blob: ff0d5665dfac085ba838996d153e0c006c943ee0 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000061//
62// Using a custom inserter for BRC gives us a chance to convert the BRC
63// and a preceding compare into a single compare-and-branch instruction.
64// The inserter makes no change in cases where a separate branch really
65// is needed.
66multiclass CondBranches<Operand ccmask, string short, string long> {
Richard Sandiford14a44492013-05-22 13:38:45 +000067 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000068 def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
69 def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000070 }
71}
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000072let isCodeGenOnly = 1, usesCustomInserter = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000073 defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
Richard Sandiford6a808f92013-05-14 09:38:07 +000074defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000075
Richard Sandiford312425f2013-05-20 14:23:08 +000076def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000077
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000078// Fused compare-and-branch instructions. As for normal branches,
79// we handle these instructions internally in their raw CRJ-like form,
80// but use assembly macros like CRJE when writing them out.
81//
82// These instructions do not use or clobber the condition codes.
83// We nevertheless pretend that they clobber CC, so that we can lower
84// them to separate comparisons and BRCLs if the branch ends up being
85// out of range.
86multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
87 let isBranch = 1, isTerminator = 1, Defs = [CC] in {
88 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
89 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000090 "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000091 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
92 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000093 "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
94 def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
95 brtarget16:$RI4),
96 "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
97 def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
98 brtarget16:$RI4),
99 "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000100 }
101}
102let isCodeGenOnly = 1 in
103 defm C : CompareBranches<cond4, "$M3", "">;
104defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
105
106// Define AsmParser mnemonics for each general condition-code mask
107// (integer or floating-point)
108multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
109 let R1 = ccmask in {
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000110 def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
111 "j"##name##"\t$I2", []>;
Richard Sandifordd454ec02013-05-14 09:28:21 +0000112 def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000113 "jg"##name##"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114 }
115}
Richard Sandiford6a808f92013-05-14 09:38:07 +0000116defm AsmJO : CondExtendedMnemonic<1, "o">;
117defm AsmJH : CondExtendedMnemonic<2, "h">;
118defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
119defm AsmJL : CondExtendedMnemonic<4, "l">;
120defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
121defm AsmJLH : CondExtendedMnemonic<6, "lh">;
122defm AsmJNE : CondExtendedMnemonic<7, "ne">;
123defm AsmJE : CondExtendedMnemonic<8, "e">;
124defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
125defm AsmJHE : CondExtendedMnemonic<10, "he">;
126defm AsmJNL : CondExtendedMnemonic<11, "nl">;
127defm AsmJLE : CondExtendedMnemonic<12, "le">;
128defm AsmJNH : CondExtendedMnemonic<13, "nh">;
129defm AsmJNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000130
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000131// Define AsmParser mnemonics for each integer condition-code mask.
132// This is like the list above, except that condition 3 is not possible
133// and that the low bit of the mask is therefore always 0. This means
134// that each condition has two names. Conditions "o" and "no" are not used.
135//
136// We don't make one of the two names an alias of the other because
137// we need the custom parsing routines to select the correct register class.
138multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
139 let M3 = ccmask in {
140 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
141 brtarget16:$RI4),
142 "crj"##name##"\t$R1, $R2, $RI4", []>;
143 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
144 brtarget16:$RI4),
145 "cgrj"##name##"\t$R1, $R2, $RI4", []>;
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000146 def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
147 brtarget16:$RI4),
148 "cij"##name##"\t$R1, $I2, $RI4", []>;
149 def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
150 brtarget16:$RI4),
151 "cgij"##name##"\t$R1, $I2, $RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000152 }
153}
154multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
155 : IntCondExtendedMnemonicA<ccmask, name1> {
156 let isAsmParserOnly = 1 in
157 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
158}
159defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
160defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
161defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
162defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
163defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
164defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
165
Richard Sandifordb86a8342013-06-27 09:27:40 +0000166//===----------------------------------------------------------------------===//
167// Select instructions
168//===----------------------------------------------------------------------===//
169
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000170def Select32 : SelectWrapper<GR32>;
171def Select64 : SelectWrapper<GR64>;
172
Richard Sandifordb86a8342013-06-27 09:27:40 +0000173defm CondStore8_32 : CondStores<GR32, nonvolatile_truncstorei8,
174 nonvolatile_anyextloadi8, bdxaddr20only>;
175defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
176 nonvolatile_anyextloadi16, bdxaddr20only>;
177defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
178 nonvolatile_load, bdxaddr20only>;
179
180defm CondStore8 : CondStores<GR64, nonvolatile_truncstorei8,
181 nonvolatile_anyextloadi8, bdxaddr20only>;
182defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
183 nonvolatile_anyextloadi16, bdxaddr20only>;
184defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
185 nonvolatile_anyextloadi32, bdxaddr20only>;
186defm CondStore64 : CondStores<GR64, nonvolatile_store,
187 nonvolatile_load, bdxaddr20only>;
188
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000189//===----------------------------------------------------------------------===//
190// Call instructions
191//===----------------------------------------------------------------------===//
192
193// The definitions here are for the call-clobbered registers.
194let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
195 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
196 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000197 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
198 "bras\t%r14, $I2", []>;
199 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
200 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
201 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
202 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000203}
204
205// Define the general form of the call instructions for the asm parser.
206// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000207def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
208 "bras\t$R1, $I2", []>;
209def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
210 "brasl\t$R1, $I2", []>;
211def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
212 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000213
214//===----------------------------------------------------------------------===//
215// Move instructions
216//===----------------------------------------------------------------------===//
217
218// Register moves.
219let neverHasSideEffects = 1 in {
220 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
221 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
222}
223
224// Immediate moves.
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000225let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
226 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000227 // 16-bit sign-extended immediates.
228 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
229 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
230
231 // Other 16-bit immediates.
232 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
233 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
234 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
235 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
236
237 // 32-bit immediates.
238 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
239 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
240 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
241}
242
243// Register loads.
244let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
245 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
246 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
247
248 def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
249 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
250
251 // These instructions are split after register allocation, so we don't
252 // want a custom inserter.
253 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
254 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
255 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
256 }
257}
258
259// Register stores.
260let SimpleBDXStore = 1 in {
261 let isCodeGenOnly = 1 in {
262 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
263 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
264 }
265
266 def STG : StoreRXY<"stg", 0xE324, store, GR64>;
267 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
268
269 // These instructions are split after register allocation, so we don't
270 // want a custom inserter.
271 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
272 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
273 [(store GR128:$src, bdxaddr20only128:$dst)]>;
274 }
275}
276
277// 8-bit immediate stores to 8-bit fields.
278defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
279
280// 16-bit immediate stores to 16-, 32- or 64-bit fields.
281def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
282def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
283def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
284
285//===----------------------------------------------------------------------===//
286// Sign extensions
287//===----------------------------------------------------------------------===//
288
289// 32-bit extensions from registers.
290let neverHasSideEffects = 1 in {
291 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
292 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
293}
294
295// 64-bit extensions from registers.
296let neverHasSideEffects = 1 in {
297 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
298 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
299 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
300}
301
302// Match 32-to-64-bit sign extensions in which the source is already
303// in a 64-bit register.
304def : Pat<(sext_inreg GR64:$src, i32),
305 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
306
307// 32-bit extensions from memory.
308def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
309defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
310def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
311
312// 64-bit extensions from memory.
313def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
314def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
315def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
316def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
317def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
318
319// If the sign of a load-extend operation doesn't matter, use the signed ones.
320// There's not really much to choose between the sign and zero extensions,
321// but LH is more compact than LLH for small offsets.
322def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
323def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
324def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
325
326def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
327def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
328def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
329
330//===----------------------------------------------------------------------===//
331// Zero extensions
332//===----------------------------------------------------------------------===//
333
334// 32-bit extensions from registers.
335let neverHasSideEffects = 1 in {
336 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
337 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
338}
339
340// 64-bit extensions from registers.
341let neverHasSideEffects = 1 in {
342 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
343 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
344 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
345}
346
347// Match 32-to-64-bit zero extensions in which the source is already
348// in a 64-bit register.
349def : Pat<(and GR64:$src, 0xffffffff),
350 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
351
352// 32-bit extensions from memory.
353def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
354def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
355def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
356
357// 64-bit extensions from memory.
358def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
359def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
360def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
361def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
362def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
363
364//===----------------------------------------------------------------------===//
365// Truncations
366//===----------------------------------------------------------------------===//
367
368// Truncations of 64-bit registers to 32-bit registers.
369def : Pat<(i32 (trunc GR64:$src)),
370 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
371
372// Truncations of 32-bit registers to memory.
373let isCodeGenOnly = 1 in {
374 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
375 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
376 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
377}
378
379// Truncations of 64-bit registers to memory.
380defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
381defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
382def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
383defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
384def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
385
386//===----------------------------------------------------------------------===//
387// Multi-register moves
388//===----------------------------------------------------------------------===//
389
390// Multi-register loads.
391def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
392
393// Multi-register stores.
394def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
395
396//===----------------------------------------------------------------------===//
397// Byte swaps
398//===----------------------------------------------------------------------===//
399
400// Byte-swapping register moves.
401let neverHasSideEffects = 1 in {
402 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
403 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
404}
405
Richard Sandiford30efd872013-05-31 13:25:22 +0000406// Byte-swapping loads. Unlike normal loads, these instructions are
407// allowed to access storage more than once.
408def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32>;
409def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000410
Richard Sandiford30efd872013-05-31 13:25:22 +0000411// Likewise byte-swapping stores.
412def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32>;
413def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>, GR64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000414
415//===----------------------------------------------------------------------===//
416// Load address instructions
417//===----------------------------------------------------------------------===//
418
419// Load BDX-style addresses.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000420let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
421 Function = "la" in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000422 let PairType = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000423 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
424 "la\t$R1, $XBD2",
425 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000426 let PairType = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000427 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
428 "lay\t$R1, $XBD2",
429 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000430}
431
432// Load a PC-relative address. There's no version of this instruction
433// with a 16-bit offset, so there's no relaxation.
Richard Sandiford891a7e72013-06-27 09:42:10 +0000434let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
435 isReMaterializable = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000436 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
437 "larl\t$R1, $I2",
438 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000439}
440
441//===----------------------------------------------------------------------===//
442// Negation
443//===----------------------------------------------------------------------===//
444
Richard Sandiford14a44492013-05-22 13:38:45 +0000445let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000446 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
447 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
448 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
449}
450defm : SXU<ineg, LCGFR>;
451
452//===----------------------------------------------------------------------===//
453// Insertion
454//===----------------------------------------------------------------------===//
455
456let isCodeGenOnly = 1 in
457 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
458defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
459
460defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
461defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
462
463defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
464defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
465
466// Insertions of a 16-bit immediate, leaving other bits unaffected.
467// We don't have or_as_insert equivalents of these operations because
468// OI is available instead.
469let isCodeGenOnly = 1 in {
470 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
471 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
472}
473def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
474def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
475def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
476def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
477
478// ...likewise for 32-bit immediates. For GR32s this is a general
479// full-width move. (We use IILF rather than something like LLILF
480// for 32-bit moves because IILF leaves the upper 32 bits of the
481// GR64 unchanged.)
Richard Sandiforda57e13b2013-06-27 09:38:48 +0000482let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
483 isReMaterializable = 1 in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000484 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
485}
486def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
487def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
488
489// An alternative model of inserthf, with the first operand being
490// a zero-extended value.
491def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
492 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
493 imm64hf32:$imm)>;
494
495//===----------------------------------------------------------------------===//
496// Addition
497//===----------------------------------------------------------------------===//
498
499// Plain addition.
Richard Sandiford14a44492013-05-22 13:38:45 +0000500let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000501 // Addition of a register.
502 let isCommutable = 1 in {
503 def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
504 def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
505 }
506 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
507
508 // Addition of signed 16-bit immediates.
509 def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
510 def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
511
512 // Addition of signed 32-bit immediates.
513 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
514 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
515
516 // Addition of memory.
517 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
518 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
519 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
520 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
521
522 // Addition to memory.
523 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
524 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
525}
526defm : SXB<add, GR64, AGFR>;
527
528// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000529let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000530 // Addition of a register.
531 let isCommutable = 1 in {
532 def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
533 def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
534 }
535 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
536
537 // Addition of unsigned 32-bit immediates.
538 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
539 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
540
541 // Addition of memory.
542 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
543 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
544 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
545}
546defm : ZXB<addc, GR64, ALGFR>;
547
548// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000549let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000550 // Addition of a register.
551 def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
552 def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
553
554 // Addition of memory.
555 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
556 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
557}
558
559//===----------------------------------------------------------------------===//
560// Subtraction
561//===----------------------------------------------------------------------===//
562
563// Plain substraction. Although immediate forms exist, we use the
564// add-immediate instruction instead.
Richard Sandiford14a44492013-05-22 13:38:45 +0000565let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000566 // Subtraction of a register.
567 def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
568 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
569 def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
570
571 // Subtraction of memory.
Richard Sandifordffd14412013-05-15 15:05:29 +0000572 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000573 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
574 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
575 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
576}
577defm : SXB<sub, GR64, SGFR>;
578
579// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000580let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000581 // Subtraction of a register.
582 def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
583 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
584 def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
585
586 // Subtraction of unsigned 32-bit immediates. These don't match
587 // subc because we prefer addc for constants.
588 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
589 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
590
591 // Subtraction of memory.
592 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
593 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
594 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
595}
596defm : ZXB<subc, GR64, SLGFR>;
597
598// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000599let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000600 // Subtraction of a register.
601 def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
602 def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
603
604 // Subtraction of memory.
605 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
606 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
607}
608
609//===----------------------------------------------------------------------===//
610// AND
611//===----------------------------------------------------------------------===//
612
Richard Sandiford14a44492013-05-22 13:38:45 +0000613let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000614 // ANDs of a register.
615 let isCommutable = 1 in {
616 def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
617 def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
618 }
619
620 // ANDs of a 16-bit immediate, leaving other bits unaffected.
621 let isCodeGenOnly = 1 in {
622 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
623 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
624 }
625 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
626 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
627 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
628 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
629
630 // ANDs of a 32-bit immediate, leaving other bits unaffected.
631 let isCodeGenOnly = 1 in
632 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
633 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
634 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
635
636 // ANDs of memory.
637 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
638 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
639
640 // AND to memory
641 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
642}
643defm : RMWIByte<and, bdaddr12pair, NI>;
644defm : RMWIByte<and, bdaddr20pair, NIY>;
645
646//===----------------------------------------------------------------------===//
647// OR
648//===----------------------------------------------------------------------===//
649
Richard Sandiford14a44492013-05-22 13:38:45 +0000650let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000651 // ORs of a register.
652 let isCommutable = 1 in {
653 def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
654 def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
655 }
656
657 // ORs of a 16-bit immediate, leaving other bits unaffected.
658 let isCodeGenOnly = 1 in {
659 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
660 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
661 }
662 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
663 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
664 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
665 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
666
667 // ORs of a 32-bit immediate, leaving other bits unaffected.
668 let isCodeGenOnly = 1 in
669 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
670 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
671 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
672
673 // ORs of memory.
674 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
675 def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
676
677 // OR to memory
678 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
679}
680defm : RMWIByte<or, bdaddr12pair, OI>;
681defm : RMWIByte<or, bdaddr20pair, OIY>;
682
683//===----------------------------------------------------------------------===//
684// XOR
685//===----------------------------------------------------------------------===//
686
Richard Sandiford14a44492013-05-22 13:38:45 +0000687let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000688 // XORs of a register.
689 let isCommutable = 1 in {
690 def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
691 def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
692 }
693
694 // XORs of a 32-bit immediate, leaving other bits unaffected.
695 let isCodeGenOnly = 1 in
696 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
697 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
698 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
699
700 // XORs of memory.
701 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
702 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
703
704 // XOR to memory
705 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
706}
707defm : RMWIByte<xor, bdaddr12pair, XI>;
708defm : RMWIByte<xor, bdaddr20pair, XIY>;
709
710//===----------------------------------------------------------------------===//
711// Multiplication
712//===----------------------------------------------------------------------===//
713
714// Multiplication of a register.
715let isCommutable = 1 in {
716 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
717 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
718}
719def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
720defm : SXB<mul, GR64, MSGFR>;
721
722// Multiplication of a signed 16-bit immediate.
723def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
724def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
725
726// Multiplication of a signed 32-bit immediate.
727def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
728def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
729
730// Multiplication of memory.
731defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
732defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
733def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
734def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
735
736// Multiplication of a register, producing two results.
737def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
738
739// Multiplication of memory, producing two results.
740def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
741
742//===----------------------------------------------------------------------===//
743// Division and remainder
744//===----------------------------------------------------------------------===//
745
746// Division and remainder, from registers.
747def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
748def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
749def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
750def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
751defm : SXB<z_sdivrem64, GR128, DSGFR>;
752
753// Division and remainder, from memory.
754def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
755def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
756def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
757def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
758
759//===----------------------------------------------------------------------===//
760// Shifts
761//===----------------------------------------------------------------------===//
762
763// Shift left.
764let neverHasSideEffects = 1 in {
765 def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
766 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
767}
768
769// Logical shift right.
770let neverHasSideEffects = 1 in {
771 def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
772 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
773}
774
775// Arithmetic shift right.
Richard Sandiford14a44492013-05-22 13:38:45 +0000776let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000777 def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
778 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
779}
780
781// Rotate left.
782let neverHasSideEffects = 1 in {
783 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
784 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
785}
786
787// Rotate second operand left and inserted selected bits into first operand.
788// These can act like 32-bit operands provided that the constant start and
789// end bits (operands 2 and 3) are in the range [32, 64)
Richard Sandiford14a44492013-05-22 13:38:45 +0000790let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000791 let isCodeGenOnly = 1 in
792 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
793 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
794}
795
796//===----------------------------------------------------------------------===//
797// Comparison
798//===----------------------------------------------------------------------===//
799
800// Signed comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000801let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000802 // Comparison with a register.
803 def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
804 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
805 def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
806
807 // Comparison with a signed 16-bit immediate.
808 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
809 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
810
811 // Comparison with a signed 32-bit immediate.
812 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
813 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
814
815 // Comparison with memory.
816 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
817 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
818 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
819 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
820 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
821 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
822 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
823 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
824 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
825 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
826
827 // Comparison between memory and a signed 16-bit immediate.
828 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
829 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
830 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
831}
832defm : SXB<z_cmp, GR64, CGFR>;
833
834// Unsigned comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000835let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000836 // Comparison with a register.
837 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
838 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
839 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
840
841 // Comparison with a signed 32-bit immediate.
842 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
843 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
844
845 // Comparison with memory.
846 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
847 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
848 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
849 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
850 aligned_zextloadi16>;
851 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
852 aligned_load>;
853 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
854 aligned_zextloadi16>;
855 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
856 aligned_zextloadi32>;
857 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
858 aligned_load>;
859
860 // Comparison between memory and an unsigned 8-bit immediate.
861 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
862
863 // Comparison between memory and an unsigned 16-bit immediate.
864 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
865 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
866 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
867}
868defm : ZXB<z_ucmp, GR64, CLGFR>;
869
870//===----------------------------------------------------------------------===//
871// Atomic operations
872//===----------------------------------------------------------------------===//
873
874def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
875def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
876def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
877
878def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
879def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
880def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
881def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
882def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
883def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
884def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
885def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
886
887def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
888def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
889def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
890
891def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
892def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
893def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
894def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
895def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
896def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
897def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
898def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
899def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
900def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
901def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
902def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
903def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
904
905def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
906def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
907def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
908def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
909def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
910def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
911def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
912def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
913def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
914def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
915def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
916def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
917def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
918
919def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
920def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
921def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
922def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
923def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
924def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
925def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
926
927def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
928def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
929 imm32lh16c>;
930def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
931def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
932 imm32ll16c>;
933def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
934 imm32lh16c>;
935def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
936def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
937def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
938 imm64ll16c>;
939def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
940 imm64lh16c>;
941def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
942 imm64hl16c>;
943def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
944 imm64hh16c>;
945def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
946 imm64lf32c>;
947def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
948 imm64hf32c>;
949
950def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
951def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
952def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
953
954def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
955def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
956def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
957
958def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
959def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
960def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
961
962def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
963def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
964def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
965
966def ATOMIC_CMP_SWAPW
967 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
968 ADDR32:$bitshift, ADDR32:$negbitshift,
969 uimm32:$bitsize),
970 [(set GR32:$dst,
971 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
972 ADDR32:$bitshift, ADDR32:$negbitshift,
973 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +0000974 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000975 let mayLoad = 1;
976 let mayStore = 1;
977 let usesCustomInserter = 1;
978}
979
Richard Sandiford14a44492013-05-22 13:38:45 +0000980let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000981 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
982 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
983}
984
985//===----------------------------------------------------------------------===//
986// Miscellaneous Instructions.
987//===----------------------------------------------------------------------===//
988
989// Read a 32-bit access register into a GR32. As with all GR32 operations,
990// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
991// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +0000992def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
993 "ear\t$R1, $R2",
994 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000995
996// Find leftmost one, AKA count leading zeros. The instruction actually
997// returns a pair of GR64s, the first giving the number of leading zeros
998// and the second giving a copy of the source with the leftmost one bit
999// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +00001000let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001001 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
1002}
1003def : Pat<(ctlz GR64:$src),
1004 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
1005
1006// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
1007def : Pat<(i64 (anyext GR32:$src)),
1008 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
1009
1010// There are no 32-bit equivalents of LLILL and LLILH, so use a full
1011// 64-bit move followed by a subreg. This preserves the invariant that
1012// all GR32 operations only modify the low 32 bits.
1013def : Pat<(i32 imm32ll16:$src),
1014 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
1015def : Pat<(i32 imm32lh16:$src),
1016 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
1017
1018// Extend GR32s and GR64s to GR128s.
1019let usesCustomInserter = 1 in {
1020 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1021 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
1022 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1023}
1024
1025//===----------------------------------------------------------------------===//
1026// Peepholes.
1027//===----------------------------------------------------------------------===//
1028
1029// Use AL* for GR64 additions of unsigned 32-bit values.
1030defm : ZXB<add, GR64, ALGFR>;
1031def : Pat<(add GR64:$src1, imm64zx32:$src2),
1032 (ALGFI GR64:$src1, imm64zx32:$src2)>;
1033def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1034 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1035
1036// Use SL* for GR64 subtractions of unsigned 32-bit values.
1037defm : ZXB<sub, GR64, SLGFR>;
1038def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1039 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1040def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1041 (SLGF GR64:$src1, bdxaddr20only:$addr)>;