blob: 062266bb485e0ffec6871dad4306bc64d36f0f0d [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000061//
62// Using a custom inserter for BRC gives us a chance to convert the BRC
63// and a preceding compare into a single compare-and-branch instruction.
64// The inserter makes no change in cases where a separate branch really
65// is needed.
66multiclass CondBranches<Operand ccmask, string short, string long> {
Richard Sandiford14a44492013-05-22 13:38:45 +000067 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000068 def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
69 def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000070 }
71}
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000072let isCodeGenOnly = 1, usesCustomInserter = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000073 defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
Richard Sandiford6a808f92013-05-14 09:38:07 +000074defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000075
Richard Sandiford312425f2013-05-20 14:23:08 +000076def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000077
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000078// Fused compare-and-branch instructions. As for normal branches,
79// we handle these instructions internally in their raw CRJ-like form,
80// but use assembly macros like CRJE when writing them out.
81//
82// These instructions do not use or clobber the condition codes.
83// We nevertheless pretend that they clobber CC, so that we can lower
84// them to separate comparisons and BRCLs if the branch ends up being
85// out of range.
86multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
87 let isBranch = 1, isTerminator = 1, Defs = [CC] in {
88 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
89 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000090 "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +000091 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
92 brtarget16:$RI4),
Richard Sandiforde1d9f002013-05-29 11:58:52 +000093 "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
94 def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
95 brtarget16:$RI4),
96 "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
97 def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
98 brtarget16:$RI4),
99 "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000100 }
101}
102let isCodeGenOnly = 1 in
103 defm C : CompareBranches<cond4, "$M3", "">;
104defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
105
106// Define AsmParser mnemonics for each general condition-code mask
107// (integer or floating-point)
108multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
109 let R1 = ccmask in {
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000110 def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
111 "j"##name##"\t$I2", []>;
Richard Sandifordd454ec02013-05-14 09:28:21 +0000112 def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000113 "jg"##name##"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114 }
115}
Richard Sandiford6a808f92013-05-14 09:38:07 +0000116defm AsmJO : CondExtendedMnemonic<1, "o">;
117defm AsmJH : CondExtendedMnemonic<2, "h">;
118defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
119defm AsmJL : CondExtendedMnemonic<4, "l">;
120defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
121defm AsmJLH : CondExtendedMnemonic<6, "lh">;
122defm AsmJNE : CondExtendedMnemonic<7, "ne">;
123defm AsmJE : CondExtendedMnemonic<8, "e">;
124defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
125defm AsmJHE : CondExtendedMnemonic<10, "he">;
126defm AsmJNL : CondExtendedMnemonic<11, "nl">;
127defm AsmJLE : CondExtendedMnemonic<12, "le">;
128defm AsmJNH : CondExtendedMnemonic<13, "nh">;
129defm AsmJNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000130
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000131// Define AsmParser mnemonics for each integer condition-code mask.
132// This is like the list above, except that condition 3 is not possible
133// and that the low bit of the mask is therefore always 0. This means
134// that each condition has two names. Conditions "o" and "no" are not used.
135//
136// We don't make one of the two names an alias of the other because
137// we need the custom parsing routines to select the correct register class.
138multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
139 let M3 = ccmask in {
140 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
141 brtarget16:$RI4),
142 "crj"##name##"\t$R1, $R2, $RI4", []>;
143 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
144 brtarget16:$RI4),
145 "cgrj"##name##"\t$R1, $R2, $RI4", []>;
Richard Sandiforde1d9f002013-05-29 11:58:52 +0000146 def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
147 brtarget16:$RI4),
148 "cij"##name##"\t$R1, $I2, $RI4", []>;
149 def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
150 brtarget16:$RI4),
151 "cgij"##name##"\t$R1, $I2, $RI4", []>;
Richard Sandiford0fb90ab2013-05-28 10:41:11 +0000152 }
153}
154multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
155 : IntCondExtendedMnemonicA<ccmask, name1> {
156 let isAsmParserOnly = 1 in
157 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
158}
159defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
160defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
161defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
162defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
163defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
164defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
165
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000166def Select32 : SelectWrapper<GR32>;
167def Select64 : SelectWrapper<GR64>;
168
169//===----------------------------------------------------------------------===//
170// Call instructions
171//===----------------------------------------------------------------------===//
172
173// The definitions here are for the call-clobbered registers.
174let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
175 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
176 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000177 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
178 "bras\t%r14, $I2", []>;
179 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
180 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
181 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
182 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000183}
184
185// Define the general form of the call instructions for the asm parser.
186// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000187def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
188 "bras\t$R1, $I2", []>;
189def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
190 "brasl\t$R1, $I2", []>;
191def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
192 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000193
194//===----------------------------------------------------------------------===//
195// Move instructions
196//===----------------------------------------------------------------------===//
197
198// Register moves.
199let neverHasSideEffects = 1 in {
200 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
201 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
202}
203
204// Immediate moves.
205let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
206 // 16-bit sign-extended immediates.
207 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
208 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
209
210 // Other 16-bit immediates.
211 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
212 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
213 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
214 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
215
216 // 32-bit immediates.
217 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
218 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
219 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
220}
221
222// Register loads.
223let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
224 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
225 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
226
227 def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
228 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
229
230 // These instructions are split after register allocation, so we don't
231 // want a custom inserter.
232 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
233 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
234 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
235 }
236}
237
238// Register stores.
239let SimpleBDXStore = 1 in {
240 let isCodeGenOnly = 1 in {
241 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
242 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
243 }
244
245 def STG : StoreRXY<"stg", 0xE324, store, GR64>;
246 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
247
248 // These instructions are split after register allocation, so we don't
249 // want a custom inserter.
250 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
251 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
252 [(store GR128:$src, bdxaddr20only128:$dst)]>;
253 }
254}
255
256// 8-bit immediate stores to 8-bit fields.
257defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
258
259// 16-bit immediate stores to 16-, 32- or 64-bit fields.
260def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
261def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
262def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
263
264//===----------------------------------------------------------------------===//
265// Sign extensions
266//===----------------------------------------------------------------------===//
267
268// 32-bit extensions from registers.
269let neverHasSideEffects = 1 in {
270 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
271 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
272}
273
274// 64-bit extensions from registers.
275let neverHasSideEffects = 1 in {
276 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
277 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
278 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
279}
280
281// Match 32-to-64-bit sign extensions in which the source is already
282// in a 64-bit register.
283def : Pat<(sext_inreg GR64:$src, i32),
284 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
285
286// 32-bit extensions from memory.
287def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
288defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
289def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
290
291// 64-bit extensions from memory.
292def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
293def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
294def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
295def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
296def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
297
298// If the sign of a load-extend operation doesn't matter, use the signed ones.
299// There's not really much to choose between the sign and zero extensions,
300// but LH is more compact than LLH for small offsets.
301def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
302def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
303def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
304
305def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
306def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
307def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
308
309//===----------------------------------------------------------------------===//
310// Zero extensions
311//===----------------------------------------------------------------------===//
312
313// 32-bit extensions from registers.
314let neverHasSideEffects = 1 in {
315 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
316 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
317}
318
319// 64-bit extensions from registers.
320let neverHasSideEffects = 1 in {
321 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
322 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
323 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
324}
325
326// Match 32-to-64-bit zero extensions in which the source is already
327// in a 64-bit register.
328def : Pat<(and GR64:$src, 0xffffffff),
329 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
330
331// 32-bit extensions from memory.
332def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
333def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
334def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
335
336// 64-bit extensions from memory.
337def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
338def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
339def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
340def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
341def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
342
343//===----------------------------------------------------------------------===//
344// Truncations
345//===----------------------------------------------------------------------===//
346
347// Truncations of 64-bit registers to 32-bit registers.
348def : Pat<(i32 (trunc GR64:$src)),
349 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
350
351// Truncations of 32-bit registers to memory.
352let isCodeGenOnly = 1 in {
353 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
354 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
355 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
356}
357
358// Truncations of 64-bit registers to memory.
359defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
360defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
361def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
362defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
363def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
364
365//===----------------------------------------------------------------------===//
366// Multi-register moves
367//===----------------------------------------------------------------------===//
368
369// Multi-register loads.
370def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
371
372// Multi-register stores.
373def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
374
375//===----------------------------------------------------------------------===//
376// Byte swaps
377//===----------------------------------------------------------------------===//
378
379// Byte-swapping register moves.
380let neverHasSideEffects = 1 in {
381 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
382 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
383}
384
385// Byte-swapping loads.
386def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap>, GR32>;
387def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap>, GR64>;
388
389// Byte-swapping stores.
390def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap>, GR32>;
391def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap>, GR64>;
392
393//===----------------------------------------------------------------------===//
394// Load address instructions
395//===----------------------------------------------------------------------===//
396
397// Load BDX-style addresses.
398let neverHasSideEffects = 1, Function = "la" in {
399 let PairType = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000400 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
401 "la\t$R1, $XBD2",
402 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000403 let PairType = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000404 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
405 "lay\t$R1, $XBD2",
406 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000407}
408
409// Load a PC-relative address. There's no version of this instruction
410// with a 16-bit offset, so there's no relaxation.
411let neverHasSideEffects = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000412 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
413 "larl\t$R1, $I2",
414 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000415}
416
417//===----------------------------------------------------------------------===//
418// Negation
419//===----------------------------------------------------------------------===//
420
Richard Sandiford14a44492013-05-22 13:38:45 +0000421let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000422 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
423 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
424 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
425}
426defm : SXU<ineg, LCGFR>;
427
428//===----------------------------------------------------------------------===//
429// Insertion
430//===----------------------------------------------------------------------===//
431
432let isCodeGenOnly = 1 in
433 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
434defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
435
436defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
437defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
438
439defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
440defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
441
442// Insertions of a 16-bit immediate, leaving other bits unaffected.
443// We don't have or_as_insert equivalents of these operations because
444// OI is available instead.
445let isCodeGenOnly = 1 in {
446 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
447 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
448}
449def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
450def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
451def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
452def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
453
454// ...likewise for 32-bit immediates. For GR32s this is a general
455// full-width move. (We use IILF rather than something like LLILF
456// for 32-bit moves because IILF leaves the upper 32 bits of the
457// GR64 unchanged.)
458let isCodeGenOnly = 1 in {
459 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
460}
461def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
462def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
463
464// An alternative model of inserthf, with the first operand being
465// a zero-extended value.
466def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
467 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
468 imm64hf32:$imm)>;
469
470//===----------------------------------------------------------------------===//
471// Addition
472//===----------------------------------------------------------------------===//
473
474// Plain addition.
Richard Sandiford14a44492013-05-22 13:38:45 +0000475let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000476 // Addition of a register.
477 let isCommutable = 1 in {
478 def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
479 def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
480 }
481 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
482
483 // Addition of signed 16-bit immediates.
484 def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
485 def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
486
487 // Addition of signed 32-bit immediates.
488 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
489 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
490
491 // Addition of memory.
492 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
493 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
494 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
495 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
496
497 // Addition to memory.
498 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
499 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
500}
501defm : SXB<add, GR64, AGFR>;
502
503// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000504let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000505 // Addition of a register.
506 let isCommutable = 1 in {
507 def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
508 def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
509 }
510 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
511
512 // Addition of unsigned 32-bit immediates.
513 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
514 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
515
516 // Addition of memory.
517 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
518 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
519 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
520}
521defm : ZXB<addc, GR64, ALGFR>;
522
523// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000524let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000525 // Addition of a register.
526 def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
527 def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
528
529 // Addition of memory.
530 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
531 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
532}
533
534//===----------------------------------------------------------------------===//
535// Subtraction
536//===----------------------------------------------------------------------===//
537
538// Plain substraction. Although immediate forms exist, we use the
539// add-immediate instruction instead.
Richard Sandiford14a44492013-05-22 13:38:45 +0000540let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000541 // Subtraction of a register.
542 def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
543 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
544 def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
545
546 // Subtraction of memory.
Richard Sandifordffd14412013-05-15 15:05:29 +0000547 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000548 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
549 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
550 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
551}
552defm : SXB<sub, GR64, SGFR>;
553
554// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000555let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000556 // Subtraction of a register.
557 def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
558 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
559 def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
560
561 // Subtraction of unsigned 32-bit immediates. These don't match
562 // subc because we prefer addc for constants.
563 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
564 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
565
566 // Subtraction of memory.
567 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
568 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
569 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
570}
571defm : ZXB<subc, GR64, SLGFR>;
572
573// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000574let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000575 // Subtraction of a register.
576 def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
577 def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
578
579 // Subtraction of memory.
580 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
581 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
582}
583
584//===----------------------------------------------------------------------===//
585// AND
586//===----------------------------------------------------------------------===//
587
Richard Sandiford14a44492013-05-22 13:38:45 +0000588let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000589 // ANDs of a register.
590 let isCommutable = 1 in {
591 def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
592 def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
593 }
594
595 // ANDs of a 16-bit immediate, leaving other bits unaffected.
596 let isCodeGenOnly = 1 in {
597 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
598 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
599 }
600 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
601 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
602 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
603 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
604
605 // ANDs of a 32-bit immediate, leaving other bits unaffected.
606 let isCodeGenOnly = 1 in
607 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
608 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
609 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
610
611 // ANDs of memory.
612 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
613 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
614
615 // AND to memory
616 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
617}
618defm : RMWIByte<and, bdaddr12pair, NI>;
619defm : RMWIByte<and, bdaddr20pair, NIY>;
620
621//===----------------------------------------------------------------------===//
622// OR
623//===----------------------------------------------------------------------===//
624
Richard Sandiford14a44492013-05-22 13:38:45 +0000625let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000626 // ORs of a register.
627 let isCommutable = 1 in {
628 def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
629 def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
630 }
631
632 // ORs of a 16-bit immediate, leaving other bits unaffected.
633 let isCodeGenOnly = 1 in {
634 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
635 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
636 }
637 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
638 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
639 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
640 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
641
642 // ORs of a 32-bit immediate, leaving other bits unaffected.
643 let isCodeGenOnly = 1 in
644 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
645 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
646 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
647
648 // ORs of memory.
649 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
650 def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
651
652 // OR to memory
653 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
654}
655defm : RMWIByte<or, bdaddr12pair, OI>;
656defm : RMWIByte<or, bdaddr20pair, OIY>;
657
658//===----------------------------------------------------------------------===//
659// XOR
660//===----------------------------------------------------------------------===//
661
Richard Sandiford14a44492013-05-22 13:38:45 +0000662let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000663 // XORs of a register.
664 let isCommutable = 1 in {
665 def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
666 def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
667 }
668
669 // XORs of a 32-bit immediate, leaving other bits unaffected.
670 let isCodeGenOnly = 1 in
671 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
672 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
673 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
674
675 // XORs of memory.
676 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
677 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
678
679 // XOR to memory
680 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
681}
682defm : RMWIByte<xor, bdaddr12pair, XI>;
683defm : RMWIByte<xor, bdaddr20pair, XIY>;
684
685//===----------------------------------------------------------------------===//
686// Multiplication
687//===----------------------------------------------------------------------===//
688
689// Multiplication of a register.
690let isCommutable = 1 in {
691 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
692 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
693}
694def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
695defm : SXB<mul, GR64, MSGFR>;
696
697// Multiplication of a signed 16-bit immediate.
698def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
699def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
700
701// Multiplication of a signed 32-bit immediate.
702def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
703def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
704
705// Multiplication of memory.
706defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
707defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
708def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
709def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
710
711// Multiplication of a register, producing two results.
712def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
713
714// Multiplication of memory, producing two results.
715def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
716
717//===----------------------------------------------------------------------===//
718// Division and remainder
719//===----------------------------------------------------------------------===//
720
721// Division and remainder, from registers.
722def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
723def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
724def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
725def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
726defm : SXB<z_sdivrem64, GR128, DSGFR>;
727
728// Division and remainder, from memory.
729def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
730def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
731def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
732def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
733
734//===----------------------------------------------------------------------===//
735// Shifts
736//===----------------------------------------------------------------------===//
737
738// Shift left.
739let neverHasSideEffects = 1 in {
740 def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
741 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
742}
743
744// Logical shift right.
745let neverHasSideEffects = 1 in {
746 def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
747 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
748}
749
750// Arithmetic shift right.
Richard Sandiford14a44492013-05-22 13:38:45 +0000751let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000752 def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
753 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
754}
755
756// Rotate left.
757let neverHasSideEffects = 1 in {
758 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
759 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
760}
761
762// Rotate second operand left and inserted selected bits into first operand.
763// These can act like 32-bit operands provided that the constant start and
764// end bits (operands 2 and 3) are in the range [32, 64)
Richard Sandiford14a44492013-05-22 13:38:45 +0000765let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000766 let isCodeGenOnly = 1 in
767 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
768 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
769}
770
771//===----------------------------------------------------------------------===//
772// Comparison
773//===----------------------------------------------------------------------===//
774
775// Signed comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000776let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000777 // Comparison with a register.
778 def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
779 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
780 def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
781
782 // Comparison with a signed 16-bit immediate.
783 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
784 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
785
786 // Comparison with a signed 32-bit immediate.
787 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
788 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
789
790 // Comparison with memory.
791 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
792 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
793 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
794 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
795 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
796 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
797 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
798 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
799 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
800 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
801
802 // Comparison between memory and a signed 16-bit immediate.
803 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
804 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
805 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
806}
807defm : SXB<z_cmp, GR64, CGFR>;
808
809// Unsigned comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000810let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000811 // Comparison with a register.
812 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
813 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
814 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
815
816 // Comparison with a signed 32-bit immediate.
817 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
818 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
819
820 // Comparison with memory.
821 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
822 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
823 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
824 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
825 aligned_zextloadi16>;
826 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
827 aligned_load>;
828 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
829 aligned_zextloadi16>;
830 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
831 aligned_zextloadi32>;
832 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
833 aligned_load>;
834
835 // Comparison between memory and an unsigned 8-bit immediate.
836 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
837
838 // Comparison between memory and an unsigned 16-bit immediate.
839 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
840 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
841 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
842}
843defm : ZXB<z_ucmp, GR64, CLGFR>;
844
845//===----------------------------------------------------------------------===//
846// Atomic operations
847//===----------------------------------------------------------------------===//
848
849def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
850def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
851def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
852
853def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
854def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
855def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
856def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
857def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
858def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
859def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
860def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
861
862def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
863def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
864def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
865
866def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
867def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
868def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
869def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
870def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
871def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
872def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
873def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
874def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
875def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
876def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
877def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
878def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
879
880def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
881def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
882def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
883def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
884def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
885def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
886def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
887def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
888def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
889def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
890def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
891def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
892def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
893
894def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
895def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
896def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
897def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
898def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
899def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
900def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
901
902def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
903def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
904 imm32lh16c>;
905def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
906def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
907 imm32ll16c>;
908def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
909 imm32lh16c>;
910def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
911def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
912def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
913 imm64ll16c>;
914def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
915 imm64lh16c>;
916def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
917 imm64hl16c>;
918def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
919 imm64hh16c>;
920def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
921 imm64lf32c>;
922def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
923 imm64hf32c>;
924
925def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
926def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
927def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
928
929def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
930def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
931def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
932
933def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
934def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
935def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
936
937def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
938def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
939def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
940
941def ATOMIC_CMP_SWAPW
942 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
943 ADDR32:$bitshift, ADDR32:$negbitshift,
944 uimm32:$bitsize),
945 [(set GR32:$dst,
946 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
947 ADDR32:$bitshift, ADDR32:$negbitshift,
948 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +0000949 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000950 let mayLoad = 1;
951 let mayStore = 1;
952 let usesCustomInserter = 1;
953}
954
Richard Sandiford14a44492013-05-22 13:38:45 +0000955let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000956 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
957 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
958}
959
960//===----------------------------------------------------------------------===//
961// Miscellaneous Instructions.
962//===----------------------------------------------------------------------===//
963
964// Read a 32-bit access register into a GR32. As with all GR32 operations,
965// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
966// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +0000967def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
968 "ear\t$R1, $R2",
969 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000970
971// Find leftmost one, AKA count leading zeros. The instruction actually
972// returns a pair of GR64s, the first giving the number of leading zeros
973// and the second giving a copy of the source with the leftmost one bit
974// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +0000975let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000976 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
977}
978def : Pat<(ctlz GR64:$src),
979 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
980
981// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
982def : Pat<(i64 (anyext GR32:$src)),
983 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
984
985// There are no 32-bit equivalents of LLILL and LLILH, so use a full
986// 64-bit move followed by a subreg. This preserves the invariant that
987// all GR32 operations only modify the low 32 bits.
988def : Pat<(i32 imm32ll16:$src),
989 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
990def : Pat<(i32 imm32lh16:$src),
991 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
992
993// Extend GR32s and GR64s to GR128s.
994let usesCustomInserter = 1 in {
995 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
996 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
997 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
998}
999
1000//===----------------------------------------------------------------------===//
1001// Peepholes.
1002//===----------------------------------------------------------------------===//
1003
1004// Use AL* for GR64 additions of unsigned 32-bit values.
1005defm : ZXB<add, GR64, ALGFR>;
1006def : Pat<(add GR64:$src1, imm64zx32:$src2),
1007 (ALGFI GR64:$src1, imm64zx32:$src2)>;
1008def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1009 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1010
1011// Use SL* for GR64 subtractions of unsigned 32-bit values.
1012defm : ZXB<sub, GR64, SLGFR>;
1013def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1014 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1015def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
1016 (SLGF GR64:$src1, bdxaddr20only:$addr)>;