blob: b2bee0258d1c8054dce5928bc5b172ec568b8370 [file] [log] [blame]
Chandler Carruth572e3402014-04-21 11:12:00 +00001//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/CGSCCPassManager.h"
Chandler Carruth88823462016-08-24 09:37:14 +000011#include "llvm/IR/CallSite.h"
Chandler Carruth89772232016-12-06 10:06:06 +000012#include "llvm/IR/InstIterator.h"
Chandler Carruth572e3402014-04-21 11:12:00 +000013
14using namespace llvm;
15
Chandler Carruth6b981642016-12-10 06:34:44 +000016// Explicit template instantiations and specialization defininitions for core
17// template typedefs.
Chandler Carruth2a540942016-02-27 10:38:10 +000018namespace llvm {
Chandler Carruth88823462016-08-24 09:37:14 +000019
20// Explicit instantiations for the core proxy templates.
Chandler Carruth3ab2a5a2016-11-28 22:04:31 +000021template class AllAnalysesOn<LazyCallGraph::SCC>;
Chandler Carruth88823462016-08-24 09:37:14 +000022template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
23template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
24 LazyCallGraph &, CGSCCUpdateResult &>;
Chandler Carruth2a540942016-02-27 10:38:10 +000025template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
26template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
Chandler Carruth6b981642016-12-10 06:34:44 +000027 LazyCallGraph::SCC, LazyCallGraph &>;
Chandler Carruth2a540942016-02-27 10:38:10 +000028template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
Chandler Carruth6b981642016-12-10 06:34:44 +000029 LazyCallGraph::SCC, LazyCallGraph &>;
Chandler Carruth2a540942016-02-27 10:38:10 +000030template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
Chandler Carruth88823462016-08-24 09:37:14 +000031
32/// Explicitly specialize the pass manager run method to handle call graph
33/// updates.
34template <>
35PreservedAnalyses
36PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
37 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
38 CGSCCAnalysisManager &AM,
39 LazyCallGraph &G, CGSCCUpdateResult &UR) {
40 PreservedAnalyses PA = PreservedAnalyses::all();
41
42 if (DebugLogging)
43 dbgs() << "Starting CGSCC pass manager run.\n";
44
45 // The SCC may be refined while we are running passes over it, so set up
46 // a pointer that we can update.
47 LazyCallGraph::SCC *C = &InitialC;
48
49 for (auto &Pass : Passes) {
50 if (DebugLogging)
51 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
52
53 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
54
55 // Update the SCC if necessary.
56 C = UR.UpdatedC ? UR.UpdatedC : C;
57
58 // Check that we didn't miss any update scenario.
59 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
60 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
61
62 // Update the analysis manager as each pass runs and potentially
Chandler Carruth0c6efff12016-11-28 10:42:21 +000063 // invalidates analyses.
64 AM.invalidate(*C, PassPA);
Chandler Carruth88823462016-08-24 09:37:14 +000065
66 // Finally, we intersect the final preserved analyses to compute the
67 // aggregate preserved set for this pass manager.
68 PA.intersect(std::move(PassPA));
69
70 // FIXME: Historically, the pass managers all called the LLVM context's
71 // yield function here. We don't have a generic way to acquire the
72 // context and it isn't yet clear what the right pattern is for yielding
73 // in the new pass manager so it is currently omitted.
74 // ...getContext().yield();
75 }
76
Chandler Carruth0c6efff12016-11-28 10:42:21 +000077 // Invaliadtion was handled after each pass in the above loop for the current
78 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
79 // preserved. We mark this with a set so that we don't need to inspect each
80 // one individually.
81 PA.preserve<AllAnalysesOn<LazyCallGraph::SCC>>();
82
Chandler Carruth88823462016-08-24 09:37:14 +000083 if (DebugLogging)
84 dbgs() << "Finished CGSCC pass manager run.\n";
85
86 return PA;
87}
88
Chandler Carruth6b981642016-12-10 06:34:44 +000089bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
90 Module &M, const PreservedAnalyses &PA,
91 ModuleAnalysisManager::Invalidator &Inv) {
92 // If this proxy or the call graph is going to be invalidated, we also need
93 // to clear all the keys coming from that analysis.
94 //
95 // We also directly invalidate the FAM's module proxy if necessary, and if
96 // that proxy isn't preserved we can't preserve this proxy either. We rely on
97 // it to handle module -> function analysis invalidation in the face of
98 // structural changes and so if it's unavailable we conservatively clear the
99 // entire SCC layer as well rather than trying to do invaliadtion ourselves.
100 if (!PA.preserved<CGSCCAnalysisManagerModuleProxy>() ||
101 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
102 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
103 InnerAM->clear();
104
105 // And the proxy itself should be marked as invalid so that we can observe
106 // the new call graph. This isn't strictly necessary because we cheat
107 // above, but is still useful.
108 return true;
109 }
110
111 // Ok, we have a graph, so we can propagate the invalidation down into it.
112 for (auto &RC : G->postorder_ref_sccs())
113 for (auto &C : RC)
114 InnerAM->invalidate(C, PA);
115
116 // Return false to indicate that this result is still a valid proxy.
117 return false;
118}
119
120template <>
121CGSCCAnalysisManagerModuleProxy::Result
122CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
123 // Force the Function analysis manager to also be available so that it can
124 // be accessed in an SCC analysis and proxied onward to function passes.
125 // FIXME: It is pretty awkward to just drop the result here and assert that
126 // we can find it again later.
127 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
128
129 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
130}
131
132AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
133
134FunctionAnalysisManagerCGSCCProxy::Result
135FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
136 CGSCCAnalysisManager &AM,
137 LazyCallGraph &CG) {
138 // Collect the FunctionAnalysisManager from the Module layer and use that to
139 // build the proxy result.
140 //
141 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
142 // invalidate the function analyses.
143 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
144 Module &M = *C.begin()->getFunction().getParent();
145 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
146 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
147 "proxy is run on the module prior to entering the CGSCC "
148 "walk.");
149
150 // Note that we special-case invalidation handling of this proxy in the CGSCC
151 // analysis manager's Module proxy. This avoids the need to do anything
152 // special here to recompute all of this if ever the FAM's module proxy goes
153 // away.
154 return Result(FAMProxy->getManager());
155}
156
157bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
158 LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
159 CGSCCAnalysisManager::Invalidator &Inv) {
160 for (LazyCallGraph::Node &N : C)
161 FAM->invalidate(N.getFunction(), PA);
162
163 // This proxy doesn't need to handle invalidation itself. Instead, the
164 // module-level CGSCC proxy handles it above by ensuring that if the
165 // module-level FAM proxy becomes invalid the entire SCC layer, which
166 // includes this proxy, is cleared.
167 return false;
168}
169
Chandler Carruth88823462016-08-24 09:37:14 +0000170} // End llvm namespace
171
172namespace {
173/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
174/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
175/// added SCCs.
176///
177/// The range of new SCCs must be in postorder already. The SCC they were split
178/// out of must be provided as \p C. The current node being mutated and
179/// triggering updates must be passed as \p N.
180///
181/// This function returns the SCC containing \p N. This will be either \p C if
182/// no new SCCs have been split out, or it will be the new SCC containing \p N.
183template <typename SCCRangeT>
184LazyCallGraph::SCC *
185incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
186 LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
187 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
188 bool DebugLogging = false) {
189 typedef LazyCallGraph::SCC SCC;
190
191 if (NewSCCRange.begin() == NewSCCRange.end())
192 return C;
193
194 // Invalidate the analyses of the current SCC and add it to the worklist since
195 // it has changed its shape.
196 AM.invalidate(*C, PreservedAnalyses::none());
197 UR.CWorklist.insert(C);
198 if (DebugLogging)
199 dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n";
200
201 SCC *OldC = C;
202 (void)OldC;
203
204 // Update the current SCC. Note that if we have new SCCs, this must actually
205 // change the SCC.
206 assert(C != &*NewSCCRange.begin() &&
207 "Cannot insert new SCCs without changing current SCC!");
208 C = &*NewSCCRange.begin();
209 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
210
211 for (SCC &NewC :
212 reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
213 assert(C != &NewC && "No need to re-visit the current SCC!");
214 assert(OldC != &NewC && "Already handled the original SCC!");
215 UR.CWorklist.insert(&NewC);
216 if (DebugLogging)
217 dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n";
218 }
219 return C;
220}
221}
222
223LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
224 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
225 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) {
226 typedef LazyCallGraph::Node Node;
227 typedef LazyCallGraph::Edge Edge;
228 typedef LazyCallGraph::SCC SCC;
229 typedef LazyCallGraph::RefSCC RefSCC;
230
231 RefSCC &InitialRC = InitialC.getOuterRefSCC();
232 SCC *C = &InitialC;
233 RefSCC *RC = &InitialRC;
234 Function &F = N.getFunction();
235
236 // Walk the function body and build up the set of retained, promoted, and
237 // demoted edges.
238 SmallVector<Constant *, 16> Worklist;
239 SmallPtrSet<Constant *, 16> Visited;
240 SmallPtrSet<Function *, 16> RetainedEdges;
241 SmallSetVector<Function *, 4> PromotedRefTargets;
242 SmallSetVector<Function *, 4> DemotedCallTargets;
Chandler Carruth89772232016-12-06 10:06:06 +0000243
Chandler Carruth88823462016-08-24 09:37:14 +0000244 // First walk the function and handle all called functions. We do this first
245 // because if there is a single call edge, whether there are ref edges is
246 // irrelevant.
Chandler Carruth89772232016-12-06 10:06:06 +0000247 for (Instruction &I : instructions(F))
248 if (auto CS = CallSite(&I))
249 if (Function *Callee = CS.getCalledFunction())
250 if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
251 const Edge *E = N.lookup(*Callee);
252 // FIXME: We should really handle adding new calls. While it will
253 // make downstream usage more complex, there is no fundamental
254 // limitation and it will allow passes within the CGSCC to be a bit
255 // more flexible in what transforms they can do. Until then, we
256 // verify that new calls haven't been introduced.
257 assert(E && "No function transformations should introduce *new* "
258 "call edges! Any new calls should be modeled as "
259 "promoted existing ref edges!");
260 RetainedEdges.insert(Callee);
261 if (!E->isCall())
262 PromotedRefTargets.insert(Callee);
263 }
Chandler Carruth88823462016-08-24 09:37:14 +0000264
265 // Now walk all references.
Chandler Carruth89772232016-12-06 10:06:06 +0000266 for (Instruction &I : instructions(F))
267 for (Value *Op : I.operand_values())
268 if (Constant *C = dyn_cast<Constant>(Op))
269 if (Visited.insert(C).second)
270 Worklist.push_back(C);
Chandler Carruth88823462016-08-24 09:37:14 +0000271
Chandler Carruth89772232016-12-06 10:06:06 +0000272 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
273 const Edge *E = N.lookup(Referee);
274 // FIXME: Similarly to new calls, we also currently preclude
275 // introducing new references. See above for details.
276 assert(E && "No function transformations should introduce *new* ref "
277 "edges! Any new ref edges would require IPO which "
278 "function passes aren't allowed to do!");
279 RetainedEdges.insert(&Referee);
280 if (E->isCall())
281 DemotedCallTargets.insert(&Referee);
282 });
Chandler Carruth88823462016-08-24 09:37:14 +0000283
284 // First remove all of the edges that are no longer present in this function.
285 // We have to build a list of dead targets first and then remove them as the
286 // data structures will all be invalidated by removing them.
287 SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
288 for (Edge &E : N)
289 if (!RetainedEdges.count(&E.getFunction()))
290 DeadTargets.push_back({E.getNode(), E.getKind()});
291 for (auto DeadTarget : DeadTargets) {
292 Node &TargetN = *DeadTarget.getPointer();
293 bool IsCall = DeadTarget.getInt() == Edge::Call;
294 SCC &TargetC = *G.lookupSCC(TargetN);
295 RefSCC &TargetRC = TargetC.getOuterRefSCC();
296
297 if (&TargetRC != RC) {
298 RC->removeOutgoingEdge(N, TargetN);
299 if (DebugLogging)
300 dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN
301 << "'\n";
302 continue;
303 }
304 if (DebugLogging)
305 dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
306 << " edge from '" << N << "' to '" << TargetN << "'\n";
307
308 if (IsCall)
309 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N,
310 C, AM, UR, DebugLogging);
311
312 auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
313 if (!NewRefSCCs.empty()) {
314 // Note that we don't bother to invalidate analyses as ref-edge
315 // connectivity is not really observable in any way and is intended
316 // exclusively to be used for ordering of transforms rather than for
317 // analysis conclusions.
318
319 // The RC worklist is in reverse postorder, so we first enqueue the
320 // current RefSCC as it will remain the parent of all split RefSCCs, then
321 // we enqueue the new ones in RPO except for the one which contains the
322 // source node as that is the "bottom" we will continue processing in the
323 // bottom-up walk.
324 UR.RCWorklist.insert(RC);
325 if (DebugLogging)
326 dbgs() << "Enqueuing the existing RefSCC in the update worklist: "
327 << *RC << "\n";
328 // Update the RC to the "bottom".
329 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
330 RC = &C->getOuterRefSCC();
331 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
332 for (RefSCC *NewRC : reverse(NewRefSCCs))
333 if (NewRC != RC) {
334 UR.RCWorklist.insert(NewRC);
335 if (DebugLogging)
336 dbgs() << "Enqueuing a new RefSCC in the update worklist: "
337 << *NewRC << "\n";
338 }
339 }
340 }
341
342 // Next demote all the call edges that are now ref edges. This helps make
343 // the SCCs small which should minimize the work below as we don't want to
344 // form cycles that this would break.
345 for (Function *RefTarget : DemotedCallTargets) {
346 Node &TargetN = *G.lookup(*RefTarget);
347 SCC &TargetC = *G.lookupSCC(TargetN);
348 RefSCC &TargetRC = TargetC.getOuterRefSCC();
349
350 // The easy case is when the target RefSCC is not this RefSCC. This is
351 // only supported when the target RefSCC is a child of this RefSCC.
352 if (&TargetRC != RC) {
353 assert(RC->isAncestorOf(TargetRC) &&
354 "Cannot potentially form RefSCC cycles here!");
355 RC->switchOutgoingEdgeToRef(N, TargetN);
356 if (DebugLogging)
357 dbgs() << "Switch outgoing call edge to a ref edge from '" << N
358 << "' to '" << TargetN << "'\n";
359 continue;
360 }
361
362 // Otherwise we are switching an internal call edge to a ref edge. This
363 // may split up some SCCs.
364 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C,
365 AM, UR, DebugLogging);
366 }
367
368 // Now promote ref edges into call edges.
369 for (Function *CallTarget : PromotedRefTargets) {
370 Node &TargetN = *G.lookup(*CallTarget);
371 SCC &TargetC = *G.lookupSCC(TargetN);
372 RefSCC &TargetRC = TargetC.getOuterRefSCC();
373
374 // The easy case is when the target RefSCC is not this RefSCC. This is
375 // only supported when the target RefSCC is a child of this RefSCC.
376 if (&TargetRC != RC) {
377 assert(RC->isAncestorOf(TargetRC) &&
378 "Cannot potentially form RefSCC cycles here!");
379 RC->switchOutgoingEdgeToCall(N, TargetN);
380 if (DebugLogging)
381 dbgs() << "Switch outgoing ref edge to a call edge from '" << N
382 << "' to '" << TargetN << "'\n";
383 continue;
384 }
385 if (DebugLogging)
386 dbgs() << "Switch an internal ref edge to a call edge from '" << N
387 << "' to '" << TargetN << "'\n";
388
389 // Otherwise we are switching an internal ref edge to a call edge. This
390 // may merge away some SCCs, and we add those to the UpdateResult. We also
391 // need to make sure to update the worklist in the event SCCs have moved
392 // before the current one in the post-order sequence.
393 auto InitialSCCIndex = RC->find(*C) - RC->begin();
394 auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN);
395 if (!InvalidatedSCCs.empty()) {
396 C = &TargetC;
397 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
398
399 // Any analyses cached for this SCC are no longer precise as the shape
400 // has changed by introducing this cycle.
401 AM.invalidate(*C, PreservedAnalyses::none());
402
403 for (SCC *InvalidatedC : InvalidatedSCCs) {
404 assert(InvalidatedC != C && "Cannot invalidate the current SCC!");
405 UR.InvalidatedSCCs.insert(InvalidatedC);
406
407 // Also clear any cached analyses for the SCCs that are dead. This
408 // isn't really necessary for correctness but can release memory.
409 AM.clear(*InvalidatedC);
410 }
411 }
412 auto NewSCCIndex = RC->find(*C) - RC->begin();
413 if (InitialSCCIndex < NewSCCIndex) {
414 // Put our current SCC back onto the worklist as we'll visit other SCCs
415 // that are now definitively ordered prior to the current one in the
416 // post-order sequence, and may end up observing more precise context to
417 // optimize the current SCC.
418 UR.CWorklist.insert(C);
419 if (DebugLogging)
420 dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n";
421 // Enqueue in reverse order as we pop off the back of the worklist.
422 for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
423 RC->begin() + NewSCCIndex))) {
424 UR.CWorklist.insert(&MovedC);
425 if (DebugLogging)
426 dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC
427 << "\n";
428 }
429 }
430 }
431
432 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
433 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
434 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
435
436 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
437 // manager now that all the updates have been applied.
438 if (RC != &InitialRC)
439 UR.UpdatedRC = RC;
440 if (C != &InitialC)
441 UR.UpdatedC = C;
442
443 return *C;
Chandler Carruth572e3402014-04-21 11:12:00 +0000444}