Count the number of instructions in the asm.
1223 bool atInsnStart = true;
1224 unsigned Length = 0;
1225 for (; *Str; ++Str) {
1226 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1227 strlen(MAI.getSeparatorString())) == 0)
1228 atInsnStart = true;
1229 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1230 Length += MAI.getMaxInstLength();
1231 atInsnStart = false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001232 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001233 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1234 strlen(MAI.getCommentString())) == 0)
1235 atInsnStart = false;
1236 }
1237
1238 // Add to size number of constant extenders seen * 4.
1239 StringRef Occ("##");
1240 Length += AStr.count(Occ)*4;
1241 return Length;
1242}
1243
1244
1245ScheduleHazardRecognizer*
1246HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1247 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1248 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1249}
1250
1251
1252/// \brief For a comparison instruction, return the source registers in
1253/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1254/// compares against in CmpValue. Return true if the comparison instruction
1255/// can be analyzed.
1256bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
1257 unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
1258 unsigned Opc = MI->getOpcode();
1259
1260 // Set mask and the first source register.
1261 switch (Opc) {
1262 case Hexagon::C2_cmpeq:
1263 case Hexagon::C2_cmpeqp:
1264 case Hexagon::C2_cmpgt:
1265 case Hexagon::C2_cmpgtp:
1266 case Hexagon::C2_cmpgtu:
1267 case Hexagon::C2_cmpgtup:
1268 case Hexagon::C4_cmpneq:
1269 case Hexagon::C4_cmplte:
1270 case Hexagon::C4_cmplteu:
1271 case Hexagon::C2_cmpeqi:
1272 case Hexagon::C2_cmpgti:
1273 case Hexagon::C2_cmpgtui:
1274 case Hexagon::C4_cmpneqi:
1275 case Hexagon::C4_cmplteui:
1276 case Hexagon::C4_cmpltei:
1277 SrcReg = MI->getOperand(1).getReg();
1278 Mask = ~0;
1279 break;
1280 case Hexagon::A4_cmpbeq:
1281 case Hexagon::A4_cmpbgt:
1282 case Hexagon::A4_cmpbgtu:
1283 case Hexagon::A4_cmpbeqi:
1284 case Hexagon::A4_cmpbgti:
1285 case Hexagon::A4_cmpbgtui:
1286 SrcReg = MI->getOperand(1).getReg();
1287 Mask = 0xFF;
1288 break;
1289 case Hexagon::A4_cmpheq:
1290 case Hexagon::A4_cmphgt:
1291 case Hexagon::A4_cmphgtu:
1292 case Hexagon::A4_cmpheqi:
1293 case Hexagon::A4_cmphgti:
1294 case Hexagon::A4_cmphgtui:
1295 SrcReg = MI->getOperand(1).getReg();
1296 Mask = 0xFFFF;
1297 break;
1298 }
1299
1300 // Set the value/second source register.
1301 switch (Opc) {
1302 case Hexagon::C2_cmpeq:
1303 case Hexagon::C2_cmpeqp:
1304 case Hexagon::C2_cmpgt:
1305 case Hexagon::C2_cmpgtp:
1306 case Hexagon::C2_cmpgtu:
1307 case Hexagon::C2_cmpgtup:
1308 case Hexagon::A4_cmpbeq:
1309 case Hexagon::A4_cmpbgt:
1310 case Hexagon::A4_cmpbgtu:
1311 case Hexagon::A4_cmpheq:
1312 case Hexagon::A4_cmphgt:
1313 case Hexagon::A4_cmphgtu:
1314 case Hexagon::C4_cmpneq:
1315 case Hexagon::C4_cmplte:
1316 case Hexagon::C4_cmplteu:
1317 SrcReg2 = MI->getOperand(2).getReg();
1318 return true;
1319
1320 case Hexagon::C2_cmpeqi:
1321 case Hexagon::C2_cmpgtui:
1322 case Hexagon::C2_cmpgti:
1323 case Hexagon::C4_cmpneqi:
1324 case Hexagon::C4_cmplteui:
1325 case Hexagon::C4_cmpltei:
1326 case Hexagon::A4_cmpbeqi:
1327 case Hexagon::A4_cmpbgti:
1328 case Hexagon::A4_cmpbgtui:
1329 case Hexagon::A4_cmpheqi:
1330 case Hexagon::A4_cmphgti:
1331 case Hexagon::A4_cmphgtui:
1332 SrcReg2 = 0;
1333 Value = MI->getOperand(2).getImm();
1334 return true;
1335 }
1336
1337 return false;
1338}
1339
1340
1341unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1342 const MachineInstr *MI, unsigned *PredCost) const {
1343 return getInstrTimingClassLatency(ItinData, MI);
1344}
1345
1346
1347DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1348 const TargetSubtargetInfo &STI) const {
1349 const InstrItineraryData *II = STI.getInstrItineraryData();
1350 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1351}
1352
1353
1354// Inspired by this pair:
1355// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1356// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
1357// Currently AA considers the addresses in these instructions to be aliasing.
1358bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1359 MachineInstr *MIb, AliasAnalysis *AA) const {
1360 int OffsetA = 0, OffsetB = 0;
1361 unsigned SizeA = 0, SizeB = 0;
1362
1363 if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
1364 MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
1365 return false;
1366
1367 // Instructions that are pure loads, not loads and stores like memops are not
1368 // dependent.
1369 if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
1370 return true;
1371
1372 // Get base, offset, and access size in MIa.
1373 unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
1374 if (!BaseRegA || !SizeA)
1375 return false;
1376
1377 // Get base, offset, and access size in MIb.
1378 unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
1379 if (!BaseRegB || !SizeB)
1380 return false;
1381
1382 if (BaseRegA != BaseRegB)
1383 return false;
1384
1385 // This is a mem access with the same base register and known offsets from it.
1386 // Reason about it.
1387 if (OffsetA > OffsetB) {
1388 uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1389 return (SizeB <= offDiff);
1390 } else if (OffsetA < OffsetB) {
1391 uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1392 return (SizeA <= offDiff);
1393 }
1394
1395 return false;
1396}
1397
1398
1399unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1400 MachineRegisterInfo &MRI = MF->getRegInfo();
1401 const TargetRegisterClass *TRC;
1402 if (VT == MVT::i1) {
1403 TRC = &Hexagon::PredRegsRegClass;
1404 } else if (VT == MVT::i32 || VT == MVT::f32) {
1405 TRC = &Hexagon::IntRegsRegClass;
1406 } else if (VT == MVT::i64 || VT == MVT::f64) {
1407 TRC = &Hexagon::DoubleRegsRegClass;
1408 } else {
1409 llvm_unreachable("Cannot handle this register class");
1410 }
1411
1412 unsigned NewReg = MRI.createVirtualRegister(TRC);
1413 return NewReg;
1414}
1415
1416
1417bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1418 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1419}
1420
1421
1422bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1423 const uint64_t F = MI->getDesc().TSFlags;
1424 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1425}
1426
1427
1428bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1429 const MachineFunction *MF = MI->getParent()->getParent();
1430 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1431 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1432
1433 if (!(isTC1(MI))
1434 && !(QII->isTC2Early(MI))
1435 && !(MI->getDesc().mayLoad())
1436 && !(MI->getDesc().mayStore())
1437 && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1438 && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1439 && !(QII->isMemOp(MI))
1440 && !(MI->isBranch())
1441 && !(MI->isReturn())
1442 && !MI->isCall())
1443 return true;
1444
1445 return false;
1446}
1447
1448
1449// Return true if the the instruction is a compund branch instruction.
1450bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1451 return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1452}
1453
1454
1455bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1456 return (MI->isBranch() && isPredicated(MI)) ||
1457 isConditionalTransfer(MI) ||
1458 isConditionalALU32(MI) ||
1459 isConditionalLoad(MI) ||
1460 // Predicated stores which don't have a .new on any operands.
1461 (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
1462 !isPredicatedNew(MI));
1463}
1464
1465
1466bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1467 switch (MI->getOpcode()) {
1468 case Hexagon::A2_paddf:
1469 case Hexagon::A2_paddfnew:
1470 case Hexagon::A2_paddif:
1471 case Hexagon::A2_paddifnew:
1472 case Hexagon::A2_paddit:
1473 case Hexagon::A2_padditnew:
1474 case Hexagon::A2_paddt:
1475 case Hexagon::A2_paddtnew:
1476 case Hexagon::A2_pandf:
1477 case Hexagon::A2_pandfnew:
1478 case Hexagon::A2_pandt:
1479 case Hexagon::A2_pandtnew:
1480 case Hexagon::A2_porf:
1481 case Hexagon::A2_porfnew:
1482 case Hexagon::A2_port:
1483 case Hexagon::A2_portnew:
1484 case Hexagon::A2_psubf:
1485 case Hexagon::A2_psubfnew:
1486 case Hexagon::A2_psubt:
1487 case Hexagon::A2_psubtnew:
1488 case Hexagon::A2_pxorf:
1489 case Hexagon::A2_pxorfnew:
1490 case Hexagon::A2_pxort:
1491 case Hexagon::A2_pxortnew:
1492 case Hexagon::A4_paslhf:
1493 case Hexagon::A4_paslhfnew:
1494 case Hexagon::A4_paslht:
1495 case Hexagon::A4_paslhtnew:
1496 case Hexagon::A4_pasrhf:
1497 case Hexagon::A4_pasrhfnew:
1498 case Hexagon::A4_pasrht:
1499 case Hexagon::A4_pasrhtnew:
1500 case Hexagon::A4_psxtbf:
1501 case Hexagon::A4_psxtbfnew:
1502 case Hexagon::A4_psxtbt:
1503 case Hexagon::A4_psxtbtnew:
1504 case Hexagon::A4_psxthf:
1505 case Hexagon::A4_psxthfnew:
1506 case Hexagon::A4_psxtht:
1507 case Hexagon::A4_psxthtnew:
1508 case Hexagon::A4_pzxtbf:
1509 case Hexagon::A4_pzxtbfnew:
1510 case Hexagon::A4_pzxtbt:
1511 case Hexagon::A4_pzxtbtnew:
1512 case Hexagon::A4_pzxthf:
1513 case Hexagon::A4_pzxthfnew:
1514 case Hexagon::A4_pzxtht:
1515 case Hexagon::A4_pzxthtnew:
1516 case Hexagon::C2_ccombinewf:
1517 case Hexagon::C2_ccombinewt:
1518 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001519 }
1520 return false;
1521}
1522
1523
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001524// FIXME - Function name and it's functionality don't match.
1525// It should be renamed to hasPredNewOpcode()
1526bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1527 if (!MI->getDesc().mayLoad() || !isPredicated(MI))
1528 return false;
1529
1530 int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1531 // Instruction with valid predicated-new opcode can be promoted to .new.
1532 return PNewOpcode >= 0;
1533}
1534
1535
1536// Returns true if an instruction is a conditional store.
1537//
1538// Note: It doesn't include conditional new-value stores as they can't be
1539// converted to .new predicate.
1540bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1541 switch (MI->getOpcode()) {
1542 default: return false;
1543 case Hexagon::S4_storeirbt_io:
1544 case Hexagon::S4_storeirbf_io:
1545 case Hexagon::S4_pstorerbt_rr:
1546 case Hexagon::S4_pstorerbf_rr:
1547 case Hexagon::S2_pstorerbt_io:
1548 case Hexagon::S2_pstorerbf_io:
1549 case Hexagon::S2_pstorerbt_pi:
1550 case Hexagon::S2_pstorerbf_pi:
1551 case Hexagon::S2_pstorerdt_io:
1552 case Hexagon::S2_pstorerdf_io:
1553 case Hexagon::S4_pstorerdt_rr:
1554 case Hexagon::S4_pstorerdf_rr:
1555 case Hexagon::S2_pstorerdt_pi:
1556 case Hexagon::S2_pstorerdf_pi:
1557 case Hexagon::S2_pstorerht_io:
1558 case Hexagon::S2_pstorerhf_io:
1559 case Hexagon::S4_storeirht_io:
1560 case Hexagon::S4_storeirhf_io:
1561 case Hexagon::S4_pstorerht_rr:
1562 case Hexagon::S4_pstorerhf_rr:
1563 case Hexagon::S2_pstorerht_pi:
1564 case Hexagon::S2_pstorerhf_pi:
1565 case Hexagon::S2_pstorerit_io:
1566 case Hexagon::S2_pstorerif_io:
1567 case Hexagon::S4_storeirit_io:
1568 case Hexagon::S4_storeirif_io:
1569 case Hexagon::S4_pstorerit_rr:
1570 case Hexagon::S4_pstorerif_rr:
1571 case Hexagon::S2_pstorerit_pi:
1572 case Hexagon::S2_pstorerif_pi:
1573
1574 // V4 global address store before promoting to dot new.
1575 case Hexagon::S4_pstorerdt_abs:
1576 case Hexagon::S4_pstorerdf_abs:
1577 case Hexagon::S4_pstorerbt_abs:
1578 case Hexagon::S4_pstorerbf_abs:
1579 case Hexagon::S4_pstorerht_abs:
1580 case Hexagon::S4_pstorerhf_abs:
1581 case Hexagon::S4_pstorerit_abs:
1582 case Hexagon::S4_pstorerif_abs:
1583 return true;
1584
1585 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1586 // from the "Conditional Store" list. Because a predicated new value store
1587 // would NOT be promoted to a double dot new store.
1588 // This function returns yes for those stores that are predicated but not
1589 // yet promoted to predicate dot new instructions.
1590 }
1591}
1592
1593
1594bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1595 switch (MI->getOpcode()) {
1596 case Hexagon::A2_tfrt:
1597 case Hexagon::A2_tfrf:
1598 case Hexagon::C2_cmoveit:
1599 case Hexagon::C2_cmoveif:
1600 case Hexagon::A2_tfrtnew:
1601 case Hexagon::A2_tfrfnew:
1602 case Hexagon::C2_cmovenewit:
1603 case Hexagon::C2_cmovenewif:
1604 case Hexagon::A2_tfrpt:
1605 case Hexagon::A2_tfrpf:
1606 return true;
1607
1608 default:
1609 return false;
1610 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001611 return false;
1612}
1613
1614
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001615// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1616// isFPImm and later getFPImm as well.
1617bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1618 const uint64_t F = MI->getDesc().TSFlags;
1619 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1620 if (isExtended) // Instruction must be extended.
Krzysztof Parzyszekc6f19332015-03-19 15:18:57 +00001621 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001622
1623 unsigned isExtendable =
1624 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1625 if (!isExtendable)
1626 return false;
1627
1628 if (MI->isCall())
1629 return false;
1630
1631 short ExtOpNum = getCExtOpNum(MI);
1632 const MachineOperand &MO = MI->getOperand(ExtOpNum);
1633 // Use MO operand flags to determine if MO
1634 // has the HMOTF_ConstExtended flag set.
1635 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
Brendon Cahoondf43e682015-05-08 16:16:29 +00001636 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001637 // If this is a Machine BB address we are talking about, and it is
1638 // not marked as extended, say so.
1639 if (MO.isMBB())
1640 return false;
1641
1642 // We could be using an instruction with an extendable immediate and shoehorn
1643 // a global address into it. If it is a global address it will be constant
1644 // extended. We do this for COMBINE.
1645 // We currently only handle isGlobal() because it is the only kind of
1646 // object we are going to end up with here for now.
1647 // In the future we probably should add isSymbol(), etc.
1648 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1649 MO.isJTI() || MO.isCPI())
1650 return true;
1651
1652 // If the extendable operand is not 'Immediate' type, the instruction should
1653 // have 'isExtended' flag set.
1654 assert(MO.isImm() && "Extendable operand must be Immediate type");
1655
1656 int MinValue = getMinValue(MI);
1657 int MaxValue = getMaxValue(MI);
1658 int ImmValue = MO.getImm();
1659
1660 return (ImmValue < MinValue || ImmValue > MaxValue);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001661}
1662
1663
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001664bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1665 switch (MI->getOpcode()) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001666 case Hexagon::L4_return :
1667 case Hexagon::L4_return_t :
1668 case Hexagon::L4_return_f :
1669 case Hexagon::L4_return_tnew_pnt :
1670 case Hexagon::L4_return_fnew_pnt :
1671 case Hexagon::L4_return_tnew_pt :
1672 case Hexagon::L4_return_fnew_pt :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001673 return true;
1674 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001675 return false;
1676}
1677
1678
1679// Return true when ConsMI uses a register defined by ProdMI.
1680bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1681 const MachineInstr *ConsMI) const {
1682 const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1683 if (!ProdMCID.getNumDefs())
1684 return false;
1685
1686 auto &HRI = getRegisterInfo();
1687
1688 SmallVector<unsigned, 4> DefsA;
1689 SmallVector<unsigned, 4> DefsB;
1690 SmallVector<unsigned, 8> UsesA;
1691 SmallVector<unsigned, 8> UsesB;
1692
1693 parseOperands(ProdMI, DefsA, UsesA);
1694 parseOperands(ConsMI, DefsB, UsesB);
1695
1696 for (auto &RegA : DefsA)
1697 for (auto &RegB : UsesB) {
1698 // True data dependency.
1699 if (RegA == RegB)
1700 return true;
1701
1702 if (Hexagon::DoubleRegsRegClass.contains(RegA))
1703 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1704 if (RegB == *SubRegs)
1705 return true;
1706
1707 if (Hexagon::DoubleRegsRegClass.contains(RegB))
1708 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1709 if (RegA == *SubRegs)
1710 return true;
1711 }
1712
1713 return false;
1714}
1715
1716
1717// Returns true if the instruction is alread a .cur.
1718bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
1719 switch (MI->getOpcode()) {
1720 case Hexagon::V6_vL32b_cur_pi:
1721 case Hexagon::V6_vL32b_cur_ai:
1722 case Hexagon::V6_vL32b_cur_pi_128B:
1723 case Hexagon::V6_vL32b_cur_ai_128B:
1724 return true;
1725 }
1726 return false;
1727}
1728
1729
1730// Returns true, if any one of the operands is a dot new
1731// insn, whether it is predicated dot new or register dot new.
1732bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
1733 if (isNewValueInst(MI) ||
1734 (isPredicated(MI) && isPredicatedNew(MI)))
1735 return true;
1736
1737 return false;
1738}
1739
1740
1741/// Symmetrical. See if these two instructions are fit for duplex pair.
1742bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
1743 const MachineInstr *MIb) const {
1744 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
1745 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
1746 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
1747}
1748
1749
1750bool HexagonInstrInfo::isEarlySourceInstr(MachineInstr *MI) const {
1751 if (!MI)
1752 return false;
1753
1754 if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
1755 return true;
1756
1757 // Multiply
1758 unsigned SchedClass = MI->getDesc().getSchedClass();
1759 if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
1760 return true;
1761 return false;
1762}
1763
1764
1765bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
1766 return (Opcode == Hexagon::ENDLOOP0 ||
1767 Opcode == Hexagon::ENDLOOP1);
1768}
1769
1770
1771bool HexagonInstrInfo::isExpr(unsigned OpType) const {
1772 switch(OpType) {
1773 case MachineOperand::MO_MachineBasicBlock:
1774 case MachineOperand::MO_GlobalAddress:
1775 case MachineOperand::MO_ExternalSymbol:
1776 case MachineOperand::MO_JumpTableIndex:
1777 case MachineOperand::MO_ConstantPoolIndex:
1778 case MachineOperand::MO_BlockAddress:
1779 return true;
1780 default:
1781 return false;
1782 }
1783}
1784
1785
1786bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
1787 const MCInstrDesc &MID = MI->getDesc();
1788 const uint64_t F = MID.TSFlags;
1789 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
1790 return true;
1791
1792 // TODO: This is largely obsolete now. Will need to be removed
1793 // in consecutive patches.
1794 switch(MI->getOpcode()) {
1795 // TFR_FI Remains a special case.
1796 case Hexagon::TFR_FI:
1797 return true;
1798 default:
1799 return false;
1800 }
1801 return false;
1802}
1803
1804
1805// This returns true in two cases:
1806// - The OP code itself indicates that this is an extended instruction.
1807// - One of MOs has been marked with HMOTF_ConstExtended flag.
1808bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
1809 // First check if this is permanently extended op code.
1810 const uint64_t F = MI->getDesc().TSFlags;
1811 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
1812 return true;
1813 // Use MO operand flags to determine if one of MI's operands
1814 // has HMOTF_ConstExtended flag set.
1815 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
1816 E = MI->operands_end(); I != E; ++I) {
1817 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1818 return true;
1819 }
1820 return false;
1821}
1822
1823
1824bool HexagonInstrInfo::isFloat(MachineInstr *MI) const {
1825 unsigned Opcode = MI->getOpcode();
1826 const uint64_t F = get(Opcode).TSFlags;
1827 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
1828}
1829
1830
1831bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
1832 switch (MI->getOpcode()) {
1833 case Hexagon::J2_callr :
1834 case Hexagon::J2_callrf :
1835 case Hexagon::J2_callrt :
1836 return true;
1837 }
1838 return false;
1839}
1840
1841
1842bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
1843 switch (MI->getOpcode()) {
1844 case Hexagon::L4_return :
1845 case Hexagon::L4_return_t :
1846 case Hexagon::L4_return_f :
1847 case Hexagon::L4_return_fnew_pnt :
1848 case Hexagon::L4_return_fnew_pt :
1849 case Hexagon::L4_return_tnew_pnt :
1850 case Hexagon::L4_return_tnew_pt :
1851 return true;
1852 }
1853 return false;
1854}
1855
1856
1857bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
1858 switch (MI->getOpcode()) {
1859 case Hexagon::J2_jumpr :
1860 case Hexagon::J2_jumprt :
1861 case Hexagon::J2_jumprf :
1862 case Hexagon::J2_jumprtnewpt :
1863 case Hexagon::J2_jumprfnewpt :
1864 case Hexagon::J2_jumprtnew :
1865 case Hexagon::J2_jumprfnew :
1866 return true;
1867 }
1868 return false;
1869}
1870
1871
1872// Return true if a given MI can accomodate given offset.
1873// Use abs estimate as oppose to the exact number.
1874// TODO: This will need to be changed to use MC level
1875// definition of instruction extendable field size.
1876bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
1877 unsigned offset) const {
1878 // This selection of jump instructions matches to that what
1879 // AnalyzeBranch can parse, plus NVJ.
1880 if (isNewValueJump(MI)) // r9:2
1881 return isInt<11>(offset);
1882
1883 switch (MI->getOpcode()) {
1884 // Still missing Jump to address condition on register value.
1885 default:
1886 return false;
1887 case Hexagon::J2_jump: // bits<24> dst; // r22:2
1888 case Hexagon::J2_call:
1889 case Hexagon::CALLv3nr:
1890 return isInt<24>(offset);
1891 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
1892 case Hexagon::J2_jumpf:
1893 case Hexagon::J2_jumptnew:
1894 case Hexagon::J2_jumptnewpt:
1895 case Hexagon::J2_jumpfnew:
1896 case Hexagon::J2_jumpfnewpt:
1897 case Hexagon::J2_callt:
1898 case Hexagon::J2_callf:
1899 return isInt<17>(offset);
1900 case Hexagon::J2_loop0i:
1901 case Hexagon::J2_loop0iext:
1902 case Hexagon::J2_loop0r:
1903 case Hexagon::J2_loop0rext:
1904 case Hexagon::J2_loop1i:
1905 case Hexagon::J2_loop1iext:
1906 case Hexagon::J2_loop1r:
1907 case Hexagon::J2_loop1rext:
1908 return isInt<9>(offset);
1909 // TODO: Add all the compound branches here. Can we do this in Relation model?
1910 case Hexagon::J4_cmpeqi_tp0_jump_nt:
1911 case Hexagon::J4_cmpeqi_tp1_jump_nt:
1912 return isInt<11>(offset);
1913 }
1914}
1915
1916
1917bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(MachineInstr *LRMI,
1918 MachineInstr *ESMI) const {
1919 if (!LRMI || !ESMI)
1920 return false;
1921
1922 bool isLate = isLateResultInstr(LRMI);
1923 bool isEarly = isEarlySourceInstr(ESMI);
1924
1925 DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
1926 DEBUG(LRMI->dump());
1927 DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
1928 DEBUG(ESMI->dump());
1929
1930 if (isLate && isEarly) {
1931 DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
1932 return true;
1933 }
1934
1935 return false;
1936}
1937
1938
1939bool HexagonInstrInfo::isLateResultInstr(MachineInstr *MI) const {
1940 if (!MI)
1941 return false;
1942
1943 switch (MI->getOpcode()) {
1944 case TargetOpcode::EXTRACT_SUBREG:
1945 case TargetOpcode::INSERT_SUBREG:
1946 case TargetOpcode::SUBREG_TO_REG:
1947 case TargetOpcode::REG_SEQUENCE:
1948 case TargetOpcode::IMPLICIT_DEF:
1949 case TargetOpcode::COPY:
1950 case TargetOpcode::INLINEASM:
1951 case TargetOpcode::PHI:
1952 return false;
1953 default:
1954 break;
1955 }
1956
1957 unsigned SchedClass = MI->getDesc().getSchedClass();
1958
1959 switch (SchedClass) {
1960 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
1961 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
1962 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
1963 case Hexagon::Sched::ALU64_tc_1_SLOT23:
1964 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
1965 case Hexagon::Sched::S_2op_tc_1_SLOT23:
1966 case Hexagon::Sched::S_3op_tc_1_SLOT23:
1967 case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
1968 case Hexagon::Sched::V2LDST_tc_st_SLOT0:
1969 case Hexagon::Sched::V2LDST_tc_st_SLOT01:
1970 case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
1971 case Hexagon::Sched::V4LDST_tc_st_SLOT0:
1972 case Hexagon::Sched::V4LDST_tc_st_SLOT01:
1973 return false;
1974 }
1975 return true;
1976}
1977
1978
1979bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
1980 if (!MI)
1981 return false;
1982
1983 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
1984 // resource, but all operands can be received late like an ALU instruction.
1985 return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
1986}
1987
1988
1989bool HexagonInstrInfo::isLoopN(unsigned Opcode) const {
1990 return (Opcode == Hexagon::J2_loop0i ||
1991 Opcode == Hexagon::J2_loop0r ||
1992 Opcode == Hexagon::J2_loop0iext ||
1993 Opcode == Hexagon::J2_loop0rext ||
1994 Opcode == Hexagon::J2_loop1i ||
1995 Opcode == Hexagon::J2_loop1r ||
1996 Opcode == Hexagon::J2_loop1iext ||
1997 Opcode == Hexagon::J2_loop1rext);
1998}
1999
2000
2001bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
2002 switch (MI->getOpcode()) {
2003 default: return false;
2004 case Hexagon::L4_iadd_memopw_io :
2005 case Hexagon::L4_isub_memopw_io :
2006 case Hexagon::L4_add_memopw_io :
2007 case Hexagon::L4_sub_memopw_io :
2008 case Hexagon::L4_and_memopw_io :
2009 case Hexagon::L4_or_memopw_io :
2010 case Hexagon::L4_iadd_memoph_io :
2011 case Hexagon::L4_isub_memoph_io :
2012 case Hexagon::L4_add_memoph_io :
2013 case Hexagon::L4_sub_memoph_io :
2014 case Hexagon::L4_and_memoph_io :
2015 case Hexagon::L4_or_memoph_io :
2016 case Hexagon::L4_iadd_memopb_io :
2017 case Hexagon::L4_isub_memopb_io :
2018 case Hexagon::L4_add_memopb_io :
2019 case Hexagon::L4_sub_memopb_io :
2020 case Hexagon::L4_and_memopb_io :
2021 case Hexagon::L4_or_memopb_io :
2022 case Hexagon::L4_ior_memopb_io:
2023 case Hexagon::L4_ior_memoph_io:
2024 case Hexagon::L4_ior_memopw_io:
2025 case Hexagon::L4_iand_memopb_io:
2026 case Hexagon::L4_iand_memoph_io:
2027 case Hexagon::L4_iand_memopw_io:
2028 return true;
2029 }
2030 return false;
2031}
2032
2033
2034bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
2035 const uint64_t F = MI->getDesc().TSFlags;
2036 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2037}
2038
2039
2040bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2041 const uint64_t F = get(Opcode).TSFlags;
2042 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2043}
2044
2045
2046bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
2047 return isNewValueJump(MI) || isNewValueStore(MI);
2048}
2049
2050
2051bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
2052 return isNewValue(MI) && MI->isBranch();
2053}
2054
2055
2056bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2057 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2058}
2059
2060
2061bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
2062 const uint64_t F = MI->getDesc().TSFlags;
2063 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2064}
2065
2066
2067bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2068 const uint64_t F = get(Opcode).TSFlags;
2069 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2070}
2071
2072
2073// Returns true if a particular operand is extendable for an instruction.
2074bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
2075 unsigned OperandNum) const {
2076 const uint64_t F = MI->getDesc().TSFlags;
2077 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2078 == OperandNum;
2079}
2080
2081
2082bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
2083 return getAddrMode(MI) == HexagonII::PostInc;
2084}
2085
2086
2087bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
2088 const uint64_t F = MI->getDesc().TSFlags;
2089 assert(isPredicated(MI));
2090 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2091}
2092
2093
2094bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2095 const uint64_t F = get(Opcode).TSFlags;
2096 assert(isPredicated(Opcode));
2097 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2098}
2099
2100
2101bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
2102 const uint64_t F = MI->getDesc().TSFlags;
2103 return !((F >> HexagonII::PredicatedFalsePos) &
2104 HexagonII::PredicatedFalseMask);
2105}
2106
2107
2108bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2109 const uint64_t F = get(Opcode).TSFlags;
2110 // Make sure that the instruction is predicated.
2111 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2112 return !((F >> HexagonII::PredicatedFalsePos) &
2113 HexagonII::PredicatedFalseMask);
2114}
2115
2116
2117bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2118 const uint64_t F = get(Opcode).TSFlags;
2119 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2120}
2121
2122
2123bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2124 const uint64_t F = get(Opcode).TSFlags;
2125 return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2126}
2127
2128
2129bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2130 const uint64_t F = get(Opcode).TSFlags;
2131 assert(get(Opcode).isBranch() &&
2132 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2133 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2134}
2135
2136
2137bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2138 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2139 MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
2140}
2141
2142
2143bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2144 const uint64_t F = MI->getDesc().TSFlags;
2145 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2146}
2147
2148
2149bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2150 switch (MI->getOpcode()) {
2151 case Hexagon::STriw_pred :
2152 case Hexagon::LDriw_pred :
2153 return true;
2154 default:
2155 return false;
2156 }
2157}
2158
2159
2160// Returns true when SU has a timing class TC1.
2161bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2162 unsigned SchedClass = MI->getDesc().getSchedClass();
2163 switch (SchedClass) {
2164 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2165 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2166 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2167 case Hexagon::Sched::ALU64_tc_1_SLOT23:
2168 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2169 //case Hexagon::Sched::M_tc_1_SLOT23:
2170 case Hexagon::Sched::S_2op_tc_1_SLOT23:
2171 case Hexagon::Sched::S_3op_tc_1_SLOT23:
2172 return true;
2173
2174 default:
2175 return false;
2176 }
2177}
2178
2179
2180bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2181 unsigned SchedClass = MI->getDesc().getSchedClass();
2182 switch (SchedClass) {
2183 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2184 case Hexagon::Sched::ALU64_tc_2_SLOT23:
2185 case Hexagon::Sched::CR_tc_2_SLOT3:
2186 case Hexagon::Sched::M_tc_2_SLOT23:
2187 case Hexagon::Sched::S_2op_tc_2_SLOT23:
2188 case Hexagon::Sched::S_3op_tc_2_SLOT23:
2189 return true;
2190
2191 default:
2192 return false;
2193 }
2194}
2195
2196
2197bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2198 unsigned SchedClass = MI->getDesc().getSchedClass();
2199 switch (SchedClass) {
2200 case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2201 case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2202 case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2203 case Hexagon::Sched::CR_tc_2early_SLOT23:
2204 case Hexagon::Sched::CR_tc_2early_SLOT3:
2205 case Hexagon::Sched::J_tc_2early_SLOT0123:
2206 case Hexagon::Sched::J_tc_2early_SLOT2:
2207 case Hexagon::Sched::J_tc_2early_SLOT23:
2208 case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2209 case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2210 return true;
2211
2212 default:
2213 return false;
2214 }
2215}
2216
2217
2218bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2219 if (!MI)
2220 return false;
2221
2222 unsigned SchedClass = MI->getDesc().getSchedClass();
2223 return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2224}
2225
2226
2227bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2228 if (!MI)
2229 return false;
2230
2231 const uint64_t V = getType(MI);
2232 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2233}
2234
2235
2236// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2237//
2238bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2239 if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2240 VT == MVT::v32i16 || VT == MVT::v64i8) {
2241 return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2242 Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2243 (Offset & 0x3f) == 0);
2244 }
2245 // 128B
2246 if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2247 VT == MVT::v64i16 || VT == MVT::v128i8) {
2248 return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2249 Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2250 (Offset & 0x7f) == 0);
2251 }
2252 if (VT == MVT::i64) {
2253 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2254 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2255 (Offset & 0x7) == 0);
2256 }
2257 if (VT == MVT::i32) {
2258 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2259 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2260 (Offset & 0x3) == 0);
2261 }
2262 if (VT == MVT::i16) {
2263 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2264 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2265 (Offset & 0x1) == 0);
2266 }
2267 if (VT == MVT::i8) {
2268 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2269 Offset <= Hexagon_MEMB_AUTOINC_MAX);
2270 }
2271 llvm_unreachable("Not an auto-inc opc!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002272}
2273
2274
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002275bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2276 bool Extend) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002277 // This function is to check whether the "Offset" is in the correct range of
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002278 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002279 // inserted to calculate the final address. Due to this reason, the function
2280 // assumes that the "Offset" has correct alignment.
Jyotsna Vermaec613662013-03-14 19:08:03 +00002281 // We used to assert if the offset was not properly aligned, however,
2282 // there are cases where a misaligned pointer recast can cause this
2283 // problem, and we need to allow for it. The front end warns of such
2284 // misaligns with respect to load size.
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002285
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002286 switch (Opcode) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002287 case Hexagon::STriq_pred_V6:
2288 case Hexagon::STriq_pred_vec_V6:
2289 case Hexagon::STriv_pseudo_V6:
2290 case Hexagon::STrivv_pseudo_V6:
2291 case Hexagon::LDriq_pred_V6:
2292 case Hexagon::LDriq_pred_vec_V6:
2293 case Hexagon::LDriv_pseudo_V6:
2294 case Hexagon::LDrivv_pseudo_V6:
2295 case Hexagon::LDrivv_indexed:
2296 case Hexagon::STrivv_indexed:
2297 case Hexagon::V6_vL32b_ai:
2298 case Hexagon::V6_vS32b_ai:
2299 case Hexagon::V6_vL32Ub_ai:
2300 case Hexagon::V6_vS32Ub_ai:
2301 return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2302 (Offset <= Hexagon_MEMV_OFFSET_MAX);
2303
2304 case Hexagon::STriq_pred_V6_128B:
2305 case Hexagon::STriq_pred_vec_V6_128B:
2306 case Hexagon::STriv_pseudo_V6_128B:
2307 case Hexagon::STrivv_pseudo_V6_128B:
2308 case Hexagon::LDriq_pred_V6_128B:
2309 case Hexagon::LDriq_pred_vec_V6_128B:
2310 case Hexagon::LDriv_pseudo_V6_128B:
2311 case Hexagon::LDrivv_pseudo_V6_128B:
2312 case Hexagon::LDrivv_indexed_128B:
2313 case Hexagon::STrivv_indexed_128B:
2314 case Hexagon::V6_vL32b_ai_128B:
2315 case Hexagon::V6_vS32b_ai_128B:
2316 case Hexagon::V6_vL32Ub_ai_128B:
2317 case Hexagon::V6_vS32Ub_ai_128B:
2318 return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2319 (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2320
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002321 case Hexagon::J2_loop0i:
2322 case Hexagon::J2_loop1i:
2323 return isUInt<10>(Offset);
2324 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002325
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002326 if (Extend)
2327 return true;
2328
2329 switch (Opcode) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +00002330 case Hexagon::L2_loadri_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002331 case Hexagon::S2_storeri_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002332 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2333 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2334
Colin LeMahieu947cd702014-12-23 20:44:59 +00002335 case Hexagon::L2_loadrd_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002336 case Hexagon::S2_storerd_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002337 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2338 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2339
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00002340 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00002341 case Hexagon::L2_loadruh_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002342 case Hexagon::S2_storerh_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002343 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2344 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2345
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00002346 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00002347 case Hexagon::L2_loadrub_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002348 case Hexagon::S2_storerb_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002349 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2350 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2351
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00002352 case Hexagon::A2_addi:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002353 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2354 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2355
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002356 case Hexagon::L4_iadd_memopw_io :
2357 case Hexagon::L4_isub_memopw_io :
2358 case Hexagon::L4_add_memopw_io :
2359 case Hexagon::L4_sub_memopw_io :
2360 case Hexagon::L4_and_memopw_io :
2361 case Hexagon::L4_or_memopw_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002362 return (0 <= Offset && Offset <= 255);
2363
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002364 case Hexagon::L4_iadd_memoph_io :
2365 case Hexagon::L4_isub_memoph_io :
2366 case Hexagon::L4_add_memoph_io :
2367 case Hexagon::L4_sub_memoph_io :
2368 case Hexagon::L4_and_memoph_io :
2369 case Hexagon::L4_or_memoph_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002370 return (0 <= Offset && Offset <= 127);
2371
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002372 case Hexagon::L4_iadd_memopb_io :
2373 case Hexagon::L4_isub_memopb_io :
2374 case Hexagon::L4_add_memopb_io :
2375 case Hexagon::L4_sub_memopb_io :
2376 case Hexagon::L4_and_memopb_io :
2377 case Hexagon::L4_or_memopb_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002378 return (0 <= Offset && Offset <= 63);
2379
2380 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2381 // any size. Later pass knows how to handle it.
2382 case Hexagon::STriw_pred:
2383 case Hexagon::LDriw_pred:
2384 return true;
2385
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002386 case Hexagon::TFR_FI:
2387 case Hexagon::TFR_FIA:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002388 case Hexagon::INLINEASM:
2389 return true;
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +00002390
2391 case Hexagon::L2_ploadrbt_io:
2392 case Hexagon::L2_ploadrbf_io:
2393 case Hexagon::L2_ploadrubt_io:
2394 case Hexagon::L2_ploadrubf_io:
2395 case Hexagon::S2_pstorerbt_io:
2396 case Hexagon::S2_pstorerbf_io:
2397 case Hexagon::S4_storeirb_io:
2398 case Hexagon::S4_storeirbt_io:
2399 case Hexagon::S4_storeirbf_io:
2400 return isUInt<6>(Offset);
2401
2402 case Hexagon::L2_ploadrht_io:
2403 case Hexagon::L2_ploadrhf_io:
2404 case Hexagon::L2_ploadruht_io:
2405 case Hexagon::L2_ploadruhf_io:
2406 case Hexagon::S2_pstorerht_io:
2407 case Hexagon::S2_pstorerhf_io:
2408 case Hexagon::S4_storeirh_io:
2409 case Hexagon::S4_storeirht_io:
2410 case Hexagon::S4_storeirhf_io:
2411 return isShiftedUInt<6,1>(Offset);
2412
2413 case Hexagon::L2_ploadrit_io:
2414 case Hexagon::L2_ploadrif_io:
2415 case Hexagon::S2_pstorerit_io:
2416 case Hexagon::S2_pstorerif_io:
2417 case Hexagon::S4_storeiri_io:
2418 case Hexagon::S4_storeirit_io:
2419 case Hexagon::S4_storeirif_io:
2420 return isShiftedUInt<6,2>(Offset);
2421
2422 case Hexagon::L2_ploadrdt_io:
2423 case Hexagon::L2_ploadrdf_io:
2424 case Hexagon::S2_pstorerdt_io:
2425 case Hexagon::S2_pstorerdf_io:
2426 return isShiftedUInt<6,3>(Offset);
2427 } // switch
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002428
Benjamin Kramerb6684012011-12-27 11:41:05 +00002429 llvm_unreachable("No offset range is defined for this opcode. "
2430 "Please define it in the above switch statement!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002431}
2432
2433
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002434bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2435 return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002436}
2437
2438
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002439bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2440 if (!MI)
Andrew Trickd06df962012-02-01 22:13:57 +00002441 return false;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002442 const uint64_t F = get(MI->getOpcode()).TSFlags;
2443 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2444 return
2445 V == HexagonII::TypeCVI_VA ||
2446 V == HexagonII::TypeCVI_VA_DV;
2447}
Andrew Trickd06df962012-02-01 22:13:57 +00002448
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002449
2450bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2451 const MachineInstr *ConsMI) const {
2452 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2453 return true;
2454
2455 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2456 return true;
2457
2458 if (mayBeNewStore(ConsMI))
Andrew Trickd06df962012-02-01 22:13:57 +00002459 return true;
2460
2461 return false;
2462}
Jyotsna Verma84256432013-03-01 17:37:13 +00002463
Jyotsna Verma84256432013-03-01 17:37:13 +00002464
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002465bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2466 for (auto &I : *B)
2467 if (I.isEHLabel())
2468 return true;
2469 return false;
Jyotsna Verma84256432013-03-01 17:37:13 +00002470}
2471
Jyotsna Verma84256432013-03-01 17:37:13 +00002472
2473// Returns true if an instruction can be converted into a non-extended
2474// equivalent instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002475bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00002476 short NonExtOpcode;
2477 // Check if the instruction has a register form that uses register in place
2478 // of the extended operand, if so return that as the non-extended form.
2479 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2480 return true;
2481
2482 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00002483 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00002484
2485 switch (getAddrMode(MI)) {
2486 case HexagonII::Absolute :
2487 // Load/store with absolute addressing mode can be converted into
2488 // base+offset mode.
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00002489 NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00002490 break;
2491 case HexagonII::BaseImmOffset :
2492 // Load/store with base+offset addressing mode can be converted into
2493 // base+register offset addressing mode. However left shift operand should
2494 // be set to 0.
2495 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2496 break;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002497 case HexagonII::BaseLongOffset:
2498 NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
2499 break;
Jyotsna Verma84256432013-03-01 17:37:13 +00002500 default:
2501 return false;
2502 }
2503 if (NonExtOpcode < 0)
2504 return false;
2505 return true;
2506 }
2507 return false;
2508}
2509
Jyotsna Verma84256432013-03-01 17:37:13 +00002510
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002511bool HexagonInstrInfo::hasPseudoInstrPair(MachineInstr *MI) const {
2512 return Hexagon::getRealHWInstr(MI->getOpcode(),
2513 Hexagon::InstrType_Pseudo) >= 0;
2514}
2515
2516
2517bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2518 const {
2519 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2520 while (I != E) {
2521 if (I->isBarrier())
2522 return true;
2523 ++I;
2524 }
2525 return false;
2526}
2527
2528
2529// Returns true, if a LD insn can be promoted to a cur load.
2530bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
2531 auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
2532 const uint64_t F = MI->getDesc().TSFlags;
2533 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2534 HST.hasV60TOps();
2535}
2536
2537
2538// Returns true, if a ST insn can be promoted to a new-value store.
2539bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
2540 const uint64_t F = MI->getDesc().TSFlags;
2541 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
2542}
2543
2544
2545bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
2546 const MachineInstr *ConsMI) const {
2547 // There is no stall when ProdMI is not a V60 vector.
2548 if (!isV60VectorInstruction(ProdMI))
2549 return false;
2550
2551 // There is no stall when ProdMI and ConsMI are not dependent.
2552 if (!isDependent(ProdMI, ConsMI))
2553 return false;
2554
2555 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
2556 // are scheduled in consecutive packets.
2557 if (isVecUsableNextPacket(ProdMI, ConsMI))
2558 return false;
2559
2560 return true;
2561}
2562
2563
2564bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
2565 MachineBasicBlock::const_instr_iterator BII) const {
2566 // There is no stall when I is not a V60 vector.
2567 if (!isV60VectorInstruction(MI))
2568 return false;
2569
2570 MachineBasicBlock::const_instr_iterator MII = BII;
2571 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
2572
2573 if (!(*MII).isBundle()) {
2574 const MachineInstr *J = &*MII;
2575 if (!isV60VectorInstruction(J))
2576 return false;
2577 else if (isVecUsableNextPacket(J, MI))
2578 return false;
2579 return true;
2580 }
2581
2582 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
2583 const MachineInstr *J = &*MII;
2584 if (producesStall(J, MI))
2585 return true;
2586 }
2587 return false;
2588}
2589
2590
2591bool HexagonInstrInfo::predCanBeUsedAsDotNew(MachineInstr *MI,
2592 unsigned PredReg) const {
2593 for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
2594 MachineOperand &MO = MI->getOperand(opNum);
2595 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
2596 return false; // Predicate register must be explicitly defined.
2597 }
2598
2599 // Hexagon Programmer's Reference says that decbin, memw_locked, and
2600 // memd_locked cannot be used as .new as well,
2601 // but we don't seem to have these instructions defined.
2602 return MI->getOpcode() != Hexagon::A4_tlbmatch;
2603}
2604
2605
2606bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
2607 return (Opcode == Hexagon::J2_jumpt) ||
2608 (Opcode == Hexagon::J2_jumpf) ||
2609 (Opcode == Hexagon::J2_jumptnew) ||
2610 (Opcode == Hexagon::J2_jumpfnew) ||
2611 (Opcode == Hexagon::J2_jumptnewpt) ||
2612 (Opcode == Hexagon::J2_jumpfnewpt);
2613}
2614
2615
2616bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
2617 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
2618 return false;
2619 return !isPredicatedTrue(Cond[0].getImm());
2620}
2621
2622
2623unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2624 const uint64_t F = MI->getDesc().TSFlags;
2625 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
2626}
2627
2628
2629// Returns the base register in a memory access (load/store). The offset is
2630// returned in Offset and the access size is returned in AccessSize.
2631unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
2632 int &Offset, unsigned &AccessSize) const {
2633 // Return if it is not a base+offset type instruction or a MemOp.
2634 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
2635 getAddrMode(MI) != HexagonII::BaseLongOffset &&
2636 !isMemOp(MI) && !isPostIncrement(MI))
2637 return 0;
2638
2639 // Since it is a memory access instruction, getMemAccessSize() should never
2640 // return 0.
2641 assert (getMemAccessSize(MI) &&
2642 "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
2643
2644 // Return Values of getMemAccessSize() are
2645 // 0 - Checked in the assert above.
2646 // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
2647 // MemAccessSize is represented as 1+log2(N) where N is size in bits.
2648 AccessSize = (1U << (getMemAccessSize(MI) - 1));
2649
2650 unsigned basePos = 0, offsetPos = 0;
2651 if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
2652 return 0;
2653
2654 // Post increment updates its EA after the mem access,
2655 // so we need to treat its offset as zero.
2656 if (isPostIncrement(MI))
2657 Offset = 0;
2658 else {
2659 Offset = MI->getOperand(offsetPos).getImm();
2660 }
2661
2662 return MI->getOperand(basePos).getReg();
2663}
2664
2665
2666/// Return the position of the base and offset operands for this instruction.
2667bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
2668 unsigned &BasePos, unsigned &OffsetPos) const {
2669 // Deal with memops first.
2670 if (isMemOp(MI)) {
2671 assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
2672 "Bad Memop.");
2673 BasePos = 0;
2674 OffsetPos = 1;
2675 } else if (MI->mayStore()) {
2676 BasePos = 0;
2677 OffsetPos = 1;
2678 } else if (MI->mayLoad()) {
2679 BasePos = 1;
2680 OffsetPos = 2;
2681 } else
2682 return false;
2683
2684 if (isPredicated(MI)) {
2685 BasePos++;
2686 OffsetPos++;
2687 }
2688 if (isPostIncrement(MI)) {
2689 BasePos++;
2690 OffsetPos++;
2691 }
2692
2693 if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
2694 return false;
2695
2696 return true;
2697}
2698
2699
2700// Inserts branching instructions in reverse order of their occurence.
2701// e.g. jump_t t1 (i1)
2702// jump t2 (i2)
2703// Jumpers = {i2, i1}
2704SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
2705 MachineBasicBlock& MBB) const {
2706 SmallVector<MachineInstr*, 2> Jumpers;
2707 // If the block has no terminators, it just falls into the block after it.
2708 MachineBasicBlock::instr_iterator I = MBB.instr_end();
2709 if (I == MBB.instr_begin())
2710 return Jumpers;
2711
2712 // A basic block may looks like this:
2713 //
2714 // [ insn
2715 // EH_LABEL
2716 // insn
2717 // insn
2718 // insn
2719 // EH_LABEL
2720 // insn ]
2721 //
2722 // It has two succs but does not have a terminator
2723 // Don't know how to handle it.
2724 do {
2725 --I;
2726 if (I->isEHLabel())
2727 return Jumpers;
2728 } while (I != MBB.instr_begin());
2729
2730 I = MBB.instr_end();
2731 --I;
2732
2733 while (I->isDebugValue()) {
2734 if (I == MBB.instr_begin())
2735 return Jumpers;
2736 --I;
2737 }
2738 if (!isUnpredicatedTerminator(&*I))
2739 return Jumpers;
2740
2741 // Get the last instruction in the block.
2742 MachineInstr *LastInst = &*I;
2743 Jumpers.push_back(LastInst);
2744 MachineInstr *SecondLastInst = nullptr;
2745 // Find one more terminator if present.
2746 do {
2747 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
2748 if (!SecondLastInst) {
2749 SecondLastInst = &*I;
2750 Jumpers.push_back(SecondLastInst);
2751 } else // This is a third branch.
2752 return Jumpers;
2753 }
2754 if (I == MBB.instr_begin())
2755 break;
2756 --I;
2757 } while (true);
2758 return Jumpers;
2759}
2760
2761
2762// Returns Operand Index for the constant extended instruction.
2763unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2764 const uint64_t F = MI->getDesc().TSFlags;
2765 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
2766}
2767
2768// See if instruction could potentially be a duplex candidate.
2769// If so, return its group. Zero otherwise.
2770HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
2771 const MachineInstr *MI) const {
2772 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
2773
2774 switch (MI->getOpcode()) {
2775 default:
2776 return HexagonII::HCG_None;
2777 //
2778 // Compound pairs.
2779 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
2780 // "Rd16=#U6 ; jump #r9:2"
2781 // "Rd16=Rs16 ; jump #r9:2"
2782 //
2783 case Hexagon::C2_cmpeq:
2784 case Hexagon::C2_cmpgt:
2785 case Hexagon::C2_cmpgtu:
2786 DstReg = MI->getOperand(0).getReg();
2787 Src1Reg = MI->getOperand(1).getReg();
2788 Src2Reg = MI->getOperand(2).getReg();
2789 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2790 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2791 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
2792 return HexagonII::HCG_A;
2793 break;
2794 case Hexagon::C2_cmpeqi:
2795 case Hexagon::C2_cmpgti:
2796 case Hexagon::C2_cmpgtui:
2797 // P0 = cmp.eq(Rs,#u2)
2798 DstReg = MI->getOperand(0).getReg();
2799 SrcReg = MI->getOperand(1).getReg();
2800 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2801 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2802 isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
2803 ((isUInt<5>(MI->getOperand(2).getImm())) ||
2804 (MI->getOperand(2).getImm() == -1)))
2805 return HexagonII::HCG_A;
2806 break;
2807 case Hexagon::A2_tfr:
2808 // Rd = Rs
2809 DstReg = MI->getOperand(0).getReg();
2810 SrcReg = MI->getOperand(1).getReg();
2811 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
2812 return HexagonII::HCG_A;
2813 break;
2814 case Hexagon::A2_tfrsi:
2815 // Rd = #u6
2816 // Do not test for #u6 size since the const is getting extended
2817 // regardless and compound could be formed.
2818 DstReg = MI->getOperand(0).getReg();
2819 if (isIntRegForSubInst(DstReg))
2820 return HexagonII::HCG_A;
2821 break;
2822 case Hexagon::S2_tstbit_i:
2823 DstReg = MI->getOperand(0).getReg();
2824 Src1Reg = MI->getOperand(1).getReg();
2825 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2826 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2827 MI->getOperand(2).isImm() &&
2828 isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
2829 return HexagonII::HCG_A;
2830 break;
2831 // The fact that .new form is used pretty much guarantees
2832 // that predicate register will match. Nevertheless,
2833 // there could be some false positives without additional
2834 // checking.
2835 case Hexagon::J2_jumptnew:
2836 case Hexagon::J2_jumpfnew:
2837 case Hexagon::J2_jumptnewpt:
2838 case Hexagon::J2_jumpfnewpt:
2839 Src1Reg = MI->getOperand(0).getReg();
2840 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
2841 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
2842 return HexagonII::HCG_B;
2843 break;
2844 // Transfer and jump:
2845 // Rd=#U6 ; jump #r9:2
2846 // Rd=Rs ; jump #r9:2
2847 // Do not test for jump range here.
2848 case Hexagon::J2_jump:
2849 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
2850 return HexagonII::HCG_C;
2851 break;
2852 }
2853
2854 return HexagonII::HCG_None;
2855}
2856
2857
2858// Returns -1 when there is no opcode found.
2859unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
2860 const MachineInstr *GB) const {
2861 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
2862 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
2863 if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
2864 (GB->getOpcode() != Hexagon::J2_jumptnew))
2865 return -1;
2866 unsigned DestReg = GA->getOperand(0).getReg();
2867 if (!GB->readsRegister(DestReg))
2868 return -1;
2869 if (DestReg == Hexagon::P0)
2870 return Hexagon::J4_cmpeqi_tp0_jump_nt;
2871 if (DestReg == Hexagon::P1)
2872 return Hexagon::J4_cmpeqi_tp1_jump_nt;
2873 return -1;
2874}
2875
2876
2877int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
2878 enum Hexagon::PredSense inPredSense;
2879 inPredSense = invertPredicate ? Hexagon::PredSense_false :
2880 Hexagon::PredSense_true;
2881 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
2882 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
2883 return CondOpcode;
2884
2885 // This switch case will be removed once all the instructions have been
2886 // modified to use relation maps.
2887 switch(Opc) {
2888 case Hexagon::TFRI_f:
2889 return !invertPredicate ? Hexagon::TFRI_cPt_f :
2890 Hexagon::TFRI_cNotPt_f;
2891 }
2892
2893 llvm_unreachable("Unexpected predicable instruction");
2894}
2895
2896
2897// Return the cur value instruction for a given store.
2898int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
2899 switch (MI->getOpcode()) {
2900 default: llvm_unreachable("Unknown .cur type");
2901 case Hexagon::V6_vL32b_pi:
2902 return Hexagon::V6_vL32b_cur_pi;
2903 case Hexagon::V6_vL32b_ai:
2904 return Hexagon::V6_vL32b_cur_ai;
2905 //128B
2906 case Hexagon::V6_vL32b_pi_128B:
2907 return Hexagon::V6_vL32b_cur_pi_128B;
2908 case Hexagon::V6_vL32b_ai_128B:
2909 return Hexagon::V6_vL32b_cur_ai_128B;
2910 }
2911 return 0;
2912}
2913
2914
2915
2916// The diagram below shows the steps involved in the conversion of a predicated
2917// store instruction to its .new predicated new-value form.
2918//
2919// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
2920// ^ ^
2921// / \ (not OK. it will cause new-value store to be
2922// / X conditional on p0.new while R2 producer is
2923// / \ on p0)
2924// / \.
2925// p.new store p.old NV store
2926// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
2927// ^ ^
2928// \ /
2929// \ /
2930// \ /
2931// p.old store
2932// [if (p0)memw(R0+#0)=R2]
2933//
2934//
2935// The following set of instructions further explains the scenario where
2936// conditional new-value store becomes invalid when promoted to .new predicate
2937// form.
2938//
2939// { 1) if (p0) r0 = add(r1, r2)
2940// 2) p0 = cmp.eq(r3, #0) }
2941//
2942// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
2943// the first two instructions because in instr 1, r0 is conditional on old value
2944// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
2945// is not valid for new-value stores.
2946// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
2947// from the "Conditional Store" list. Because a predicated new value store
2948// would NOT be promoted to a double dot new store. See diagram below:
2949// This function returns yes for those stores that are predicated but not
2950// yet promoted to predicate dot new instructions.
2951//
2952// +---------------------+
2953// /-----| if (p0) memw(..)=r0 |---------\~
2954// || +---------------------+ ||
2955// promote || /\ /\ || promote
2956// || /||\ /||\ ||
2957// \||/ demote || \||/
2958// \/ || || \/
2959// +-------------------------+ || +-------------------------+
2960// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
2961// +-------------------------+ || +-------------------------+
2962// || || ||
2963// || demote \||/
2964// promote || \/ NOT possible
2965// || || /\~
2966// \||/ || /||\~
2967// \/ || ||
2968// +-----------------------------+
2969// | if (p0.new) memw(..)=r0.new |
2970// +-----------------------------+
2971// Double Dot New Store
2972//
2973// Returns the most basic instruction for the .new predicated instructions and
2974// new-value stores.
2975// For example, all of the following instructions will be converted back to the
2976// same instruction:
2977// 1) if (p0.new) memw(R0+#0) = R1.new --->
2978// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
2979// 3) if (p0.new) memw(R0+#0) = R1 --->
2980//
2981// To understand the translation of instruction 1 to its original form, consider
2982// a packet with 3 instructions.
2983// { p0 = cmp.eq(R0,R1)
2984// if (p0.new) R2 = add(R3, R4)
2985// R5 = add (R3, R1)
2986// }
2987// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
2988//
2989// This instruction can be part of the previous packet only if both p0 and R2
2990// are promoted to .new values. This promotion happens in steps, first
2991// predicate register is promoted to .new and in the next iteration R2 is
2992// promoted. Therefore, in case of dependence check failure (due to R5) during
2993// next iteration, it should be converted back to its most basic form.
2994
2995
2996// Return the new value instruction for a given store.
2997int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
2998 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
2999 if (NVOpcode >= 0) // Valid new-value store instruction.
3000 return NVOpcode;
3001
3002 switch (MI->getOpcode()) {
3003 default: llvm_unreachable("Unknown .new type");
3004 case Hexagon::S4_storerb_ur:
3005 return Hexagon::S4_storerbnew_ur;
3006
3007 case Hexagon::S2_storerb_pci:
3008 return Hexagon::S2_storerb_pci;
3009
3010 case Hexagon::S2_storeri_pci:
3011 return Hexagon::S2_storeri_pci;
3012
3013 case Hexagon::S2_storerh_pci:
3014 return Hexagon::S2_storerh_pci;
3015
3016 case Hexagon::S2_storerd_pci:
3017 return Hexagon::S2_storerd_pci;
3018
3019 case Hexagon::S2_storerf_pci:
3020 return Hexagon::S2_storerf_pci;
3021
3022 case Hexagon::V6_vS32b_ai:
3023 return Hexagon::V6_vS32b_new_ai;
3024
3025 case Hexagon::V6_vS32b_pi:
3026 return Hexagon::V6_vS32b_new_pi;
3027
3028 // 128B
3029 case Hexagon::V6_vS32b_ai_128B:
3030 return Hexagon::V6_vS32b_new_ai_128B;
3031
3032 case Hexagon::V6_vS32b_pi_128B:
3033 return Hexagon::V6_vS32b_new_pi_128B;
3034 }
3035 return 0;
3036}
3037
3038// Returns the opcode to use when converting MI, which is a conditional jump,
3039// into a conditional instruction which uses the .new value of the predicate.
3040// We also use branch probabilities to add a hint to the jump.
3041int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
3042 const MachineBranchProbabilityInfo *MBPI) const {
3043 // We assume that block can have at most two successors.
3044 bool taken = false;
3045 MachineBasicBlock *Src = MI->getParent();
3046 MachineOperand *BrTarget = &MI->getOperand(1);
3047 MachineBasicBlock *Dst = BrTarget->getMBB();
3048
3049 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
3050 if (Prediction >= BranchProbability(1,2))
3051 taken = true;
3052
3053 switch (MI->getOpcode()) {
3054 case Hexagon::J2_jumpt:
3055 return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3056 case Hexagon::J2_jumpf:
3057 return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3058
3059 default:
3060 llvm_unreachable("Unexpected jump instruction.");
3061 }
3062}
3063
3064
3065// Return .new predicate version for an instruction.
3066int HexagonInstrInfo::getDotNewPredOp(MachineInstr *MI,
3067 const MachineBranchProbabilityInfo *MBPI) const {
3068 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
3069 if (NewOpcode >= 0) // Valid predicate new instruction
3070 return NewOpcode;
3071
3072 switch (MI->getOpcode()) {
3073 // Condtional Jumps
3074 case Hexagon::J2_jumpt:
3075 case Hexagon::J2_jumpf:
3076 return getDotNewPredJumpOp(MI, MBPI);
3077
3078 default:
3079 assert(0 && "Unknown .new type");
3080 }
3081 return 0;
3082}
3083
3084
3085int HexagonInstrInfo::getDotOldOp(const int opc) const {
3086 int NewOp = opc;
3087 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3088 NewOp = Hexagon::getPredOldOpcode(NewOp);
3089 assert(NewOp >= 0 &&
3090 "Couldn't change predicate new instruction to its old form.");
3091 }
3092
3093 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3094 NewOp = Hexagon::getNonNVStore(NewOp);
3095 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3096 }
3097 return NewOp;
3098}
3099
3100
3101// See if instruction could potentially be a duplex candidate.
3102// If so, return its group. Zero otherwise.
3103HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3104 const MachineInstr *MI) const {
3105 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3106 auto &HRI = getRegisterInfo();
3107
3108 switch (MI->getOpcode()) {
3109 default:
3110 return HexagonII::HSIG_None;
3111 //
3112 // Group L1:
3113 //
3114 // Rd = memw(Rs+#u4:2)
3115 // Rd = memub(Rs+#u4:0)
3116 case Hexagon::L2_loadri_io:
3117 DstReg = MI->getOperand(0).getReg();
3118 SrcReg = MI->getOperand(1).getReg();
3119 // Special case this one from Group L2.
3120 // Rd = memw(r29+#u5:2)
3121 if (isIntRegForSubInst(DstReg)) {
3122 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3123 HRI.getStackRegister() == SrcReg &&
3124 MI->getOperand(2).isImm() &&
3125 isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3126 return HexagonII::HSIG_L2;
3127 // Rd = memw(Rs+#u4:2)
3128 if (isIntRegForSubInst(SrcReg) &&
3129 (MI->getOperand(2).isImm() &&
3130 isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3131 return HexagonII::HSIG_L1;
3132 }
3133 break;
3134 case Hexagon::L2_loadrub_io:
3135 // Rd = memub(Rs+#u4:0)
3136 DstReg = MI->getOperand(0).getReg();
3137 SrcReg = MI->getOperand(1).getReg();
3138 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3139 MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3140 return HexagonII::HSIG_L1;
3141 break;
3142 //
3143 // Group L2:
3144 //
3145 // Rd = memh/memuh(Rs+#u3:1)
3146 // Rd = memb(Rs+#u3:0)
3147 // Rd = memw(r29+#u5:2) - Handled above.
3148 // Rdd = memd(r29+#u5:3)
3149 // deallocframe
3150 // [if ([!]p0[.new])] dealloc_return
3151 // [if ([!]p0[.new])] jumpr r31
3152 case Hexagon::L2_loadrh_io:
3153 case Hexagon::L2_loadruh_io:
3154 // Rd = memh/memuh(Rs+#u3:1)
3155 DstReg = MI->getOperand(0).getReg();
3156 SrcReg = MI->getOperand(1).getReg();
3157 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3158 MI->getOperand(2).isImm() &&
3159 isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3160 return HexagonII::HSIG_L2;
3161 break;
3162 case Hexagon::L2_loadrb_io:
3163 // Rd = memb(Rs+#u3:0)
3164 DstReg = MI->getOperand(0).getReg();
3165 SrcReg = MI->getOperand(1).getReg();
3166 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3167 MI->getOperand(2).isImm() &&
3168 isUInt<3>(MI->getOperand(2).getImm()))
3169 return HexagonII::HSIG_L2;
3170 break;
3171 case Hexagon::L2_loadrd_io:
3172 // Rdd = memd(r29+#u5:3)
3173 DstReg = MI->getOperand(0).getReg();
3174 SrcReg = MI->getOperand(1).getReg();
3175 if (isDblRegForSubInst(DstReg, HRI) &&
3176 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3177 HRI.getStackRegister() == SrcReg &&
3178 MI->getOperand(2).isImm() &&
3179 isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3180 return HexagonII::HSIG_L2;
3181 break;
3182 // dealloc_return is not documented in Hexagon Manual, but marked
3183 // with A_SUBINSN attribute in iset_v4classic.py.
3184 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3185 case Hexagon::L4_return:
3186 case Hexagon::L2_deallocframe:
3187 return HexagonII::HSIG_L2;
3188 case Hexagon::EH_RETURN_JMPR:
3189 case Hexagon::JMPret :
3190 // jumpr r31
3191 // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3192 DstReg = MI->getOperand(0).getReg();
3193 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3194 return HexagonII::HSIG_L2;
3195 break;
3196 case Hexagon::JMPrett:
3197 case Hexagon::JMPretf:
3198 case Hexagon::JMPrettnewpt:
3199 case Hexagon::JMPretfnewpt :
3200 case Hexagon::JMPrettnew :
3201 case Hexagon::JMPretfnew :
3202 DstReg = MI->getOperand(1).getReg();
3203 SrcReg = MI->getOperand(0).getReg();
3204 // [if ([!]p0[.new])] jumpr r31
3205 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3206 (Hexagon::P0 == SrcReg)) &&
3207 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3208 return HexagonII::HSIG_L2;
3209 break;
3210 case Hexagon::L4_return_t :
3211 case Hexagon::L4_return_f :
3212 case Hexagon::L4_return_tnew_pnt :
3213 case Hexagon::L4_return_fnew_pnt :
3214 case Hexagon::L4_return_tnew_pt :
3215 case Hexagon::L4_return_fnew_pt :
3216 // [if ([!]p0[.new])] dealloc_return
3217 SrcReg = MI->getOperand(0).getReg();
3218 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3219 return HexagonII::HSIG_L2;
3220 break;
3221 //
3222 // Group S1:
3223 //
3224 // memw(Rs+#u4:2) = Rt
3225 // memb(Rs+#u4:0) = Rt
3226 case Hexagon::S2_storeri_io:
3227 // Special case this one from Group S2.
3228 // memw(r29+#u5:2) = Rt
3229 Src1Reg = MI->getOperand(0).getReg();
3230 Src2Reg = MI->getOperand(2).getReg();
3231 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3232 isIntRegForSubInst(Src2Reg) &&
3233 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3234 isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3235 return HexagonII::HSIG_S2;
3236 // memw(Rs+#u4:2) = Rt
3237 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3238 MI->getOperand(1).isImm() &&
3239 isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3240 return HexagonII::HSIG_S1;
3241 break;
3242 case Hexagon::S2_storerb_io:
3243 // memb(Rs+#u4:0) = Rt
3244 Src1Reg = MI->getOperand(0).getReg();
3245 Src2Reg = MI->getOperand(2).getReg();
3246 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3247 MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3248 return HexagonII::HSIG_S1;
3249 break;
3250 //
3251 // Group S2:
3252 //
3253 // memh(Rs+#u3:1) = Rt
3254 // memw(r29+#u5:2) = Rt
3255 // memd(r29+#s6:3) = Rtt
3256 // memw(Rs+#u4:2) = #U1
3257 // memb(Rs+#u4) = #U1
3258 // allocframe(#u5:3)
3259 case Hexagon::S2_storerh_io:
3260 // memh(Rs+#u3:1) = Rt
3261 Src1Reg = MI->getOperand(0).getReg();
3262 Src2Reg = MI->getOperand(2).getReg();
3263 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3264 MI->getOperand(1).isImm() &&
3265 isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3266 return HexagonII::HSIG_S1;
3267 break;
3268 case Hexagon::S2_storerd_io:
3269 // memd(r29+#s6:3) = Rtt
3270 Src1Reg = MI->getOperand(0).getReg();
3271 Src2Reg = MI->getOperand(2).getReg();
3272 if (isDblRegForSubInst(Src2Reg, HRI) &&
3273 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3274 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3275 isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3276 return HexagonII::HSIG_S2;
3277 break;
3278 case Hexagon::S4_storeiri_io:
3279 // memw(Rs+#u4:2) = #U1
3280 Src1Reg = MI->getOperand(0).getReg();
3281 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3282 isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3283 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3284 return HexagonII::HSIG_S2;
3285 break;
3286 case Hexagon::S4_storeirb_io:
3287 // memb(Rs+#u4) = #U1
3288 Src1Reg = MI->getOperand(0).getReg();
3289 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3290 isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
3291 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3292 return HexagonII::HSIG_S2;
3293 break;
3294 case Hexagon::S2_allocframe:
3295 if (MI->getOperand(0).isImm() &&
3296 isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3297 return HexagonII::HSIG_S1;
3298 break;
3299 //
3300 // Group A:
3301 //
3302 // Rx = add(Rx,#s7)
3303 // Rd = Rs
3304 // Rd = #u6
3305 // Rd = #-1
3306 // if ([!]P0[.new]) Rd = #0
3307 // Rd = add(r29,#u6:2)
3308 // Rx = add(Rx,Rs)
3309 // P0 = cmp.eq(Rs,#u2)
3310 // Rdd = combine(#0,Rs)
3311 // Rdd = combine(Rs,#0)
3312 // Rdd = combine(#u2,#U2)
3313 // Rd = add(Rs,#1)
3314 // Rd = add(Rs,#-1)
3315 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3316 // Rd = and(Rs,#1)
3317 case Hexagon::A2_addi:
3318 DstReg = MI->getOperand(0).getReg();
3319 SrcReg = MI->getOperand(1).getReg();
3320 if (isIntRegForSubInst(DstReg)) {
3321 // Rd = add(r29,#u6:2)
3322 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3323 HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3324 isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3325 return HexagonII::HSIG_A;
3326 // Rx = add(Rx,#s7)
3327 if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3328 isInt<7>(MI->getOperand(2).getImm()))
3329 return HexagonII::HSIG_A;
3330 // Rd = add(Rs,#1)
3331 // Rd = add(Rs,#-1)
3332 if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3333 ((MI->getOperand(2).getImm() == 1) ||
3334 (MI->getOperand(2).getImm() == -1)))
3335 return HexagonII::HSIG_A;
3336 }
3337 break;
3338 case Hexagon::A2_add:
3339 // Rx = add(Rx,Rs)
3340 DstReg = MI->getOperand(0).getReg();
3341 Src1Reg = MI->getOperand(1).getReg();
3342 Src2Reg = MI->getOperand(2).getReg();
3343 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3344 isIntRegForSubInst(Src2Reg))
3345 return HexagonII::HSIG_A;
3346 break;
3347 case Hexagon::A2_andir:
3348 // Same as zxtb.
3349 // Rd16=and(Rs16,#255)
3350 // Rd16=and(Rs16,#1)
3351 DstReg = MI->getOperand(0).getReg();
3352 SrcReg = MI->getOperand(1).getReg();
3353 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3354 MI->getOperand(2).isImm() &&
3355 ((MI->getOperand(2).getImm() == 1) ||
3356 (MI->getOperand(2).getImm() == 255)))
3357 return HexagonII::HSIG_A;
3358 break;
3359 case Hexagon::A2_tfr:
3360 // Rd = Rs
3361 DstReg = MI->getOperand(0).getReg();
3362 SrcReg = MI->getOperand(1).getReg();
3363 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3364 return HexagonII::HSIG_A;
3365 break;
3366 case Hexagon::A2_tfrsi:
3367 // Rd = #u6
3368 // Do not test for #u6 size since the const is getting extended
3369 // regardless and compound could be formed.
3370 // Rd = #-1
3371 DstReg = MI->getOperand(0).getReg();
3372 if (isIntRegForSubInst(DstReg))
3373 return HexagonII::HSIG_A;
3374 break;
3375 case Hexagon::C2_cmoveit:
3376 case Hexagon::C2_cmovenewit:
3377 case Hexagon::C2_cmoveif:
3378 case Hexagon::C2_cmovenewif:
3379 // if ([!]P0[.new]) Rd = #0
3380 // Actual form:
3381 // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3382 DstReg = MI->getOperand(0).getReg();
3383 SrcReg = MI->getOperand(1).getReg();
3384 if (isIntRegForSubInst(DstReg) &&
3385 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3386 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3387 return HexagonII::HSIG_A;
3388 break;
3389 case Hexagon::C2_cmpeqi:
3390 // P0 = cmp.eq(Rs,#u2)
3391 DstReg = MI->getOperand(0).getReg();
3392 SrcReg = MI->getOperand(1).getReg();
3393 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3394 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3395 MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3396 return HexagonII::HSIG_A;
3397 break;
3398 case Hexagon::A2_combineii:
3399 case Hexagon::A4_combineii:
3400 // Rdd = combine(#u2,#U2)
3401 DstReg = MI->getOperand(0).getReg();
3402 if (isDblRegForSubInst(DstReg, HRI) &&
3403 ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3404 (MI->getOperand(1).isGlobal() &&
3405 isUInt<2>(MI->getOperand(1).getOffset()))) &&
3406 ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3407 (MI->getOperand(2).isGlobal() &&
3408 isUInt<2>(MI->getOperand(2).getOffset()))))
3409 return HexagonII::HSIG_A;
3410 break;
3411 case Hexagon::A4_combineri:
3412 // Rdd = combine(Rs,#0)
3413 DstReg = MI->getOperand(0).getReg();
3414 SrcReg = MI->getOperand(1).getReg();
3415 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3416 ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3417 (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3418 return HexagonII::HSIG_A;
3419 break;
3420 case Hexagon::A4_combineir:
3421 // Rdd = combine(#0,Rs)
3422 DstReg = MI->getOperand(0).getReg();
3423 SrcReg = MI->getOperand(2).getReg();
3424 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3425 ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3426 (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3427 return HexagonII::HSIG_A;
3428 break;
3429 case Hexagon::A2_sxtb:
3430 case Hexagon::A2_sxth:
3431 case Hexagon::A2_zxtb:
3432 case Hexagon::A2_zxth:
3433 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3434 DstReg = MI->getOperand(0).getReg();
3435 SrcReg = MI->getOperand(1).getReg();
3436 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3437 return HexagonII::HSIG_A;
3438 break;
3439 }
3440
3441 return HexagonII::HSIG_None;
3442}
3443
3444
3445short HexagonInstrInfo::getEquivalentHWInstr(MachineInstr *MI) const {
3446 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3447}
3448
3449
3450// Return first non-debug instruction in the basic block.
3451MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3452 const {
3453 for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3454 MachineInstr *MI = &*MII;
3455 if (MI->isDebugValue())
3456 continue;
3457 return MI;
3458 }
3459 return nullptr;
3460}
3461
3462
3463unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3464 const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3465 // Default to one cycle for no itinerary. However, an "empty" itinerary may
3466 // still have a MinLatency property, which getStageLatency checks.
3467 if (!ItinData)
3468 return getInstrLatency(ItinData, MI);
3469
3470 // Get the latency embedded in the itinerary. If we're not using timing class
3471 // latencies or if we using BSB scheduling, then restrict the maximum latency
3472 // to 1 (that is, either 0 or 1).
3473 if (MI->isTransient())
3474 return 0;
3475 unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
3476 if (!EnableTimingClassLatency ||
3477 MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
3478 useBSBScheduling())
3479 if (Latency > 1)
3480 Latency = 1;
3481 return Latency;
3482}
3483
3484
3485// inverts the predication logic.
3486// p -> NotP
3487// NotP -> P
3488bool HexagonInstrInfo::getInvertedPredSense(
3489 SmallVectorImpl<MachineOperand> &Cond) const {
3490 if (Cond.empty())
3491 return false;
3492 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
3493 Cond[0].setImm(Opc);
3494 return true;
3495}
3496
3497
3498unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
3499 int InvPredOpcode;
3500 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
3501 : Hexagon::getTruePredOpcode(Opc);
3502 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
3503 return InvPredOpcode;
3504
3505 llvm_unreachable("Unexpected predicated instruction");
3506}
3507
3508
3509// Returns the max value that doesn't need to be extended.
3510int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
3511 const uint64_t F = MI->getDesc().TSFlags;
3512 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3513 & HexagonII::ExtentSignedMask;
3514 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3515 & HexagonII::ExtentBitsMask;
3516
3517 if (isSigned) // if value is signed
3518 return ~(-1U << (bits - 1));
3519 else
3520 return ~(-1U << bits);
3521}
3522
3523
3524unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
3525 const uint64_t F = MI->getDesc().TSFlags;
3526 return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
3527}
3528
3529
3530// Returns the min value that doesn't need to be extended.
3531int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
3532 const uint64_t F = MI->getDesc().TSFlags;
3533 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3534 & HexagonII::ExtentSignedMask;
3535 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3536 & HexagonII::ExtentBitsMask;
3537
3538 if (isSigned) // if value is signed
3539 return -1U << (bits - 1);
3540 else
3541 return 0;
3542}
3543
3544
3545// Returns opcode of the non-extended equivalent instruction.
3546short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00003547 // Check if the instruction has a register form that uses register in place
3548 // of the extended operand, if so return that as the non-extended form.
3549 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
3550 if (NonExtOpcode >= 0)
3551 return NonExtOpcode;
3552
3553 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00003554 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00003555 switch (getAddrMode(MI)) {
3556 case HexagonII::Absolute :
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00003557 return Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00003558 case HexagonII::BaseImmOffset :
3559 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003560 case HexagonII::BaseLongOffset:
3561 return Hexagon::getRegShlForm(MI->getOpcode());
3562
Jyotsna Verma84256432013-03-01 17:37:13 +00003563 default:
3564 return -1;
3565 }
3566 }
3567 return -1;
3568}
Jyotsna Verma5ed51812013-05-01 21:37:34 +00003569
Brendon Cahoondf43e682015-05-08 16:16:29 +00003570
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003571bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003572 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00003573 if (Cond.empty())
3574 return false;
3575 assert(Cond.size() == 2);
3576 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
3577 DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
3578 return false;
3579 }
3580 PredReg = Cond[1].getReg();
3581 PredRegPos = 1;
3582 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
3583 PredRegFlags = 0;
3584 if (Cond[1].isImplicit())
3585 PredRegFlags = RegState::Implicit;
3586 if (Cond[1].isUndef())
3587 PredRegFlags |= RegState::Undef;
3588 return true;
3589}
3590
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003591
3592short HexagonInstrInfo::getPseudoInstrPair(MachineInstr *MI) const {
3593 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
3594}
3595
3596
3597short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
3598 return Hexagon::getRegForm(MI->getOpcode());
3599}
3600
3601
3602// Return the number of bytes required to encode the instruction.
3603// Hexagon instructions are fixed length, 4 bytes, unless they
3604// use a constant extender, which requires another 4 bytes.
3605// For debug instructions and prolog labels, return 0.
3606unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
3607 if (MI->isDebugValue() || MI->isPosition())
3608 return 0;
3609
3610 unsigned Size = MI->getDesc().getSize();
3611 if (!Size)
3612 // Assume the default insn size in case it cannot be determined
3613 // for whatever reason.
3614 Size = HEXAGON_INSTR_SIZE;
3615
3616 if (isConstExtended(MI) || isExtended(MI))
3617 Size += HEXAGON_INSTR_SIZE;
3618
3619 // Try and compute number of instructions in asm.
3620 if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
3621 const MachineBasicBlock &MBB = *MI->getParent();
3622 const MachineFunction *MF = MBB.getParent();
3623 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
3624
3625 // Count the number of register definitions to find the asm string.
3626 unsigned NumDefs = 0;
3627 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
3628 ++NumDefs)
3629 assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
3630
3631 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
3632 // Disassemble the AsmStr and approximate number of instructions.
3633 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
3634 Size = getInlineAsmLength(AsmStr, *MAI);
3635 }
3636
3637 return Size;
3638}
3639
3640
3641uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
3642 const uint64_t F = MI->getDesc().TSFlags;
3643 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
3644}
3645
3646
3647unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
3648 const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
3649 const InstrItineraryData &II = *ST.getInstrItineraryData();
3650 const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
3651
3652 return IS.getUnits();
3653}
3654
3655
3656unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
3657 const uint64_t F = get(Opcode).TSFlags;
3658 return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
3659}
3660
3661
3662// Calculate size of the basic block without debug instructions.
3663unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
3664 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
3665}
3666
3667
3668unsigned HexagonInstrInfo::nonDbgBundleSize(
3669 MachineBasicBlock::const_iterator BundleHead) const {
3670 assert(BundleHead->isBundle() && "Not a bundle header");
3671 auto MII = BundleHead.getInstrIterator();
3672 // Skip the bundle header.
3673 return nonDbgMICount(++MII, getBundleEnd(BundleHead));
3674}
3675
3676
3677/// immediateExtend - Changes the instruction in place to one using an immediate
3678/// extender.
3679void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
3680 assert((isExtendable(MI)||isConstExtended(MI)) &&
3681 "Instruction must be extendable");
3682 // Find which operand is extendable.
3683 short ExtOpNum = getCExtOpNum(MI);
3684 MachineOperand &MO = MI->getOperand(ExtOpNum);
3685 // This needs to be something we understand.
3686 assert((MO.isMBB() || MO.isImm()) &&
3687 "Branch with unknown extendable field type");
3688 // Mark given operand as extended.
3689 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
3690}
3691
3692
3693bool HexagonInstrInfo::invertAndChangeJumpTarget(
3694 MachineInstr* MI, MachineBasicBlock* NewTarget) const {
3695 DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
3696 << NewTarget->getNumber(); MI->dump(););
3697 assert(MI->isBranch());
3698 unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
3699 int TargetPos = MI->getNumOperands() - 1;
3700 // In general branch target is the last operand,
3701 // but some implicit defs added at the end might change it.
3702 while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
3703 --TargetPos;
3704 assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
3705 MI->getOperand(TargetPos).setMBB(NewTarget);
3706 if (EnableBranchPrediction && isPredicatedNew(MI)) {
3707 NewOpcode = reversePrediction(NewOpcode);
3708 }
3709 MI->setDesc(get(NewOpcode));
3710 return true;
3711}
3712
3713
3714void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
3715 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
3716 MachineFunction::iterator A = MF.begin();
3717 MachineBasicBlock &B = *A;
3718 MachineBasicBlock::iterator I = B.begin();
3719 MachineInstr *MI = &*I;
3720 DebugLoc DL = MI->getDebugLoc();
3721 MachineInstr *NewMI;
3722
3723 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
3724 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
3725 NewMI = BuildMI(B, MI, DL, get(insn));
3726 DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
3727 " Class: " << NewMI->getDesc().getSchedClass());
3728 NewMI->eraseFromParent();
3729 }
3730 /* --- The code above is used to generate complete set of Hexagon Insn --- */
3731}
3732
3733
3734// inverts the predication logic.
3735// p -> NotP
3736// NotP -> P
3737bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
3738 DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
3739 MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
3740 return true;
3741}
3742
3743
3744// Reverse the branch prediction.
3745unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
3746 int PredRevOpcode = -1;
3747 if (isPredictedTaken(Opcode))
3748 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
3749 else
3750 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
3751 assert(PredRevOpcode > 0);
3752 return PredRevOpcode;
3753}
3754
3755
3756// TODO: Add more rigorous validation.
3757bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
3758 const {
3759 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
3760}
3761