blob: 07ca4f513f63e50435d800770879753da5d2d50c [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000018#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000019#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000022#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000024#include "llvm/Support/raw_ostream.h"
David Blaikieb447ac62015-06-26 18:02:52 +000025#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000026using namespace llvm;
27
Adam Nemet339f42b2015-02-19 19:15:07 +000028#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000029
Adam Nemetf219c642015-02-19 19:14:52 +000030static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000034unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000035
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000042unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000043
Adam Nemet1d862af2015-02-26 04:39:09 +000044static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000050
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000051/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53 "memory-check-merge-threshold", cl::Hidden,
54 cl::desc("Maximum number of comparisons done when trying to merge "
55 "runtime memory checks. (default = 100)"),
56 cl::init(100));
57
Adam Nemetf219c642015-02-19 19:14:52 +000058/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
Adam Nemet9c926572015-03-10 17:40:37 +000061/// \brief We collect interesting dependences up to this threshold.
62static cl::opt<unsigned> MaxInterestingDependence(
63 "max-interesting-dependences", cl::Hidden,
64 cl::desc("Maximum number of interesting dependences collected by "
65 "loop-access analysis (default = 100)"),
66 cl::init(100));
67
Adam Nemetf219c642015-02-19 19:14:52 +000068bool VectorizerParams::isInterleaveForced() {
69 return ::VectorizationInterleave.getNumOccurrences() > 0;
70}
71
Adam Nemet2bd6e982015-02-19 19:15:15 +000072void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73 const Function *TheFunction,
74 const Loop *TheLoop,
75 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000076 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000077 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +000078 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +000079 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +000080 *TheFunction, DL, Message.str());
81}
82
83Value *llvm::stripIntegerCast(Value *V) {
84 if (CastInst *CI = dyn_cast<CastInst>(V))
85 if (CI->getOperand(0)->getType()->isIntegerTy())
86 return CI->getOperand(0);
87 return V;
88}
89
90const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
Adam Nemet8bc61df2015-02-24 00:41:59 +000091 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +000092 Value *Ptr, Value *OrigPtr) {
93
94 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
95
96 // If there is an entry in the map return the SCEV of the pointer with the
97 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +000098 ValueToValueMap::const_iterator SI =
99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000100 if (SI != PtrToStride.end()) {
101 Value *StrideVal = SI->second;
102
103 // Strip casts.
104 StrideVal = stripIntegerCast(StrideVal);
105
106 // Replace symbolic stride by one.
107 Value *One = ConstantInt::get(StrideVal->getType(), 1);
108 ValueToValueMap RewriteMap;
109 RewriteMap[StrideVal] = One;
110
111 const SCEV *ByOne =
112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
Adam Nemet339f42b2015-02-19 19:15:07 +0000113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
Adam Nemet04563272015-02-01 16:56:15 +0000114 << "\n");
115 return ByOne;
116 }
117
118 // Otherwise, just return the SCEV of the original pointer.
119 return SE->getSCEV(Ptr);
120}
121
Adam Nemet7cdebac2015-07-14 22:32:44 +0000122void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
123 unsigned DepSetId, unsigned ASId,
124 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000125 // Get the stride replaced scev.
126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
128 assert(AR && "Invalid addrec expression");
129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000130
131 const SCEV *ScStart = AR->getStart();
Adam Nemet04563272015-02-01 16:56:15 +0000132 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
Silviu Baranga0e5804a2015-07-16 14:02:58 +0000133 const SCEV *Step = AR->getStepRecurrence(*SE);
134
135 // For expressions with negative step, the upper bound is ScStart and the
136 // lower bound is ScEnd.
137 if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
138 if (CStep->getValue()->isNegative())
139 std::swap(ScStart, ScEnd);
140 } else {
141 // Fallback case: the step is not constant, but the we can still
142 // get the upper and lower bounds of the interval by using min/max
143 // expressions.
144 ScStart = SE->getUMinExpr(ScStart, ScEnd);
145 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
146 }
147
148 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000149}
150
Adam Nemet7cdebac2015-07-14 22:32:44 +0000151bool RuntimePointerChecking::needsChecking(
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000152 const CheckingPtrGroup &M, const CheckingPtrGroup &N,
153 const SmallVectorImpl<int> *PtrPartition) const {
154 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
155 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
156 if (needsChecking(M.Members[I], N.Members[J], PtrPartition))
157 return true;
158 return false;
159}
160
161/// Compare \p I and \p J and return the minimum.
162/// Return nullptr in case we couldn't find an answer.
163static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
164 ScalarEvolution *SE) {
165 const SCEV *Diff = SE->getMinusSCEV(J, I);
166 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
167
168 if (!C)
169 return nullptr;
170 if (C->getValue()->isNegative())
171 return J;
172 return I;
173}
174
Adam Nemet7cdebac2015-07-14 22:32:44 +0000175bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000176 const SCEV *Start = RtCheck.Pointers[Index].Start;
177 const SCEV *End = RtCheck.Pointers[Index].End;
178
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000179 // Compare the starts and ends with the known minimum and maximum
180 // of this set. We need to know how we compare against the min/max
181 // of the set in order to be able to emit memchecks.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000182 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000183 if (!Min0)
184 return false;
185
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000186 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000187 if (!Min1)
188 return false;
189
190 // Update the low bound expression if we've found a new min value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000191 if (Min0 == Start)
192 Low = Start;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000193
194 // Update the high bound expression if we've found a new max value.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000195 if (Min1 != End)
196 High = End;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000197
198 Members.push_back(Index);
199 return true;
200}
201
Adam Nemet7cdebac2015-07-14 22:32:44 +0000202void RuntimePointerChecking::groupChecks(
203 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000204 // We build the groups from dependency candidates equivalence classes
205 // because:
206 // - We know that pointers in the same equivalence class share
207 // the same underlying object and therefore there is a chance
208 // that we can compare pointers
209 // - We wouldn't be able to merge two pointers for which we need
210 // to emit a memcheck. The classes in DepCands are already
211 // conveniently built such that no two pointers in the same
212 // class need checking against each other.
213
214 // We use the following (greedy) algorithm to construct the groups
215 // For every pointer in the equivalence class:
216 // For each existing group:
217 // - if the difference between this pointer and the min/max bounds
218 // of the group is a constant, then make the pointer part of the
219 // group and update the min/max bounds of that group as required.
220
221 CheckingGroups.clear();
222
223 // If we don't have the dependency partitions, construct a new
224 // checking pointer group for each pointer.
225 if (!UseDependencies) {
226 for (unsigned I = 0; I < Pointers.size(); ++I)
227 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
228 return;
229 }
230
231 unsigned TotalComparisons = 0;
232
233 DenseMap<Value *, unsigned> PositionMap;
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000234 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
235 PositionMap[Pointers[Index].PointerValue] = Index;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000236
Silviu Barangace3877f2015-07-09 15:18:25 +0000237 // We need to keep track of what pointers we've already seen so we
238 // don't process them twice.
239 SmallSet<unsigned, 2> Seen;
240
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000241 // Go through all equivalence classes, get the the "pointer check groups"
Silviu Barangace3877f2015-07-09 15:18:25 +0000242 // and add them to the overall solution. We use the order in which accesses
243 // appear in 'Pointers' to enforce determinism.
244 for (unsigned I = 0; I < Pointers.size(); ++I) {
245 // We've seen this pointer before, and therefore already processed
246 // its equivalence class.
247 if (Seen.count(I))
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000248 continue;
249
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000250 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
251 Pointers[I].IsWritePtr);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000252
Silviu Barangace3877f2015-07-09 15:18:25 +0000253 SmallVector<CheckingPtrGroup, 2> Groups;
254 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
255
Silviu Barangaa647c302015-07-13 14:48:24 +0000256 // Because DepCands is constructed by visiting accesses in the order in
257 // which they appear in alias sets (which is deterministic) and the
258 // iteration order within an equivalence class member is only dependent on
259 // the order in which unions and insertions are performed on the
260 // equivalence class, the iteration order is deterministic.
Silviu Barangace3877f2015-07-09 15:18:25 +0000261 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000262 MI != ME; ++MI) {
263 unsigned Pointer = PositionMap[MI->getPointer()];
264 bool Merged = false;
Silviu Barangace3877f2015-07-09 15:18:25 +0000265 // Mark this pointer as seen.
266 Seen.insert(Pointer);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000267
268 // Go through all the existing sets and see if we can find one
269 // which can include this pointer.
270 for (CheckingPtrGroup &Group : Groups) {
271 // Don't perform more than a certain amount of comparisons.
272 // This should limit the cost of grouping the pointers to something
273 // reasonable. If we do end up hitting this threshold, the algorithm
274 // will create separate groups for all remaining pointers.
275 if (TotalComparisons > MemoryCheckMergeThreshold)
276 break;
277
278 TotalComparisons++;
279
280 if (Group.addPointer(Pointer)) {
281 Merged = true;
282 break;
283 }
284 }
285
286 if (!Merged)
287 // We couldn't add this pointer to any existing set or the threshold
288 // for the number of comparisons has been reached. Create a new group
289 // to hold the current pointer.
290 Groups.push_back(CheckingPtrGroup(Pointer, *this));
291 }
292
293 // We've computed the grouped checks for this partition.
294 // Save the results and continue with the next one.
295 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
296 }
Adam Nemet04563272015-02-01 16:56:15 +0000297}
298
Adam Nemet041e6de2015-07-16 02:48:05 +0000299bool RuntimePointerChecking::arePointersInSamePartition(
300 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
301 unsigned PtrIdx2) {
302 return (PtrToPartition[PtrIdx1] != -1 &&
303 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
304}
305
Adam Nemet7cdebac2015-07-14 22:32:44 +0000306bool RuntimePointerChecking::needsChecking(
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000307 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000308 const PointerInfo &PointerI = Pointers[I];
309 const PointerInfo &PointerJ = Pointers[J];
310
Adam Nemeta8945b72015-02-18 03:43:58 +0000311 // No need to check if two readonly pointers intersect.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000312 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
Adam Nemeta8945b72015-02-18 03:43:58 +0000313 return false;
314
315 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000316 if (PointerI.DependencySetId == PointerJ.DependencySetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000317 return false;
318
319 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000320 if (PointerI.AliasSetId != PointerJ.AliasSetId)
Adam Nemeta8945b72015-02-18 03:43:58 +0000321 return false;
322
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000323 // If PtrPartition is set omit checks between pointers of the same partition.
Adam Nemet041e6de2015-07-16 02:48:05 +0000324 if (PtrPartition && arePointersInSamePartition(*PtrPartition, I, J))
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000325 return false;
326
Adam Nemeta8945b72015-02-18 03:43:58 +0000327 return true;
328}
329
Adam Nemet7cdebac2015-07-14 22:32:44 +0000330void RuntimePointerChecking::print(
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000331 raw_ostream &OS, unsigned Depth,
332 const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000333
334 OS.indent(Depth) << "Run-time memory checks:\n";
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000335
Adam Nemete91cc6e2015-02-19 19:15:19 +0000336 unsigned N = 0;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000337 for (unsigned I = 0; I < CheckingGroups.size(); ++I)
338 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J)
339 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) {
340 OS.indent(Depth) << "Check " << N++ << ":\n";
341 OS.indent(Depth + 2) << "Comparing group " << I << ":\n";
342
343 for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000344 OS.indent(Depth + 2)
345 << *Pointers[CheckingGroups[I].Members[K]].PointerValue << "\n";
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000346 if (PtrPartition)
347 OS << " (Partition: "
348 << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")"
349 << "\n";
350 }
351
352 OS.indent(Depth + 2) << "Against group " << J << ":\n";
353
354 for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000355 OS.indent(Depth + 2)
356 << *Pointers[CheckingGroups[J].Members[K]].PointerValue << "\n";
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000357 if (PtrPartition)
358 OS << " (Partition: "
359 << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")"
360 << "\n";
361 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000362 }
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000363
364 OS.indent(Depth) << "Grouped accesses:\n";
365 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
366 OS.indent(Depth + 2) << "Group " << I << ":\n";
367 OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low
368 << " High: " << *CheckingGroups[I].High << ")\n";
369 for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) {
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000370 OS.indent(Depth + 6) << "Member: "
371 << *Pointers[CheckingGroups[I].Members[J]].Expr
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000372 << "\n";
373 }
374 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000375}
376
Adam Nemet7cdebac2015-07-14 22:32:44 +0000377unsigned RuntimePointerChecking::getNumberOfChecks(
Adam Nemet51870d12015-04-07 03:35:26 +0000378 const SmallVectorImpl<int> *PtrPartition) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000379
380 unsigned NumPartitions = CheckingGroups.size();
Silviu Baranga98a13712015-06-08 10:27:06 +0000381 unsigned CheckCount = 0;
Adam Nemet51870d12015-04-07 03:35:26 +0000382
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000383 for (unsigned I = 0; I < NumPartitions; ++I)
384 for (unsigned J = I + 1; J < NumPartitions; ++J)
385 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition))
Silviu Baranga98a13712015-06-08 10:27:06 +0000386 CheckCount++;
387 return CheckCount;
388}
389
Adam Nemet7cdebac2015-07-14 22:32:44 +0000390bool RuntimePointerChecking::needsAnyChecking(
Silviu Baranga98a13712015-06-08 10:27:06 +0000391 const SmallVectorImpl<int> *PtrPartition) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000392 unsigned NumPointers = Pointers.size();
393
394 for (unsigned I = 0; I < NumPointers; ++I)
395 for (unsigned J = I + 1; J < NumPointers; ++J)
396 if (needsChecking(I, J, PtrPartition))
397 return true;
398 return false;
Adam Nemet51870d12015-04-07 03:35:26 +0000399}
400
Adam Nemet04563272015-02-01 16:56:15 +0000401namespace {
402/// \brief Analyses memory accesses in a loop.
403///
404/// Checks whether run time pointer checks are needed and builds sets for data
405/// dependence checking.
406class AccessAnalysis {
407public:
408 /// \brief Read or write access location.
409 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
410 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
411
Adam Nemete2b885c2015-04-23 20:09:20 +0000412 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Adam Nemetdee666b2015-03-10 17:40:34 +0000413 MemoryDepChecker::DepCandidates &DA)
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000414 : DL(Dl), AST(*AA), LI(LI), DepCands(DA),
415 IsRTCheckAnalysisNeeded(false) {}
Adam Nemet04563272015-02-01 16:56:15 +0000416
417 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000418 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000419 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000420 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000421 Accesses.insert(MemAccessInfo(Ptr, false));
422 if (IsReadOnly)
423 ReadOnlyPtr.insert(Ptr);
424 }
425
426 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000427 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000428 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000429 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000430 Accesses.insert(MemAccessInfo(Ptr, true));
431 }
432
433 /// \brief Check whether we can check the pointers at runtime for
Adam Nemetee614742015-07-09 22:17:38 +0000434 /// non-intersection.
435 ///
436 /// Returns true if we need no check or if we do and we can generate them
437 /// (i.e. the pointers have computable bounds).
Adam Nemet7cdebac2015-07-14 22:32:44 +0000438 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
439 Loop *TheLoop, const ValueToValueMap &Strides,
Adam Nemet04563272015-02-01 16:56:15 +0000440 bool ShouldCheckStride = false);
441
442 /// \brief Goes over all memory accesses, checks whether a RT check is needed
443 /// and builds sets of dependent accesses.
444 void buildDependenceSets() {
445 processMemAccesses();
446 }
447
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000448 /// \brief Initial processing of memory accesses determined that we need to
449 /// perform dependency checking.
450 ///
451 /// Note that this can later be cleared if we retry memcheck analysis without
452 /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
Adam Nemet04563272015-02-01 16:56:15 +0000453 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000454
455 /// We decided that no dependence analysis would be used. Reset the state.
456 void resetDepChecks(MemoryDepChecker &DepChecker) {
457 CheckDeps.clear();
458 DepChecker.clearInterestingDependences();
459 }
Adam Nemet04563272015-02-01 16:56:15 +0000460
461 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
462
463private:
464 typedef SetVector<MemAccessInfo> PtrAccessSet;
465
466 /// \brief Go over all memory access and check whether runtime pointer checks
Adam Nemetb41d2d32015-07-09 06:47:21 +0000467 /// are needed and build sets of dependency check candidates.
Adam Nemet04563272015-02-01 16:56:15 +0000468 void processMemAccesses();
469
470 /// Set of all accesses.
471 PtrAccessSet Accesses;
472
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000473 const DataLayout &DL;
474
Adam Nemet04563272015-02-01 16:56:15 +0000475 /// Set of accesses that need a further dependence check.
476 MemAccessInfoSet CheckDeps;
477
478 /// Set of pointers that are read only.
479 SmallPtrSet<Value*, 16> ReadOnlyPtr;
480
Adam Nemet04563272015-02-01 16:56:15 +0000481 /// An alias set tracker to partition the access set by underlying object and
482 //intrinsic property (such as TBAA metadata).
483 AliasSetTracker AST;
484
Adam Nemete2b885c2015-04-23 20:09:20 +0000485 LoopInfo *LI;
486
Adam Nemet04563272015-02-01 16:56:15 +0000487 /// Sets of potentially dependent accesses - members of one set share an
488 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
489 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000490 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000491
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000492 /// \brief Initial processing of memory accesses determined that we may need
493 /// to add memchecks. Perform the analysis to determine the necessary checks.
494 ///
495 /// Note that, this is different from isDependencyCheckNeeded. When we retry
496 /// memcheck analysis without dependency checking
497 /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
498 /// while this remains set if we have potentially dependent accesses.
499 bool IsRTCheckAnalysisNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000500};
501
502} // end anonymous namespace
503
504/// \brief Check whether a pointer can participate in a runtime bounds check.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000505static bool hasComputableBounds(ScalarEvolution *SE,
506 const ValueToValueMap &Strides, Value *Ptr) {
Adam Nemet04563272015-02-01 16:56:15 +0000507 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
508 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
509 if (!AR)
510 return false;
511
512 return AR->isAffine();
513}
514
Adam Nemet7cdebac2015-07-14 22:32:44 +0000515bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
516 ScalarEvolution *SE, Loop *TheLoop,
517 const ValueToValueMap &StridesMap,
518 bool ShouldCheckStride) {
Adam Nemet04563272015-02-01 16:56:15 +0000519 // Find pointers with computable bounds. We are going to use this information
520 // to place a runtime bound check.
521 bool CanDoRT = true;
522
Adam Nemetee614742015-07-09 22:17:38 +0000523 bool NeedRTCheck = false;
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000524 if (!IsRTCheckAnalysisNeeded) return true;
Silviu Baranga98a13712015-06-08 10:27:06 +0000525
Adam Nemet04563272015-02-01 16:56:15 +0000526 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000527
528 // We assign a consecutive id to access from different alias sets.
529 // Accesses between different groups doesn't need to be checked.
530 unsigned ASId = 1;
531 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000532 int NumReadPtrChecks = 0;
533 int NumWritePtrChecks = 0;
534
Adam Nemet04563272015-02-01 16:56:15 +0000535 // We assign consecutive id to access from different dependence sets.
536 // Accesses within the same set don't need a runtime check.
537 unsigned RunningDepId = 1;
538 DenseMap<Value *, unsigned> DepSetId;
539
540 for (auto A : AS) {
541 Value *Ptr = A.getValue();
542 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
543 MemAccessInfo Access(Ptr, IsWrite);
544
Adam Nemet424edc62015-07-08 22:58:48 +0000545 if (IsWrite)
546 ++NumWritePtrChecks;
547 else
548 ++NumReadPtrChecks;
549
Adam Nemet04563272015-02-01 16:56:15 +0000550 if (hasComputableBounds(SE, StridesMap, Ptr) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000551 // When we run after a failing dependency check we have to make sure
552 // we don't have wrapping pointers.
Adam Nemet04563272015-02-01 16:56:15 +0000553 (!ShouldCheckStride ||
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000554 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
Adam Nemet04563272015-02-01 16:56:15 +0000555 // The id of the dependence set.
556 unsigned DepId;
557
558 if (IsDepCheckNeeded) {
559 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
560 unsigned &LeaderId = DepSetId[Leader];
561 if (!LeaderId)
562 LeaderId = RunningDepId++;
563 DepId = LeaderId;
564 } else
565 // Each access has its own dependence set.
566 DepId = RunningDepId++;
567
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000568 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
Adam Nemet04563272015-02-01 16:56:15 +0000569
Adam Nemet339f42b2015-02-19 19:15:07 +0000570 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000571 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000572 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000573 CanDoRT = false;
574 }
575 }
576
Adam Nemet424edc62015-07-08 22:58:48 +0000577 // If we have at least two writes or one write and a read then we need to
578 // check them. But there is no need to checks if there is only one
579 // dependence set for this alias set.
580 //
581 // Note that this function computes CanDoRT and NeedRTCheck independently.
582 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
583 // for which we couldn't find the bounds but we don't actually need to emit
584 // any checks so it does not matter.
585 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
586 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
587 NumWritePtrChecks >= 1));
588
Adam Nemet04563272015-02-01 16:56:15 +0000589 ++ASId;
590 }
591
592 // If the pointers that we would use for the bounds comparison have different
593 // address spaces, assume the values aren't directly comparable, so we can't
594 // use them for the runtime check. We also have to assume they could
595 // overlap. In the future there should be metadata for whether address spaces
596 // are disjoint.
597 unsigned NumPointers = RtCheck.Pointers.size();
598 for (unsigned i = 0; i < NumPointers; ++i) {
599 for (unsigned j = i + 1; j < NumPointers; ++j) {
600 // Only need to check pointers between two different dependency sets.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000601 if (RtCheck.Pointers[i].DependencySetId ==
602 RtCheck.Pointers[j].DependencySetId)
Adam Nemet04563272015-02-01 16:56:15 +0000603 continue;
604 // Only need to check pointers in the same alias set.
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000605 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
Adam Nemet04563272015-02-01 16:56:15 +0000606 continue;
607
Adam Nemet9f7dedc2015-07-14 22:32:50 +0000608 Value *PtrI = RtCheck.Pointers[i].PointerValue;
609 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
Adam Nemet04563272015-02-01 16:56:15 +0000610
611 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
612 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
613 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000614 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000615 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000616 return false;
617 }
618 }
619 }
620
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000621 if (NeedRTCheck && CanDoRT)
622 RtCheck.groupChecks(DepCands, IsDepCheckNeeded);
623
Adam Nemetee614742015-07-09 22:17:38 +0000624 DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr)
625 << " pointer comparisons.\n");
626
627 RtCheck.Need = NeedRTCheck;
628
629 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
630 if (!CanDoRTIfNeeded)
631 RtCheck.reset();
632 return CanDoRTIfNeeded;
Adam Nemet04563272015-02-01 16:56:15 +0000633}
634
635void AccessAnalysis::processMemAccesses() {
636 // We process the set twice: first we process read-write pointers, last we
637 // process read-only pointers. This allows us to skip dependence tests for
638 // read-only pointers.
639
Adam Nemet339f42b2015-02-19 19:15:07 +0000640 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000641 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000642 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000643 DEBUG({
644 for (auto A : Accesses)
645 dbgs() << "\t" << *A.getPointer() << " (" <<
646 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
647 "read-only" : "read")) << ")\n";
648 });
649
650 // The AliasSetTracker has nicely partitioned our pointers by metadata
651 // compatibility and potential for underlying-object overlap. As a result, we
652 // only need to check for potential pointer dependencies within each alias
653 // set.
654 for (auto &AS : AST) {
655 // Note that both the alias-set tracker and the alias sets themselves used
656 // linked lists internally and so the iteration order here is deterministic
657 // (matching the original instruction order within each set).
658
659 bool SetHasWrite = false;
660
661 // Map of pointers to last access encountered.
662 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
663 UnderlyingObjToAccessMap ObjToLastAccess;
664
665 // Set of access to check after all writes have been processed.
666 PtrAccessSet DeferredAccesses;
667
668 // Iterate over each alias set twice, once to process read/write pointers,
669 // and then to process read-only pointers.
670 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
671 bool UseDeferred = SetIteration > 0;
672 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
673
674 for (auto AV : AS) {
675 Value *Ptr = AV.getValue();
676
677 // For a single memory access in AliasSetTracker, Accesses may contain
678 // both read and write, and they both need to be handled for CheckDeps.
679 for (auto AC : S) {
680 if (AC.getPointer() != Ptr)
681 continue;
682
683 bool IsWrite = AC.getInt();
684
685 // If we're using the deferred access set, then it contains only
686 // reads.
687 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
688 if (UseDeferred && !IsReadOnlyPtr)
689 continue;
690 // Otherwise, the pointer must be in the PtrAccessSet, either as a
691 // read or a write.
692 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
693 S.count(MemAccessInfo(Ptr, false))) &&
694 "Alias-set pointer not in the access set?");
695
696 MemAccessInfo Access(Ptr, IsWrite);
697 DepCands.insert(Access);
698
699 // Memorize read-only pointers for later processing and skip them in
700 // the first round (they need to be checked after we have seen all
701 // write pointers). Note: we also mark pointer that are not
702 // consecutive as "read-only" pointers (so that we check
703 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
704 if (!UseDeferred && IsReadOnlyPtr) {
705 DeferredAccesses.insert(Access);
706 continue;
707 }
708
709 // If this is a write - check other reads and writes for conflicts. If
710 // this is a read only check other writes for conflicts (but only if
711 // there is no other write to the ptr - this is an optimization to
712 // catch "a[i] = a[i] + " without having to do a dependence check).
713 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
714 CheckDeps.insert(Access);
Adam Nemet5dc3b2c2015-07-09 06:47:18 +0000715 IsRTCheckAnalysisNeeded = true;
Adam Nemet04563272015-02-01 16:56:15 +0000716 }
717
718 if (IsWrite)
719 SetHasWrite = true;
720
721 // Create sets of pointers connected by a shared alias set and
722 // underlying object.
723 typedef SmallVector<Value *, 16> ValueVector;
724 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000725
726 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
727 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000728 for (Value *UnderlyingObj : TempObjects) {
729 UnderlyingObjToAccessMap::iterator Prev =
730 ObjToLastAccess.find(UnderlyingObj);
731 if (Prev != ObjToLastAccess.end())
732 DepCands.unionSets(Access, Prev->second);
733
734 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000735 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000736 }
737 }
738 }
739 }
740 }
741}
742
Adam Nemet04563272015-02-01 16:56:15 +0000743static bool isInBoundsGep(Value *Ptr) {
744 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
745 return GEP->isInBounds();
746 return false;
747}
748
Adam Nemetc4866d22015-06-26 17:25:43 +0000749/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
750/// i.e. monotonically increasing/decreasing.
751static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
752 ScalarEvolution *SE, const Loop *L) {
753 // FIXME: This should probably only return true for NUW.
754 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
755 return true;
756
757 // Scalar evolution does not propagate the non-wrapping flags to values that
758 // are derived from a non-wrapping induction variable because non-wrapping
759 // could be flow-sensitive.
760 //
761 // Look through the potentially overflowing instruction to try to prove
762 // non-wrapping for the *specific* value of Ptr.
763
764 // The arithmetic implied by an inbounds GEP can't overflow.
765 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
766 if (!GEP || !GEP->isInBounds())
767 return false;
768
769 // Make sure there is only one non-const index and analyze that.
770 Value *NonConstIndex = nullptr;
771 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
772 if (!isa<ConstantInt>(*Index)) {
773 if (NonConstIndex)
774 return false;
775 NonConstIndex = *Index;
776 }
777 if (!NonConstIndex)
778 // The recurrence is on the pointer, ignore for now.
779 return false;
780
781 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
782 // AddRec using a NSW operation.
783 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
784 if (OBO->hasNoSignedWrap() &&
785 // Assume constant for other the operand so that the AddRec can be
786 // easily found.
787 isa<ConstantInt>(OBO->getOperand(1))) {
788 auto *OpScev = SE->getSCEV(OBO->getOperand(0));
789
790 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
791 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
792 }
793
794 return false;
795}
796
Adam Nemet04563272015-02-01 16:56:15 +0000797/// \brief Check whether the access through \p Ptr has a constant stride.
Hao Liu32c05392015-06-08 06:39:56 +0000798int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
799 const ValueToValueMap &StridesMap) {
Adam Nemet04563272015-02-01 16:56:15 +0000800 const Type *Ty = Ptr->getType();
801 assert(Ty->isPointerTy() && "Unexpected non-ptr");
802
803 // Make sure that the pointer does not point to aggregate types.
804 const PointerType *PtrTy = cast<PointerType>(Ty);
805 if (PtrTy->getElementType()->isAggregateType()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000806 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
807 << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000808 return 0;
809 }
810
811 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
812
813 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
814 if (!AR) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000815 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
Adam Nemet04d41632015-02-19 19:14:34 +0000816 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000817 return 0;
818 }
819
820 // The accesss function must stride over the innermost loop.
821 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000822 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Adam Nemet04d41632015-02-19 19:14:34 +0000823 *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000824 }
825
826 // The address calculation must not wrap. Otherwise, a dependence could be
827 // inverted.
828 // An inbounds getelementptr that is a AddRec with a unit stride
829 // cannot wrap per definition. The unit stride requirement is checked later.
830 // An getelementptr without an inbounds attribute and unit stride would have
831 // to access the pointer value "0" which is undefined behavior in address
832 // space 0, therefore we can also vectorize this case.
833 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Adam Nemetc4866d22015-06-26 17:25:43 +0000834 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000835 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
836 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000837 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
Adam Nemet04d41632015-02-19 19:14:34 +0000838 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000839 return 0;
840 }
841
842 // Check the step is constant.
843 const SCEV *Step = AR->getStepRecurrence(*SE);
844
Adam Nemet943befe2015-07-09 00:03:22 +0000845 // Calculate the pointer stride and check if it is constant.
Adam Nemet04563272015-02-01 16:56:15 +0000846 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
847 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000848 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Adam Nemet04d41632015-02-19 19:14:34 +0000849 " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000850 return 0;
851 }
852
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000853 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
854 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Adam Nemet04563272015-02-01 16:56:15 +0000855 const APInt &APStepVal = C->getValue()->getValue();
856
857 // Huge step value - give up.
858 if (APStepVal.getBitWidth() > 64)
859 return 0;
860
861 int64_t StepVal = APStepVal.getSExtValue();
862
863 // Strided access.
864 int64_t Stride = StepVal / Size;
865 int64_t Rem = StepVal % Size;
866 if (Rem)
867 return 0;
868
869 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
870 // know we can't "wrap around the address space". In case of address space
871 // zero we know that this won't happen without triggering undefined behavior.
872 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
873 Stride != 1 && Stride != -1)
874 return 0;
875
876 return Stride;
877}
878
Adam Nemet9c926572015-03-10 17:40:37 +0000879bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
880 switch (Type) {
881 case NoDep:
882 case Forward:
883 case BackwardVectorizable:
884 return true;
885
886 case Unknown:
887 case ForwardButPreventsForwarding:
888 case Backward:
889 case BackwardVectorizableButPreventsForwarding:
890 return false;
891 }
David Majnemerd388e932015-03-10 20:23:29 +0000892 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000893}
894
895bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
896 switch (Type) {
897 case NoDep:
898 case Forward:
899 return false;
900
901 case BackwardVectorizable:
902 case Unknown:
903 case ForwardButPreventsForwarding:
904 case Backward:
905 case BackwardVectorizableButPreventsForwarding:
906 return true;
907 }
David Majnemerd388e932015-03-10 20:23:29 +0000908 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000909}
910
911bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
912 switch (Type) {
913 case NoDep:
914 case Forward:
915 case ForwardButPreventsForwarding:
916 return false;
917
918 case Unknown:
919 case BackwardVectorizable:
920 case Backward:
921 case BackwardVectorizableButPreventsForwarding:
922 return true;
923 }
David Majnemerd388e932015-03-10 20:23:29 +0000924 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000925}
926
Adam Nemet04563272015-02-01 16:56:15 +0000927bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
928 unsigned TypeByteSize) {
929 // If loads occur at a distance that is not a multiple of a feasible vector
930 // factor store-load forwarding does not take place.
931 // Positive dependences might cause troubles because vectorizing them might
932 // prevent store-load forwarding making vectorized code run a lot slower.
933 // a[i] = a[i-3] ^ a[i-8];
934 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
935 // hence on your typical architecture store-load forwarding does not take
936 // place. Vectorizing in such cases does not make sense.
937 // Store-load forwarding distance.
938 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
939 // Maximum vector factor.
Adam Nemetf219c642015-02-19 19:14:52 +0000940 unsigned MaxVFWithoutSLForwardIssues =
941 VectorizerParams::MaxVectorWidth * TypeByteSize;
Adam Nemet04d41632015-02-19 19:14:34 +0000942 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
Adam Nemet04563272015-02-01 16:56:15 +0000943 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
944
945 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
946 vf *= 2) {
947 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
948 MaxVFWithoutSLForwardIssues = (vf >>=1);
949 break;
950 }
951 }
952
Adam Nemet04d41632015-02-19 19:14:34 +0000953 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000954 DEBUG(dbgs() << "LAA: Distance " << Distance <<
Adam Nemet04d41632015-02-19 19:14:34 +0000955 " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +0000956 return true;
957 }
958
959 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +0000960 MaxVFWithoutSLForwardIssues !=
961 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +0000962 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
963 return false;
964}
965
Hao Liu751004a2015-06-08 04:48:37 +0000966/// \brief Check the dependence for two accesses with the same stride \p Stride.
967/// \p Distance is the positive distance and \p TypeByteSize is type size in
968/// bytes.
969///
970/// \returns true if they are independent.
971static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
972 unsigned TypeByteSize) {
973 assert(Stride > 1 && "The stride must be greater than 1");
974 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
975 assert(Distance > 0 && "The distance must be non-zero");
976
977 // Skip if the distance is not multiple of type byte size.
978 if (Distance % TypeByteSize)
979 return false;
980
981 unsigned ScaledDist = Distance / TypeByteSize;
982
983 // No dependence if the scaled distance is not multiple of the stride.
984 // E.g.
985 // for (i = 0; i < 1024 ; i += 4)
986 // A[i+2] = A[i] + 1;
987 //
988 // Two accesses in memory (scaled distance is 2, stride is 4):
989 // | A[0] | | | | A[4] | | | |
990 // | | | A[2] | | | | A[6] | |
991 //
992 // E.g.
993 // for (i = 0; i < 1024 ; i += 3)
994 // A[i+4] = A[i] + 1;
995 //
996 // Two accesses in memory (scaled distance is 4, stride is 3):
997 // | A[0] | | | A[3] | | | A[6] | | |
998 // | | | | | A[4] | | | A[7] | |
999 return ScaledDist % Stride;
1000}
1001
Adam Nemet9c926572015-03-10 17:40:37 +00001002MemoryDepChecker::Dependence::DepType
1003MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1004 const MemAccessInfo &B, unsigned BIdx,
1005 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001006 assert (AIdx < BIdx && "Must pass arguments in program order");
1007
1008 Value *APtr = A.getPointer();
1009 Value *BPtr = B.getPointer();
1010 bool AIsWrite = A.getInt();
1011 bool BIsWrite = B.getInt();
1012
1013 // Two reads are independent.
1014 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +00001015 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +00001016
1017 // We cannot check pointers in different address spaces.
1018 if (APtr->getType()->getPointerAddressSpace() !=
1019 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +00001020 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001021
1022 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
1023 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
1024
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001025 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
1026 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
Adam Nemet04563272015-02-01 16:56:15 +00001027
1028 const SCEV *Src = AScev;
1029 const SCEV *Sink = BScev;
1030
1031 // If the induction step is negative we have to invert source and sink of the
1032 // dependence.
1033 if (StrideAPtr < 0) {
1034 //Src = BScev;
1035 //Sink = AScev;
1036 std::swap(APtr, BPtr);
1037 std::swap(Src, Sink);
1038 std::swap(AIsWrite, BIsWrite);
1039 std::swap(AIdx, BIdx);
1040 std::swap(StrideAPtr, StrideBPtr);
1041 }
1042
1043 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
1044
Adam Nemet339f42b2015-02-19 19:15:07 +00001045 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Adam Nemet04d41632015-02-19 19:14:34 +00001046 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +00001047 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Adam Nemet04d41632015-02-19 19:14:34 +00001048 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +00001049
Adam Nemet943befe2015-07-09 00:03:22 +00001050 // Need accesses with constant stride. We don't want to vectorize
Adam Nemet04563272015-02-01 16:56:15 +00001051 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1052 // the address space.
1053 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
Adam Nemet943befe2015-07-09 00:03:22 +00001054 DEBUG(dbgs() << "Pointer access with non-constant stride\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001055 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001056 }
1057
1058 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1059 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001060 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001061 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001062 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001063 }
1064
1065 Type *ATy = APtr->getType()->getPointerElementType();
1066 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001067 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1068 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001069
1070 // Negative distances are not plausible dependencies.
1071 const APInt &Val = C->getValue()->getValue();
1072 if (Val.isNegative()) {
1073 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1074 if (IsTrueDataDependence &&
1075 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1076 ATy != BTy))
Adam Nemet9c926572015-03-10 17:40:37 +00001077 return Dependence::ForwardButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001078
Adam Nemet339f42b2015-02-19 19:15:07 +00001079 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001080 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001081 }
1082
1083 // Write to the same location with the same size.
1084 // Could be improved to assert type sizes are the same (i32 == float, etc).
1085 if (Val == 0) {
1086 if (ATy == BTy)
Adam Nemet9c926572015-03-10 17:40:37 +00001087 return Dependence::NoDep;
Adam Nemet339f42b2015-02-19 19:15:07 +00001088 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001089 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001090 }
1091
1092 assert(Val.isStrictlyPositive() && "Expect a positive value");
1093
Adam Nemet04563272015-02-01 16:56:15 +00001094 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001095 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001096 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001097 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001098 }
1099
1100 unsigned Distance = (unsigned) Val.getZExtValue();
1101
Hao Liu751004a2015-06-08 04:48:37 +00001102 unsigned Stride = std::abs(StrideAPtr);
1103 if (Stride > 1 &&
Adam Nemet0131a562015-07-08 18:47:38 +00001104 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1105 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Hao Liu751004a2015-06-08 04:48:37 +00001106 return Dependence::NoDep;
Adam Nemet0131a562015-07-08 18:47:38 +00001107 }
Hao Liu751004a2015-06-08 04:48:37 +00001108
Adam Nemet04563272015-02-01 16:56:15 +00001109 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001110 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1111 VectorizerParams::VectorizationFactor : 1);
1112 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1113 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001114 // The minimum number of iterations for a vectorized/unrolled version.
1115 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001116
Hao Liu751004a2015-06-08 04:48:37 +00001117 // It's not vectorizable if the distance is smaller than the minimum distance
1118 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1119 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1120 // TypeByteSize (No need to plus the last gap distance).
1121 //
1122 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1123 // foo(int *A) {
1124 // int *B = (int *)((char *)A + 14);
1125 // for (i = 0 ; i < 1024 ; i += 2)
1126 // B[i] = A[i] + 1;
1127 // }
1128 //
1129 // Two accesses in memory (stride is 2):
1130 // | A[0] | | A[2] | | A[4] | | A[6] | |
1131 // | B[0] | | B[2] | | B[4] |
1132 //
1133 // Distance needs for vectorizing iterations except the last iteration:
1134 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1135 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1136 //
1137 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1138 // 12, which is less than distance.
1139 //
1140 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1141 // the minimum distance needed is 28, which is greater than distance. It is
1142 // not safe to do vectorization.
1143 unsigned MinDistanceNeeded =
1144 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1145 if (MinDistanceNeeded > Distance) {
1146 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1147 << '\n');
1148 return Dependence::Backward;
1149 }
1150
1151 // Unsafe if the minimum distance needed is greater than max safe distance.
1152 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1153 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1154 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001155 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001156 }
1157
Adam Nemet9cc0c392015-02-26 17:58:48 +00001158 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001159 // FIXME: Should use max factor instead of max distance in bytes, which could
1160 // not handle different types.
1161 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1162 // void foo (int *A, char *B) {
1163 // for (unsigned i = 0; i < 1024; i++) {
1164 // A[i+2] = A[i] + 1;
1165 // B[i+2] = B[i] + 1;
1166 // }
1167 // }
1168 //
1169 // This case is currently unsafe according to the max safe distance. If we
1170 // analyze the two accesses on array B, the max safe dependence distance
1171 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1172 // is 8, which is less than 2 and forbidden vectorization, But actually
1173 // both A and B could be vectorized by 2 iterations.
1174 MaxSafeDepDistBytes =
1175 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
Adam Nemet04563272015-02-01 16:56:15 +00001176
1177 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1178 if (IsTrueDataDependence &&
1179 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001180 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001181
Hao Liu751004a2015-06-08 04:48:37 +00001182 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1183 << " with max VF = "
1184 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001185
Adam Nemet9c926572015-03-10 17:40:37 +00001186 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001187}
1188
Adam Nemetdee666b2015-03-10 17:40:34 +00001189bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001190 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001191 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001192
1193 MaxSafeDepDistBytes = -1U;
1194 while (!CheckDeps.empty()) {
1195 MemAccessInfo CurAccess = *CheckDeps.begin();
1196
1197 // Get the relevant memory access set.
1198 EquivalenceClasses<MemAccessInfo>::iterator I =
1199 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1200
1201 // Check accesses within this set.
1202 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1203 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1204
1205 // Check every access pair.
1206 while (AI != AE) {
1207 CheckDeps.erase(*AI);
1208 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1209 while (OI != AE) {
1210 // Check every accessing instruction pair in program order.
1211 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1212 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1213 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1214 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001215 auto A = std::make_pair(&*AI, *I1);
1216 auto B = std::make_pair(&*OI, *I2);
1217
1218 assert(*I1 != *I2);
1219 if (*I1 > *I2)
1220 std::swap(A, B);
1221
1222 Dependence::DepType Type =
1223 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1224 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1225
1226 // Gather dependences unless we accumulated MaxInterestingDependence
1227 // dependences. In that case return as soon as we find the first
1228 // unsafe dependence. This puts a limit on this quadratic
1229 // algorithm.
1230 if (RecordInterestingDependences) {
1231 if (Dependence::isInterestingDependence(Type))
1232 InterestingDependences.push_back(
1233 Dependence(A.second, B.second, Type));
1234
1235 if (InterestingDependences.size() >= MaxInterestingDependence) {
1236 RecordInterestingDependences = false;
1237 InterestingDependences.clear();
1238 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1239 }
1240 }
1241 if (!RecordInterestingDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001242 return false;
1243 }
1244 ++OI;
1245 }
1246 AI++;
1247 }
1248 }
Adam Nemet9c926572015-03-10 17:40:37 +00001249
1250 DEBUG(dbgs() << "Total Interesting Dependences: "
1251 << InterestingDependences.size() << "\n");
1252 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001253}
1254
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001255SmallVector<Instruction *, 4>
1256MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1257 MemAccessInfo Access(Ptr, isWrite);
1258 auto &IndexVector = Accesses.find(Access)->second;
1259
1260 SmallVector<Instruction *, 4> Insts;
1261 std::transform(IndexVector.begin(), IndexVector.end(),
1262 std::back_inserter(Insts),
1263 [&](unsigned Idx) { return this->InstMap[Idx]; });
1264 return Insts;
1265}
1266
Adam Nemet58913d62015-03-10 17:40:43 +00001267const char *MemoryDepChecker::Dependence::DepName[] = {
1268 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1269 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1270
1271void MemoryDepChecker::Dependence::print(
1272 raw_ostream &OS, unsigned Depth,
1273 const SmallVectorImpl<Instruction *> &Instrs) const {
1274 OS.indent(Depth) << DepName[Type] << ":\n";
1275 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1276 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1277}
1278
Adam Nemet929c38e2015-02-19 19:15:10 +00001279bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001280 // We need to have a loop header.
1281 DEBUG(dbgs() << "LAA: Found a loop: " <<
1282 TheLoop->getHeader()->getName() << '\n');
1283
Adam Nemet929c38e2015-02-19 19:15:10 +00001284 // We can only analyze innermost loops.
1285 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001286 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001287 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001288 return false;
1289 }
1290
1291 // We must have a single backedge.
1292 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001293 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001294 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001295 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001296 "loop control flow is not understood by analyzer");
1297 return false;
1298 }
1299
1300 // We must have a single exiting block.
1301 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001302 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001303 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001304 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001305 "loop control flow is not understood by analyzer");
1306 return false;
1307 }
1308
1309 // We only handle bottom-tested loops, i.e. loop in which the condition is
1310 // checked at the end of each iteration. With that we can assume that all
1311 // instructions in the loop are executed the same number of times.
1312 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001313 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001314 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001315 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001316 "loop control flow is not understood by analyzer");
1317 return false;
1318 }
1319
Adam Nemet929c38e2015-02-19 19:15:10 +00001320 // ScalarEvolution needs to be able to find the exit count.
1321 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
1322 if (ExitCount == SE->getCouldNotCompute()) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001323 emitAnalysis(LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001324 "could not determine number of loop iterations");
1325 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1326 return false;
1327 }
1328
1329 return true;
1330}
1331
Adam Nemet8bc61df2015-02-24 00:41:59 +00001332void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001333
1334 typedef SmallVector<Value*, 16> ValueVector;
1335 typedef SmallPtrSet<Value*, 16> ValueSet;
1336
1337 // Holds the Load and Store *instructions*.
1338 ValueVector Loads;
1339 ValueVector Stores;
1340
1341 // Holds all the different accesses in the loop.
1342 unsigned NumReads = 0;
1343 unsigned NumReadWrites = 0;
1344
Adam Nemet7cdebac2015-07-14 22:32:44 +00001345 PtrRtChecking.Pointers.clear();
1346 PtrRtChecking.Need = false;
Adam Nemet04563272015-02-01 16:56:15 +00001347
1348 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001349
1350 // For each block.
1351 for (Loop::block_iterator bb = TheLoop->block_begin(),
1352 be = TheLoop->block_end(); bb != be; ++bb) {
1353
1354 // Scan the BB and collect legal loads and stores.
1355 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1356 ++it) {
1357
1358 // If this is a load, save it. If this instruction can read from memory
1359 // but is not a load, then we quit. Notice that we don't handle function
1360 // calls that read or write.
1361 if (it->mayReadFromMemory()) {
1362 // Many math library functions read the rounding mode. We will only
1363 // vectorize a loop if it contains known function calls that don't set
1364 // the flag. Therefore, it is safe to ignore this read from memory.
1365 CallInst *Call = dyn_cast<CallInst>(it);
1366 if (Call && getIntrinsicIDForCall(Call, TLI))
1367 continue;
1368
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001369 // If the function has an explicit vectorized counterpart, we can safely
1370 // assume that it can be vectorized.
1371 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1372 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1373 continue;
1374
Adam Nemet04563272015-02-01 16:56:15 +00001375 LoadInst *Ld = dyn_cast<LoadInst>(it);
1376 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001377 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001378 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001379 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001380 CanVecMem = false;
1381 return;
Adam Nemet04563272015-02-01 16:56:15 +00001382 }
1383 NumLoads++;
1384 Loads.push_back(Ld);
1385 DepChecker.addAccess(Ld);
1386 continue;
1387 }
1388
1389 // Save 'store' instructions. Abort if other instructions write to memory.
1390 if (it->mayWriteToMemory()) {
1391 StoreInst *St = dyn_cast<StoreInst>(it);
1392 if (!St) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001393 emitAnalysis(LoopAccessReport(it) <<
Adam Nemet04d41632015-02-19 19:14:34 +00001394 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001395 CanVecMem = false;
1396 return;
Adam Nemet04563272015-02-01 16:56:15 +00001397 }
1398 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001399 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001400 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001401 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001402 CanVecMem = false;
1403 return;
Adam Nemet04563272015-02-01 16:56:15 +00001404 }
1405 NumStores++;
1406 Stores.push_back(St);
1407 DepChecker.addAccess(St);
1408 }
1409 } // Next instr.
1410 } // Next block.
1411
1412 // Now we have two lists that hold the loads and the stores.
1413 // Next, we find the pointers that they use.
1414
1415 // Check if we see any stores. If there are no stores, then we don't
1416 // care if the pointers are *restrict*.
1417 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001418 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001419 CanVecMem = true;
1420 return;
Adam Nemet04563272015-02-01 16:56:15 +00001421 }
1422
Adam Nemetdee666b2015-03-10 17:40:34 +00001423 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001424 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Adam Nemete2b885c2015-04-23 20:09:20 +00001425 AA, LI, DependentAccesses);
Adam Nemet04563272015-02-01 16:56:15 +00001426
1427 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1428 // multiple times on the same object. If the ptr is accessed twice, once
1429 // for read and once for write, it will only appear once (on the write
1430 // list). This is okay, since we are going to check for conflicts between
1431 // writes and between reads and writes, but not between reads and reads.
1432 ValueSet Seen;
1433
1434 ValueVector::iterator I, IE;
1435 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1436 StoreInst *ST = cast<StoreInst>(*I);
1437 Value* Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001438 // Check for store to loop invariant address.
1439 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001440 // If we did *not* see this pointer before, insert it to the read-write
1441 // list. At this phase it is only a 'write' list.
1442 if (Seen.insert(Ptr).second) {
1443 ++NumReadWrites;
1444
Chandler Carruthac80dc72015-06-17 07:18:54 +00001445 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001446 // The TBAA metadata could have a control dependency on the predication
1447 // condition, so we cannot rely on it when determining whether or not we
1448 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001449 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001450 Loc.AATags.TBAA = nullptr;
1451
1452 Accesses.addStore(Loc);
1453 }
1454 }
1455
1456 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001457 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001458 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001459 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001460 CanVecMem = true;
1461 return;
Adam Nemet04563272015-02-01 16:56:15 +00001462 }
1463
1464 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1465 LoadInst *LD = cast<LoadInst>(*I);
1466 Value* Ptr = LD->getPointerOperand();
1467 // If we did *not* see this pointer before, insert it to the
1468 // read list. If we *did* see it before, then it is already in
1469 // the read-write list. This allows us to vectorize expressions
1470 // such as A[i] += x; Because the address of A[i] is a read-write
1471 // pointer. This only works if the index of A[i] is consecutive.
1472 // If the address of i is unknown (for example A[B[i]]) then we may
1473 // read a few words, modify, and write a few words, and some of the
1474 // words may be written to the same address.
1475 bool IsReadOnlyPtr = false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001476 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001477 ++NumReads;
1478 IsReadOnlyPtr = true;
1479 }
1480
Chandler Carruthac80dc72015-06-17 07:18:54 +00001481 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001482 // The TBAA metadata could have a control dependency on the predication
1483 // condition, so we cannot rely on it when determining whether or not we
1484 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001485 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001486 Loc.AATags.TBAA = nullptr;
1487
1488 Accesses.addLoad(Loc, IsReadOnlyPtr);
1489 }
1490
1491 // If we write (or read-write) to a single destination and there are no
1492 // other reads in this loop then is it safe to vectorize.
1493 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001494 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001495 CanVecMem = true;
1496 return;
Adam Nemet04563272015-02-01 16:56:15 +00001497 }
1498
1499 // Build dependence sets and check whether we need a runtime pointer bounds
1500 // check.
1501 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001502
1503 // Find pointers with computable bounds. We are going to use this information
1504 // to place a runtime bound check.
Adam Nemetee614742015-07-09 22:17:38 +00001505 bool CanDoRTIfNeeded =
Adam Nemet7cdebac2015-07-14 22:32:44 +00001506 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides);
Adam Nemetee614742015-07-09 22:17:38 +00001507 if (!CanDoRTIfNeeded) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001508 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemetee614742015-07-09 22:17:38 +00001509 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1510 << "the array bounds.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001511 CanVecMem = false;
1512 return;
Adam Nemet04563272015-02-01 16:56:15 +00001513 }
1514
Adam Nemetee614742015-07-09 22:17:38 +00001515 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001516
Adam Nemet436018c2015-02-19 19:15:00 +00001517 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001518 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001519 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Adam Nemet04563272015-02-01 16:56:15 +00001520 CanVecMem = DepChecker.areDepsSafe(
1521 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1522 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1523
1524 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001525 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001526
1527 // Clear the dependency checks. We assume they are not needed.
Adam Nemetdf3dc5b2015-05-18 15:37:03 +00001528 Accesses.resetDepChecks(DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001529
Adam Nemet7cdebac2015-07-14 22:32:44 +00001530 PtrRtChecking.reset();
1531 PtrRtChecking.Need = true;
Adam Nemet04563272015-02-01 16:56:15 +00001532
Adam Nemetee614742015-07-09 22:17:38 +00001533 CanDoRTIfNeeded =
Adam Nemet7cdebac2015-07-14 22:32:44 +00001534 Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001535
Adam Nemet949e91a2015-03-10 19:12:41 +00001536 // Check that we found the bounds for the pointer.
Adam Nemetee614742015-07-09 22:17:38 +00001537 if (!CanDoRTIfNeeded) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001538 emitAnalysis(LoopAccessReport()
1539 << "cannot check memory dependencies at runtime");
1540 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001541 CanVecMem = false;
1542 return;
1543 }
1544
Adam Nemet04563272015-02-01 16:56:15 +00001545 CanVecMem = true;
1546 }
1547 }
1548
Adam Nemet4bb90a72015-03-10 21:47:39 +00001549 if (CanVecMem)
1550 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
Adam Nemet7cdebac2015-07-14 22:32:44 +00001551 << (PtrRtChecking.Need ? "" : " don't")
Adam Nemet0f67c6c2015-07-09 22:17:41 +00001552 << " need runtime memory checks.\n");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001553 else {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001554 emitAnalysis(LoopAccessReport() <<
Adam Nemet04d41632015-02-19 19:14:34 +00001555 "unsafe dependent memory operations in loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001556 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1557 }
Adam Nemet04563272015-02-01 16:56:15 +00001558}
1559
Adam Nemet01abb2c2015-02-18 03:43:19 +00001560bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1561 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001562 assert(TheLoop->contains(BB) && "Unknown block used");
1563
1564 // Blocks that do not dominate the latch need predication.
1565 BasicBlock* Latch = TheLoop->getLoopLatch();
1566 return !DT->dominates(BB, Latch);
1567}
1568
Adam Nemet2bd6e982015-02-19 19:15:15 +00001569void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001570 assert(!Report && "Multiple reports generated");
1571 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001572}
1573
Adam Nemet57ac7662015-02-19 19:15:21 +00001574bool LoopAccessInfo::isUniform(Value *V) const {
Adam Nemet04563272015-02-01 16:56:15 +00001575 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1576}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001577
1578// FIXME: this function is currently a duplicate of the one in
1579// LoopVectorize.cpp.
1580static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1581 Instruction *Loc) {
1582 if (FirstInst)
1583 return FirstInst;
1584 if (Instruction *I = dyn_cast<Instruction>(V))
1585 return I->getParent() == Loc->getParent() ? I : nullptr;
1586 return nullptr;
1587}
1588
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001589std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
1590 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemet7cdebac2015-07-14 22:32:44 +00001591 if (!PtrRtChecking.Need)
Adam Nemet90fec842015-04-02 17:51:57 +00001592 return std::make_pair(nullptr, nullptr);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001593
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001594 SmallVector<TrackingVH<Value>, 2> Starts;
1595 SmallVector<TrackingVH<Value>, 2> Ends;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001596
1597 LLVMContext &Ctx = Loc->getContext();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001598 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001599 Instruction *FirstInst = nullptr;
1600
Adam Nemet7cdebac2015-07-14 22:32:44 +00001601 for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) {
1602 const RuntimePointerChecking::CheckingPtrGroup &CG =
1603 PtrRtChecking.CheckingGroups[i];
Adam Nemet9f7dedc2015-07-14 22:32:50 +00001604 Value *Ptr = PtrRtChecking.Pointers[CG.Members[0]].PointerValue;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001605 const SCEV *Sc = SE->getSCEV(Ptr);
1606
1607 if (SE->isLoopInvariant(Sc, TheLoop)) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001608 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1609 << "\n");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001610 Starts.push_back(Ptr);
1611 Ends.push_back(Ptr);
1612 } else {
Adam Nemet7206d7a2015-02-06 18:31:04 +00001613 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1614
1615 // Use this type for pointer arithmetic.
1616 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001617 Value *Start = nullptr, *End = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001618
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001619 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1620 Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc);
1621 End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc);
1622 DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001623 Starts.push_back(Start);
1624 Ends.push_back(End);
1625 }
1626 }
1627
1628 IRBuilder<> ChkBuilder(Loc);
1629 // Our instructions might fold to a constant.
1630 Value *MemoryRuntimeCheck = nullptr;
Adam Nemet7cdebac2015-07-14 22:32:44 +00001631 for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) {
1632 for (unsigned j = i + 1; j < PtrRtChecking.CheckingGroups.size(); ++j) {
1633 const RuntimePointerChecking::CheckingPtrGroup &CGI =
1634 PtrRtChecking.CheckingGroups[i];
1635 const RuntimePointerChecking::CheckingPtrGroup &CGJ =
1636 PtrRtChecking.CheckingGroups[j];
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001637
Adam Nemet7cdebac2015-07-14 22:32:44 +00001638 if (!PtrRtChecking.needsChecking(CGI, CGJ, PtrPartition))
Adam Nemet7206d7a2015-02-06 18:31:04 +00001639 continue;
1640
1641 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1642 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1643
1644 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1645 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1646 "Trying to bounds check pointers with different address spaces");
1647
1648 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1649 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1650
1651 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1652 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1653 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1654 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1655
1656 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1657 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1658 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1659 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1660 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1661 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1662 if (MemoryRuntimeCheck) {
1663 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1664 "conflict.rdx");
1665 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1666 }
1667 MemoryRuntimeCheck = IsConflict;
1668 }
1669 }
1670
Adam Nemet90fec842015-04-02 17:51:57 +00001671 if (!MemoryRuntimeCheck)
1672 return std::make_pair(nullptr, nullptr);
1673
Adam Nemet7206d7a2015-02-06 18:31:04 +00001674 // We have to do this trickery because the IRBuilder might fold the check to a
1675 // constant expression in which case there is no Instruction anchored in a
1676 // the block.
1677 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1678 ConstantInt::getTrue(Ctx));
1679 ChkBuilder.Insert(Check, "memcheck.conflict");
1680 FirstInst = getFirstInst(FirstInst, Check, Loc);
1681 return std::make_pair(FirstInst, Check);
1682}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001683
1684LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001685 const DataLayout &DL,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001686 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemete2b885c2015-04-23 20:09:20 +00001687 DominatorTree *DT, LoopInfo *LI,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001688 const ValueToValueMap &Strides)
Adam Nemet7cdebac2015-07-14 22:32:44 +00001689 : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL),
1690 TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
Adam Nemetce482502015-04-08 17:48:40 +00001691 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1692 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001693 if (canAnalyzeLoop())
1694 analyzeLoop(Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001695}
1696
Adam Nemete91cc6e2015-02-19 19:15:19 +00001697void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1698 if (CanVecMem) {
Adam Nemet7cdebac2015-07-14 22:32:44 +00001699 if (PtrRtChecking.Need)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001700 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
Adam Nemet26da8e92015-04-14 01:12:55 +00001701 else
1702 OS.indent(Depth) << "Memory dependences are safe\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001703 }
1704
1705 if (Report)
1706 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1707
Adam Nemet58913d62015-03-10 17:40:43 +00001708 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
1709 OS.indent(Depth) << "Interesting Dependences:\n";
1710 for (auto &Dep : *InterestingDependences) {
1711 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1712 OS << "\n";
1713 }
1714 } else
1715 OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001716
1717 // List the pair of accesses need run-time checks to prove independence.
Adam Nemet7cdebac2015-07-14 22:32:44 +00001718 PtrRtChecking.print(OS, Depth);
Adam Nemete91cc6e2015-02-19 19:15:19 +00001719 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001720
1721 OS.indent(Depth) << "Store to invariant address was "
1722 << (StoreToLoopInvariantAddress ? "" : "not ")
1723 << "found in loop.\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001724}
1725
Adam Nemet8bc61df2015-02-24 00:41:59 +00001726const LoopAccessInfo &
1727LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001728 auto &LAI = LoopAccessInfoMap[L];
1729
1730#ifndef NDEBUG
1731 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1732 "Symbolic strides changed for loop");
1733#endif
1734
1735 if (!LAI) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001736 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
Adam Nemete2b885c2015-04-23 20:09:20 +00001737 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
1738 Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001739#ifndef NDEBUG
1740 LAI->NumSymbolicStrides = Strides.size();
1741#endif
1742 }
1743 return *LAI.get();
1744}
1745
Adam Nemete91cc6e2015-02-19 19:15:19 +00001746void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1747 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1748
Adam Nemete91cc6e2015-02-19 19:15:19 +00001749 ValueToValueMap NoSymbolicStrides;
1750
1751 for (Loop *TopLevelLoop : *LI)
1752 for (Loop *L : depth_first(TopLevelLoop)) {
1753 OS.indent(2) << L->getHeader()->getName() << ":\n";
1754 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1755 LAI.print(OS, 4);
1756 }
1757}
1758
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001759bool LoopAccessAnalysis::runOnFunction(Function &F) {
1760 SE = &getAnalysis<ScalarEvolution>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001761 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1762 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1763 AA = &getAnalysis<AliasAnalysis>();
1764 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Adam Nemete2b885c2015-04-23 20:09:20 +00001765 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001766
1767 return false;
1768}
1769
1770void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1771 AU.addRequired<ScalarEvolution>();
1772 AU.addRequired<AliasAnalysis>();
1773 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00001774 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001775
1776 AU.setPreservesAll();
1777}
1778
1779char LoopAccessAnalysis::ID = 0;
1780static const char laa_name[] = "Loop Access Analysis";
1781#define LAA_NAME "loop-accesses"
1782
1783INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1784INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1785INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1786INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001787INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001788INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1789
1790namespace llvm {
1791 Pass *createLAAPass() {
1792 return new LoopAccessAnalysis();
1793 }
1794}