Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1 | //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The implementation for the loop memory dependence that was originally |
| 11 | // developed for the loop vectorizer. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
| 16 | #include "llvm/Analysis/LoopInfo.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 18 | #include "llvm/Analysis/TargetLibraryInfo.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/IR/DiagnosticInfo.h" |
| 21 | #include "llvm/IR/Dominators.h" |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 22 | #include "llvm/IR/IRBuilder.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 23 | #include "llvm/Support/Debug.h" |
Benjamin Kramer | 799003b | 2015-03-23 19:32:43 +0000 | [diff] [blame] | 24 | #include "llvm/Support/raw_ostream.h" |
David Blaikie | b447ac6 | 2015-06-26 18:02:52 +0000 | [diff] [blame] | 25 | #include "llvm/Analysis/VectorUtils.h" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 26 | using namespace llvm; |
| 27 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 28 | #define DEBUG_TYPE "loop-accesses" |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 29 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 30 | static cl::opt<unsigned, true> |
| 31 | VectorizationFactor("force-vector-width", cl::Hidden, |
| 32 | cl::desc("Sets the SIMD width. Zero is autoselect."), |
| 33 | cl::location(VectorizerParams::VectorizationFactor)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 34 | unsigned VectorizerParams::VectorizationFactor; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 35 | |
| 36 | static cl::opt<unsigned, true> |
| 37 | VectorizationInterleave("force-vector-interleave", cl::Hidden, |
| 38 | cl::desc("Sets the vectorization interleave count. " |
| 39 | "Zero is autoselect."), |
| 40 | cl::location( |
| 41 | VectorizerParams::VectorizationInterleave)); |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 42 | unsigned VectorizerParams::VectorizationInterleave; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 43 | |
Adam Nemet | 1d862af | 2015-02-26 04:39:09 +0000 | [diff] [blame] | 44 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( |
| 45 | "runtime-memory-check-threshold", cl::Hidden, |
| 46 | cl::desc("When performing memory disambiguation checks at runtime do not " |
| 47 | "generate more than this number of comparisons (default = 8)."), |
| 48 | cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); |
| 49 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 50 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 51 | /// \brief The maximum iterations used to merge memory checks |
| 52 | static cl::opt<unsigned> MemoryCheckMergeThreshold( |
| 53 | "memory-check-merge-threshold", cl::Hidden, |
| 54 | cl::desc("Maximum number of comparisons done when trying to merge " |
| 55 | "runtime memory checks. (default = 100)"), |
| 56 | cl::init(100)); |
| 57 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 58 | /// Maximum SIMD width. |
| 59 | const unsigned VectorizerParams::MaxVectorWidth = 64; |
| 60 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 61 | /// \brief We collect interesting dependences up to this threshold. |
| 62 | static cl::opt<unsigned> MaxInterestingDependence( |
| 63 | "max-interesting-dependences", cl::Hidden, |
| 64 | cl::desc("Maximum number of interesting dependences collected by " |
| 65 | "loop-access analysis (default = 100)"), |
| 66 | cl::init(100)); |
| 67 | |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 68 | bool VectorizerParams::isInterleaveForced() { |
| 69 | return ::VectorizationInterleave.getNumOccurrences() > 0; |
| 70 | } |
| 71 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 72 | void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message, |
| 73 | const Function *TheFunction, |
| 74 | const Loop *TheLoop, |
| 75 | const char *PassName) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 76 | DebugLoc DL = TheLoop->getStartLoc(); |
Adam Nemet | 3e87634 | 2015-02-19 19:15:13 +0000 | [diff] [blame] | 77 | if (const Instruction *I = Message.getInstr()) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 78 | DL = I->getDebugLoc(); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 79 | emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 80 | *TheFunction, DL, Message.str()); |
| 81 | } |
| 82 | |
| 83 | Value *llvm::stripIntegerCast(Value *V) { |
| 84 | if (CastInst *CI = dyn_cast<CastInst>(V)) |
| 85 | if (CI->getOperand(0)->getType()->isIntegerTy()) |
| 86 | return CI->getOperand(0); |
| 87 | return V; |
| 88 | } |
| 89 | |
| 90 | const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 91 | const ValueToValueMap &PtrToStride, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 92 | Value *Ptr, Value *OrigPtr) { |
| 93 | |
| 94 | const SCEV *OrigSCEV = SE->getSCEV(Ptr); |
| 95 | |
| 96 | // If there is an entry in the map return the SCEV of the pointer with the |
| 97 | // symbolic stride replaced by one. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 98 | ValueToValueMap::const_iterator SI = |
| 99 | PtrToStride.find(OrigPtr ? OrigPtr : Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 100 | if (SI != PtrToStride.end()) { |
| 101 | Value *StrideVal = SI->second; |
| 102 | |
| 103 | // Strip casts. |
| 104 | StrideVal = stripIntegerCast(StrideVal); |
| 105 | |
| 106 | // Replace symbolic stride by one. |
| 107 | Value *One = ConstantInt::get(StrideVal->getType(), 1); |
| 108 | ValueToValueMap RewriteMap; |
| 109 | RewriteMap[StrideVal] = One; |
| 110 | |
| 111 | const SCEV *ByOne = |
| 112 | SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 113 | DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 114 | << "\n"); |
| 115 | return ByOne; |
| 116 | } |
| 117 | |
| 118 | // Otherwise, just return the SCEV of the original pointer. |
| 119 | return SE->getSCEV(Ptr); |
| 120 | } |
| 121 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 122 | void LoopAccessInfo::RuntimePointerCheck::insert( |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 123 | Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId, |
| 124 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 125 | // Get the stride replaced scev. |
| 126 | const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); |
| 127 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); |
| 128 | assert(AR && "Invalid addrec expression"); |
| 129 | const SCEV *Ex = SE->getBackedgeTakenCount(Lp); |
| 130 | const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); |
| 131 | Pointers.push_back(Ptr); |
| 132 | Starts.push_back(AR->getStart()); |
| 133 | Ends.push_back(ScEnd); |
| 134 | IsWritePtr.push_back(WritePtr); |
| 135 | DependencySetId.push_back(DepSetId); |
| 136 | AliasSetId.push_back(ASId); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 137 | Exprs.push_back(Sc); |
| 138 | } |
| 139 | |
| 140 | bool LoopAccessInfo::RuntimePointerCheck::needsChecking( |
| 141 | const CheckingPtrGroup &M, const CheckingPtrGroup &N, |
| 142 | const SmallVectorImpl<int> *PtrPartition) const { |
| 143 | for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) |
| 144 | for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) |
| 145 | if (needsChecking(M.Members[I], N.Members[J], PtrPartition)) |
| 146 | return true; |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | /// Compare \p I and \p J and return the minimum. |
| 151 | /// Return nullptr in case we couldn't find an answer. |
| 152 | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, |
| 153 | ScalarEvolution *SE) { |
| 154 | const SCEV *Diff = SE->getMinusSCEV(J, I); |
| 155 | const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); |
| 156 | |
| 157 | if (!C) |
| 158 | return nullptr; |
| 159 | if (C->getValue()->isNegative()) |
| 160 | return J; |
| 161 | return I; |
| 162 | } |
| 163 | |
| 164 | bool LoopAccessInfo::RuntimePointerCheck::CheckingPtrGroup::addPointer( |
| 165 | unsigned Index) { |
| 166 | // Compare the starts and ends with the known minimum and maximum |
| 167 | // of this set. We need to know how we compare against the min/max |
| 168 | // of the set in order to be able to emit memchecks. |
| 169 | const SCEV *Min0 = getMinFromExprs(RtCheck.Starts[Index], Low, RtCheck.SE); |
| 170 | if (!Min0) |
| 171 | return false; |
| 172 | |
| 173 | const SCEV *Min1 = getMinFromExprs(RtCheck.Ends[Index], High, RtCheck.SE); |
| 174 | if (!Min1) |
| 175 | return false; |
| 176 | |
| 177 | // Update the low bound expression if we've found a new min value. |
| 178 | if (Min0 == RtCheck.Starts[Index]) |
| 179 | Low = RtCheck.Starts[Index]; |
| 180 | |
| 181 | // Update the high bound expression if we've found a new max value. |
| 182 | if (Min1 != RtCheck.Ends[Index]) |
| 183 | High = RtCheck.Ends[Index]; |
| 184 | |
| 185 | Members.push_back(Index); |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | void LoopAccessInfo::RuntimePointerCheck::groupChecks( |
| 190 | MemoryDepChecker::DepCandidates &DepCands, |
| 191 | bool UseDependencies) { |
| 192 | // We build the groups from dependency candidates equivalence classes |
| 193 | // because: |
| 194 | // - We know that pointers in the same equivalence class share |
| 195 | // the same underlying object and therefore there is a chance |
| 196 | // that we can compare pointers |
| 197 | // - We wouldn't be able to merge two pointers for which we need |
| 198 | // to emit a memcheck. The classes in DepCands are already |
| 199 | // conveniently built such that no two pointers in the same |
| 200 | // class need checking against each other. |
| 201 | |
| 202 | // We use the following (greedy) algorithm to construct the groups |
| 203 | // For every pointer in the equivalence class: |
| 204 | // For each existing group: |
| 205 | // - if the difference between this pointer and the min/max bounds |
| 206 | // of the group is a constant, then make the pointer part of the |
| 207 | // group and update the min/max bounds of that group as required. |
| 208 | |
| 209 | CheckingGroups.clear(); |
| 210 | |
| 211 | // If we don't have the dependency partitions, construct a new |
| 212 | // checking pointer group for each pointer. |
| 213 | if (!UseDependencies) { |
| 214 | for (unsigned I = 0; I < Pointers.size(); ++I) |
| 215 | CheckingGroups.push_back(CheckingPtrGroup(I, *this)); |
| 216 | return; |
| 217 | } |
| 218 | |
| 219 | unsigned TotalComparisons = 0; |
| 220 | |
| 221 | DenseMap<Value *, unsigned> PositionMap; |
| 222 | for (unsigned Pointer = 0; Pointer < Pointers.size(); ++Pointer) |
| 223 | PositionMap[Pointers[Pointer]] = Pointer; |
| 224 | |
| 225 | // Go through all equivalence classes, get the the "pointer check groups" |
| 226 | // and add them to the overall solution. |
| 227 | for (auto DI = DepCands.begin(), DE = DepCands.end(); DI != DE; ++DI) { |
| 228 | if (!DI->isLeader()) |
| 229 | continue; |
| 230 | |
| 231 | SmallVector<CheckingPtrGroup, 2> Groups; |
| 232 | |
| 233 | for (auto MI = DepCands.member_begin(DI), ME = DepCands.member_end(); |
| 234 | MI != ME; ++MI) { |
| 235 | unsigned Pointer = PositionMap[MI->getPointer()]; |
| 236 | bool Merged = false; |
| 237 | |
| 238 | // Go through all the existing sets and see if we can find one |
| 239 | // which can include this pointer. |
| 240 | for (CheckingPtrGroup &Group : Groups) { |
| 241 | // Don't perform more than a certain amount of comparisons. |
| 242 | // This should limit the cost of grouping the pointers to something |
| 243 | // reasonable. If we do end up hitting this threshold, the algorithm |
| 244 | // will create separate groups for all remaining pointers. |
| 245 | if (TotalComparisons > MemoryCheckMergeThreshold) |
| 246 | break; |
| 247 | |
| 248 | TotalComparisons++; |
| 249 | |
| 250 | if (Group.addPointer(Pointer)) { |
| 251 | Merged = true; |
| 252 | break; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | if (!Merged) |
| 257 | // We couldn't add this pointer to any existing set or the threshold |
| 258 | // for the number of comparisons has been reached. Create a new group |
| 259 | // to hold the current pointer. |
| 260 | Groups.push_back(CheckingPtrGroup(Pointer, *this)); |
| 261 | } |
| 262 | |
| 263 | // We've computed the grouped checks for this partition. |
| 264 | // Save the results and continue with the next one. |
| 265 | std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); |
| 266 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 267 | } |
| 268 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 269 | bool LoopAccessInfo::RuntimePointerCheck::needsChecking( |
| 270 | unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 271 | // No need to check if two readonly pointers intersect. |
| 272 | if (!IsWritePtr[I] && !IsWritePtr[J]) |
| 273 | return false; |
| 274 | |
| 275 | // Only need to check pointers between two different dependency sets. |
| 276 | if (DependencySetId[I] == DependencySetId[J]) |
| 277 | return false; |
| 278 | |
| 279 | // Only need to check pointers in the same alias set. |
| 280 | if (AliasSetId[I] != AliasSetId[J]) |
| 281 | return false; |
| 282 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 283 | // If PtrPartition is set omit checks between pointers of the same partition. |
| 284 | // Partition number -1 means that the pointer is used in multiple partitions. |
| 285 | // In this case we can't omit the check. |
| 286 | if (PtrPartition && (*PtrPartition)[I] != -1 && |
| 287 | (*PtrPartition)[I] == (*PtrPartition)[J]) |
| 288 | return false; |
| 289 | |
Adam Nemet | a8945b7 | 2015-02-18 03:43:58 +0000 | [diff] [blame] | 290 | return true; |
| 291 | } |
| 292 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 293 | void LoopAccessInfo::RuntimePointerCheck::print( |
| 294 | raw_ostream &OS, unsigned Depth, |
| 295 | const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 296 | |
| 297 | OS.indent(Depth) << "Run-time memory checks:\n"; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 298 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 299 | unsigned N = 0; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 300 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) |
| 301 | for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) |
| 302 | if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) { |
| 303 | OS.indent(Depth) << "Check " << N++ << ":\n"; |
| 304 | OS.indent(Depth + 2) << "Comparing group " << I << ":\n"; |
| 305 | |
| 306 | for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) { |
| 307 | OS.indent(Depth + 2) << *Pointers[CheckingGroups[I].Members[K]] |
| 308 | << "\n"; |
| 309 | if (PtrPartition) |
| 310 | OS << " (Partition: " |
| 311 | << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")" |
| 312 | << "\n"; |
| 313 | } |
| 314 | |
| 315 | OS.indent(Depth + 2) << "Against group " << J << ":\n"; |
| 316 | |
| 317 | for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) { |
| 318 | OS.indent(Depth + 2) << *Pointers[CheckingGroups[J].Members[K]] |
| 319 | << "\n"; |
| 320 | if (PtrPartition) |
| 321 | OS << " (Partition: " |
| 322 | << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")" |
| 323 | << "\n"; |
| 324 | } |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 325 | } |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 326 | |
| 327 | OS.indent(Depth) << "Grouped accesses:\n"; |
| 328 | for (unsigned I = 0; I < CheckingGroups.size(); ++I) { |
| 329 | OS.indent(Depth + 2) << "Group " << I << ":\n"; |
| 330 | OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low |
| 331 | << " High: " << *CheckingGroups[I].High << ")\n"; |
| 332 | for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) { |
| 333 | OS.indent(Depth + 6) << "Member: " << *Exprs[CheckingGroups[I].Members[J]] |
| 334 | << "\n"; |
| 335 | } |
| 336 | } |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 337 | } |
| 338 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 339 | unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks( |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 340 | const SmallVectorImpl<int> *PtrPartition) const { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 341 | |
| 342 | unsigned NumPartitions = CheckingGroups.size(); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 343 | unsigned CheckCount = 0; |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 344 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 345 | for (unsigned I = 0; I < NumPartitions; ++I) |
| 346 | for (unsigned J = I + 1; J < NumPartitions; ++J) |
| 347 | if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 348 | CheckCount++; |
| 349 | return CheckCount; |
| 350 | } |
| 351 | |
| 352 | bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking( |
| 353 | const SmallVectorImpl<int> *PtrPartition) const { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 354 | unsigned NumPointers = Pointers.size(); |
| 355 | |
| 356 | for (unsigned I = 0; I < NumPointers; ++I) |
| 357 | for (unsigned J = I + 1; J < NumPointers; ++J) |
| 358 | if (needsChecking(I, J, PtrPartition)) |
| 359 | return true; |
| 360 | return false; |
Adam Nemet | 51870d1 | 2015-04-07 03:35:26 +0000 | [diff] [blame] | 361 | } |
| 362 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 363 | namespace { |
| 364 | /// \brief Analyses memory accesses in a loop. |
| 365 | /// |
| 366 | /// Checks whether run time pointer checks are needed and builds sets for data |
| 367 | /// dependence checking. |
| 368 | class AccessAnalysis { |
| 369 | public: |
| 370 | /// \brief Read or write access location. |
| 371 | typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; |
| 372 | typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; |
| 373 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 374 | AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 375 | MemoryDepChecker::DepCandidates &DA) |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 376 | : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {} |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 377 | |
| 378 | /// \brief Register a load and whether it is only read from. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 379 | void addLoad(MemoryLocation &Loc, bool IsReadOnly) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 380 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 381 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 382 | Accesses.insert(MemAccessInfo(Ptr, false)); |
| 383 | if (IsReadOnly) |
| 384 | ReadOnlyPtr.insert(Ptr); |
| 385 | } |
| 386 | |
| 387 | /// \brief Register a store. |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 388 | void addStore(MemoryLocation &Loc) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 389 | Value *Ptr = const_cast<Value*>(Loc.Ptr); |
Chandler Carruth | ecbd168 | 2015-06-17 07:21:38 +0000 | [diff] [blame] | 390 | AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 391 | Accesses.insert(MemAccessInfo(Ptr, true)); |
| 392 | } |
| 393 | |
| 394 | /// \brief Check whether we can check the pointers at runtime for |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 395 | /// non-intersection. Returns true when we have 0 pointers |
| 396 | /// (a check on 0 pointers for non-intersection will always return true). |
Adam Nemet | 30f16e1 | 2015-02-18 03:42:35 +0000 | [diff] [blame] | 397 | bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck, |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 398 | bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop, |
| 399 | const ValueToValueMap &Strides, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 400 | bool ShouldCheckStride = false); |
| 401 | |
| 402 | /// \brief Goes over all memory accesses, checks whether a RT check is needed |
| 403 | /// and builds sets of dependent accesses. |
| 404 | void buildDependenceSets() { |
| 405 | processMemAccesses(); |
| 406 | } |
| 407 | |
| 408 | bool isRTCheckNeeded() { return IsRTCheckNeeded; } |
| 409 | |
| 410 | bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 411 | |
| 412 | /// We decided that no dependence analysis would be used. Reset the state. |
| 413 | void resetDepChecks(MemoryDepChecker &DepChecker) { |
| 414 | CheckDeps.clear(); |
| 415 | DepChecker.clearInterestingDependences(); |
| 416 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 417 | |
| 418 | MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } |
| 419 | |
| 420 | private: |
| 421 | typedef SetVector<MemAccessInfo> PtrAccessSet; |
| 422 | |
| 423 | /// \brief Go over all memory access and check whether runtime pointer checks |
| 424 | /// are needed /// and build sets of dependency check candidates. |
| 425 | void processMemAccesses(); |
| 426 | |
| 427 | /// Set of all accesses. |
| 428 | PtrAccessSet Accesses; |
| 429 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 430 | const DataLayout &DL; |
| 431 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 432 | /// Set of accesses that need a further dependence check. |
| 433 | MemAccessInfoSet CheckDeps; |
| 434 | |
| 435 | /// Set of pointers that are read only. |
| 436 | SmallPtrSet<Value*, 16> ReadOnlyPtr; |
| 437 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 438 | /// An alias set tracker to partition the access set by underlying object and |
| 439 | //intrinsic property (such as TBAA metadata). |
| 440 | AliasSetTracker AST; |
| 441 | |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 442 | LoopInfo *LI; |
| 443 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 444 | /// Sets of potentially dependent accesses - members of one set share an |
| 445 | /// underlying pointer. The set "CheckDeps" identfies which sets really need a |
| 446 | /// dependence check. |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 447 | MemoryDepChecker::DepCandidates &DepCands; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 448 | |
| 449 | bool IsRTCheckNeeded; |
| 450 | }; |
| 451 | |
| 452 | } // end anonymous namespace |
| 453 | |
| 454 | /// \brief Check whether a pointer can participate in a runtime bounds check. |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 455 | static bool hasComputableBounds(ScalarEvolution *SE, |
| 456 | const ValueToValueMap &Strides, Value *Ptr) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 457 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); |
| 458 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 459 | if (!AR) |
| 460 | return false; |
| 461 | |
| 462 | return AR->isAffine(); |
| 463 | } |
| 464 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 465 | bool AccessAnalysis::canCheckPtrAtRT( |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 466 | LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 467 | ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, |
| 468 | bool ShouldCheckStride) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 469 | // Find pointers with computable bounds. We are going to use this information |
| 470 | // to place a runtime bound check. |
| 471 | bool CanDoRT = true; |
| 472 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 473 | NeedRTCheck = false; |
| 474 | if (!IsRTCheckNeeded) return true; |
| 475 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 476 | bool IsDepCheckNeeded = isDependencyCheckNeeded(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 477 | |
| 478 | // We assign a consecutive id to access from different alias sets. |
| 479 | // Accesses between different groups doesn't need to be checked. |
| 480 | unsigned ASId = 1; |
| 481 | for (auto &AS : AST) { |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame^] | 482 | int NumReadPtrChecks = 0; |
| 483 | int NumWritePtrChecks = 0; |
| 484 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 485 | // We assign consecutive id to access from different dependence sets. |
| 486 | // Accesses within the same set don't need a runtime check. |
| 487 | unsigned RunningDepId = 1; |
| 488 | DenseMap<Value *, unsigned> DepSetId; |
| 489 | |
| 490 | for (auto A : AS) { |
| 491 | Value *Ptr = A.getValue(); |
| 492 | bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); |
| 493 | MemAccessInfo Access(Ptr, IsWrite); |
| 494 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame^] | 495 | if (IsWrite) |
| 496 | ++NumWritePtrChecks; |
| 497 | else |
| 498 | ++NumReadPtrChecks; |
| 499 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 500 | if (hasComputableBounds(SE, StridesMap, Ptr) && |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 501 | // When we run after a failing dependency check we have to make sure |
| 502 | // we don't have wrapping pointers. |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 503 | (!ShouldCheckStride || |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 504 | isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 505 | // The id of the dependence set. |
| 506 | unsigned DepId; |
| 507 | |
| 508 | if (IsDepCheckNeeded) { |
| 509 | Value *Leader = DepCands.getLeaderValue(Access).getPointer(); |
| 510 | unsigned &LeaderId = DepSetId[Leader]; |
| 511 | if (!LeaderId) |
| 512 | LeaderId = RunningDepId++; |
| 513 | DepId = LeaderId; |
| 514 | } else |
| 515 | // Each access has its own dependence set. |
| 516 | DepId = RunningDepId++; |
| 517 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 518 | RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 519 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 520 | DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 521 | } else { |
Adam Nemet | f10ca27 | 2015-05-18 15:36:52 +0000 | [diff] [blame] | 522 | DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 523 | CanDoRT = false; |
| 524 | } |
| 525 | } |
| 526 | |
Adam Nemet | 424edc6 | 2015-07-08 22:58:48 +0000 | [diff] [blame^] | 527 | // If we have at least two writes or one write and a read then we need to |
| 528 | // check them. But there is no need to checks if there is only one |
| 529 | // dependence set for this alias set. |
| 530 | // |
| 531 | // Note that this function computes CanDoRT and NeedRTCheck independently. |
| 532 | // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer |
| 533 | // for which we couldn't find the bounds but we don't actually need to emit |
| 534 | // any checks so it does not matter. |
| 535 | if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) |
| 536 | NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && |
| 537 | NumWritePtrChecks >= 1)); |
| 538 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 539 | ++ASId; |
| 540 | } |
| 541 | |
| 542 | // If the pointers that we would use for the bounds comparison have different |
| 543 | // address spaces, assume the values aren't directly comparable, so we can't |
| 544 | // use them for the runtime check. We also have to assume they could |
| 545 | // overlap. In the future there should be metadata for whether address spaces |
| 546 | // are disjoint. |
| 547 | unsigned NumPointers = RtCheck.Pointers.size(); |
| 548 | for (unsigned i = 0; i < NumPointers; ++i) { |
| 549 | for (unsigned j = i + 1; j < NumPointers; ++j) { |
| 550 | // Only need to check pointers between two different dependency sets. |
| 551 | if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) |
| 552 | continue; |
| 553 | // Only need to check pointers in the same alias set. |
| 554 | if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) |
| 555 | continue; |
| 556 | |
| 557 | Value *PtrI = RtCheck.Pointers[i]; |
| 558 | Value *PtrJ = RtCheck.Pointers[j]; |
| 559 | |
| 560 | unsigned ASi = PtrI->getType()->getPointerAddressSpace(); |
| 561 | unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); |
| 562 | if (ASi != ASj) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 563 | DEBUG(dbgs() << "LAA: Runtime check would require comparison between" |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 564 | " different address spaces\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 565 | return false; |
| 566 | } |
| 567 | } |
| 568 | } |
| 569 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 570 | if (NeedRTCheck && CanDoRT) |
| 571 | RtCheck.groupChecks(DepCands, IsDepCheckNeeded); |
| 572 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 573 | return CanDoRT; |
| 574 | } |
| 575 | |
| 576 | void AccessAnalysis::processMemAccesses() { |
| 577 | // We process the set twice: first we process read-write pointers, last we |
| 578 | // process read-only pointers. This allows us to skip dependence tests for |
| 579 | // read-only pointers. |
| 580 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 581 | DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 582 | DEBUG(dbgs() << " AST: "; AST.dump()); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 583 | DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 584 | DEBUG({ |
| 585 | for (auto A : Accesses) |
| 586 | dbgs() << "\t" << *A.getPointer() << " (" << |
| 587 | (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? |
| 588 | "read-only" : "read")) << ")\n"; |
| 589 | }); |
| 590 | |
| 591 | // The AliasSetTracker has nicely partitioned our pointers by metadata |
| 592 | // compatibility and potential for underlying-object overlap. As a result, we |
| 593 | // only need to check for potential pointer dependencies within each alias |
| 594 | // set. |
| 595 | for (auto &AS : AST) { |
| 596 | // Note that both the alias-set tracker and the alias sets themselves used |
| 597 | // linked lists internally and so the iteration order here is deterministic |
| 598 | // (matching the original instruction order within each set). |
| 599 | |
| 600 | bool SetHasWrite = false; |
| 601 | |
| 602 | // Map of pointers to last access encountered. |
| 603 | typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; |
| 604 | UnderlyingObjToAccessMap ObjToLastAccess; |
| 605 | |
| 606 | // Set of access to check after all writes have been processed. |
| 607 | PtrAccessSet DeferredAccesses; |
| 608 | |
| 609 | // Iterate over each alias set twice, once to process read/write pointers, |
| 610 | // and then to process read-only pointers. |
| 611 | for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { |
| 612 | bool UseDeferred = SetIteration > 0; |
| 613 | PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; |
| 614 | |
| 615 | for (auto AV : AS) { |
| 616 | Value *Ptr = AV.getValue(); |
| 617 | |
| 618 | // For a single memory access in AliasSetTracker, Accesses may contain |
| 619 | // both read and write, and they both need to be handled for CheckDeps. |
| 620 | for (auto AC : S) { |
| 621 | if (AC.getPointer() != Ptr) |
| 622 | continue; |
| 623 | |
| 624 | bool IsWrite = AC.getInt(); |
| 625 | |
| 626 | // If we're using the deferred access set, then it contains only |
| 627 | // reads. |
| 628 | bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; |
| 629 | if (UseDeferred && !IsReadOnlyPtr) |
| 630 | continue; |
| 631 | // Otherwise, the pointer must be in the PtrAccessSet, either as a |
| 632 | // read or a write. |
| 633 | assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || |
| 634 | S.count(MemAccessInfo(Ptr, false))) && |
| 635 | "Alias-set pointer not in the access set?"); |
| 636 | |
| 637 | MemAccessInfo Access(Ptr, IsWrite); |
| 638 | DepCands.insert(Access); |
| 639 | |
| 640 | // Memorize read-only pointers for later processing and skip them in |
| 641 | // the first round (they need to be checked after we have seen all |
| 642 | // write pointers). Note: we also mark pointer that are not |
| 643 | // consecutive as "read-only" pointers (so that we check |
| 644 | // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". |
| 645 | if (!UseDeferred && IsReadOnlyPtr) { |
| 646 | DeferredAccesses.insert(Access); |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | // If this is a write - check other reads and writes for conflicts. If |
| 651 | // this is a read only check other writes for conflicts (but only if |
| 652 | // there is no other write to the ptr - this is an optimization to |
| 653 | // catch "a[i] = a[i] + " without having to do a dependence check). |
| 654 | if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { |
| 655 | CheckDeps.insert(Access); |
| 656 | IsRTCheckNeeded = true; |
| 657 | } |
| 658 | |
| 659 | if (IsWrite) |
| 660 | SetHasWrite = true; |
| 661 | |
| 662 | // Create sets of pointers connected by a shared alias set and |
| 663 | // underlying object. |
| 664 | typedef SmallVector<Value *, 16> ValueVector; |
| 665 | ValueVector TempObjects; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 666 | |
| 667 | GetUnderlyingObjects(Ptr, TempObjects, DL, LI); |
| 668 | DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 669 | for (Value *UnderlyingObj : TempObjects) { |
| 670 | UnderlyingObjToAccessMap::iterator Prev = |
| 671 | ObjToLastAccess.find(UnderlyingObj); |
| 672 | if (Prev != ObjToLastAccess.end()) |
| 673 | DepCands.unionSets(Access, Prev->second); |
| 674 | |
| 675 | ObjToLastAccess[UnderlyingObj] = Access; |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 676 | DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 677 | } |
| 678 | } |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 684 | static bool isInBoundsGep(Value *Ptr) { |
| 685 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) |
| 686 | return GEP->isInBounds(); |
| 687 | return false; |
| 688 | } |
| 689 | |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 690 | /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, |
| 691 | /// i.e. monotonically increasing/decreasing. |
| 692 | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, |
| 693 | ScalarEvolution *SE, const Loop *L) { |
| 694 | // FIXME: This should probably only return true for NUW. |
| 695 | if (AR->getNoWrapFlags(SCEV::NoWrapMask)) |
| 696 | return true; |
| 697 | |
| 698 | // Scalar evolution does not propagate the non-wrapping flags to values that |
| 699 | // are derived from a non-wrapping induction variable because non-wrapping |
| 700 | // could be flow-sensitive. |
| 701 | // |
| 702 | // Look through the potentially overflowing instruction to try to prove |
| 703 | // non-wrapping for the *specific* value of Ptr. |
| 704 | |
| 705 | // The arithmetic implied by an inbounds GEP can't overflow. |
| 706 | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 707 | if (!GEP || !GEP->isInBounds()) |
| 708 | return false; |
| 709 | |
| 710 | // Make sure there is only one non-const index and analyze that. |
| 711 | Value *NonConstIndex = nullptr; |
| 712 | for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) |
| 713 | if (!isa<ConstantInt>(*Index)) { |
| 714 | if (NonConstIndex) |
| 715 | return false; |
| 716 | NonConstIndex = *Index; |
| 717 | } |
| 718 | if (!NonConstIndex) |
| 719 | // The recurrence is on the pointer, ignore for now. |
| 720 | return false; |
| 721 | |
| 722 | // The index in GEP is signed. It is non-wrapping if it's derived from a NSW |
| 723 | // AddRec using a NSW operation. |
| 724 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) |
| 725 | if (OBO->hasNoSignedWrap() && |
| 726 | // Assume constant for other the operand so that the AddRec can be |
| 727 | // easily found. |
| 728 | isa<ConstantInt>(OBO->getOperand(1))) { |
| 729 | auto *OpScev = SE->getSCEV(OBO->getOperand(0)); |
| 730 | |
| 731 | if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) |
| 732 | return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); |
| 733 | } |
| 734 | |
| 735 | return false; |
| 736 | } |
| 737 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 738 | /// \brief Check whether the access through \p Ptr has a constant stride. |
Hao Liu | 32c0539 | 2015-06-08 06:39:56 +0000 | [diff] [blame] | 739 | int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp, |
| 740 | const ValueToValueMap &StridesMap) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 741 | const Type *Ty = Ptr->getType(); |
| 742 | assert(Ty->isPointerTy() && "Unexpected non-ptr"); |
| 743 | |
| 744 | // Make sure that the pointer does not point to aggregate types. |
| 745 | const PointerType *PtrTy = cast<PointerType>(Ty); |
| 746 | if (PtrTy->getElementType()->isAggregateType()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 747 | DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" |
| 748 | << *Ptr << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); |
| 753 | |
| 754 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); |
| 755 | if (!AR) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 756 | DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 757 | << *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 758 | return 0; |
| 759 | } |
| 760 | |
| 761 | // The accesss function must stride over the innermost loop. |
| 762 | if (Lp != AR->getLoop()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 763 | DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 764 | *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 765 | } |
| 766 | |
| 767 | // The address calculation must not wrap. Otherwise, a dependence could be |
| 768 | // inverted. |
| 769 | // An inbounds getelementptr that is a AddRec with a unit stride |
| 770 | // cannot wrap per definition. The unit stride requirement is checked later. |
| 771 | // An getelementptr without an inbounds attribute and unit stride would have |
| 772 | // to access the pointer value "0" which is undefined behavior in address |
| 773 | // space 0, therefore we can also vectorize this case. |
| 774 | bool IsInBoundsGEP = isInBoundsGep(Ptr); |
Adam Nemet | c4866d2 | 2015-06-26 17:25:43 +0000 | [diff] [blame] | 775 | bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 776 | bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; |
| 777 | if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 778 | DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 779 | << *Ptr << " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | // Check the step is constant. |
| 784 | const SCEV *Step = AR->getStepRecurrence(*SE); |
| 785 | |
| 786 | // Calculate the pointer stride and check if it is consecutive. |
| 787 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 788 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 789 | DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 790 | " SCEV: " << *PtrScev << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 791 | return 0; |
| 792 | } |
| 793 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 794 | auto &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 795 | int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 796 | const APInt &APStepVal = C->getValue()->getValue(); |
| 797 | |
| 798 | // Huge step value - give up. |
| 799 | if (APStepVal.getBitWidth() > 64) |
| 800 | return 0; |
| 801 | |
| 802 | int64_t StepVal = APStepVal.getSExtValue(); |
| 803 | |
| 804 | // Strided access. |
| 805 | int64_t Stride = StepVal / Size; |
| 806 | int64_t Rem = StepVal % Size; |
| 807 | if (Rem) |
| 808 | return 0; |
| 809 | |
| 810 | // If the SCEV could wrap but we have an inbounds gep with a unit stride we |
| 811 | // know we can't "wrap around the address space". In case of address space |
| 812 | // zero we know that this won't happen without triggering undefined behavior. |
| 813 | if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && |
| 814 | Stride != 1 && Stride != -1) |
| 815 | return 0; |
| 816 | |
| 817 | return Stride; |
| 818 | } |
| 819 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 820 | bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { |
| 821 | switch (Type) { |
| 822 | case NoDep: |
| 823 | case Forward: |
| 824 | case BackwardVectorizable: |
| 825 | return true; |
| 826 | |
| 827 | case Unknown: |
| 828 | case ForwardButPreventsForwarding: |
| 829 | case Backward: |
| 830 | case BackwardVectorizableButPreventsForwarding: |
| 831 | return false; |
| 832 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 833 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 834 | } |
| 835 | |
| 836 | bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) { |
| 837 | switch (Type) { |
| 838 | case NoDep: |
| 839 | case Forward: |
| 840 | return false; |
| 841 | |
| 842 | case BackwardVectorizable: |
| 843 | case Unknown: |
| 844 | case ForwardButPreventsForwarding: |
| 845 | case Backward: |
| 846 | case BackwardVectorizableButPreventsForwarding: |
| 847 | return true; |
| 848 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 849 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 850 | } |
| 851 | |
| 852 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { |
| 853 | switch (Type) { |
| 854 | case NoDep: |
| 855 | case Forward: |
| 856 | case ForwardButPreventsForwarding: |
| 857 | return false; |
| 858 | |
| 859 | case Unknown: |
| 860 | case BackwardVectorizable: |
| 861 | case Backward: |
| 862 | case BackwardVectorizableButPreventsForwarding: |
| 863 | return true; |
| 864 | } |
David Majnemer | d388e93 | 2015-03-10 20:23:29 +0000 | [diff] [blame] | 865 | llvm_unreachable("unexpected DepType!"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 866 | } |
| 867 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 868 | bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, |
| 869 | unsigned TypeByteSize) { |
| 870 | // If loads occur at a distance that is not a multiple of a feasible vector |
| 871 | // factor store-load forwarding does not take place. |
| 872 | // Positive dependences might cause troubles because vectorizing them might |
| 873 | // prevent store-load forwarding making vectorized code run a lot slower. |
| 874 | // a[i] = a[i-3] ^ a[i-8]; |
| 875 | // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and |
| 876 | // hence on your typical architecture store-load forwarding does not take |
| 877 | // place. Vectorizing in such cases does not make sense. |
| 878 | // Store-load forwarding distance. |
| 879 | const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; |
| 880 | // Maximum vector factor. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 881 | unsigned MaxVFWithoutSLForwardIssues = |
| 882 | VectorizerParams::MaxVectorWidth * TypeByteSize; |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 883 | if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 884 | MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; |
| 885 | |
| 886 | for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; |
| 887 | vf *= 2) { |
| 888 | if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { |
| 889 | MaxVFWithoutSLForwardIssues = (vf >>=1); |
| 890 | break; |
| 891 | } |
| 892 | } |
| 893 | |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 894 | if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 895 | DEBUG(dbgs() << "LAA: Distance " << Distance << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 896 | " that could cause a store-load forwarding conflict\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 897 | return true; |
| 898 | } |
| 899 | |
| 900 | if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 901 | MaxVFWithoutSLForwardIssues != |
| 902 | VectorizerParams::MaxVectorWidth * TypeByteSize) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 903 | MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; |
| 904 | return false; |
| 905 | } |
| 906 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 907 | /// \brief Check the dependence for two accesses with the same stride \p Stride. |
| 908 | /// \p Distance is the positive distance and \p TypeByteSize is type size in |
| 909 | /// bytes. |
| 910 | /// |
| 911 | /// \returns true if they are independent. |
| 912 | static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride, |
| 913 | unsigned TypeByteSize) { |
| 914 | assert(Stride > 1 && "The stride must be greater than 1"); |
| 915 | assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); |
| 916 | assert(Distance > 0 && "The distance must be non-zero"); |
| 917 | |
| 918 | // Skip if the distance is not multiple of type byte size. |
| 919 | if (Distance % TypeByteSize) |
| 920 | return false; |
| 921 | |
| 922 | unsigned ScaledDist = Distance / TypeByteSize; |
| 923 | |
| 924 | // No dependence if the scaled distance is not multiple of the stride. |
| 925 | // E.g. |
| 926 | // for (i = 0; i < 1024 ; i += 4) |
| 927 | // A[i+2] = A[i] + 1; |
| 928 | // |
| 929 | // Two accesses in memory (scaled distance is 2, stride is 4): |
| 930 | // | A[0] | | | | A[4] | | | | |
| 931 | // | | | A[2] | | | | A[6] | | |
| 932 | // |
| 933 | // E.g. |
| 934 | // for (i = 0; i < 1024 ; i += 3) |
| 935 | // A[i+4] = A[i] + 1; |
| 936 | // |
| 937 | // Two accesses in memory (scaled distance is 4, stride is 3): |
| 938 | // | A[0] | | | A[3] | | | A[6] | | | |
| 939 | // | | | | | A[4] | | | A[7] | | |
| 940 | return ScaledDist % Stride; |
| 941 | } |
| 942 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 943 | MemoryDepChecker::Dependence::DepType |
| 944 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, |
| 945 | const MemAccessInfo &B, unsigned BIdx, |
| 946 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 947 | assert (AIdx < BIdx && "Must pass arguments in program order"); |
| 948 | |
| 949 | Value *APtr = A.getPointer(); |
| 950 | Value *BPtr = B.getPointer(); |
| 951 | bool AIsWrite = A.getInt(); |
| 952 | bool BIsWrite = B.getInt(); |
| 953 | |
| 954 | // Two reads are independent. |
| 955 | if (!AIsWrite && !BIsWrite) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 956 | return Dependence::NoDep; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 957 | |
| 958 | // We cannot check pointers in different address spaces. |
| 959 | if (APtr->getType()->getPointerAddressSpace() != |
| 960 | BPtr->getType()->getPointerAddressSpace()) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 961 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 962 | |
| 963 | const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); |
| 964 | const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); |
| 965 | |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 966 | int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides); |
| 967 | int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 968 | |
| 969 | const SCEV *Src = AScev; |
| 970 | const SCEV *Sink = BScev; |
| 971 | |
| 972 | // If the induction step is negative we have to invert source and sink of the |
| 973 | // dependence. |
| 974 | if (StrideAPtr < 0) { |
| 975 | //Src = BScev; |
| 976 | //Sink = AScev; |
| 977 | std::swap(APtr, BPtr); |
| 978 | std::swap(Src, Sink); |
| 979 | std::swap(AIsWrite, BIsWrite); |
| 980 | std::swap(AIdx, BIdx); |
| 981 | std::swap(StrideAPtr, StrideBPtr); |
| 982 | } |
| 983 | |
| 984 | const SCEV *Dist = SE->getMinusSCEV(Sink, Src); |
| 985 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 986 | DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 987 | << "(Induction step: " << StrideAPtr << ")\n"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 988 | DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 989 | << *InstMap[BIdx] << ": " << *Dist << "\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 990 | |
| 991 | // Need consecutive accesses. We don't want to vectorize |
| 992 | // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in |
| 993 | // the address space. |
| 994 | if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ |
| 995 | DEBUG(dbgs() << "Non-consecutive pointer access\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 996 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 997 | } |
| 998 | |
| 999 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); |
| 1000 | if (!C) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1001 | DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1002 | ShouldRetryWithRuntimeCheck = true; |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1003 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1004 | } |
| 1005 | |
| 1006 | Type *ATy = APtr->getType()->getPointerElementType(); |
| 1007 | Type *BTy = BPtr->getType()->getPointerElementType(); |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1008 | auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); |
| 1009 | unsigned TypeByteSize = DL.getTypeAllocSize(ATy); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1010 | |
| 1011 | // Negative distances are not plausible dependencies. |
| 1012 | const APInt &Val = C->getValue()->getValue(); |
| 1013 | if (Val.isNegative()) { |
| 1014 | bool IsTrueDataDependence = (AIsWrite && !BIsWrite); |
| 1015 | if (IsTrueDataDependence && |
| 1016 | (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || |
| 1017 | ATy != BTy)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1018 | return Dependence::ForwardButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1019 | |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1020 | DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1021 | return Dependence::Forward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1022 | } |
| 1023 | |
| 1024 | // Write to the same location with the same size. |
| 1025 | // Could be improved to assert type sizes are the same (i32 == float, etc). |
| 1026 | if (Val == 0) { |
| 1027 | if (ATy == BTy) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1028 | return Dependence::NoDep; |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1029 | DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1030 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1031 | } |
| 1032 | |
| 1033 | assert(Val.isStrictlyPositive() && "Expect a positive value"); |
| 1034 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1035 | if (ATy != BTy) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1036 | DEBUG(dbgs() << |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1037 | "LAA: ReadWrite-Write positive dependency with different types\n"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1038 | return Dependence::Unknown; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1039 | } |
| 1040 | |
| 1041 | unsigned Distance = (unsigned) Val.getZExtValue(); |
| 1042 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1043 | unsigned Stride = std::abs(StrideAPtr); |
| 1044 | if (Stride > 1 && |
Adam Nemet | 0131a56 | 2015-07-08 18:47:38 +0000 | [diff] [blame] | 1045 | areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) { |
| 1046 | DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1047 | return Dependence::NoDep; |
Adam Nemet | 0131a56 | 2015-07-08 18:47:38 +0000 | [diff] [blame] | 1048 | } |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1049 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1050 | // Bail out early if passed-in parameters make vectorization not feasible. |
Adam Nemet | f219c64 | 2015-02-19 19:14:52 +0000 | [diff] [blame] | 1051 | unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? |
| 1052 | VectorizerParams::VectorizationFactor : 1); |
| 1053 | unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? |
| 1054 | VectorizerParams::VectorizationInterleave : 1); |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1055 | // The minimum number of iterations for a vectorized/unrolled version. |
| 1056 | unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1057 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1058 | // It's not vectorizable if the distance is smaller than the minimum distance |
| 1059 | // needed for a vectroized/unrolled version. Vectorizing one iteration in |
| 1060 | // front needs TypeByteSize * Stride. Vectorizing the last iteration needs |
| 1061 | // TypeByteSize (No need to plus the last gap distance). |
| 1062 | // |
| 1063 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1064 | // foo(int *A) { |
| 1065 | // int *B = (int *)((char *)A + 14); |
| 1066 | // for (i = 0 ; i < 1024 ; i += 2) |
| 1067 | // B[i] = A[i] + 1; |
| 1068 | // } |
| 1069 | // |
| 1070 | // Two accesses in memory (stride is 2): |
| 1071 | // | A[0] | | A[2] | | A[4] | | A[6] | | |
| 1072 | // | B[0] | | B[2] | | B[4] | |
| 1073 | // |
| 1074 | // Distance needs for vectorizing iterations except the last iteration: |
| 1075 | // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. |
| 1076 | // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. |
| 1077 | // |
| 1078 | // If MinNumIter is 2, it is vectorizable as the minimum distance needed is |
| 1079 | // 12, which is less than distance. |
| 1080 | // |
| 1081 | // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), |
| 1082 | // the minimum distance needed is 28, which is greater than distance. It is |
| 1083 | // not safe to do vectorization. |
| 1084 | unsigned MinDistanceNeeded = |
| 1085 | TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; |
| 1086 | if (MinDistanceNeeded > Distance) { |
| 1087 | DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance |
| 1088 | << '\n'); |
| 1089 | return Dependence::Backward; |
| 1090 | } |
| 1091 | |
| 1092 | // Unsafe if the minimum distance needed is greater than max safe distance. |
| 1093 | if (MinDistanceNeeded > MaxSafeDepDistBytes) { |
| 1094 | DEBUG(dbgs() << "LAA: Failure because it needs at least " |
| 1095 | << MinDistanceNeeded << " size in bytes"); |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1096 | return Dependence::Backward; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1097 | } |
| 1098 | |
Adam Nemet | 9cc0c39 | 2015-02-26 17:58:48 +0000 | [diff] [blame] | 1099 | // Positive distance bigger than max vectorization factor. |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1100 | // FIXME: Should use max factor instead of max distance in bytes, which could |
| 1101 | // not handle different types. |
| 1102 | // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. |
| 1103 | // void foo (int *A, char *B) { |
| 1104 | // for (unsigned i = 0; i < 1024; i++) { |
| 1105 | // A[i+2] = A[i] + 1; |
| 1106 | // B[i+2] = B[i] + 1; |
| 1107 | // } |
| 1108 | // } |
| 1109 | // |
| 1110 | // This case is currently unsafe according to the max safe distance. If we |
| 1111 | // analyze the two accesses on array B, the max safe dependence distance |
| 1112 | // is 2. Then we analyze the accesses on array A, the minimum distance needed |
| 1113 | // is 8, which is less than 2 and forbidden vectorization, But actually |
| 1114 | // both A and B could be vectorized by 2 iterations. |
| 1115 | MaxSafeDepDistBytes = |
| 1116 | Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1117 | |
| 1118 | bool IsTrueDataDependence = (!AIsWrite && BIsWrite); |
| 1119 | if (IsTrueDataDependence && |
| 1120 | couldPreventStoreLoadForward(Distance, TypeByteSize)) |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1121 | return Dependence::BackwardVectorizableButPreventsForwarding; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1122 | |
Hao Liu | 751004a | 2015-06-08 04:48:37 +0000 | [diff] [blame] | 1123 | DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() |
| 1124 | << " with max VF = " |
| 1125 | << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1126 | |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1127 | return Dependence::BackwardVectorizable; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1128 | } |
| 1129 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1130 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1131 | MemAccessInfoSet &CheckDeps, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1132 | const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1133 | |
| 1134 | MaxSafeDepDistBytes = -1U; |
| 1135 | while (!CheckDeps.empty()) { |
| 1136 | MemAccessInfo CurAccess = *CheckDeps.begin(); |
| 1137 | |
| 1138 | // Get the relevant memory access set. |
| 1139 | EquivalenceClasses<MemAccessInfo>::iterator I = |
| 1140 | AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); |
| 1141 | |
| 1142 | // Check accesses within this set. |
| 1143 | EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; |
| 1144 | AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); |
| 1145 | |
| 1146 | // Check every access pair. |
| 1147 | while (AI != AE) { |
| 1148 | CheckDeps.erase(*AI); |
| 1149 | EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); |
| 1150 | while (OI != AE) { |
| 1151 | // Check every accessing instruction pair in program order. |
| 1152 | for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), |
| 1153 | I1E = Accesses[*AI].end(); I1 != I1E; ++I1) |
| 1154 | for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), |
| 1155 | I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1156 | auto A = std::make_pair(&*AI, *I1); |
| 1157 | auto B = std::make_pair(&*OI, *I2); |
| 1158 | |
| 1159 | assert(*I1 != *I2); |
| 1160 | if (*I1 > *I2) |
| 1161 | std::swap(A, B); |
| 1162 | |
| 1163 | Dependence::DepType Type = |
| 1164 | isDependent(*A.first, A.second, *B.first, B.second, Strides); |
| 1165 | SafeForVectorization &= Dependence::isSafeForVectorization(Type); |
| 1166 | |
| 1167 | // Gather dependences unless we accumulated MaxInterestingDependence |
| 1168 | // dependences. In that case return as soon as we find the first |
| 1169 | // unsafe dependence. This puts a limit on this quadratic |
| 1170 | // algorithm. |
| 1171 | if (RecordInterestingDependences) { |
| 1172 | if (Dependence::isInterestingDependence(Type)) |
| 1173 | InterestingDependences.push_back( |
| 1174 | Dependence(A.second, B.second, Type)); |
| 1175 | |
| 1176 | if (InterestingDependences.size() >= MaxInterestingDependence) { |
| 1177 | RecordInterestingDependences = false; |
| 1178 | InterestingDependences.clear(); |
| 1179 | DEBUG(dbgs() << "Too many dependences, stopped recording\n"); |
| 1180 | } |
| 1181 | } |
| 1182 | if (!RecordInterestingDependences && !SafeForVectorization) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1183 | return false; |
| 1184 | } |
| 1185 | ++OI; |
| 1186 | } |
| 1187 | AI++; |
| 1188 | } |
| 1189 | } |
Adam Nemet | 9c92657 | 2015-03-10 17:40:37 +0000 | [diff] [blame] | 1190 | |
| 1191 | DEBUG(dbgs() << "Total Interesting Dependences: " |
| 1192 | << InterestingDependences.size() << "\n"); |
| 1193 | return SafeForVectorization; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1194 | } |
| 1195 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1196 | SmallVector<Instruction *, 4> |
| 1197 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { |
| 1198 | MemAccessInfo Access(Ptr, isWrite); |
| 1199 | auto &IndexVector = Accesses.find(Access)->second; |
| 1200 | |
| 1201 | SmallVector<Instruction *, 4> Insts; |
| 1202 | std::transform(IndexVector.begin(), IndexVector.end(), |
| 1203 | std::back_inserter(Insts), |
| 1204 | [&](unsigned Idx) { return this->InstMap[Idx]; }); |
| 1205 | return Insts; |
| 1206 | } |
| 1207 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1208 | const char *MemoryDepChecker::Dependence::DepName[] = { |
| 1209 | "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", |
| 1210 | "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; |
| 1211 | |
| 1212 | void MemoryDepChecker::Dependence::print( |
| 1213 | raw_ostream &OS, unsigned Depth, |
| 1214 | const SmallVectorImpl<Instruction *> &Instrs) const { |
| 1215 | OS.indent(Depth) << DepName[Type] << ":\n"; |
| 1216 | OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; |
| 1217 | OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; |
| 1218 | } |
| 1219 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1220 | bool LoopAccessInfo::canAnalyzeLoop() { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1221 | // We need to have a loop header. |
| 1222 | DEBUG(dbgs() << "LAA: Found a loop: " << |
| 1223 | TheLoop->getHeader()->getName() << '\n'); |
| 1224 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1225 | // We can only analyze innermost loops. |
| 1226 | if (!TheLoop->empty()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1227 | DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1228 | emitAnalysis(LoopAccessReport() << "loop is not the innermost loop"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1229 | return false; |
| 1230 | } |
| 1231 | |
| 1232 | // We must have a single backedge. |
| 1233 | if (TheLoop->getNumBackEdges() != 1) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1234 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1235 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1236 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1237 | "loop control flow is not understood by analyzer"); |
| 1238 | return false; |
| 1239 | } |
| 1240 | |
| 1241 | // We must have a single exiting block. |
| 1242 | if (!TheLoop->getExitingBlock()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1243 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1244 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1245 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1246 | "loop control flow is not understood by analyzer"); |
| 1247 | return false; |
| 1248 | } |
| 1249 | |
| 1250 | // We only handle bottom-tested loops, i.e. loop in which the condition is |
| 1251 | // checked at the end of each iteration. With that we can assume that all |
| 1252 | // instructions in the loop are executed the same number of times. |
| 1253 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
Adam Nemet | 8dcb3b6 | 2015-04-17 22:43:10 +0000 | [diff] [blame] | 1254 | DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1255 | emitAnalysis( |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1256 | LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1257 | "loop control flow is not understood by analyzer"); |
| 1258 | return false; |
| 1259 | } |
| 1260 | |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1261 | // ScalarEvolution needs to be able to find the exit count. |
| 1262 | const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); |
| 1263 | if (ExitCount == SE->getCouldNotCompute()) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1264 | emitAnalysis(LoopAccessReport() << |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1265 | "could not determine number of loop iterations"); |
| 1266 | DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); |
| 1267 | return false; |
| 1268 | } |
| 1269 | |
| 1270 | return true; |
| 1271 | } |
| 1272 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1273 | void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1274 | |
| 1275 | typedef SmallVector<Value*, 16> ValueVector; |
| 1276 | typedef SmallPtrSet<Value*, 16> ValueSet; |
| 1277 | |
| 1278 | // Holds the Load and Store *instructions*. |
| 1279 | ValueVector Loads; |
| 1280 | ValueVector Stores; |
| 1281 | |
| 1282 | // Holds all the different accesses in the loop. |
| 1283 | unsigned NumReads = 0; |
| 1284 | unsigned NumReadWrites = 0; |
| 1285 | |
| 1286 | PtrRtCheck.Pointers.clear(); |
| 1287 | PtrRtCheck.Need = false; |
| 1288 | |
| 1289 | const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1290 | |
| 1291 | // For each block. |
| 1292 | for (Loop::block_iterator bb = TheLoop->block_begin(), |
| 1293 | be = TheLoop->block_end(); bb != be; ++bb) { |
| 1294 | |
| 1295 | // Scan the BB and collect legal loads and stores. |
| 1296 | for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; |
| 1297 | ++it) { |
| 1298 | |
| 1299 | // If this is a load, save it. If this instruction can read from memory |
| 1300 | // but is not a load, then we quit. Notice that we don't handle function |
| 1301 | // calls that read or write. |
| 1302 | if (it->mayReadFromMemory()) { |
| 1303 | // Many math library functions read the rounding mode. We will only |
| 1304 | // vectorize a loop if it contains known function calls that don't set |
| 1305 | // the flag. Therefore, it is safe to ignore this read from memory. |
| 1306 | CallInst *Call = dyn_cast<CallInst>(it); |
| 1307 | if (Call && getIntrinsicIDForCall(Call, TLI)) |
| 1308 | continue; |
| 1309 | |
Michael Zolotukhin | 9b3cf60 | 2015-03-17 19:46:50 +0000 | [diff] [blame] | 1310 | // If the function has an explicit vectorized counterpart, we can safely |
| 1311 | // assume that it can be vectorized. |
| 1312 | if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && |
| 1313 | TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) |
| 1314 | continue; |
| 1315 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1316 | LoadInst *Ld = dyn_cast<LoadInst>(it); |
| 1317 | if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1318 | emitAnalysis(LoopAccessReport(Ld) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1319 | << "read with atomic ordering or volatile read"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1320 | DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1321 | CanVecMem = false; |
| 1322 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1323 | } |
| 1324 | NumLoads++; |
| 1325 | Loads.push_back(Ld); |
| 1326 | DepChecker.addAccess(Ld); |
| 1327 | continue; |
| 1328 | } |
| 1329 | |
| 1330 | // Save 'store' instructions. Abort if other instructions write to memory. |
| 1331 | if (it->mayWriteToMemory()) { |
| 1332 | StoreInst *St = dyn_cast<StoreInst>(it); |
| 1333 | if (!St) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1334 | emitAnalysis(LoopAccessReport(it) << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1335 | "instruction cannot be vectorized"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1336 | CanVecMem = false; |
| 1337 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1338 | } |
| 1339 | if (!St->isSimple() && !IsAnnotatedParallel) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1340 | emitAnalysis(LoopAccessReport(St) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1341 | << "write with atomic ordering or volatile write"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1342 | DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1343 | CanVecMem = false; |
| 1344 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1345 | } |
| 1346 | NumStores++; |
| 1347 | Stores.push_back(St); |
| 1348 | DepChecker.addAccess(St); |
| 1349 | } |
| 1350 | } // Next instr. |
| 1351 | } // Next block. |
| 1352 | |
| 1353 | // Now we have two lists that hold the loads and the stores. |
| 1354 | // Next, we find the pointers that they use. |
| 1355 | |
| 1356 | // Check if we see any stores. If there are no stores, then we don't |
| 1357 | // care if the pointers are *restrict*. |
| 1358 | if (!Stores.size()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1359 | DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1360 | CanVecMem = true; |
| 1361 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1362 | } |
| 1363 | |
Adam Nemet | dee666b | 2015-03-10 17:40:34 +0000 | [diff] [blame] | 1364 | MemoryDepChecker::DepCandidates DependentAccesses; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1365 | AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1366 | AA, LI, DependentAccesses); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1367 | |
| 1368 | // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects |
| 1369 | // multiple times on the same object. If the ptr is accessed twice, once |
| 1370 | // for read and once for write, it will only appear once (on the write |
| 1371 | // list). This is okay, since we are going to check for conflicts between |
| 1372 | // writes and between reads and writes, but not between reads and reads. |
| 1373 | ValueSet Seen; |
| 1374 | |
| 1375 | ValueVector::iterator I, IE; |
| 1376 | for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { |
| 1377 | StoreInst *ST = cast<StoreInst>(*I); |
| 1378 | Value* Ptr = ST->getPointerOperand(); |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1379 | // Check for store to loop invariant address. |
| 1380 | StoreToLoopInvariantAddress |= isUniform(Ptr); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1381 | // If we did *not* see this pointer before, insert it to the read-write |
| 1382 | // list. At this phase it is only a 'write' list. |
| 1383 | if (Seen.insert(Ptr).second) { |
| 1384 | ++NumReadWrites; |
| 1385 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1386 | MemoryLocation Loc = MemoryLocation::get(ST); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1387 | // The TBAA metadata could have a control dependency on the predication |
| 1388 | // condition, so we cannot rely on it when determining whether or not we |
| 1389 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1390 | if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1391 | Loc.AATags.TBAA = nullptr; |
| 1392 | |
| 1393 | Accesses.addStore(Loc); |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | if (IsAnnotatedParallel) { |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1398 | DEBUG(dbgs() |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1399 | << "LAA: A loop annotated parallel, ignore memory dependency " |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1400 | << "checks.\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1401 | CanVecMem = true; |
| 1402 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1403 | } |
| 1404 | |
| 1405 | for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { |
| 1406 | LoadInst *LD = cast<LoadInst>(*I); |
| 1407 | Value* Ptr = LD->getPointerOperand(); |
| 1408 | // If we did *not* see this pointer before, insert it to the |
| 1409 | // read list. If we *did* see it before, then it is already in |
| 1410 | // the read-write list. This allows us to vectorize expressions |
| 1411 | // such as A[i] += x; Because the address of A[i] is a read-write |
| 1412 | // pointer. This only works if the index of A[i] is consecutive. |
| 1413 | // If the address of i is unknown (for example A[B[i]]) then we may |
| 1414 | // read a few words, modify, and write a few words, and some of the |
| 1415 | // words may be written to the same address. |
| 1416 | bool IsReadOnlyPtr = false; |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1417 | if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1418 | ++NumReads; |
| 1419 | IsReadOnlyPtr = true; |
| 1420 | } |
| 1421 | |
Chandler Carruth | ac80dc7 | 2015-06-17 07:18:54 +0000 | [diff] [blame] | 1422 | MemoryLocation Loc = MemoryLocation::get(LD); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1423 | // The TBAA metadata could have a control dependency on the predication |
| 1424 | // condition, so we cannot rely on it when determining whether or not we |
| 1425 | // need runtime pointer checks. |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1426 | if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1427 | Loc.AATags.TBAA = nullptr; |
| 1428 | |
| 1429 | Accesses.addLoad(Loc, IsReadOnlyPtr); |
| 1430 | } |
| 1431 | |
| 1432 | // If we write (or read-write) to a single destination and there are no |
| 1433 | // other reads in this loop then is it safe to vectorize. |
| 1434 | if (NumReadWrites == 1 && NumReads == 0) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1435 | DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1436 | CanVecMem = true; |
| 1437 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1438 | } |
| 1439 | |
| 1440 | // Build dependence sets and check whether we need a runtime pointer bounds |
| 1441 | // check. |
| 1442 | Accesses.buildDependenceSets(); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1443 | |
| 1444 | // Find pointers with computable bounds. We are going to use this information |
| 1445 | // to place a runtime bound check. |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1446 | bool NeedRTCheck; |
| 1447 | bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, |
| 1448 | NeedRTCheck, SE, |
| 1449 | TheLoop, Strides); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1450 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1451 | DEBUG(dbgs() << "LAA: We need to do " |
| 1452 | << PtrRtCheck.getNumberOfChecks(nullptr) |
| 1453 | << " pointer comparisons.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1454 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1455 | // Check that we found the bounds for the pointer. |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1456 | if (CanDoRT) |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1457 | DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1458 | else if (NeedRTCheck) { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1459 | emitAnalysis(LoopAccessReport() << "cannot identify array bounds"); |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1460 | DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1461 | "the array bounds.\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1462 | PtrRtCheck.reset(); |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1463 | CanVecMem = false; |
| 1464 | return; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1465 | } |
| 1466 | |
| 1467 | PtrRtCheck.Need = NeedRTCheck; |
| 1468 | |
Adam Nemet | 436018c | 2015-02-19 19:15:00 +0000 | [diff] [blame] | 1469 | CanVecMem = true; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1470 | if (Accesses.isDependencyCheckNeeded()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1471 | DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1472 | CanVecMem = DepChecker.areDepsSafe( |
| 1473 | DependentAccesses, Accesses.getDependenciesToCheck(), Strides); |
| 1474 | MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); |
| 1475 | |
| 1476 | if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { |
Adam Nemet | 339f42b | 2015-02-19 19:15:07 +0000 | [diff] [blame] | 1477 | DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1478 | NeedRTCheck = true; |
| 1479 | |
| 1480 | // Clear the dependency checks. We assume they are not needed. |
Adam Nemet | df3dc5b | 2015-05-18 15:37:03 +0000 | [diff] [blame] | 1481 | Accesses.resetDepChecks(DepChecker); |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1482 | |
| 1483 | PtrRtCheck.reset(); |
| 1484 | PtrRtCheck.Need = true; |
| 1485 | |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1486 | CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE, |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1487 | TheLoop, Strides, true); |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1488 | |
Adam Nemet | 949e91a | 2015-03-10 19:12:41 +0000 | [diff] [blame] | 1489 | // Check that we found the bounds for the pointer. |
Silviu Baranga | 98a1371 | 2015-06-08 10:27:06 +0000 | [diff] [blame] | 1490 | if (NeedRTCheck && !CanDoRT) { |
Adam Nemet | b6dc76f | 2015-03-10 18:54:19 +0000 | [diff] [blame] | 1491 | emitAnalysis(LoopAccessReport() |
| 1492 | << "cannot check memory dependencies at runtime"); |
| 1493 | DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); |
| 1494 | PtrRtCheck.reset(); |
| 1495 | CanVecMem = false; |
| 1496 | return; |
| 1497 | } |
| 1498 | |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1499 | CanVecMem = true; |
| 1500 | } |
| 1501 | } |
| 1502 | |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1503 | if (CanVecMem) |
| 1504 | DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" |
| 1505 | << (NeedRTCheck ? "" : " don't") |
| 1506 | << " need a runtime memory check.\n"); |
| 1507 | else { |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1508 | emitAnalysis(LoopAccessReport() << |
Adam Nemet | 04d4163 | 2015-02-19 19:14:34 +0000 | [diff] [blame] | 1509 | "unsafe dependent memory operations in loop"); |
Adam Nemet | 4bb90a7 | 2015-03-10 21:47:39 +0000 | [diff] [blame] | 1510 | DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); |
| 1511 | } |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1512 | } |
| 1513 | |
Adam Nemet | 01abb2c | 2015-02-18 03:43:19 +0000 | [diff] [blame] | 1514 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, |
| 1515 | DominatorTree *DT) { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1516 | assert(TheLoop->contains(BB) && "Unknown block used"); |
| 1517 | |
| 1518 | // Blocks that do not dominate the latch need predication. |
| 1519 | BasicBlock* Latch = TheLoop->getLoopLatch(); |
| 1520 | return !DT->dominates(BB, Latch); |
| 1521 | } |
| 1522 | |
Adam Nemet | 2bd6e98 | 2015-02-19 19:15:15 +0000 | [diff] [blame] | 1523 | void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) { |
Adam Nemet | c922853 | 2015-02-19 19:14:56 +0000 | [diff] [blame] | 1524 | assert(!Report && "Multiple reports generated"); |
| 1525 | Report = Message; |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1526 | } |
| 1527 | |
Adam Nemet | 57ac766 | 2015-02-19 19:15:21 +0000 | [diff] [blame] | 1528 | bool LoopAccessInfo::isUniform(Value *V) const { |
Adam Nemet | 0456327 | 2015-02-01 16:56:15 +0000 | [diff] [blame] | 1529 | return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); |
| 1530 | } |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1531 | |
| 1532 | // FIXME: this function is currently a duplicate of the one in |
| 1533 | // LoopVectorize.cpp. |
| 1534 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, |
| 1535 | Instruction *Loc) { |
| 1536 | if (FirstInst) |
| 1537 | return FirstInst; |
| 1538 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1539 | return I->getParent() == Loc->getParent() ? I : nullptr; |
| 1540 | return nullptr; |
| 1541 | } |
| 1542 | |
Adam Nemet | ec1e2bb | 2015-03-10 18:54:26 +0000 | [diff] [blame] | 1543 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck( |
| 1544 | Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const { |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1545 | if (!PtrRtCheck.Need) |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 1546 | return std::make_pair(nullptr, nullptr); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1547 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1548 | SmallVector<TrackingVH<Value>, 2> Starts; |
| 1549 | SmallVector<TrackingVH<Value>, 2> Ends; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1550 | |
| 1551 | LLVMContext &Ctx = Loc->getContext(); |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1552 | SCEVExpander Exp(*SE, DL, "induction"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1553 | Instruction *FirstInst = nullptr; |
| 1554 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1555 | for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) { |
| 1556 | const RuntimePointerCheck::CheckingPtrGroup &CG = |
| 1557 | PtrRtCheck.CheckingGroups[i]; |
| 1558 | Value *Ptr = PtrRtCheck.Pointers[CG.Members[0]]; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1559 | const SCEV *Sc = SE->getSCEV(Ptr); |
| 1560 | |
| 1561 | if (SE->isLoopInvariant(Sc, TheLoop)) { |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1562 | DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr |
| 1563 | << "\n"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1564 | Starts.push_back(Ptr); |
| 1565 | Ends.push_back(Ptr); |
| 1566 | } else { |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1567 | unsigned AS = Ptr->getType()->getPointerAddressSpace(); |
| 1568 | |
| 1569 | // Use this type for pointer arithmetic. |
| 1570 | Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1571 | Value *Start = nullptr, *End = nullptr; |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1572 | |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1573 | DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); |
| 1574 | Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc); |
| 1575 | End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc); |
| 1576 | DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n"); |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1577 | Starts.push_back(Start); |
| 1578 | Ends.push_back(End); |
| 1579 | } |
| 1580 | } |
| 1581 | |
| 1582 | IRBuilder<> ChkBuilder(Loc); |
| 1583 | // Our instructions might fold to a constant. |
| 1584 | Value *MemoryRuntimeCheck = nullptr; |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1585 | for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) { |
| 1586 | for (unsigned j = i + 1; j < PtrRtCheck.CheckingGroups.size(); ++j) { |
| 1587 | const RuntimePointerCheck::CheckingPtrGroup &CGI = |
| 1588 | PtrRtCheck.CheckingGroups[i]; |
| 1589 | const RuntimePointerCheck::CheckingPtrGroup &CGJ = |
| 1590 | PtrRtCheck.CheckingGroups[j]; |
| 1591 | |
| 1592 | if (!PtrRtCheck.needsChecking(CGI, CGJ, PtrPartition)) |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1593 | continue; |
| 1594 | |
| 1595 | unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); |
| 1596 | unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); |
| 1597 | |
| 1598 | assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && |
| 1599 | (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && |
| 1600 | "Trying to bounds check pointers with different address spaces"); |
| 1601 | |
| 1602 | Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); |
| 1603 | Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); |
| 1604 | |
| 1605 | Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); |
| 1606 | Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); |
| 1607 | Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); |
| 1608 | Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); |
| 1609 | |
| 1610 | Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); |
| 1611 | FirstInst = getFirstInst(FirstInst, Cmp0, Loc); |
| 1612 | Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); |
| 1613 | FirstInst = getFirstInst(FirstInst, Cmp1, Loc); |
| 1614 | Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); |
| 1615 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 1616 | if (MemoryRuntimeCheck) { |
| 1617 | IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, |
| 1618 | "conflict.rdx"); |
| 1619 | FirstInst = getFirstInst(FirstInst, IsConflict, Loc); |
| 1620 | } |
| 1621 | MemoryRuntimeCheck = IsConflict; |
| 1622 | } |
| 1623 | } |
| 1624 | |
Adam Nemet | 90fec84 | 2015-04-02 17:51:57 +0000 | [diff] [blame] | 1625 | if (!MemoryRuntimeCheck) |
| 1626 | return std::make_pair(nullptr, nullptr); |
| 1627 | |
Adam Nemet | 7206d7a | 2015-02-06 18:31:04 +0000 | [diff] [blame] | 1628 | // We have to do this trickery because the IRBuilder might fold the check to a |
| 1629 | // constant expression in which case there is no Instruction anchored in a |
| 1630 | // the block. |
| 1631 | Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, |
| 1632 | ConstantInt::getTrue(Ctx)); |
| 1633 | ChkBuilder.Insert(Check, "memcheck.conflict"); |
| 1634 | FirstInst = getFirstInst(FirstInst, Check, Loc); |
| 1635 | return std::make_pair(FirstInst, Check); |
| 1636 | } |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1637 | |
| 1638 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1639 | const DataLayout &DL, |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1640 | const TargetLibraryInfo *TLI, AliasAnalysis *AA, |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1641 | DominatorTree *DT, LoopInfo *LI, |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1642 | const ValueToValueMap &Strides) |
Silviu Baranga | 1b6b50a | 2015-07-08 09:16:33 +0000 | [diff] [blame] | 1643 | : PtrRtCheck(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), TLI(TLI), |
| 1644 | AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0), |
Adam Nemet | ce48250 | 2015-04-08 17:48:40 +0000 | [diff] [blame] | 1645 | MaxSafeDepDistBytes(-1U), CanVecMem(false), |
| 1646 | StoreToLoopInvariantAddress(false) { |
Adam Nemet | 929c38e | 2015-02-19 19:15:10 +0000 | [diff] [blame] | 1647 | if (canAnalyzeLoop()) |
| 1648 | analyzeLoop(Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1649 | } |
| 1650 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1651 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { |
| 1652 | if (CanVecMem) { |
Adam Nemet | 26da8e9 | 2015-04-14 01:12:55 +0000 | [diff] [blame] | 1653 | if (PtrRtCheck.Need) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1654 | OS.indent(Depth) << "Memory dependences are safe with run-time checks\n"; |
Adam Nemet | 26da8e9 | 2015-04-14 01:12:55 +0000 | [diff] [blame] | 1655 | else |
| 1656 | OS.indent(Depth) << "Memory dependences are safe\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1657 | } |
| 1658 | |
| 1659 | if (Report) |
| 1660 | OS.indent(Depth) << "Report: " << Report->str() << "\n"; |
| 1661 | |
Adam Nemet | 58913d6 | 2015-03-10 17:40:43 +0000 | [diff] [blame] | 1662 | if (auto *InterestingDependences = DepChecker.getInterestingDependences()) { |
| 1663 | OS.indent(Depth) << "Interesting Dependences:\n"; |
| 1664 | for (auto &Dep : *InterestingDependences) { |
| 1665 | Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions()); |
| 1666 | OS << "\n"; |
| 1667 | } |
| 1668 | } else |
| 1669 | OS.indent(Depth) << "Too many interesting dependences, not recorded\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1670 | |
| 1671 | // List the pair of accesses need run-time checks to prove independence. |
| 1672 | PtrRtCheck.print(OS, Depth); |
| 1673 | OS << "\n"; |
Adam Nemet | c338432 | 2015-05-18 15:36:57 +0000 | [diff] [blame] | 1674 | |
| 1675 | OS.indent(Depth) << "Store to invariant address was " |
| 1676 | << (StoreToLoopInvariantAddress ? "" : "not ") |
| 1677 | << "found in loop.\n"; |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1678 | } |
| 1679 | |
Adam Nemet | 8bc61df | 2015-02-24 00:41:59 +0000 | [diff] [blame] | 1680 | const LoopAccessInfo & |
| 1681 | LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) { |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1682 | auto &LAI = LoopAccessInfoMap[L]; |
| 1683 | |
| 1684 | #ifndef NDEBUG |
| 1685 | assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) && |
| 1686 | "Symbolic strides changed for loop"); |
| 1687 | #endif |
| 1688 | |
| 1689 | if (!LAI) { |
Mehdi Amini | a28d91d | 2015-03-10 02:37:25 +0000 | [diff] [blame] | 1690 | const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1691 | LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, |
| 1692 | Strides); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1693 | #ifndef NDEBUG |
| 1694 | LAI->NumSymbolicStrides = Strides.size(); |
| 1695 | #endif |
| 1696 | } |
| 1697 | return *LAI.get(); |
| 1698 | } |
| 1699 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1700 | void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const { |
| 1701 | LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this); |
| 1702 | |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1703 | ValueToValueMap NoSymbolicStrides; |
| 1704 | |
| 1705 | for (Loop *TopLevelLoop : *LI) |
| 1706 | for (Loop *L : depth_first(TopLevelLoop)) { |
| 1707 | OS.indent(2) << L->getHeader()->getName() << ":\n"; |
| 1708 | auto &LAI = LAA.getInfo(L, NoSymbolicStrides); |
| 1709 | LAI.print(OS, 4); |
| 1710 | } |
| 1711 | } |
| 1712 | |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1713 | bool LoopAccessAnalysis::runOnFunction(Function &F) { |
| 1714 | SE = &getAnalysis<ScalarEvolution>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1715 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| 1716 | TLI = TLIP ? &TLIP->getTLI() : nullptr; |
| 1717 | AA = &getAnalysis<AliasAnalysis>(); |
| 1718 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
Adam Nemet | e2b885c | 2015-04-23 20:09:20 +0000 | [diff] [blame] | 1719 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1720 | |
| 1721 | return false; |
| 1722 | } |
| 1723 | |
| 1724 | void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1725 | AU.addRequired<ScalarEvolution>(); |
| 1726 | AU.addRequired<AliasAnalysis>(); |
| 1727 | AU.addRequired<DominatorTreeWrapperPass>(); |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1728 | AU.addRequired<LoopInfoWrapperPass>(); |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1729 | |
| 1730 | AU.setPreservesAll(); |
| 1731 | } |
| 1732 | |
| 1733 | char LoopAccessAnalysis::ID = 0; |
| 1734 | static const char laa_name[] = "Loop Access Analysis"; |
| 1735 | #define LAA_NAME "loop-accesses" |
| 1736 | |
| 1737 | INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
| 1738 | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| 1739 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| 1740 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Adam Nemet | e91cc6e | 2015-02-19 19:15:19 +0000 | [diff] [blame] | 1741 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
Adam Nemet | 3bfd93d | 2015-02-19 19:15:04 +0000 | [diff] [blame] | 1742 | INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true) |
| 1743 | |
| 1744 | namespace llvm { |
| 1745 | Pass *createLAAPass() { |
| 1746 | return new LoopAccessAnalysis(); |
| 1747 | } |
| 1748 | } |