blob: 093becf1829e3e20799418aa830cf1e0f59c43c7 [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000018#include "llvm/Analysis/TargetLibraryInfo.h"
Adam Nemet04563272015-02-01 16:56:15 +000019#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000022#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000023#include "llvm/Support/Debug.h"
Benjamin Kramer799003b2015-03-23 19:32:43 +000024#include "llvm/Support/raw_ostream.h"
David Blaikieb447ac62015-06-26 18:02:52 +000025#include "llvm/Analysis/VectorUtils.h"
Adam Nemet04563272015-02-01 16:56:15 +000026using namespace llvm;
27
Adam Nemet339f42b2015-02-19 19:15:07 +000028#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000029
Adam Nemetf219c642015-02-19 19:14:52 +000030static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
Adam Nemet1d862af2015-02-26 04:39:09 +000034unsigned VectorizerParams::VectorizationFactor;
Adam Nemetf219c642015-02-19 19:14:52 +000035
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
Adam Nemet1d862af2015-02-26 04:39:09 +000042unsigned VectorizerParams::VectorizationInterleave;
Adam Nemetf219c642015-02-19 19:14:52 +000043
Adam Nemet1d862af2015-02-26 04:39:09 +000044static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
Adam Nemetf219c642015-02-19 19:14:52 +000050
Silviu Baranga1b6b50a2015-07-08 09:16:33 +000051/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53 "memory-check-merge-threshold", cl::Hidden,
54 cl::desc("Maximum number of comparisons done when trying to merge "
55 "runtime memory checks. (default = 100)"),
56 cl::init(100));
57
Adam Nemetf219c642015-02-19 19:14:52 +000058/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
Adam Nemet9c926572015-03-10 17:40:37 +000061/// \brief We collect interesting dependences up to this threshold.
62static cl::opt<unsigned> MaxInterestingDependence(
63 "max-interesting-dependences", cl::Hidden,
64 cl::desc("Maximum number of interesting dependences collected by "
65 "loop-access analysis (default = 100)"),
66 cl::init(100));
67
Adam Nemetf219c642015-02-19 19:14:52 +000068bool VectorizerParams::isInterleaveForced() {
69 return ::VectorizationInterleave.getNumOccurrences() > 0;
70}
71
Adam Nemet2bd6e982015-02-19 19:15:15 +000072void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73 const Function *TheFunction,
74 const Loop *TheLoop,
75 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000076 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000077 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +000078 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +000079 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +000080 *TheFunction, DL, Message.str());
81}
82
83Value *llvm::stripIntegerCast(Value *V) {
84 if (CastInst *CI = dyn_cast<CastInst>(V))
85 if (CI->getOperand(0)->getType()->isIntegerTy())
86 return CI->getOperand(0);
87 return V;
88}
89
90const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
Adam Nemet8bc61df2015-02-24 00:41:59 +000091 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +000092 Value *Ptr, Value *OrigPtr) {
93
94 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
95
96 // If there is an entry in the map return the SCEV of the pointer with the
97 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +000098 ValueToValueMap::const_iterator SI =
99 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +0000100 if (SI != PtrToStride.end()) {
101 Value *StrideVal = SI->second;
102
103 // Strip casts.
104 StrideVal = stripIntegerCast(StrideVal);
105
106 // Replace symbolic stride by one.
107 Value *One = ConstantInt::get(StrideVal->getType(), 1);
108 ValueToValueMap RewriteMap;
109 RewriteMap[StrideVal] = One;
110
111 const SCEV *ByOne =
112 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
Adam Nemet339f42b2015-02-19 19:15:07 +0000113 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
Adam Nemet04563272015-02-01 16:56:15 +0000114 << "\n");
115 return ByOne;
116 }
117
118 // Otherwise, just return the SCEV of the original pointer.
119 return SE->getSCEV(Ptr);
120}
121
Adam Nemet8bc61df2015-02-24 00:41:59 +0000122void LoopAccessInfo::RuntimePointerCheck::insert(
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000123 Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId,
124 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000125 // Get the stride replaced scev.
126 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
127 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
128 assert(AR && "Invalid addrec expression");
129 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
130 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
131 Pointers.push_back(Ptr);
132 Starts.push_back(AR->getStart());
133 Ends.push_back(ScEnd);
134 IsWritePtr.push_back(WritePtr);
135 DependencySetId.push_back(DepSetId);
136 AliasSetId.push_back(ASId);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000137 Exprs.push_back(Sc);
138}
139
140bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
141 const CheckingPtrGroup &M, const CheckingPtrGroup &N,
142 const SmallVectorImpl<int> *PtrPartition) const {
143 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
144 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
145 if (needsChecking(M.Members[I], N.Members[J], PtrPartition))
146 return true;
147 return false;
148}
149
150/// Compare \p I and \p J and return the minimum.
151/// Return nullptr in case we couldn't find an answer.
152static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
153 ScalarEvolution *SE) {
154 const SCEV *Diff = SE->getMinusSCEV(J, I);
155 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
156
157 if (!C)
158 return nullptr;
159 if (C->getValue()->isNegative())
160 return J;
161 return I;
162}
163
164bool LoopAccessInfo::RuntimePointerCheck::CheckingPtrGroup::addPointer(
165 unsigned Index) {
166 // Compare the starts and ends with the known minimum and maximum
167 // of this set. We need to know how we compare against the min/max
168 // of the set in order to be able to emit memchecks.
169 const SCEV *Min0 = getMinFromExprs(RtCheck.Starts[Index], Low, RtCheck.SE);
170 if (!Min0)
171 return false;
172
173 const SCEV *Min1 = getMinFromExprs(RtCheck.Ends[Index], High, RtCheck.SE);
174 if (!Min1)
175 return false;
176
177 // Update the low bound expression if we've found a new min value.
178 if (Min0 == RtCheck.Starts[Index])
179 Low = RtCheck.Starts[Index];
180
181 // Update the high bound expression if we've found a new max value.
182 if (Min1 != RtCheck.Ends[Index])
183 High = RtCheck.Ends[Index];
184
185 Members.push_back(Index);
186 return true;
187}
188
189void LoopAccessInfo::RuntimePointerCheck::groupChecks(
190 MemoryDepChecker::DepCandidates &DepCands,
191 bool UseDependencies) {
192 // We build the groups from dependency candidates equivalence classes
193 // because:
194 // - We know that pointers in the same equivalence class share
195 // the same underlying object and therefore there is a chance
196 // that we can compare pointers
197 // - We wouldn't be able to merge two pointers for which we need
198 // to emit a memcheck. The classes in DepCands are already
199 // conveniently built such that no two pointers in the same
200 // class need checking against each other.
201
202 // We use the following (greedy) algorithm to construct the groups
203 // For every pointer in the equivalence class:
204 // For each existing group:
205 // - if the difference between this pointer and the min/max bounds
206 // of the group is a constant, then make the pointer part of the
207 // group and update the min/max bounds of that group as required.
208
209 CheckingGroups.clear();
210
211 // If we don't have the dependency partitions, construct a new
212 // checking pointer group for each pointer.
213 if (!UseDependencies) {
214 for (unsigned I = 0; I < Pointers.size(); ++I)
215 CheckingGroups.push_back(CheckingPtrGroup(I, *this));
216 return;
217 }
218
219 unsigned TotalComparisons = 0;
220
221 DenseMap<Value *, unsigned> PositionMap;
222 for (unsigned Pointer = 0; Pointer < Pointers.size(); ++Pointer)
223 PositionMap[Pointers[Pointer]] = Pointer;
224
225 // Go through all equivalence classes, get the the "pointer check groups"
226 // and add them to the overall solution.
227 for (auto DI = DepCands.begin(), DE = DepCands.end(); DI != DE; ++DI) {
228 if (!DI->isLeader())
229 continue;
230
231 SmallVector<CheckingPtrGroup, 2> Groups;
232
233 for (auto MI = DepCands.member_begin(DI), ME = DepCands.member_end();
234 MI != ME; ++MI) {
235 unsigned Pointer = PositionMap[MI->getPointer()];
236 bool Merged = false;
237
238 // Go through all the existing sets and see if we can find one
239 // which can include this pointer.
240 for (CheckingPtrGroup &Group : Groups) {
241 // Don't perform more than a certain amount of comparisons.
242 // This should limit the cost of grouping the pointers to something
243 // reasonable. If we do end up hitting this threshold, the algorithm
244 // will create separate groups for all remaining pointers.
245 if (TotalComparisons > MemoryCheckMergeThreshold)
246 break;
247
248 TotalComparisons++;
249
250 if (Group.addPointer(Pointer)) {
251 Merged = true;
252 break;
253 }
254 }
255
256 if (!Merged)
257 // We couldn't add this pointer to any existing set or the threshold
258 // for the number of comparisons has been reached. Create a new group
259 // to hold the current pointer.
260 Groups.push_back(CheckingPtrGroup(Pointer, *this));
261 }
262
263 // We've computed the grouped checks for this partition.
264 // Save the results and continue with the next one.
265 std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
266 }
Adam Nemet04563272015-02-01 16:56:15 +0000267}
268
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000269bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
270 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemeta8945b72015-02-18 03:43:58 +0000271 // No need to check if two readonly pointers intersect.
272 if (!IsWritePtr[I] && !IsWritePtr[J])
273 return false;
274
275 // Only need to check pointers between two different dependency sets.
276 if (DependencySetId[I] == DependencySetId[J])
277 return false;
278
279 // Only need to check pointers in the same alias set.
280 if (AliasSetId[I] != AliasSetId[J])
281 return false;
282
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000283 // If PtrPartition is set omit checks between pointers of the same partition.
284 // Partition number -1 means that the pointer is used in multiple partitions.
285 // In this case we can't omit the check.
286 if (PtrPartition && (*PtrPartition)[I] != -1 &&
287 (*PtrPartition)[I] == (*PtrPartition)[J])
288 return false;
289
Adam Nemeta8945b72015-02-18 03:43:58 +0000290 return true;
291}
292
Adam Nemetec1e2bb2015-03-10 18:54:26 +0000293void LoopAccessInfo::RuntimePointerCheck::print(
294 raw_ostream &OS, unsigned Depth,
295 const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemete91cc6e2015-02-19 19:15:19 +0000296
297 OS.indent(Depth) << "Run-time memory checks:\n";
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000298
Adam Nemete91cc6e2015-02-19 19:15:19 +0000299 unsigned N = 0;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000300 for (unsigned I = 0; I < CheckingGroups.size(); ++I)
301 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J)
302 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) {
303 OS.indent(Depth) << "Check " << N++ << ":\n";
304 OS.indent(Depth + 2) << "Comparing group " << I << ":\n";
305
306 for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) {
307 OS.indent(Depth + 2) << *Pointers[CheckingGroups[I].Members[K]]
308 << "\n";
309 if (PtrPartition)
310 OS << " (Partition: "
311 << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")"
312 << "\n";
313 }
314
315 OS.indent(Depth + 2) << "Against group " << J << ":\n";
316
317 for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) {
318 OS.indent(Depth + 2) << *Pointers[CheckingGroups[J].Members[K]]
319 << "\n";
320 if (PtrPartition)
321 OS << " (Partition: "
322 << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")"
323 << "\n";
324 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000325 }
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000326
327 OS.indent(Depth) << "Grouped accesses:\n";
328 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
329 OS.indent(Depth + 2) << "Group " << I << ":\n";
330 OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low
331 << " High: " << *CheckingGroups[I].High << ")\n";
332 for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) {
333 OS.indent(Depth + 6) << "Member: " << *Exprs[CheckingGroups[I].Members[J]]
334 << "\n";
335 }
336 }
Adam Nemete91cc6e2015-02-19 19:15:19 +0000337}
338
Silviu Baranga98a13712015-06-08 10:27:06 +0000339unsigned LoopAccessInfo::RuntimePointerCheck::getNumberOfChecks(
Adam Nemet51870d12015-04-07 03:35:26 +0000340 const SmallVectorImpl<int> *PtrPartition) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000341
342 unsigned NumPartitions = CheckingGroups.size();
Silviu Baranga98a13712015-06-08 10:27:06 +0000343 unsigned CheckCount = 0;
Adam Nemet51870d12015-04-07 03:35:26 +0000344
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000345 for (unsigned I = 0; I < NumPartitions; ++I)
346 for (unsigned J = I + 1; J < NumPartitions; ++J)
347 if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition))
Silviu Baranga98a13712015-06-08 10:27:06 +0000348 CheckCount++;
349 return CheckCount;
350}
351
352bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
353 const SmallVectorImpl<int> *PtrPartition) const {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000354 unsigned NumPointers = Pointers.size();
355
356 for (unsigned I = 0; I < NumPointers; ++I)
357 for (unsigned J = I + 1; J < NumPointers; ++J)
358 if (needsChecking(I, J, PtrPartition))
359 return true;
360 return false;
Adam Nemet51870d12015-04-07 03:35:26 +0000361}
362
Adam Nemet04563272015-02-01 16:56:15 +0000363namespace {
364/// \brief Analyses memory accesses in a loop.
365///
366/// Checks whether run time pointer checks are needed and builds sets for data
367/// dependence checking.
368class AccessAnalysis {
369public:
370 /// \brief Read or write access location.
371 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
372 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
373
Adam Nemete2b885c2015-04-23 20:09:20 +0000374 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
Adam Nemetdee666b2015-03-10 17:40:34 +0000375 MemoryDepChecker::DepCandidates &DA)
Adam Nemete2b885c2015-04-23 20:09:20 +0000376 : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckNeeded(false) {}
Adam Nemet04563272015-02-01 16:56:15 +0000377
378 /// \brief Register a load and whether it is only read from.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000379 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
Adam Nemet04563272015-02-01 16:56:15 +0000380 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000381 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000382 Accesses.insert(MemAccessInfo(Ptr, false));
383 if (IsReadOnly)
384 ReadOnlyPtr.insert(Ptr);
385 }
386
387 /// \brief Register a store.
Chandler Carruthac80dc72015-06-17 07:18:54 +0000388 void addStore(MemoryLocation &Loc) {
Adam Nemet04563272015-02-01 16:56:15 +0000389 Value *Ptr = const_cast<Value*>(Loc.Ptr);
Chandler Carruthecbd1682015-06-17 07:21:38 +0000390 AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
Adam Nemet04563272015-02-01 16:56:15 +0000391 Accesses.insert(MemAccessInfo(Ptr, true));
392 }
393
394 /// \brief Check whether we can check the pointers at runtime for
Silviu Baranga98a13712015-06-08 10:27:06 +0000395 /// non-intersection. Returns true when we have 0 pointers
396 /// (a check on 0 pointers for non-intersection will always return true).
Adam Nemet30f16e12015-02-18 03:42:35 +0000397 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
Silviu Baranga98a13712015-06-08 10:27:06 +0000398 bool &NeedRTCheck, ScalarEvolution *SE, Loop *TheLoop,
399 const ValueToValueMap &Strides,
Adam Nemet04563272015-02-01 16:56:15 +0000400 bool ShouldCheckStride = false);
401
402 /// \brief Goes over all memory accesses, checks whether a RT check is needed
403 /// and builds sets of dependent accesses.
404 void buildDependenceSets() {
405 processMemAccesses();
406 }
407
408 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
409
410 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
Adam Nemetdf3dc5b2015-05-18 15:37:03 +0000411
412 /// We decided that no dependence analysis would be used. Reset the state.
413 void resetDepChecks(MemoryDepChecker &DepChecker) {
414 CheckDeps.clear();
415 DepChecker.clearInterestingDependences();
416 }
Adam Nemet04563272015-02-01 16:56:15 +0000417
418 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
419
420private:
421 typedef SetVector<MemAccessInfo> PtrAccessSet;
422
423 /// \brief Go over all memory access and check whether runtime pointer checks
424 /// are needed /// and build sets of dependency check candidates.
425 void processMemAccesses();
426
427 /// Set of all accesses.
428 PtrAccessSet Accesses;
429
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000430 const DataLayout &DL;
431
Adam Nemet04563272015-02-01 16:56:15 +0000432 /// Set of accesses that need a further dependence check.
433 MemAccessInfoSet CheckDeps;
434
435 /// Set of pointers that are read only.
436 SmallPtrSet<Value*, 16> ReadOnlyPtr;
437
Adam Nemet04563272015-02-01 16:56:15 +0000438 /// An alias set tracker to partition the access set by underlying object and
439 //intrinsic property (such as TBAA metadata).
440 AliasSetTracker AST;
441
Adam Nemete2b885c2015-04-23 20:09:20 +0000442 LoopInfo *LI;
443
Adam Nemet04563272015-02-01 16:56:15 +0000444 /// Sets of potentially dependent accesses - members of one set share an
445 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
446 /// dependence check.
Adam Nemetdee666b2015-03-10 17:40:34 +0000447 MemoryDepChecker::DepCandidates &DepCands;
Adam Nemet04563272015-02-01 16:56:15 +0000448
449 bool IsRTCheckNeeded;
450};
451
452} // end anonymous namespace
453
454/// \brief Check whether a pointer can participate in a runtime bounds check.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000455static bool hasComputableBounds(ScalarEvolution *SE,
456 const ValueToValueMap &Strides, Value *Ptr) {
Adam Nemet04563272015-02-01 16:56:15 +0000457 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
458 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
459 if (!AR)
460 return false;
461
462 return AR->isAffine();
463}
464
Adam Nemet04563272015-02-01 16:56:15 +0000465bool AccessAnalysis::canCheckPtrAtRT(
Silviu Baranga98a13712015-06-08 10:27:06 +0000466 LoopAccessInfo::RuntimePointerCheck &RtCheck, bool &NeedRTCheck,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000467 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
468 bool ShouldCheckStride) {
Adam Nemet04563272015-02-01 16:56:15 +0000469 // Find pointers with computable bounds. We are going to use this information
470 // to place a runtime bound check.
471 bool CanDoRT = true;
472
Silviu Baranga98a13712015-06-08 10:27:06 +0000473 NeedRTCheck = false;
474 if (!IsRTCheckNeeded) return true;
475
Adam Nemet04563272015-02-01 16:56:15 +0000476 bool IsDepCheckNeeded = isDependencyCheckNeeded();
Adam Nemet04563272015-02-01 16:56:15 +0000477
478 // We assign a consecutive id to access from different alias sets.
479 // Accesses between different groups doesn't need to be checked.
480 unsigned ASId = 1;
481 for (auto &AS : AST) {
Adam Nemet424edc62015-07-08 22:58:48 +0000482 int NumReadPtrChecks = 0;
483 int NumWritePtrChecks = 0;
484
Adam Nemet04563272015-02-01 16:56:15 +0000485 // We assign consecutive id to access from different dependence sets.
486 // Accesses within the same set don't need a runtime check.
487 unsigned RunningDepId = 1;
488 DenseMap<Value *, unsigned> DepSetId;
489
490 for (auto A : AS) {
491 Value *Ptr = A.getValue();
492 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
493 MemAccessInfo Access(Ptr, IsWrite);
494
Adam Nemet424edc62015-07-08 22:58:48 +0000495 if (IsWrite)
496 ++NumWritePtrChecks;
497 else
498 ++NumReadPtrChecks;
499
Adam Nemet04563272015-02-01 16:56:15 +0000500 if (hasComputableBounds(SE, StridesMap, Ptr) &&
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000501 // When we run after a failing dependency check we have to make sure
502 // we don't have wrapping pointers.
Adam Nemet04563272015-02-01 16:56:15 +0000503 (!ShouldCheckStride ||
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000504 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
Adam Nemet04563272015-02-01 16:56:15 +0000505 // The id of the dependence set.
506 unsigned DepId;
507
508 if (IsDepCheckNeeded) {
509 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
510 unsigned &LeaderId = DepSetId[Leader];
511 if (!LeaderId)
512 LeaderId = RunningDepId++;
513 DepId = LeaderId;
514 } else
515 // Each access has its own dependence set.
516 DepId = RunningDepId++;
517
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000518 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
Adam Nemet04563272015-02-01 16:56:15 +0000519
Adam Nemet339f42b2015-02-19 19:15:07 +0000520 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000521 } else {
Adam Nemetf10ca272015-05-18 15:36:52 +0000522 DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000523 CanDoRT = false;
524 }
525 }
526
Adam Nemet424edc62015-07-08 22:58:48 +0000527 // If we have at least two writes or one write and a read then we need to
528 // check them. But there is no need to checks if there is only one
529 // dependence set for this alias set.
530 //
531 // Note that this function computes CanDoRT and NeedRTCheck independently.
532 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
533 // for which we couldn't find the bounds but we don't actually need to emit
534 // any checks so it does not matter.
535 if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
536 NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
537 NumWritePtrChecks >= 1));
538
Adam Nemet04563272015-02-01 16:56:15 +0000539 ++ASId;
540 }
541
542 // If the pointers that we would use for the bounds comparison have different
543 // address spaces, assume the values aren't directly comparable, so we can't
544 // use them for the runtime check. We also have to assume they could
545 // overlap. In the future there should be metadata for whether address spaces
546 // are disjoint.
547 unsigned NumPointers = RtCheck.Pointers.size();
548 for (unsigned i = 0; i < NumPointers; ++i) {
549 for (unsigned j = i + 1; j < NumPointers; ++j) {
550 // Only need to check pointers between two different dependency sets.
551 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
552 continue;
553 // Only need to check pointers in the same alias set.
554 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
555 continue;
556
557 Value *PtrI = RtCheck.Pointers[i];
558 Value *PtrJ = RtCheck.Pointers[j];
559
560 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
561 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
562 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000563 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000564 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000565 return false;
566 }
567 }
568 }
569
Silviu Baranga1b6b50a2015-07-08 09:16:33 +0000570 if (NeedRTCheck && CanDoRT)
571 RtCheck.groupChecks(DepCands, IsDepCheckNeeded);
572
Adam Nemet04563272015-02-01 16:56:15 +0000573 return CanDoRT;
574}
575
576void AccessAnalysis::processMemAccesses() {
577 // We process the set twice: first we process read-write pointers, last we
578 // process read-only pointers. This allows us to skip dependence tests for
579 // read-only pointers.
580
Adam Nemet339f42b2015-02-19 19:15:07 +0000581 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000582 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet9c926572015-03-10 17:40:37 +0000583 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
Adam Nemet04563272015-02-01 16:56:15 +0000584 DEBUG({
585 for (auto A : Accesses)
586 dbgs() << "\t" << *A.getPointer() << " (" <<
587 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
588 "read-only" : "read")) << ")\n";
589 });
590
591 // The AliasSetTracker has nicely partitioned our pointers by metadata
592 // compatibility and potential for underlying-object overlap. As a result, we
593 // only need to check for potential pointer dependencies within each alias
594 // set.
595 for (auto &AS : AST) {
596 // Note that both the alias-set tracker and the alias sets themselves used
597 // linked lists internally and so the iteration order here is deterministic
598 // (matching the original instruction order within each set).
599
600 bool SetHasWrite = false;
601
602 // Map of pointers to last access encountered.
603 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
604 UnderlyingObjToAccessMap ObjToLastAccess;
605
606 // Set of access to check after all writes have been processed.
607 PtrAccessSet DeferredAccesses;
608
609 // Iterate over each alias set twice, once to process read/write pointers,
610 // and then to process read-only pointers.
611 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
612 bool UseDeferred = SetIteration > 0;
613 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
614
615 for (auto AV : AS) {
616 Value *Ptr = AV.getValue();
617
618 // For a single memory access in AliasSetTracker, Accesses may contain
619 // both read and write, and they both need to be handled for CheckDeps.
620 for (auto AC : S) {
621 if (AC.getPointer() != Ptr)
622 continue;
623
624 bool IsWrite = AC.getInt();
625
626 // If we're using the deferred access set, then it contains only
627 // reads.
628 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
629 if (UseDeferred && !IsReadOnlyPtr)
630 continue;
631 // Otherwise, the pointer must be in the PtrAccessSet, either as a
632 // read or a write.
633 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
634 S.count(MemAccessInfo(Ptr, false))) &&
635 "Alias-set pointer not in the access set?");
636
637 MemAccessInfo Access(Ptr, IsWrite);
638 DepCands.insert(Access);
639
640 // Memorize read-only pointers for later processing and skip them in
641 // the first round (they need to be checked after we have seen all
642 // write pointers). Note: we also mark pointer that are not
643 // consecutive as "read-only" pointers (so that we check
644 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
645 if (!UseDeferred && IsReadOnlyPtr) {
646 DeferredAccesses.insert(Access);
647 continue;
648 }
649
650 // If this is a write - check other reads and writes for conflicts. If
651 // this is a read only check other writes for conflicts (but only if
652 // there is no other write to the ptr - this is an optimization to
653 // catch "a[i] = a[i] + " without having to do a dependence check).
654 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
655 CheckDeps.insert(Access);
656 IsRTCheckNeeded = true;
657 }
658
659 if (IsWrite)
660 SetHasWrite = true;
661
662 // Create sets of pointers connected by a shared alias set and
663 // underlying object.
664 typedef SmallVector<Value *, 16> ValueVector;
665 ValueVector TempObjects;
Adam Nemete2b885c2015-04-23 20:09:20 +0000666
667 GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
668 DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000669 for (Value *UnderlyingObj : TempObjects) {
670 UnderlyingObjToAccessMap::iterator Prev =
671 ObjToLastAccess.find(UnderlyingObj);
672 if (Prev != ObjToLastAccess.end())
673 DepCands.unionSets(Access, Prev->second);
674
675 ObjToLastAccess[UnderlyingObj] = Access;
Adam Nemete2b885c2015-04-23 20:09:20 +0000676 DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000677 }
678 }
679 }
680 }
681 }
682}
683
Adam Nemet04563272015-02-01 16:56:15 +0000684static bool isInBoundsGep(Value *Ptr) {
685 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
686 return GEP->isInBounds();
687 return false;
688}
689
Adam Nemetc4866d22015-06-26 17:25:43 +0000690/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
691/// i.e. monotonically increasing/decreasing.
692static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
693 ScalarEvolution *SE, const Loop *L) {
694 // FIXME: This should probably only return true for NUW.
695 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
696 return true;
697
698 // Scalar evolution does not propagate the non-wrapping flags to values that
699 // are derived from a non-wrapping induction variable because non-wrapping
700 // could be flow-sensitive.
701 //
702 // Look through the potentially overflowing instruction to try to prove
703 // non-wrapping for the *specific* value of Ptr.
704
705 // The arithmetic implied by an inbounds GEP can't overflow.
706 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
707 if (!GEP || !GEP->isInBounds())
708 return false;
709
710 // Make sure there is only one non-const index and analyze that.
711 Value *NonConstIndex = nullptr;
712 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
713 if (!isa<ConstantInt>(*Index)) {
714 if (NonConstIndex)
715 return false;
716 NonConstIndex = *Index;
717 }
718 if (!NonConstIndex)
719 // The recurrence is on the pointer, ignore for now.
720 return false;
721
722 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
723 // AddRec using a NSW operation.
724 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
725 if (OBO->hasNoSignedWrap() &&
726 // Assume constant for other the operand so that the AddRec can be
727 // easily found.
728 isa<ConstantInt>(OBO->getOperand(1))) {
729 auto *OpScev = SE->getSCEV(OBO->getOperand(0));
730
731 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
732 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
733 }
734
735 return false;
736}
737
Adam Nemet04563272015-02-01 16:56:15 +0000738/// \brief Check whether the access through \p Ptr has a constant stride.
Hao Liu32c05392015-06-08 06:39:56 +0000739int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
740 const ValueToValueMap &StridesMap) {
Adam Nemet04563272015-02-01 16:56:15 +0000741 const Type *Ty = Ptr->getType();
742 assert(Ty->isPointerTy() && "Unexpected non-ptr");
743
744 // Make sure that the pointer does not point to aggregate types.
745 const PointerType *PtrTy = cast<PointerType>(Ty);
746 if (PtrTy->getElementType()->isAggregateType()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000747 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
748 << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000749 return 0;
750 }
751
752 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
753
754 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
755 if (!AR) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000756 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
Adam Nemet04d41632015-02-19 19:14:34 +0000757 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000758 return 0;
759 }
760
761 // The accesss function must stride over the innermost loop.
762 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000763 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Adam Nemet04d41632015-02-19 19:14:34 +0000764 *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000765 }
766
767 // The address calculation must not wrap. Otherwise, a dependence could be
768 // inverted.
769 // An inbounds getelementptr that is a AddRec with a unit stride
770 // cannot wrap per definition. The unit stride requirement is checked later.
771 // An getelementptr without an inbounds attribute and unit stride would have
772 // to access the pointer value "0" which is undefined behavior in address
773 // space 0, therefore we can also vectorize this case.
774 bool IsInBoundsGEP = isInBoundsGep(Ptr);
Adam Nemetc4866d22015-06-26 17:25:43 +0000775 bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
Adam Nemet04563272015-02-01 16:56:15 +0000776 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
777 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000778 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
Adam Nemet04d41632015-02-19 19:14:34 +0000779 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000780 return 0;
781 }
782
783 // Check the step is constant.
784 const SCEV *Step = AR->getStepRecurrence(*SE);
785
786 // Calculate the pointer stride and check if it is consecutive.
787 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
788 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000789 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Adam Nemet04d41632015-02-19 19:14:34 +0000790 " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000791 return 0;
792 }
793
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000794 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
795 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
Adam Nemet04563272015-02-01 16:56:15 +0000796 const APInt &APStepVal = C->getValue()->getValue();
797
798 // Huge step value - give up.
799 if (APStepVal.getBitWidth() > 64)
800 return 0;
801
802 int64_t StepVal = APStepVal.getSExtValue();
803
804 // Strided access.
805 int64_t Stride = StepVal / Size;
806 int64_t Rem = StepVal % Size;
807 if (Rem)
808 return 0;
809
810 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
811 // know we can't "wrap around the address space". In case of address space
812 // zero we know that this won't happen without triggering undefined behavior.
813 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
814 Stride != 1 && Stride != -1)
815 return 0;
816
817 return Stride;
818}
819
Adam Nemet9c926572015-03-10 17:40:37 +0000820bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
821 switch (Type) {
822 case NoDep:
823 case Forward:
824 case BackwardVectorizable:
825 return true;
826
827 case Unknown:
828 case ForwardButPreventsForwarding:
829 case Backward:
830 case BackwardVectorizableButPreventsForwarding:
831 return false;
832 }
David Majnemerd388e932015-03-10 20:23:29 +0000833 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000834}
835
836bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
837 switch (Type) {
838 case NoDep:
839 case Forward:
840 return false;
841
842 case BackwardVectorizable:
843 case Unknown:
844 case ForwardButPreventsForwarding:
845 case Backward:
846 case BackwardVectorizableButPreventsForwarding:
847 return true;
848 }
David Majnemerd388e932015-03-10 20:23:29 +0000849 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000850}
851
852bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
853 switch (Type) {
854 case NoDep:
855 case Forward:
856 case ForwardButPreventsForwarding:
857 return false;
858
859 case Unknown:
860 case BackwardVectorizable:
861 case Backward:
862 case BackwardVectorizableButPreventsForwarding:
863 return true;
864 }
David Majnemerd388e932015-03-10 20:23:29 +0000865 llvm_unreachable("unexpected DepType!");
Adam Nemet9c926572015-03-10 17:40:37 +0000866}
867
Adam Nemet04563272015-02-01 16:56:15 +0000868bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
869 unsigned TypeByteSize) {
870 // If loads occur at a distance that is not a multiple of a feasible vector
871 // factor store-load forwarding does not take place.
872 // Positive dependences might cause troubles because vectorizing them might
873 // prevent store-load forwarding making vectorized code run a lot slower.
874 // a[i] = a[i-3] ^ a[i-8];
875 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
876 // hence on your typical architecture store-load forwarding does not take
877 // place. Vectorizing in such cases does not make sense.
878 // Store-load forwarding distance.
879 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
880 // Maximum vector factor.
Adam Nemetf219c642015-02-19 19:14:52 +0000881 unsigned MaxVFWithoutSLForwardIssues =
882 VectorizerParams::MaxVectorWidth * TypeByteSize;
Adam Nemet04d41632015-02-19 19:14:34 +0000883 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
Adam Nemet04563272015-02-01 16:56:15 +0000884 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
885
886 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
887 vf *= 2) {
888 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
889 MaxVFWithoutSLForwardIssues = (vf >>=1);
890 break;
891 }
892 }
893
Adam Nemet04d41632015-02-19 19:14:34 +0000894 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000895 DEBUG(dbgs() << "LAA: Distance " << Distance <<
Adam Nemet04d41632015-02-19 19:14:34 +0000896 " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +0000897 return true;
898 }
899
900 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +0000901 MaxVFWithoutSLForwardIssues !=
902 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +0000903 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
904 return false;
905}
906
Hao Liu751004a2015-06-08 04:48:37 +0000907/// \brief Check the dependence for two accesses with the same stride \p Stride.
908/// \p Distance is the positive distance and \p TypeByteSize is type size in
909/// bytes.
910///
911/// \returns true if they are independent.
912static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
913 unsigned TypeByteSize) {
914 assert(Stride > 1 && "The stride must be greater than 1");
915 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
916 assert(Distance > 0 && "The distance must be non-zero");
917
918 // Skip if the distance is not multiple of type byte size.
919 if (Distance % TypeByteSize)
920 return false;
921
922 unsigned ScaledDist = Distance / TypeByteSize;
923
924 // No dependence if the scaled distance is not multiple of the stride.
925 // E.g.
926 // for (i = 0; i < 1024 ; i += 4)
927 // A[i+2] = A[i] + 1;
928 //
929 // Two accesses in memory (scaled distance is 2, stride is 4):
930 // | A[0] | | | | A[4] | | | |
931 // | | | A[2] | | | | A[6] | |
932 //
933 // E.g.
934 // for (i = 0; i < 1024 ; i += 3)
935 // A[i+4] = A[i] + 1;
936 //
937 // Two accesses in memory (scaled distance is 4, stride is 3):
938 // | A[0] | | | A[3] | | | A[6] | | |
939 // | | | | | A[4] | | | A[7] | |
940 return ScaledDist % Stride;
941}
942
Adam Nemet9c926572015-03-10 17:40:37 +0000943MemoryDepChecker::Dependence::DepType
944MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
945 const MemAccessInfo &B, unsigned BIdx,
946 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000947 assert (AIdx < BIdx && "Must pass arguments in program order");
948
949 Value *APtr = A.getPointer();
950 Value *BPtr = B.getPointer();
951 bool AIsWrite = A.getInt();
952 bool BIsWrite = B.getInt();
953
954 // Two reads are independent.
955 if (!AIsWrite && !BIsWrite)
Adam Nemet9c926572015-03-10 17:40:37 +0000956 return Dependence::NoDep;
Adam Nemet04563272015-02-01 16:56:15 +0000957
958 // We cannot check pointers in different address spaces.
959 if (APtr->getType()->getPointerAddressSpace() !=
960 BPtr->getType()->getPointerAddressSpace())
Adam Nemet9c926572015-03-10 17:40:37 +0000961 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +0000962
963 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
964 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
965
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000966 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
967 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
Adam Nemet04563272015-02-01 16:56:15 +0000968
969 const SCEV *Src = AScev;
970 const SCEV *Sink = BScev;
971
972 // If the induction step is negative we have to invert source and sink of the
973 // dependence.
974 if (StrideAPtr < 0) {
975 //Src = BScev;
976 //Sink = AScev;
977 std::swap(APtr, BPtr);
978 std::swap(Src, Sink);
979 std::swap(AIsWrite, BIsWrite);
980 std::swap(AIdx, BIdx);
981 std::swap(StrideAPtr, StrideBPtr);
982 }
983
984 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
985
Adam Nemet339f42b2015-02-19 19:15:07 +0000986 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Adam Nemet04d41632015-02-19 19:14:34 +0000987 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +0000988 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Adam Nemet04d41632015-02-19 19:14:34 +0000989 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000990
991 // Need consecutive accesses. We don't want to vectorize
992 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
993 // the address space.
994 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
995 DEBUG(dbgs() << "Non-consecutive pointer access\n");
Adam Nemet9c926572015-03-10 17:40:37 +0000996 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +0000997 }
998
999 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1000 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001001 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +00001002 ShouldRetryWithRuntimeCheck = true;
Adam Nemet9c926572015-03-10 17:40:37 +00001003 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001004 }
1005
1006 Type *ATy = APtr->getType()->getPointerElementType();
1007 Type *BTy = BPtr->getType()->getPointerElementType();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001008 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1009 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
Adam Nemet04563272015-02-01 16:56:15 +00001010
1011 // Negative distances are not plausible dependencies.
1012 const APInt &Val = C->getValue()->getValue();
1013 if (Val.isNegative()) {
1014 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1015 if (IsTrueDataDependence &&
1016 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1017 ATy != BTy))
Adam Nemet9c926572015-03-10 17:40:37 +00001018 return Dependence::ForwardButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001019
Adam Nemet339f42b2015-02-19 19:15:07 +00001020 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001021 return Dependence::Forward;
Adam Nemet04563272015-02-01 16:56:15 +00001022 }
1023
1024 // Write to the same location with the same size.
1025 // Could be improved to assert type sizes are the same (i32 == float, etc).
1026 if (Val == 0) {
1027 if (ATy == BTy)
Adam Nemet9c926572015-03-10 17:40:37 +00001028 return Dependence::NoDep;
Adam Nemet339f42b2015-02-19 19:15:07 +00001029 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001030 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001031 }
1032
1033 assert(Val.isStrictlyPositive() && "Expect a positive value");
1034
Adam Nemet04563272015-02-01 16:56:15 +00001035 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +00001036 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +00001037 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet9c926572015-03-10 17:40:37 +00001038 return Dependence::Unknown;
Adam Nemet04563272015-02-01 16:56:15 +00001039 }
1040
1041 unsigned Distance = (unsigned) Val.getZExtValue();
1042
Hao Liu751004a2015-06-08 04:48:37 +00001043 unsigned Stride = std::abs(StrideAPtr);
1044 if (Stride > 1 &&
Adam Nemet0131a562015-07-08 18:47:38 +00001045 areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1046 DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
Hao Liu751004a2015-06-08 04:48:37 +00001047 return Dependence::NoDep;
Adam Nemet0131a562015-07-08 18:47:38 +00001048 }
Hao Liu751004a2015-06-08 04:48:37 +00001049
Adam Nemet04563272015-02-01 16:56:15 +00001050 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +00001051 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1052 VectorizerParams::VectorizationFactor : 1);
1053 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1054 VectorizerParams::VectorizationInterleave : 1);
Hao Liu751004a2015-06-08 04:48:37 +00001055 // The minimum number of iterations for a vectorized/unrolled version.
1056 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
Adam Nemet04563272015-02-01 16:56:15 +00001057
Hao Liu751004a2015-06-08 04:48:37 +00001058 // It's not vectorizable if the distance is smaller than the minimum distance
1059 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1060 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1061 // TypeByteSize (No need to plus the last gap distance).
1062 //
1063 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1064 // foo(int *A) {
1065 // int *B = (int *)((char *)A + 14);
1066 // for (i = 0 ; i < 1024 ; i += 2)
1067 // B[i] = A[i] + 1;
1068 // }
1069 //
1070 // Two accesses in memory (stride is 2):
1071 // | A[0] | | A[2] | | A[4] | | A[6] | |
1072 // | B[0] | | B[2] | | B[4] |
1073 //
1074 // Distance needs for vectorizing iterations except the last iteration:
1075 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1076 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1077 //
1078 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1079 // 12, which is less than distance.
1080 //
1081 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1082 // the minimum distance needed is 28, which is greater than distance. It is
1083 // not safe to do vectorization.
1084 unsigned MinDistanceNeeded =
1085 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1086 if (MinDistanceNeeded > Distance) {
1087 DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1088 << '\n');
1089 return Dependence::Backward;
1090 }
1091
1092 // Unsafe if the minimum distance needed is greater than max safe distance.
1093 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1094 DEBUG(dbgs() << "LAA: Failure because it needs at least "
1095 << MinDistanceNeeded << " size in bytes");
Adam Nemet9c926572015-03-10 17:40:37 +00001096 return Dependence::Backward;
Adam Nemet04563272015-02-01 16:56:15 +00001097 }
1098
Adam Nemet9cc0c392015-02-26 17:58:48 +00001099 // Positive distance bigger than max vectorization factor.
Hao Liu751004a2015-06-08 04:48:37 +00001100 // FIXME: Should use max factor instead of max distance in bytes, which could
1101 // not handle different types.
1102 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1103 // void foo (int *A, char *B) {
1104 // for (unsigned i = 0; i < 1024; i++) {
1105 // A[i+2] = A[i] + 1;
1106 // B[i+2] = B[i] + 1;
1107 // }
1108 // }
1109 //
1110 // This case is currently unsafe according to the max safe distance. If we
1111 // analyze the two accesses on array B, the max safe dependence distance
1112 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1113 // is 8, which is less than 2 and forbidden vectorization, But actually
1114 // both A and B could be vectorized by 2 iterations.
1115 MaxSafeDepDistBytes =
1116 Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
Adam Nemet04563272015-02-01 16:56:15 +00001117
1118 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1119 if (IsTrueDataDependence &&
1120 couldPreventStoreLoadForward(Distance, TypeByteSize))
Adam Nemet9c926572015-03-10 17:40:37 +00001121 return Dependence::BackwardVectorizableButPreventsForwarding;
Adam Nemet04563272015-02-01 16:56:15 +00001122
Hao Liu751004a2015-06-08 04:48:37 +00001123 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1124 << " with max VF = "
1125 << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
Adam Nemet04563272015-02-01 16:56:15 +00001126
Adam Nemet9c926572015-03-10 17:40:37 +00001127 return Dependence::BackwardVectorizable;
Adam Nemet04563272015-02-01 16:56:15 +00001128}
1129
Adam Nemetdee666b2015-03-10 17:40:34 +00001130bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
Adam Nemet04563272015-02-01 16:56:15 +00001131 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001132 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001133
1134 MaxSafeDepDistBytes = -1U;
1135 while (!CheckDeps.empty()) {
1136 MemAccessInfo CurAccess = *CheckDeps.begin();
1137
1138 // Get the relevant memory access set.
1139 EquivalenceClasses<MemAccessInfo>::iterator I =
1140 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1141
1142 // Check accesses within this set.
1143 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1144 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1145
1146 // Check every access pair.
1147 while (AI != AE) {
1148 CheckDeps.erase(*AI);
1149 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1150 while (OI != AE) {
1151 // Check every accessing instruction pair in program order.
1152 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1153 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1154 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1155 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
Adam Nemet9c926572015-03-10 17:40:37 +00001156 auto A = std::make_pair(&*AI, *I1);
1157 auto B = std::make_pair(&*OI, *I2);
1158
1159 assert(*I1 != *I2);
1160 if (*I1 > *I2)
1161 std::swap(A, B);
1162
1163 Dependence::DepType Type =
1164 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1165 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1166
1167 // Gather dependences unless we accumulated MaxInterestingDependence
1168 // dependences. In that case return as soon as we find the first
1169 // unsafe dependence. This puts a limit on this quadratic
1170 // algorithm.
1171 if (RecordInterestingDependences) {
1172 if (Dependence::isInterestingDependence(Type))
1173 InterestingDependences.push_back(
1174 Dependence(A.second, B.second, Type));
1175
1176 if (InterestingDependences.size() >= MaxInterestingDependence) {
1177 RecordInterestingDependences = false;
1178 InterestingDependences.clear();
1179 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1180 }
1181 }
1182 if (!RecordInterestingDependences && !SafeForVectorization)
Adam Nemet04563272015-02-01 16:56:15 +00001183 return false;
1184 }
1185 ++OI;
1186 }
1187 AI++;
1188 }
1189 }
Adam Nemet9c926572015-03-10 17:40:37 +00001190
1191 DEBUG(dbgs() << "Total Interesting Dependences: "
1192 << InterestingDependences.size() << "\n");
1193 return SafeForVectorization;
Adam Nemet04563272015-02-01 16:56:15 +00001194}
1195
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001196SmallVector<Instruction *, 4>
1197MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1198 MemAccessInfo Access(Ptr, isWrite);
1199 auto &IndexVector = Accesses.find(Access)->second;
1200
1201 SmallVector<Instruction *, 4> Insts;
1202 std::transform(IndexVector.begin(), IndexVector.end(),
1203 std::back_inserter(Insts),
1204 [&](unsigned Idx) { return this->InstMap[Idx]; });
1205 return Insts;
1206}
1207
Adam Nemet58913d62015-03-10 17:40:43 +00001208const char *MemoryDepChecker::Dependence::DepName[] = {
1209 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1210 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1211
1212void MemoryDepChecker::Dependence::print(
1213 raw_ostream &OS, unsigned Depth,
1214 const SmallVectorImpl<Instruction *> &Instrs) const {
1215 OS.indent(Depth) << DepName[Type] << ":\n";
1216 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1217 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1218}
1219
Adam Nemet929c38e2015-02-19 19:15:10 +00001220bool LoopAccessInfo::canAnalyzeLoop() {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001221 // We need to have a loop header.
1222 DEBUG(dbgs() << "LAA: Found a loop: " <<
1223 TheLoop->getHeader()->getName() << '\n');
1224
Adam Nemet929c38e2015-02-19 19:15:10 +00001225 // We can only analyze innermost loops.
1226 if (!TheLoop->empty()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001227 DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
Adam Nemet2bd6e982015-02-19 19:15:15 +00001228 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +00001229 return false;
1230 }
1231
1232 // We must have a single backedge.
1233 if (TheLoop->getNumBackEdges() != 1) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001234 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001235 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001236 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001237 "loop control flow is not understood by analyzer");
1238 return false;
1239 }
1240
1241 // We must have a single exiting block.
1242 if (!TheLoop->getExitingBlock()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001243 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001244 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001245 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001246 "loop control flow is not understood by analyzer");
1247 return false;
1248 }
1249
1250 // We only handle bottom-tested loops, i.e. loop in which the condition is
1251 // checked at the end of each iteration. With that we can assume that all
1252 // instructions in the loop are executed the same number of times.
1253 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
Adam Nemet8dcb3b62015-04-17 22:43:10 +00001254 DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
Adam Nemet929c38e2015-02-19 19:15:10 +00001255 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001256 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001257 "loop control flow is not understood by analyzer");
1258 return false;
1259 }
1260
Adam Nemet929c38e2015-02-19 19:15:10 +00001261 // ScalarEvolution needs to be able to find the exit count.
1262 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
1263 if (ExitCount == SE->getCouldNotCompute()) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001264 emitAnalysis(LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +00001265 "could not determine number of loop iterations");
1266 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1267 return false;
1268 }
1269
1270 return true;
1271}
1272
Adam Nemet8bc61df2015-02-24 00:41:59 +00001273void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +00001274
1275 typedef SmallVector<Value*, 16> ValueVector;
1276 typedef SmallPtrSet<Value*, 16> ValueSet;
1277
1278 // Holds the Load and Store *instructions*.
1279 ValueVector Loads;
1280 ValueVector Stores;
1281
1282 // Holds all the different accesses in the loop.
1283 unsigned NumReads = 0;
1284 unsigned NumReadWrites = 0;
1285
1286 PtrRtCheck.Pointers.clear();
1287 PtrRtCheck.Need = false;
1288
1289 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemet04563272015-02-01 16:56:15 +00001290
1291 // For each block.
1292 for (Loop::block_iterator bb = TheLoop->block_begin(),
1293 be = TheLoop->block_end(); bb != be; ++bb) {
1294
1295 // Scan the BB and collect legal loads and stores.
1296 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1297 ++it) {
1298
1299 // If this is a load, save it. If this instruction can read from memory
1300 // but is not a load, then we quit. Notice that we don't handle function
1301 // calls that read or write.
1302 if (it->mayReadFromMemory()) {
1303 // Many math library functions read the rounding mode. We will only
1304 // vectorize a loop if it contains known function calls that don't set
1305 // the flag. Therefore, it is safe to ignore this read from memory.
1306 CallInst *Call = dyn_cast<CallInst>(it);
1307 if (Call && getIntrinsicIDForCall(Call, TLI))
1308 continue;
1309
Michael Zolotukhin9b3cf602015-03-17 19:46:50 +00001310 // If the function has an explicit vectorized counterpart, we can safely
1311 // assume that it can be vectorized.
1312 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1313 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1314 continue;
1315
Adam Nemet04563272015-02-01 16:56:15 +00001316 LoadInst *Ld = dyn_cast<LoadInst>(it);
1317 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001318 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +00001319 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +00001320 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001321 CanVecMem = false;
1322 return;
Adam Nemet04563272015-02-01 16:56:15 +00001323 }
1324 NumLoads++;
1325 Loads.push_back(Ld);
1326 DepChecker.addAccess(Ld);
1327 continue;
1328 }
1329
1330 // Save 'store' instructions. Abort if other instructions write to memory.
1331 if (it->mayWriteToMemory()) {
1332 StoreInst *St = dyn_cast<StoreInst>(it);
1333 if (!St) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001334 emitAnalysis(LoopAccessReport(it) <<
Adam Nemet04d41632015-02-19 19:14:34 +00001335 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +00001336 CanVecMem = false;
1337 return;
Adam Nemet04563272015-02-01 16:56:15 +00001338 }
1339 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001340 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +00001341 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +00001342 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001343 CanVecMem = false;
1344 return;
Adam Nemet04563272015-02-01 16:56:15 +00001345 }
1346 NumStores++;
1347 Stores.push_back(St);
1348 DepChecker.addAccess(St);
1349 }
1350 } // Next instr.
1351 } // Next block.
1352
1353 // Now we have two lists that hold the loads and the stores.
1354 // Next, we find the pointers that they use.
1355
1356 // Check if we see any stores. If there are no stores, then we don't
1357 // care if the pointers are *restrict*.
1358 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001359 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001360 CanVecMem = true;
1361 return;
Adam Nemet04563272015-02-01 16:56:15 +00001362 }
1363
Adam Nemetdee666b2015-03-10 17:40:34 +00001364 MemoryDepChecker::DepCandidates DependentAccesses;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001365 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
Adam Nemete2b885c2015-04-23 20:09:20 +00001366 AA, LI, DependentAccesses);
Adam Nemet04563272015-02-01 16:56:15 +00001367
1368 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1369 // multiple times on the same object. If the ptr is accessed twice, once
1370 // for read and once for write, it will only appear once (on the write
1371 // list). This is okay, since we are going to check for conflicts between
1372 // writes and between reads and writes, but not between reads and reads.
1373 ValueSet Seen;
1374
1375 ValueVector::iterator I, IE;
1376 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1377 StoreInst *ST = cast<StoreInst>(*I);
1378 Value* Ptr = ST->getPointerOperand();
Adam Nemetce482502015-04-08 17:48:40 +00001379 // Check for store to loop invariant address.
1380 StoreToLoopInvariantAddress |= isUniform(Ptr);
Adam Nemet04563272015-02-01 16:56:15 +00001381 // If we did *not* see this pointer before, insert it to the read-write
1382 // list. At this phase it is only a 'write' list.
1383 if (Seen.insert(Ptr).second) {
1384 ++NumReadWrites;
1385
Chandler Carruthac80dc72015-06-17 07:18:54 +00001386 MemoryLocation Loc = MemoryLocation::get(ST);
Adam Nemet04563272015-02-01 16:56:15 +00001387 // The TBAA metadata could have a control dependency on the predication
1388 // condition, so we cannot rely on it when determining whether or not we
1389 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001390 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001391 Loc.AATags.TBAA = nullptr;
1392
1393 Accesses.addStore(Loc);
1394 }
1395 }
1396
1397 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001398 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001399 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001400 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001401 CanVecMem = true;
1402 return;
Adam Nemet04563272015-02-01 16:56:15 +00001403 }
1404
1405 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1406 LoadInst *LD = cast<LoadInst>(*I);
1407 Value* Ptr = LD->getPointerOperand();
1408 // If we did *not* see this pointer before, insert it to the
1409 // read list. If we *did* see it before, then it is already in
1410 // the read-write list. This allows us to vectorize expressions
1411 // such as A[i] += x; Because the address of A[i] is a read-write
1412 // pointer. This only works if the index of A[i] is consecutive.
1413 // If the address of i is unknown (for example A[B[i]]) then we may
1414 // read a few words, modify, and write a few words, and some of the
1415 // words may be written to the same address.
1416 bool IsReadOnlyPtr = false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001417 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
Adam Nemet04563272015-02-01 16:56:15 +00001418 ++NumReads;
1419 IsReadOnlyPtr = true;
1420 }
1421
Chandler Carruthac80dc72015-06-17 07:18:54 +00001422 MemoryLocation Loc = MemoryLocation::get(LD);
Adam Nemet04563272015-02-01 16:56:15 +00001423 // The TBAA metadata could have a control dependency on the predication
1424 // condition, so we cannot rely on it when determining whether or not we
1425 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001426 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001427 Loc.AATags.TBAA = nullptr;
1428
1429 Accesses.addLoad(Loc, IsReadOnlyPtr);
1430 }
1431
1432 // If we write (or read-write) to a single destination and there are no
1433 // other reads in this loop then is it safe to vectorize.
1434 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001435 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001436 CanVecMem = true;
1437 return;
Adam Nemet04563272015-02-01 16:56:15 +00001438 }
1439
1440 // Build dependence sets and check whether we need a runtime pointer bounds
1441 // check.
1442 Accesses.buildDependenceSets();
Adam Nemet04563272015-02-01 16:56:15 +00001443
1444 // Find pointers with computable bounds. We are going to use this information
1445 // to place a runtime bound check.
Silviu Baranga98a13712015-06-08 10:27:06 +00001446 bool NeedRTCheck;
1447 bool CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck,
1448 NeedRTCheck, SE,
1449 TheLoop, Strides);
Adam Nemet04563272015-02-01 16:56:15 +00001450
Silviu Baranga98a13712015-06-08 10:27:06 +00001451 DEBUG(dbgs() << "LAA: We need to do "
1452 << PtrRtCheck.getNumberOfChecks(nullptr)
1453 << " pointer comparisons.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001454
Adam Nemet949e91a2015-03-10 19:12:41 +00001455 // Check that we found the bounds for the pointer.
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001456 if (CanDoRT)
Adam Nemet339f42b2015-02-19 19:15:07 +00001457 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001458 else if (NeedRTCheck) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001459 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemet339f42b2015-02-19 19:15:07 +00001460 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
Adam Nemet04d41632015-02-19 19:14:34 +00001461 "the array bounds.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001462 PtrRtCheck.reset();
Adam Nemet436018c2015-02-19 19:15:00 +00001463 CanVecMem = false;
1464 return;
Adam Nemet04563272015-02-01 16:56:15 +00001465 }
1466
1467 PtrRtCheck.Need = NeedRTCheck;
1468
Adam Nemet436018c2015-02-19 19:15:00 +00001469 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001470 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001471 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Adam Nemet04563272015-02-01 16:56:15 +00001472 CanVecMem = DepChecker.areDepsSafe(
1473 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1474 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1475
1476 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001477 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001478 NeedRTCheck = true;
1479
1480 // Clear the dependency checks. We assume they are not needed.
Adam Nemetdf3dc5b2015-05-18 15:37:03 +00001481 Accesses.resetDepChecks(DepChecker);
Adam Nemet04563272015-02-01 16:56:15 +00001482
1483 PtrRtCheck.reset();
1484 PtrRtCheck.Need = true;
1485
Silviu Baranga98a13712015-06-08 10:27:06 +00001486 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NeedRTCheck, SE,
Adam Nemet04563272015-02-01 16:56:15 +00001487 TheLoop, Strides, true);
Silviu Baranga98a13712015-06-08 10:27:06 +00001488
Adam Nemet949e91a2015-03-10 19:12:41 +00001489 // Check that we found the bounds for the pointer.
Silviu Baranga98a13712015-06-08 10:27:06 +00001490 if (NeedRTCheck && !CanDoRT) {
Adam Nemetb6dc76f2015-03-10 18:54:19 +00001491 emitAnalysis(LoopAccessReport()
1492 << "cannot check memory dependencies at runtime");
1493 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1494 PtrRtCheck.reset();
1495 CanVecMem = false;
1496 return;
1497 }
1498
Adam Nemet04563272015-02-01 16:56:15 +00001499 CanVecMem = true;
1500 }
1501 }
1502
Adam Nemet4bb90a72015-03-10 21:47:39 +00001503 if (CanVecMem)
1504 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
1505 << (NeedRTCheck ? "" : " don't")
1506 << " need a runtime memory check.\n");
1507 else {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001508 emitAnalysis(LoopAccessReport() <<
Adam Nemet04d41632015-02-19 19:14:34 +00001509 "unsafe dependent memory operations in loop");
Adam Nemet4bb90a72015-03-10 21:47:39 +00001510 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1511 }
Adam Nemet04563272015-02-01 16:56:15 +00001512}
1513
Adam Nemet01abb2c2015-02-18 03:43:19 +00001514bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1515 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001516 assert(TheLoop->contains(BB) && "Unknown block used");
1517
1518 // Blocks that do not dominate the latch need predication.
1519 BasicBlock* Latch = TheLoop->getLoopLatch();
1520 return !DT->dominates(BB, Latch);
1521}
1522
Adam Nemet2bd6e982015-02-19 19:15:15 +00001523void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001524 assert(!Report && "Multiple reports generated");
1525 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001526}
1527
Adam Nemet57ac7662015-02-19 19:15:21 +00001528bool LoopAccessInfo::isUniform(Value *V) const {
Adam Nemet04563272015-02-01 16:56:15 +00001529 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1530}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001531
1532// FIXME: this function is currently a duplicate of the one in
1533// LoopVectorize.cpp.
1534static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1535 Instruction *Loc) {
1536 if (FirstInst)
1537 return FirstInst;
1538 if (Instruction *I = dyn_cast<Instruction>(V))
1539 return I->getParent() == Loc->getParent() ? I : nullptr;
1540 return nullptr;
1541}
1542
Adam Nemetec1e2bb2015-03-10 18:54:26 +00001543std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
1544 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
Adam Nemet7206d7a2015-02-06 18:31:04 +00001545 if (!PtrRtCheck.Need)
Adam Nemet90fec842015-04-02 17:51:57 +00001546 return std::make_pair(nullptr, nullptr);
Adam Nemet7206d7a2015-02-06 18:31:04 +00001547
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001548 SmallVector<TrackingVH<Value>, 2> Starts;
1549 SmallVector<TrackingVH<Value>, 2> Ends;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001550
1551 LLVMContext &Ctx = Loc->getContext();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001552 SCEVExpander Exp(*SE, DL, "induction");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001553 Instruction *FirstInst = nullptr;
1554
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001555 for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
1556 const RuntimePointerCheck::CheckingPtrGroup &CG =
1557 PtrRtCheck.CheckingGroups[i];
1558 Value *Ptr = PtrRtCheck.Pointers[CG.Members[0]];
Adam Nemet7206d7a2015-02-06 18:31:04 +00001559 const SCEV *Sc = SE->getSCEV(Ptr);
1560
1561 if (SE->isLoopInvariant(Sc, TheLoop)) {
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001562 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1563 << "\n");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001564 Starts.push_back(Ptr);
1565 Ends.push_back(Ptr);
1566 } else {
Adam Nemet7206d7a2015-02-06 18:31:04 +00001567 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1568
1569 // Use this type for pointer arithmetic.
1570 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001571 Value *Start = nullptr, *End = nullptr;
Adam Nemet7206d7a2015-02-06 18:31:04 +00001572
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001573 DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1574 Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc);
1575 End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc);
1576 DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001577 Starts.push_back(Start);
1578 Ends.push_back(End);
1579 }
1580 }
1581
1582 IRBuilder<> ChkBuilder(Loc);
1583 // Our instructions might fold to a constant.
1584 Value *MemoryRuntimeCheck = nullptr;
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001585 for (unsigned i = 0; i < PtrRtCheck.CheckingGroups.size(); ++i) {
1586 for (unsigned j = i + 1; j < PtrRtCheck.CheckingGroups.size(); ++j) {
1587 const RuntimePointerCheck::CheckingPtrGroup &CGI =
1588 PtrRtCheck.CheckingGroups[i];
1589 const RuntimePointerCheck::CheckingPtrGroup &CGJ =
1590 PtrRtCheck.CheckingGroups[j];
1591
1592 if (!PtrRtCheck.needsChecking(CGI, CGJ, PtrPartition))
Adam Nemet7206d7a2015-02-06 18:31:04 +00001593 continue;
1594
1595 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1596 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1597
1598 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1599 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1600 "Trying to bounds check pointers with different address spaces");
1601
1602 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1603 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1604
1605 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1606 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1607 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1608 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1609
1610 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1611 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1612 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1613 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1614 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1615 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1616 if (MemoryRuntimeCheck) {
1617 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1618 "conflict.rdx");
1619 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1620 }
1621 MemoryRuntimeCheck = IsConflict;
1622 }
1623 }
1624
Adam Nemet90fec842015-04-02 17:51:57 +00001625 if (!MemoryRuntimeCheck)
1626 return std::make_pair(nullptr, nullptr);
1627
Adam Nemet7206d7a2015-02-06 18:31:04 +00001628 // We have to do this trickery because the IRBuilder might fold the check to a
1629 // constant expression in which case there is no Instruction anchored in a
1630 // the block.
1631 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1632 ConstantInt::getTrue(Ctx));
1633 ChkBuilder.Insert(Check, "memcheck.conflict");
1634 FirstInst = getFirstInst(FirstInst, Check, Loc);
1635 return std::make_pair(FirstInst, Check);
1636}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001637
1638LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001639 const DataLayout &DL,
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001640 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemete2b885c2015-04-23 20:09:20 +00001641 DominatorTree *DT, LoopInfo *LI,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001642 const ValueToValueMap &Strides)
Silviu Baranga1b6b50a2015-07-08 09:16:33 +00001643 : PtrRtCheck(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL), TLI(TLI),
1644 AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
Adam Nemetce482502015-04-08 17:48:40 +00001645 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1646 StoreToLoopInvariantAddress(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001647 if (canAnalyzeLoop())
1648 analyzeLoop(Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001649}
1650
Adam Nemete91cc6e2015-02-19 19:15:19 +00001651void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1652 if (CanVecMem) {
Adam Nemet26da8e92015-04-14 01:12:55 +00001653 if (PtrRtCheck.Need)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001654 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
Adam Nemet26da8e92015-04-14 01:12:55 +00001655 else
1656 OS.indent(Depth) << "Memory dependences are safe\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001657 }
1658
1659 if (Report)
1660 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1661
Adam Nemet58913d62015-03-10 17:40:43 +00001662 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
1663 OS.indent(Depth) << "Interesting Dependences:\n";
1664 for (auto &Dep : *InterestingDependences) {
1665 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1666 OS << "\n";
1667 }
1668 } else
1669 OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001670
1671 // List the pair of accesses need run-time checks to prove independence.
1672 PtrRtCheck.print(OS, Depth);
1673 OS << "\n";
Adam Nemetc3384322015-05-18 15:36:57 +00001674
1675 OS.indent(Depth) << "Store to invariant address was "
1676 << (StoreToLoopInvariantAddress ? "" : "not ")
1677 << "found in loop.\n";
Adam Nemete91cc6e2015-02-19 19:15:19 +00001678}
1679
Adam Nemet8bc61df2015-02-24 00:41:59 +00001680const LoopAccessInfo &
1681LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001682 auto &LAI = LoopAccessInfoMap[L];
1683
1684#ifndef NDEBUG
1685 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1686 "Symbolic strides changed for loop");
1687#endif
1688
1689 if (!LAI) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001690 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
Adam Nemete2b885c2015-04-23 20:09:20 +00001691 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
1692 Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001693#ifndef NDEBUG
1694 LAI->NumSymbolicStrides = Strides.size();
1695#endif
1696 }
1697 return *LAI.get();
1698}
1699
Adam Nemete91cc6e2015-02-19 19:15:19 +00001700void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1701 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1702
Adam Nemete91cc6e2015-02-19 19:15:19 +00001703 ValueToValueMap NoSymbolicStrides;
1704
1705 for (Loop *TopLevelLoop : *LI)
1706 for (Loop *L : depth_first(TopLevelLoop)) {
1707 OS.indent(2) << L->getHeader()->getName() << ":\n";
1708 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1709 LAI.print(OS, 4);
1710 }
1711}
1712
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001713bool LoopAccessAnalysis::runOnFunction(Function &F) {
1714 SE = &getAnalysis<ScalarEvolution>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001715 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1716 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1717 AA = &getAnalysis<AliasAnalysis>();
1718 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Adam Nemete2b885c2015-04-23 20:09:20 +00001719 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001720
1721 return false;
1722}
1723
1724void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1725 AU.addRequired<ScalarEvolution>();
1726 AU.addRequired<AliasAnalysis>();
1727 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00001728 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001729
1730 AU.setPreservesAll();
1731}
1732
1733char LoopAccessAnalysis::ID = 0;
1734static const char laa_name[] = "Loop Access Analysis";
1735#define LAA_NAME "loop-accesses"
1736
1737INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1738INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1739INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1740INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001741INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001742INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1743
1744namespace llvm {
1745 Pass *createLAAPass() {
1746 return new LoopAccessAnalysis();
1747 }
1748}