blob: d25a8afcb5116c652ea5b21bd55f391b7003bad2 [file] [log] [blame]
Chris Lattnerd934c702004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/SmallPtrSet.h"
64#include "llvm/ADT/Statistic.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000065#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000066#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000067#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000068#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000069#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000070#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000071#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000074#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000075#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000076#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000078#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/Instructions.h"
80#include "llvm/IR/LLVMContext.h"
81#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000082#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000083#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000084#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000085#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000086#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000087#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000089using namespace llvm;
90
Chandler Carruthf1221bd2014-04-22 02:48:03 +000091#define DEBUG_TYPE "scalar-evolution"
92
Chris Lattner57ef9422006-12-19 22:30:33 +000093STATISTIC(NumArrayLenItCounts,
94 "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96 "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98 "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100 "Number of loops with trip counts computed by force");
101
Dan Gohmand78c4002008-05-13 00:00:25 +0000102static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000105 "symbolically execute a constant "
106 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000107 cl::init(100));
108
Benjamin Kramer214935e2012-10-26 17:31:32 +0000109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
Owen Anderson8ac477f2010-10-12 19:48:12 +0000114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115 "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000117INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000120 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000121char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Manman Ren49d684e2012-09-12 05:06:18 +0000131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000132void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000133 print(dbgs());
134 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000135}
Manman Renc3366cc2012-09-06 19:55:56 +0000136#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000137
Dan Gohman534749b2010-11-17 22:27:42 +0000138void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000139 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000140 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000142 return;
143 case scTruncate: {
144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145 const SCEV *Op = Trunc->getOperand();
146 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147 << *Trunc->getType() << ")";
148 return;
149 }
150 case scZeroExtend: {
151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152 const SCEV *Op = ZExt->getOperand();
153 OS << "(zext " << *Op->getType() << " " << *Op << " to "
154 << *ZExt->getType() << ")";
155 return;
156 }
157 case scSignExtend: {
158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159 const SCEV *Op = SExt->getOperand();
160 OS << "(sext " << *Op->getType() << " " << *Op << " to "
161 << *SExt->getType() << ")";
162 return;
163 }
164 case scAddRecExpr: {
165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166 OS << "{" << *AR->getOperand(0);
167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168 OS << ",+," << *AR->getOperand(i);
169 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000170 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000171 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000172 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000173 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNW) &&
175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000178 OS << ">";
179 return;
180 }
181 case scAddExpr:
182 case scMulExpr:
183 case scUMaxExpr:
184 case scSMaxExpr: {
185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000186 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000187 switch (NAry->getSCEVType()) {
188 case scAddExpr: OpStr = " + "; break;
189 case scMulExpr: OpStr = " * "; break;
190 case scUMaxExpr: OpStr = " umax "; break;
191 case scSMaxExpr: OpStr = " smax "; break;
192 }
193 OS << "(";
194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195 I != E; ++I) {
196 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000197 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000198 OS << OpStr;
199 }
200 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000201 switch (NAry->getSCEVType()) {
202 case scAddExpr:
203 case scMulExpr:
204 if (NAry->getNoWrapFlags(FlagNUW))
205 OS << "<nuw>";
206 if (NAry->getNoWrapFlags(FlagNSW))
207 OS << "<nsw>";
208 }
Dan Gohman534749b2010-11-17 22:27:42 +0000209 return;
210 }
211 case scUDivExpr: {
212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214 return;
215 }
216 case scUnknown: {
217 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000218 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000219 if (U->isSizeOf(AllocTy)) {
220 OS << "sizeof(" << *AllocTy << ")";
221 return;
222 }
223 if (U->isAlignOf(AllocTy)) {
224 OS << "alignof(" << *AllocTy << ")";
225 return;
226 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000227
Chris Lattner229907c2011-07-18 04:54:35 +0000228 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000229 Constant *FieldNo;
230 if (U->isOffsetOf(CTy, FieldNo)) {
231 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000232 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000233 OS << ")";
234 return;
235 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000236
Dan Gohman534749b2010-11-17 22:27:42 +0000237 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000238 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000239 return;
240 }
241 case scCouldNotCompute:
242 OS << "***COULDNOTCOMPUTE***";
243 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000244 }
245 llvm_unreachable("Unknown SCEV kind!");
246}
247
Chris Lattner229907c2011-07-18 04:54:35 +0000248Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000249 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000250 case scConstant:
251 return cast<SCEVConstant>(this)->getType();
252 case scTruncate:
253 case scZeroExtend:
254 case scSignExtend:
255 return cast<SCEVCastExpr>(this)->getType();
256 case scAddRecExpr:
257 case scMulExpr:
258 case scUMaxExpr:
259 case scSMaxExpr:
260 return cast<SCEVNAryExpr>(this)->getType();
261 case scAddExpr:
262 return cast<SCEVAddExpr>(this)->getType();
263 case scUDivExpr:
264 return cast<SCEVUDivExpr>(this)->getType();
265 case scUnknown:
266 return cast<SCEVUnknown>(this)->getType();
267 case scCouldNotCompute:
268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000269 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000270 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000271}
272
Dan Gohmanbe928e32008-06-18 16:23:07 +0000273bool SCEV::isZero() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isZero();
276 return false;
277}
278
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000279bool SCEV::isOne() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isOne();
282 return false;
283}
Chris Lattnerd934c702004-04-02 20:23:17 +0000284
Dan Gohman18a96bb2009-06-24 00:30:26 +0000285bool SCEV::isAllOnesValue() const {
286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287 return SC->getValue()->isAllOnesValue();
288 return false;
289}
290
Andrew Trick881a7762012-01-07 00:27:31 +0000291/// isNonConstantNegative - Return true if the specified scev is negated, but
292/// not a constant.
293bool SCEV::isNonConstantNegative() const {
294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
295 if (!Mul) return false;
296
297 // If there is a constant factor, it will be first.
298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
299 if (!SC) return false;
300
301 // Return true if the value is negative, this matches things like (-42 * V).
302 return SC->getValue()->getValue().isNegative();
303}
304
Owen Anderson04052ec2009-06-22 21:57:23 +0000305SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000307
Chris Lattnerd934c702004-04-02 20:23:17 +0000308bool SCEVCouldNotCompute::classof(const SCEV *S) {
309 return S->getSCEVType() == scCouldNotCompute;
310}
311
Dan Gohmanaf752342009-07-07 17:06:11 +0000312const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000313 FoldingSetNodeID ID;
314 ID.AddInteger(scConstant);
315 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000316 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000319 UniqueSCEVs.InsertNode(S, IP);
320 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000321}
Chris Lattnerd934c702004-04-02 20:23:17 +0000322
Nick Lewycky31eaca52014-01-27 10:04:03 +0000323const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000324 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000325}
326
Dan Gohmanaf752342009-07-07 17:06:11 +0000327const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000328ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000330 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000331}
332
Dan Gohman24ceda82010-06-18 19:54:20 +0000333SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000334 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
341 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000343}
Chris Lattnerd934c702004-04-02 20:23:17 +0000344
Dan Gohman24ceda82010-06-18 19:54:20 +0000345SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000346 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000347 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000351}
352
Dan Gohman24ceda82010-06-18 19:54:20 +0000353SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000354 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000355 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
357 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000359}
360
Dan Gohman7cac9572010-08-02 23:49:30 +0000361void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000362 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000363 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000364
365 // Remove this SCEVUnknown from the uniquing map.
366 SE->UniqueSCEVs.RemoveNode(this);
367
368 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000369 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370}
371
372void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000373 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000374 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000375
376 // Remove this SCEVUnknown from the uniquing map.
377 SE->UniqueSCEVs.RemoveNode(this);
378
379 // Update this SCEVUnknown to point to the new value. This is needed
380 // because there may still be outstanding SCEVs which still point to
381 // this SCEVUnknown.
382 setValPtr(New);
383}
384
Chris Lattner229907c2011-07-18 04:54:35 +0000385bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000387 if (VCE->getOpcode() == Instruction::PtrToInt)
388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000389 if (CE->getOpcode() == Instruction::GetElementPtr &&
390 CE->getOperand(0)->isNullValue() &&
391 CE->getNumOperands() == 2)
392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
393 if (CI->isOne()) {
394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
395 ->getElementType();
396 return true;
397 }
Dan Gohmancf913832010-01-28 02:15:55 +0000398
399 return false;
400}
401
Chris Lattner229907c2011-07-18 04:54:35 +0000402bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000404 if (VCE->getOpcode() == Instruction::PtrToInt)
405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (CE->getOpcode() == Instruction::GetElementPtr &&
407 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000408 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000410 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000411 if (!STy->isPacked() &&
412 CE->getNumOperands() == 3 &&
413 CE->getOperand(1)->isNullValue()) {
414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
415 if (CI->isOne() &&
416 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000417 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000418 AllocTy = STy->getElementType(1);
419 return true;
420 }
421 }
422 }
Dan Gohmancf913832010-01-28 02:15:55 +0000423
424 return false;
425}
426
Chris Lattner229907c2011-07-18 04:54:35 +0000427bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000429 if (VCE->getOpcode() == Instruction::PtrToInt)
430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
431 if (CE->getOpcode() == Instruction::GetElementPtr &&
432 CE->getNumOperands() == 3 &&
433 CE->getOperand(0)->isNullValue() &&
434 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000435 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
437 // Ignore vector types here so that ScalarEvolutionExpander doesn't
438 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000439 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 CTy = Ty;
441 FieldNo = CE->getOperand(2);
442 return true;
443 }
444 }
445
446 return false;
447}
448
Chris Lattnereb3e8402004-06-20 06:23:15 +0000449//===----------------------------------------------------------------------===//
450// SCEV Utilities
451//===----------------------------------------------------------------------===//
452
453namespace {
454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
455 /// than the complexity of the RHS. This comparator is used to canonicalize
456 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000457 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000458 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000459 public:
Dan Gohman992db002010-07-23 21:18:55 +0000460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000461
Dan Gohman27065672010-08-27 15:26:01 +0000462 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000463 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000464 return compare(LHS, RHS) < 0;
465 }
466
467 // Return negative, zero, or positive, if LHS is less than, equal to, or
468 // greater than RHS, respectively. A three-way result allows recursive
469 // comparisons to be more efficient.
470 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000471 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
472 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000474
Dan Gohman9ba542c2009-05-07 14:39:04 +0000475 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
477 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000478 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479
Dan Gohman24ceda82010-06-18 19:54:20 +0000480 // Aside from the getSCEVType() ordering, the particular ordering
481 // isn't very important except that it's beneficial to be consistent,
482 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000483 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000484 case scUnknown: {
485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000487
488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
489 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000490 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000491
492 // Order pointer values after integer values. This helps SCEVExpander
493 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 bool LIsPointer = LV->getType()->isPointerTy(),
495 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000496 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000497 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000498
499 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000500 unsigned LID = LV->getValueID(),
501 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000502 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000503 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000504
505 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000506 if (const Argument *LA = dyn_cast<Argument>(LV)) {
507 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
509 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000510 }
511
Dan Gohman27065672010-08-27 15:26:01 +0000512 // For instructions, compare their loop depth, and their operand
513 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
515 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000516
517 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 const BasicBlock *LParent = LInst->getParent(),
519 *RParent = RInst->getParent();
520 if (LParent != RParent) {
521 unsigned LDepth = LI->getLoopDepth(LParent),
522 RDepth = LI->getLoopDepth(RParent);
523 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000524 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000525 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000526
527 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000528 unsigned LNumOps = LInst->getNumOperands(),
529 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000530 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000531 }
532
Dan Gohman27065672010-08-27 15:26:01 +0000533 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000534 }
535
Dan Gohman27065672010-08-27 15:26:01 +0000536 case scConstant: {
537 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000539
540 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000541 const APInt &LA = LC->getValue()->getValue();
542 const APInt &RA = RC->getValue()->getValue();
543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000544 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000545 return (int)LBitWidth - (int)RBitWidth;
546 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000547 }
548
Dan Gohman27065672010-08-27 15:26:01 +0000549 case scAddRecExpr: {
550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000552
553 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
555 if (LLoop != RLoop) {
556 unsigned LDepth = LLoop->getLoopDepth(),
557 RDepth = RLoop->getLoopDepth();
558 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000559 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000560 }
Dan Gohman27065672010-08-27 15:26:01 +0000561
562 // Addrec complexity grows with operand count.
563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
564 if (LNumOps != RNumOps)
565 return (int)LNumOps - (int)RNumOps;
566
567 // Lexicographically compare.
568 for (unsigned i = 0; i != LNumOps; ++i) {
569 long X = compare(LA->getOperand(i), RA->getOperand(i));
570 if (X != 0)
571 return X;
572 }
573
574 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000575 }
576
Dan Gohman27065672010-08-27 15:26:01 +0000577 case scAddExpr:
578 case scMulExpr:
579 case scSMaxExpr:
580 case scUMaxExpr: {
581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000583
584 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000586 if (LNumOps != RNumOps)
587 return (int)LNumOps - (int)RNumOps;
588
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 for (unsigned i = 0; i != LNumOps; ++i) {
590 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000591 return 1;
592 long X = compare(LC->getOperand(i), RC->getOperand(i));
593 if (X != 0)
594 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000595 }
Dan Gohman27065672010-08-27 15:26:01 +0000596 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000597 }
598
Dan Gohman27065672010-08-27 15:26:01 +0000599 case scUDivExpr: {
600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000602
603 // Lexicographically compare udiv expressions.
604 long X = compare(LC->getLHS(), RC->getLHS());
605 if (X != 0)
606 return X;
607 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000608 }
609
Dan Gohman27065672010-08-27 15:26:01 +0000610 case scTruncate:
611 case scZeroExtend:
612 case scSignExtend: {
613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000615
616 // Compare cast expressions by operand.
617 return compare(LC->getOperand(), RC->getOperand());
618 }
619
Benjamin Kramer987b8502014-02-11 19:02:55 +0000620 case scCouldNotCompute:
621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000622 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000623 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000624 }
625 };
626}
627
628/// GroupByComplexity - Given a list of SCEV objects, order them by their
629/// complexity, and group objects of the same complexity together by value.
630/// When this routine is finished, we know that any duplicates in the vector are
631/// consecutive and that complexity is monotonically increasing.
632///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000633/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000634/// results from this routine. In other words, we don't want the results of
635/// this to depend on where the addresses of various SCEV objects happened to
636/// land in memory.
637///
Dan Gohmanaf752342009-07-07 17:06:11 +0000638static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000639 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000640 if (Ops.size() < 2) return; // Noop
641 if (Ops.size() == 2) {
642 // This is the common case, which also happens to be trivially simple.
643 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
645 if (SCEVComplexityCompare(LI)(RHS, LHS))
646 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000647 return;
648 }
649
Dan Gohman24ceda82010-06-18 19:54:20 +0000650 // Do the rough sort by complexity.
651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
652
653 // Now that we are sorted by complexity, group elements of the same
654 // complexity. Note that this is, at worst, N^2, but the vector is likely to
655 // be extremely short in practice. Note that we take this approach because we
656 // do not want to depend on the addresses of the objects we are grouping.
657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
658 const SCEV *S = Ops[i];
659 unsigned Complexity = S->getSCEVType();
660
661 // If there are any objects of the same complexity and same value as this
662 // one, group them.
663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
664 if (Ops[j] == S) { // Found a duplicate.
665 // Move it to immediately after i'th element.
666 std::swap(Ops[i+1], Ops[j]);
667 ++i; // no need to rescan it.
668 if (i == e-2) return; // Done!
669 }
670 }
671 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000672}
673
Chris Lattnerd934c702004-04-02 20:23:17 +0000674
Chris Lattnerd934c702004-04-02 20:23:17 +0000675
676//===----------------------------------------------------------------------===//
677// Simple SCEV method implementations
678//===----------------------------------------------------------------------===//
679
Eli Friedman61f67622008-08-04 23:49:06 +0000680/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000681/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000682static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000683 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000684 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000685 // Handle the simplest case efficiently.
686 if (K == 1)
687 return SE.getTruncateOrZeroExtend(It, ResultTy);
688
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000689 // We are using the following formula for BC(It, K):
690 //
691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
692 //
Eli Friedman61f67622008-08-04 23:49:06 +0000693 // Suppose, W is the bitwidth of the return value. We must be prepared for
694 // overflow. Hence, we must assure that the result of our computation is
695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
696 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000697 //
Eli Friedman61f67622008-08-04 23:49:06 +0000698 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000699 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
701 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000702 //
Eli Friedman61f67622008-08-04 23:49:06 +0000703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000704 //
Eli Friedman61f67622008-08-04 23:49:06 +0000705 // This formula is trivially equivalent to the previous formula. However,
706 // this formula can be implemented much more efficiently. The trick is that
707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
708 // arithmetic. To do exact division in modular arithmetic, all we have
709 // to do is multiply by the inverse. Therefore, this step can be done at
710 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000711 //
Eli Friedman61f67622008-08-04 23:49:06 +0000712 // The next issue is how to safely do the division by 2^T. The way this
713 // is done is by doing the multiplication step at a width of at least W + T
714 // bits. This way, the bottom W+T bits of the product are accurate. Then,
715 // when we perform the division by 2^T (which is equivalent to a right shift
716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
717 // truncated out after the division by 2^T.
718 //
719 // In comparison to just directly using the first formula, this technique
720 // is much more efficient; using the first formula requires W * K bits,
721 // but this formula less than W + K bits. Also, the first formula requires
722 // a division step, whereas this formula only requires multiplies and shifts.
723 //
724 // It doesn't matter whether the subtraction step is done in the calculation
725 // width or the input iteration count's width; if the subtraction overflows,
726 // the result must be zero anyway. We prefer here to do it in the width of
727 // the induction variable because it helps a lot for certain cases; CodeGen
728 // isn't smart enough to ignore the overflow, which leads to much less
729 // efficient code if the width of the subtraction is wider than the native
730 // register width.
731 //
732 // (It's possible to not widen at all by pulling out factors of 2 before
733 // the multiplication; for example, K=2 can be calculated as
734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
735 // extra arithmetic, so it's not an obvious win, and it gets
736 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000737
Eli Friedman61f67622008-08-04 23:49:06 +0000738 // Protection from insane SCEVs; this bound is conservative,
739 // but it probably doesn't matter.
740 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000741 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000742
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000743 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000744
Eli Friedman61f67622008-08-04 23:49:06 +0000745 // Calculate K! / 2^T and T; we divide out the factors of two before
746 // multiplying for calculating K! / 2^T to avoid overflow.
747 // Other overflow doesn't matter because we only care about the bottom
748 // W bits of the result.
749 APInt OddFactorial(W, 1);
750 unsigned T = 1;
751 for (unsigned i = 3; i <= K; ++i) {
752 APInt Mult(W, i);
753 unsigned TwoFactors = Mult.countTrailingZeros();
754 T += TwoFactors;
755 Mult = Mult.lshr(TwoFactors);
756 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000757 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000758
Eli Friedman61f67622008-08-04 23:49:06 +0000759 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000760 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000761
Dan Gohman8b0a4192010-03-01 17:49:51 +0000762 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000764
765 // Calculate the multiplicative inverse of K! / 2^T;
766 // this multiplication factor will perform the exact division by
767 // K! / 2^T.
768 APInt Mod = APInt::getSignedMinValue(W+1);
769 APInt MultiplyFactor = OddFactorial.zext(W+1);
770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
771 MultiplyFactor = MultiplyFactor.trunc(W);
772
773 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000775 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000777 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000779 Dividend = SE.getMulExpr(Dividend,
780 SE.getTruncateOrZeroExtend(S, CalculationTy));
781 }
782
783 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000785
786 // Truncate the result, and divide by K! / 2^T.
787
788 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
789 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000790}
791
Chris Lattnerd934c702004-04-02 20:23:17 +0000792/// evaluateAtIteration - Return the value of this chain of recurrences at
793/// the specified iteration number. We can evaluate this recurrence by
794/// multiplying each element in the chain by the binomial coefficient
795/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
796///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000797/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000798///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000799/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000800///
Dan Gohmanaf752342009-07-07 17:06:11 +0000801const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000802 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000803 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000805 // The computation is correct in the face of overflow provided that the
806 // multiplication is performed _after_ the evaluation of the binomial
807 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000809 if (isa<SCEVCouldNotCompute>(Coeff))
810 return Coeff;
811
812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000813 }
814 return Result;
815}
816
Chris Lattnerd934c702004-04-02 20:23:17 +0000817//===----------------------------------------------------------------------===//
818// SCEV Expression folder implementations
819//===----------------------------------------------------------------------===//
820
Dan Gohmanaf752342009-07-07 17:06:11 +0000821const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000822 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000824 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000825 assert(isSCEVable(Ty) &&
826 "This is not a conversion to a SCEVable type!");
827 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000828
Dan Gohman3a302cb2009-07-13 20:50:19 +0000829 FoldingSetNodeID ID;
830 ID.AddInteger(scTruncate);
831 ID.AddPointer(Op);
832 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000833 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +0000834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
835
Dan Gohman3423e722009-06-30 20:13:32 +0000836 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000838 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000840
Dan Gohman79af8542009-04-22 16:20:48 +0000841 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000843 return getTruncateExpr(ST->getOperand(), Ty);
844
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000847 return getTruncateOrSignExtend(SS->getOperand(), Ty);
848
849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
852
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
854 // eliminate all the truncates.
855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
856 SmallVector<const SCEV *, 4> Operands;
857 bool hasTrunc = false;
858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
860 hasTrunc = isa<SCEVTruncateExpr>(S);
861 Operands.push_back(S);
862 }
863 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000864 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000866 }
867
Nick Lewycky5c901f32011-01-19 18:56:00 +0000868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
869 // eliminate all the truncates.
870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
871 SmallVector<const SCEV *, 4> Operands;
872 bool hasTrunc = false;
873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
875 hasTrunc = isa<SCEVTruncateExpr>(S);
876 Operands.push_back(S);
877 }
878 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000879 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000881 }
882
Dan Gohman5a728c92009-06-18 16:24:47 +0000883 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000885 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000889 }
890
Dan Gohman89dd42a2010-06-25 18:47:08 +0000891 // The cast wasn't folded; create an explicit cast node. We can reuse
892 // the existing insert position since if we get here, we won't have
893 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
895 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000896 UniqueSCEVs.InsertNode(S, IP);
897 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000898}
899
Dan Gohmanaf752342009-07-07 17:06:11 +0000900const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000901 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000903 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000904 assert(isSCEVable(Ty) &&
905 "This is not a conversion to a SCEVable type!");
906 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000907
Dan Gohman3423e722009-06-30 20:13:32 +0000908 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
910 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000912
Dan Gohman79af8542009-04-22 16:20:48 +0000913 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000915 return getZeroExtendExpr(SZ->getOperand(), Ty);
916
Dan Gohman74a0ba12009-07-13 20:55:53 +0000917 // Before doing any expensive analysis, check to see if we've already
918 // computed a SCEV for this Op and Ty.
919 FoldingSetNodeID ID;
920 ID.AddInteger(scZeroExtend);
921 ID.AddPointer(Op);
922 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +0000923 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +0000924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000926 // zext(trunc(x)) --> zext(x) or x or trunc(x)
927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
928 // It's possible the bits taken off by the truncate were all zero bits. If
929 // so, we should be able to simplify this further.
930 const SCEV *X = ST->getOperand();
931 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000932 unsigned TruncBits = getTypeSizeInBits(ST->getType());
933 unsigned NewBits = getTypeSizeInBits(Ty);
934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000935 CR.zextOrTrunc(NewBits)))
936 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000937 }
938
Dan Gohman76466372009-04-27 20:16:15 +0000939 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000940 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000941 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000944 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000945 const SCEV *Start = AR->getStart();
946 const SCEV *Step = AR->getStepRecurrence(*this);
947 unsigned BitWidth = getTypeSizeInBits(AR->getType());
948 const Loop *L = AR->getLoop();
949
Dan Gohman62ef6a72009-07-25 01:22:26 +0000950 // If we have special knowledge that this addrec won't overflow,
951 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000952 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000953 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000955 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000956
Dan Gohman76466372009-04-27 20:16:15 +0000957 // Check whether the backedge-taken count is SCEVCouldNotCompute.
958 // Note that this serves two purposes: It filters out loops that are
959 // simply not analyzable, and it covers the case where this code is
960 // being called from within backedge-taken count analysis, such that
961 // attempting to ask for the backedge-taken count would likely result
962 // in infinite recursion. In the later case, the analysis code will
963 // cope with a conservative value, and it will take care to purge
964 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000967 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000968 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000969
970 // Check whether the backedge-taken count can be losslessly casted to
971 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000972 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000973 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000974 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
976 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000978 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
982 const SCEV *WideMaxBECount =
983 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000984 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000985 getAddExpr(WideStart,
986 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000987 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000988 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000989 // Cache knowledge of AR NUW, which is propagated to this AddRec.
990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
993 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000994 L, AR->getNoWrapFlags());
995 }
Dan Gohman76466372009-04-27 20:16:15 +0000996 // Similar to above, only this time treat the step value as signed.
997 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +0000998 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000999 getAddExpr(WideStart,
1000 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001001 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001002 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001003 // Cache knowledge of AR NW, which is propagated to this AddRec.
1004 // Negative step causes unsigned wrap, but it still can't self-wrap.
1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001006 // Return the expression with the addrec on the outside.
1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1008 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001009 L, AR->getNoWrapFlags());
1010 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001011 }
1012
1013 // If the backedge is guarded by a comparison with the pre-inc value
1014 // the addrec is safe. Also, if the entry is guarded by a comparison
1015 // with the start value and the backedge is guarded by a comparison
1016 // with the post-inc value, the addrec is safe.
1017 if (isKnownPositive(Step)) {
1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1019 getUnsignedRange(Step).getUnsignedMax());
1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001023 AR->getPostIncExpr(*this), N))) {
1024 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001026 // Return the expression with the addrec on the outside.
1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1028 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001029 L, AR->getNoWrapFlags());
1030 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001031 } else if (isKnownNegative(Step)) {
1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1033 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001037 AR->getPostIncExpr(*this), N))) {
1038 // Cache knowledge of AR NW, which is propagated to this AddRec.
1039 // Negative step causes unsigned wrap, but it still can't self-wrap.
1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1041 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001042 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1043 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001044 L, AR->getNoWrapFlags());
1045 }
Dan Gohman76466372009-04-27 20:16:15 +00001046 }
1047 }
1048 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001049
Dan Gohman74a0ba12009-07-13 20:55:53 +00001050 // The cast wasn't folded; create an explicit cast node.
1051 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1054 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001055 UniqueSCEVs.InsertNode(S, IP);
1056 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001057}
1058
Andrew Trick812276e2011-05-31 21:17:47 +00001059// Get the limit of a recurrence such that incrementing by Step cannot cause
1060// signed overflow as long as the value of the recurrence within the loop does
1061// not exceed this limit before incrementing.
1062static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1063 ICmpInst::Predicate *Pred,
1064 ScalarEvolution *SE) {
1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1066 if (SE->isKnownPositive(Step)) {
1067 *Pred = ICmpInst::ICMP_SLT;
1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1069 SE->getSignedRange(Step).getSignedMax());
1070 }
1071 if (SE->isKnownNegative(Step)) {
1072 *Pred = ICmpInst::ICMP_SGT;
1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1074 SE->getSignedRange(Step).getSignedMin());
1075 }
Craig Topper9f008862014-04-15 04:59:12 +00001076 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001077}
1078
1079// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1080// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1081// or postincrement sibling. This allows normalizing a sign extended AddRec as
1082// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1083// result, the expression "Step + sext(PreIncAR)" is congruent with
1084// "sext(PostIncAR)"
1085static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001086 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001087 ScalarEvolution *SE) {
1088 const Loop *L = AR->getLoop();
1089 const SCEV *Start = AR->getStart();
1090 const SCEV *Step = AR->getStepRecurrence(*SE);
1091
1092 // Check for a simple looking step prior to loop entry.
1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001094 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001095 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001096
1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1098 // subtraction is expensive. For this purpose, perform a quick and dirty
1099 // difference, by checking for Step in the operand list.
1100 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001101 for (const SCEV *Op : SA->operands())
1102 if (Op != Step)
1103 DiffOps.push_back(Op);
1104
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001105 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001106 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001117 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001140 return PreStart;
1141 }
Craig Topper9f008862014-04-15 04:59:12 +00001142 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
Dan Gohmanaf752342009-07-07 17:06:11 +00001157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001158 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001160 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001164
Dan Gohman3423e722009-06-30 20:13:32 +00001165 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001169
Dan Gohman79af8542009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman74a0ba12009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001184 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001202 }
1203
Dan Gohman76466372009-04-27 20:16:15 +00001204 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001205 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001206 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001209 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001210 const SCEV *Start = AR->getStart();
1211 const SCEV *Step = AR->getStepRecurrence(*this);
1212 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1213 const Loop *L = AR->getLoop();
1214
Dan Gohman62ef6a72009-07-25 01:22:26 +00001215 // If we have special knowledge that this addrec won't overflow,
1216 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001217 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001219 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001220 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001221
Dan Gohman76466372009-04-27 20:16:15 +00001222 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1223 // Note that this serves two purposes: It filters out loops that are
1224 // simply not analyzable, and it covers the case where this code is
1225 // being called from within backedge-taken count analysis, such that
1226 // attempting to ask for the backedge-taken count would likely result
1227 // in infinite recursion. In the later case, the analysis code will
1228 // cope with a conservative value, and it will take care to purge
1229 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001232 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001233 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001234
1235 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001236 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001237 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001238 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001239 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1241 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001243 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1247 const SCEV *WideMaxBECount =
1248 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001249 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001256 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001258 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001259 L, AR->getNoWrapFlags());
1260 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001261 // Similar to above, only this time treat the step value as unsigned.
1262 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001263 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001264 getAddExpr(WideStart,
1265 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001266 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001267 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001268 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001270 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001272 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
1274 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001275 }
1276
1277 // If the backedge is guarded by a comparison with the pre-inc value
1278 // the addrec is safe. Also, if the entry is guarded by a comparison
1279 // with the start value and the backedge is guarded by a comparison
1280 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001281 ICmpInst::Predicate Pred;
1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1283 if (OverflowLimit &&
1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1287 OverflowLimit)))) {
1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1291 getSignExtendExpr(Step, Ty),
1292 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001293 }
1294 }
1295 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001296
Dan Gohman74a0ba12009-07-13 20:55:53 +00001297 // The cast wasn't folded; create an explicit cast node.
1298 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1301 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001302 UniqueSCEVs.InsertNode(S, IP);
1303 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001304}
1305
Dan Gohman8db2edc2009-06-13 15:56:47 +00001306/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1307/// unspecified bits out to the given type.
1308///
Dan Gohmanaf752342009-07-07 17:06:11 +00001309const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001310 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1312 "This is not an extending conversion!");
1313 assert(isSCEVable(Ty) &&
1314 "This is not a conversion to a SCEVable type!");
1315 Ty = getEffectiveSCEVType(Ty);
1316
1317 // Sign-extend negative constants.
1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1319 if (SC->getValue()->getValue().isNegative())
1320 return getSignExtendExpr(Op, Ty);
1321
1322 // Peel off a truncate cast.
1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001324 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1326 return getAnyExtendExpr(NewOp, Ty);
1327 return getTruncateOrNoop(NewOp, Ty);
1328 }
1329
1330 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001332 if (!isa<SCEVZeroExtendExpr>(ZExt))
1333 return ZExt;
1334
1335 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001336 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001337 if (!isa<SCEVSignExtendExpr>(SExt))
1338 return SExt;
1339
Dan Gohman51ad99d2010-01-21 02:09:26 +00001340 // Force the cast to be folded into the operands of an addrec.
1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1342 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001343 for (const SCEV *Op : AR->operands())
1344 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001346 }
1347
Dan Gohman8db2edc2009-06-13 15:56:47 +00001348 // If the expression is obviously signed, use the sext cast value.
1349 if (isa<SCEVSMaxExpr>(Op))
1350 return SExt;
1351
1352 // Absent any other information, use the zext cast value.
1353 return ZExt;
1354}
1355
Dan Gohman038d02e2009-06-14 22:58:51 +00001356/// CollectAddOperandsWithScales - Process the given Ops list, which is
1357/// a list of operands to be added under the given scale, update the given
1358/// map. This is a helper function for getAddRecExpr. As an example of
1359/// what it does, given a sequence of operands that would form an add
1360/// expression like this:
1361///
Tobias Grosserba49e422014-03-05 10:37:17 +00001362/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001363///
1364/// where A and B are constants, update the map with these values:
1365///
1366/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1367///
1368/// and add 13 + A*B*29 to AccumulatedConstant.
1369/// This will allow getAddRecExpr to produce this:
1370///
1371/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1372///
1373/// This form often exposes folding opportunities that are hidden in
1374/// the original operand list.
1375///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001376/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001377/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1378/// the common case where no interesting opportunities are present, and
1379/// is also used as a check to avoid infinite recursion.
1380///
1381static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001382CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001383 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001384 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001385 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001386 const APInt &Scale,
1387 ScalarEvolution &SE) {
1388 bool Interesting = false;
1389
Dan Gohman45073042010-06-18 19:12:32 +00001390 // Iterate over the add operands. They are sorted, with constants first.
1391 unsigned i = 0;
1392 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1393 ++i;
1394 // Pull a buried constant out to the outside.
1395 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1396 Interesting = true;
1397 AccumulatedConstant += Scale * C->getValue()->getValue();
1398 }
1399
1400 // Next comes everything else. We're especially interested in multiplies
1401 // here, but they're in the middle, so just visit the rest with one loop.
1402 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1404 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1405 APInt NewScale =
1406 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1407 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1408 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001409 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001410 Interesting |=
1411 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001412 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001413 NewScale, SE);
1414 } else {
1415 // A multiplication of a constant with some other value. Update
1416 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001417 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1418 const SCEV *Key = SE.getMulExpr(MulOps);
1419 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001420 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001421 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001422 NewOps.push_back(Pair.first->first);
1423 } else {
1424 Pair.first->second += NewScale;
1425 // The map already had an entry for this value, which may indicate
1426 // a folding opportunity.
1427 Interesting = true;
1428 }
1429 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001430 } else {
1431 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001432 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001433 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001434 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001435 NewOps.push_back(Pair.first->first);
1436 } else {
1437 Pair.first->second += Scale;
1438 // The map already had an entry for this value, which may indicate
1439 // a folding opportunity.
1440 Interesting = true;
1441 }
1442 }
1443 }
1444
1445 return Interesting;
1446}
1447
1448namespace {
1449 struct APIntCompare {
1450 bool operator()(const APInt &LHS, const APInt &RHS) const {
1451 return LHS.ult(RHS);
1452 }
1453 };
1454}
1455
Dan Gohman4d5435d2009-05-24 23:45:28 +00001456/// getAddExpr - Get a canonical add expression, or something simpler if
1457/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001458const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001459 SCEV::NoWrapFlags Flags) {
1460 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1461 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001462 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001463 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001464#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001466 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001468 "SCEVAddExpr operand types don't match!");
1469#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001470
Andrew Trick8b55b732011-03-14 16:50:06 +00001471 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001472 // And vice-versa.
1473 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1474 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1475 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001476 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001477 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1478 E = Ops.end(); I != E; ++I)
1479 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001480 All = false;
1481 break;
1482 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001483 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001484 }
1485
Chris Lattnerd934c702004-04-02 20:23:17 +00001486 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001487 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001488
1489 // If there are any constants, fold them together.
1490 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001491 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001492 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001493 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001494 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001495 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001496 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1497 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001498 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001499 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001500 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001501 }
1502
1503 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001504 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001505 Ops.erase(Ops.begin());
1506 --Idx;
1507 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001508
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001509 if (Ops.size() == 1) return Ops[0];
1510 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001511
Dan Gohman15871f22010-08-27 21:39:59 +00001512 // Okay, check to see if the same value occurs in the operand list more than
1513 // once. If so, merge them together into an multiply expression. Since we
1514 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001515 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001516 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001519 // Scan ahead to count how many equal operands there are.
1520 unsigned Count = 2;
1521 while (i+Count != e && Ops[i+Count] == Ops[i])
1522 ++Count;
1523 // Merge the values into a multiply.
1524 const SCEV *Scale = getConstant(Ty, Count);
1525 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1526 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001527 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001528 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001530 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001531 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001532 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001533 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001534 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001535
Dan Gohman2e55cc52009-05-08 21:03:19 +00001536 // Check for truncates. If all the operands are truncated from the same
1537 // type, see if factoring out the truncate would permit the result to be
1538 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1539 // if the contents of the resulting outer trunc fold to something simple.
1540 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1541 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001542 Type *DstType = Trunc->getType();
1543 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001544 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001545 bool Ok = true;
1546 // Check all the operands to see if they can be represented in the
1547 // source type of the truncate.
1548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1549 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1550 if (T->getOperand()->getType() != SrcType) {
1551 Ok = false;
1552 break;
1553 }
1554 LargeOps.push_back(T->getOperand());
1555 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001556 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001557 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001559 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1560 if (const SCEVTruncateExpr *T =
1561 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1562 if (T->getOperand()->getType() != SrcType) {
1563 Ok = false;
1564 break;
1565 }
1566 LargeMulOps.push_back(T->getOperand());
1567 } else if (const SCEVConstant *C =
1568 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001569 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001570 } else {
1571 Ok = false;
1572 break;
1573 }
1574 }
1575 if (Ok)
1576 LargeOps.push_back(getMulExpr(LargeMulOps));
1577 } else {
1578 Ok = false;
1579 break;
1580 }
1581 }
1582 if (Ok) {
1583 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001584 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001585 // If it folds to something simple, use it. Otherwise, don't.
1586 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1587 return getTruncateExpr(Fold, DstType);
1588 }
1589 }
1590
1591 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1593 ++Idx;
1594
1595 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001596 if (Idx < Ops.size()) {
1597 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001598 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001599 // If we have an add, expand the add operands onto the end of the operands
1600 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001601 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001602 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001603 DeletedAdd = true;
1604 }
1605
1606 // If we deleted at least one add, we added operands to the end of the list,
1607 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001608 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001609 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001610 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001611 }
1612
1613 // Skip over the add expression until we get to a multiply.
1614 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1615 ++Idx;
1616
Dan Gohman038d02e2009-06-14 22:58:51 +00001617 // Check to see if there are any folding opportunities present with
1618 // operands multiplied by constant values.
1619 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1620 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001621 DenseMap<const SCEV *, APInt> M;
1622 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001623 APInt AccumulatedConstant(BitWidth, 0);
1624 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001625 Ops.data(), Ops.size(),
1626 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001627 // Some interesting folding opportunity is present, so its worthwhile to
1628 // re-generate the operands list. Group the operands by constant scale,
1629 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001630 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001631 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001632 E = NewOps.end(); I != E; ++I)
1633 MulOpLists[M.find(*I)->second].push_back(*I);
1634 // Re-generate the operands list.
1635 Ops.clear();
1636 if (AccumulatedConstant != 0)
1637 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001638 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1639 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001640 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001641 Ops.push_back(getMulExpr(getConstant(I->first),
1642 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001643 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001644 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001645 if (Ops.size() == 1)
1646 return Ops[0];
1647 return getAddExpr(Ops);
1648 }
1649 }
1650
Chris Lattnerd934c702004-04-02 20:23:17 +00001651 // If we are adding something to a multiply expression, make sure the
1652 // something is not already an operand of the multiply. If so, merge it into
1653 // the multiply.
1654 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001655 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001656 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001657 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001658 if (isa<SCEVConstant>(MulOpSCEV))
1659 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001660 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001661 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001662 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001663 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001664 if (Mul->getNumOperands() != 2) {
1665 // If the multiply has more than two operands, we must get the
1666 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001667 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1668 Mul->op_begin()+MulOp);
1669 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001670 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001671 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001672 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001673 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001674 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001675 if (Ops.size() == 2) return OuterMul;
1676 if (AddOp < Idx) {
1677 Ops.erase(Ops.begin()+AddOp);
1678 Ops.erase(Ops.begin()+Idx-1);
1679 } else {
1680 Ops.erase(Ops.begin()+Idx);
1681 Ops.erase(Ops.begin()+AddOp-1);
1682 }
1683 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001684 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001685 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001686
Chris Lattnerd934c702004-04-02 20:23:17 +00001687 // Check this multiply against other multiplies being added together.
1688 for (unsigned OtherMulIdx = Idx+1;
1689 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1690 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001691 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001692 // If MulOp occurs in OtherMul, we can fold the two multiplies
1693 // together.
1694 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1695 OMulOp != e; ++OMulOp)
1696 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1697 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001698 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001699 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001701 Mul->op_begin()+MulOp);
1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001703 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001704 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001705 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001706 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001707 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001708 OtherMul->op_begin()+OMulOp);
1709 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001710 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001711 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001712 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1713 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001714 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001715 Ops.erase(Ops.begin()+Idx);
1716 Ops.erase(Ops.begin()+OtherMulIdx-1);
1717 Ops.push_back(OuterMul);
1718 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001719 }
1720 }
1721 }
1722 }
1723
1724 // If there are any add recurrences in the operands list, see if any other
1725 // added values are loop invariant. If so, we can fold them into the
1726 // recurrence.
1727 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1728 ++Idx;
1729
1730 // Scan over all recurrences, trying to fold loop invariants into them.
1731 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1732 // Scan all of the other operands to this add and add them to the vector if
1733 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001734 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001735 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001736 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001737 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001738 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001739 LIOps.push_back(Ops[i]);
1740 Ops.erase(Ops.begin()+i);
1741 --i; --e;
1742 }
1743
1744 // If we found some loop invariants, fold them into the recurrence.
1745 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001746 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001747 LIOps.push_back(AddRec->getStart());
1748
Dan Gohmanaf752342009-07-07 17:06:11 +00001749 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001750 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001751 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001752
Dan Gohman16206132010-06-30 07:16:37 +00001753 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001754 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001755 // Always propagate NW.
1756 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001757 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001758
Chris Lattnerd934c702004-04-02 20:23:17 +00001759 // If all of the other operands were loop invariant, we are done.
1760 if (Ops.size() == 1) return NewRec;
1761
Nick Lewyckydb66b822011-09-06 05:08:09 +00001762 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001763 for (unsigned i = 0;; ++i)
1764 if (Ops[i] == AddRec) {
1765 Ops[i] = NewRec;
1766 break;
1767 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001768 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001769 }
1770
1771 // Okay, if there weren't any loop invariants to be folded, check to see if
1772 // there are multiple AddRec's with the same loop induction variable being
1773 // added together. If so, we can fold them.
1774 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776 ++OtherIdx)
1777 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1778 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1779 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1780 AddRec->op_end());
1781 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001783 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001784 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001785 if (OtherAddRec->getLoop() == AddRecLoop) {
1786 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1787 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001788 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001789 AddRecOps.append(OtherAddRec->op_begin()+i,
1790 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001791 break;
1792 }
Dan Gohman028c1812010-08-29 14:53:34 +00001793 AddRecOps[i] = getAddExpr(AddRecOps[i],
1794 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001795 }
1796 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001797 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001798 // Step size has changed, so we cannot guarantee no self-wraparound.
1799 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001800 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001801 }
1802
1803 // Otherwise couldn't fold anything into this recurrence. Move onto the
1804 // next one.
1805 }
1806
1807 // Okay, it looks like we really DO need an add expr. Check to see if we
1808 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001809 FoldingSetNodeID ID;
1810 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001811 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1812 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00001813 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001814 SCEVAddExpr *S =
1815 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1816 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001817 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1818 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001819 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1820 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001821 UniqueSCEVs.InsertNode(S, IP);
1822 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001823 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001824 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001825}
1826
Nick Lewycky287682e2011-10-04 06:51:26 +00001827static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1828 uint64_t k = i*j;
1829 if (j > 1 && k / j != i) Overflow = true;
1830 return k;
1831}
1832
1833/// Compute the result of "n choose k", the binomial coefficient. If an
1834/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001835/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001836static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1837 // We use the multiplicative formula:
1838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1839 // At each iteration, we take the n-th term of the numeral and divide by the
1840 // (k-n)th term of the denominator. This division will always produce an
1841 // integral result, and helps reduce the chance of overflow in the
1842 // intermediate computations. However, we can still overflow even when the
1843 // final result would fit.
1844
1845 if (n == 0 || n == k) return 1;
1846 if (k > n) return 0;
1847
1848 if (k > n/2)
1849 k = n-k;
1850
1851 uint64_t r = 1;
1852 for (uint64_t i = 1; i <= k; ++i) {
1853 r = umul_ov(r, n-(i-1), Overflow);
1854 r /= i;
1855 }
1856 return r;
1857}
1858
Dan Gohman4d5435d2009-05-24 23:45:28 +00001859/// getMulExpr - Get a canonical multiply expression, or something simpler if
1860/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001861const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001862 SCEV::NoWrapFlags Flags) {
1863 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1864 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001865 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001866 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001867#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001868 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001869 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001870 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001871 "SCEVMulExpr operand types don't match!");
1872#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001873
Andrew Trick8b55b732011-03-14 16:50:06 +00001874 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001875 // And vice-versa.
1876 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1877 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1878 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001879 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001880 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1881 E = Ops.end(); I != E; ++I)
1882 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001883 All = false;
1884 break;
1885 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001886 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001887 }
1888
Chris Lattnerd934c702004-04-02 20:23:17 +00001889 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001890 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001891
1892 // If there are any constants, fold them together.
1893 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001895
1896 // C1*(C2+V) -> C1*C2 + C1*V
1897 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001898 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001899 if (Add->getNumOperands() == 2 &&
1900 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1902 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001903
Chris Lattnerd934c702004-04-02 20:23:17 +00001904 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001906 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001907 ConstantInt *Fold = ConstantInt::get(getContext(),
1908 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001909 RHSC->getValue()->getValue());
1910 Ops[0] = getConstant(Fold);
1911 Ops.erase(Ops.begin()+1); // Erase the folded element
1912 if (Ops.size() == 1) return Ops[0];
1913 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001914 }
1915
1916 // If we are left with a constant one being multiplied, strip it off.
1917 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1918 Ops.erase(Ops.begin());
1919 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001920 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001921 // If we have a multiply of zero, it will always be zero.
1922 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001923 } else if (Ops[0]->isAllOnesValue()) {
1924 // If we have a mul by -1 of an add, try distributing the -1 among the
1925 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001926 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001927 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1928 SmallVector<const SCEV *, 4> NewOps;
1929 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001930 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1931 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001932 const SCEV *Mul = getMulExpr(Ops[0], *I);
1933 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1934 NewOps.push_back(Mul);
1935 }
1936 if (AnyFolded)
1937 return getAddExpr(NewOps);
1938 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001939 else if (const SCEVAddRecExpr *
1940 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1941 // Negation preserves a recurrence's no self-wrap property.
1942 SmallVector<const SCEV *, 4> Operands;
1943 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1944 E = AddRec->op_end(); I != E; ++I) {
1945 Operands.push_back(getMulExpr(Ops[0], *I));
1946 }
1947 return getAddRecExpr(Operands, AddRec->getLoop(),
1948 AddRec->getNoWrapFlags(SCEV::FlagNW));
1949 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001950 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001951 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001952
1953 if (Ops.size() == 1)
1954 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001955 }
1956
1957 // Skip over the add expression until we get to a multiply.
1958 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1959 ++Idx;
1960
Chris Lattnerd934c702004-04-02 20:23:17 +00001961 // If there are mul operands inline them all into this expression.
1962 if (Idx < Ops.size()) {
1963 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001964 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001965 // If we have an mul, expand the mul operands onto the end of the operands
1966 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001967 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001968 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001969 DeletedMul = true;
1970 }
1971
1972 // If we deleted at least one mul, we added operands to the end of the list,
1973 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001974 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001975 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001976 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001977 }
1978
1979 // If there are any add recurrences in the operands list, see if any other
1980 // added values are loop invariant. If so, we can fold them into the
1981 // recurrence.
1982 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1983 ++Idx;
1984
1985 // Scan over all recurrences, trying to fold loop invariants into them.
1986 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1987 // Scan all of the other operands to this mul and add them to the vector if
1988 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001989 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001990 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00001991 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001992 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001993 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001994 LIOps.push_back(Ops[i]);
1995 Ops.erase(Ops.begin()+i);
1996 --i; --e;
1997 }
1998
1999 // If we found some loop invariants, fold them into the recurrence.
2000 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002001 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002002 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002003 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002004 const SCEV *Scale = getMulExpr(LIOps);
2005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2006 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002007
Dan Gohman16206132010-06-30 07:16:37 +00002008 // Build the new addrec. Propagate the NUW and NSW flags if both the
2009 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002010 //
2011 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002012 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002015
2016 // If all of the other operands were loop invariant, we are done.
2017 if (Ops.size() == 1) return NewRec;
2018
Nick Lewyckydb66b822011-09-06 05:08:09 +00002019 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002020 for (unsigned i = 0;; ++i)
2021 if (Ops[i] == AddRec) {
2022 Ops[i] = NewRec;
2023 break;
2024 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002025 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 }
2027
2028 // Okay, if there weren't any loop invariants to be folded, check to see if
2029 // there are multiple AddRec's with the same loop induction variable being
2030 // multiplied together. If so, we can fold them.
2031 for (unsigned OtherIdx = Idx+1;
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002032 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002033 ++OtherIdx) {
Andrew Trick946f76b2012-05-30 03:35:17 +00002034 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2035 continue;
2036
2037 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2038 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2039 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2040 // ]]],+,...up to x=2n}.
2041 // Note that the arguments to choose() are always integers with values
2042 // known at compile time, never SCEV objects.
2043 //
2044 // The implementation avoids pointless extra computations when the two
2045 // addrec's are of different length (mathematically, it's equivalent to
2046 // an infinite stream of zeros on the right).
2047 bool OpsModified = false;
2048 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2049 ++OtherIdx) {
2050 const SCEVAddRecExpr *OtherAddRec =
2051 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2052 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2053 continue;
2054
2055 bool Overflow = false;
2056 Type *Ty = AddRec->getType();
2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2058 SmallVector<const SCEV*, 7> AddRecOps;
2059 for (int x = 0, xe = AddRec->getNumOperands() +
2060 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2061 const SCEV *Term = getConstant(Ty, 0);
2062 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2063 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2064 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2065 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2066 z < ze && !Overflow; ++z) {
2067 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2068 uint64_t Coeff;
2069 if (LargerThan64Bits)
2070 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2071 else
2072 Coeff = Coeff1*Coeff2;
2073 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2074 const SCEV *Term1 = AddRec->getOperand(y-z);
2075 const SCEV *Term2 = OtherAddRec->getOperand(z);
2076 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002077 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002078 }
2079 AddRecOps.push_back(Term);
2080 }
2081 if (!Overflow) {
2082 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2083 SCEV::FlagAnyWrap);
2084 if (Ops.size() == 2) return NewAddRec;
Andrew Tricka3f90432012-05-30 03:35:20 +00002085 Ops[Idx] = NewAddRec;
Andrew Trick946f76b2012-05-30 03:35:17 +00002086 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2087 OpsModified = true;
Andrew Tricka3f90432012-05-30 03:35:20 +00002088 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2089 if (!AddRec)
2090 break;
Andrew Trick946f76b2012-05-30 03:35:17 +00002091 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002092 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002093 if (OpsModified)
2094 return getMulExpr(Ops);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002095 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002096
2097 // Otherwise couldn't fold anything into this recurrence. Move onto the
2098 // next one.
2099 }
2100
2101 // Okay, it looks like we really DO need an mul expr. Check to see if we
2102 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002103 FoldingSetNodeID ID;
2104 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002105 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2106 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002107 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002108 SCEVMulExpr *S =
2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2110 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2114 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002115 UniqueSCEVs.InsertNode(S, IP);
2116 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002117 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002118 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002119}
2120
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002121/// getUDivExpr - Get a canonical unsigned division expression, or something
2122/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002123const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2124 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002125 assert(getEffectiveSCEVType(LHS->getType()) ==
2126 getEffectiveSCEVType(RHS->getType()) &&
2127 "SCEVUDivExpr operand types don't match!");
2128
Dan Gohmana30370b2009-05-04 22:02:23 +00002129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002130 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002131 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002132 // If the denominator is zero, the result of the udiv is undefined. Don't
2133 // try to analyze it, because the resolution chosen here may differ from
2134 // the resolution chosen in other parts of the compiler.
2135 if (!RHSC->getValue()->isZero()) {
2136 // Determine if the division can be folded into the operands of
2137 // its operands.
2138 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002139 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002142 // For non-power-of-two values, effectively round the value up to the
2143 // nearest power of two.
2144 if (!RHSC->getValue()->getValue().isPowerOf2())
2145 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002146 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2149 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2152 const APInt &StepInt = Step->getValue()->getValue();
2153 const APInt &DivInt = RHSC->getValue()->getValue();
2154 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002155 getZeroExtendExpr(AR, ExtTy) ==
2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2157 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002158 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002159 SmallVector<const SCEV *, 4> Operands;
2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002162 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002163 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002164 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002165 /// Get a canonical UDivExpr for a recurrence.
2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2167 // We can currently only fold X%N if X is constant.
2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2169 if (StartC && !DivInt.urem(StepInt) &&
2170 getZeroExtendExpr(AR, ExtTy) ==
2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2172 getZeroExtendExpr(Step, ExtTy),
2173 AR->getLoop(), SCEV::FlagAnyWrap)) {
2174 const APInt &StartInt = StartC->getValue()->getValue();
2175 const APInt &StartRem = StartInt.urem(StepInt);
2176 if (StartRem != 0)
2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2178 AR->getLoop(), SCEV::FlagNW);
2179 }
2180 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2183 SmallVector<const SCEV *, 4> Operands;
2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2187 // Find an operand that's safely divisible.
2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2189 const SCEV *Op = M->getOperand(i);
2190 const SCEV *Div = getUDivExpr(Op, RHSC);
2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2193 M->op_end());
2194 Operands[i] = Div;
2195 return getMulExpr(Operands);
2196 }
2197 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002198 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002201 SmallVector<const SCEV *, 4> Operands;
2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2205 Operands.clear();
2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2208 if (isa<SCEVUDivExpr>(Op) ||
2209 getMulExpr(Op, RHS) != A->getOperand(i))
2210 break;
2211 Operands.push_back(Op);
2212 }
2213 if (Operands.size() == A->getNumOperands())
2214 return getAddExpr(Operands);
2215 }
2216 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002217
Dan Gohmanacd700a2010-04-22 01:35:11 +00002218 // Fold if both operands are constant.
2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2220 Constant *LHSCV = LHSC->getValue();
2221 Constant *RHSCV = RHSC->getValue();
2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2223 RHSCV)));
2224 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002225 }
2226 }
2227
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002228 FoldingSetNodeID ID;
2229 ID.AddInteger(scUDivExpr);
2230 ID.AddPointer(LHS);
2231 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002232 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2235 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002236 UniqueSCEVs.InsertNode(S, IP);
2237 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002238}
2239
Nick Lewycky31eaca52014-01-27 10:04:03 +00002240static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2241 APInt A = C1->getValue()->getValue().abs();
2242 APInt B = C2->getValue()->getValue().abs();
2243 uint32_t ABW = A.getBitWidth();
2244 uint32_t BBW = B.getBitWidth();
2245
2246 if (ABW > BBW)
2247 B = B.zext(ABW);
2248 else if (ABW < BBW)
2249 A = A.zext(BBW);
2250
2251 return APIntOps::GreatestCommonDivisor(A, B);
2252}
2253
2254/// getUDivExactExpr - Get a canonical unsigned division expression, or
2255/// something simpler if possible. There is no representation for an exact udiv
2256/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2257/// We can't do this when it's not exact because the udiv may be clearing bits.
2258const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2259 const SCEV *RHS) {
2260 // TODO: we could try to find factors in all sorts of things, but for now we
2261 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2262 // end of this file for inspiration.
2263
2264 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2265 if (!Mul)
2266 return getUDivExpr(LHS, RHS);
2267
2268 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2269 // If the mulexpr multiplies by a constant, then that constant must be the
2270 // first element of the mulexpr.
2271 if (const SCEVConstant *LHSCst =
2272 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2273 if (LHSCst == RHSCst) {
2274 SmallVector<const SCEV *, 2> Operands;
2275 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2276 return getMulExpr(Operands);
2277 }
2278
2279 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2280 // that there's a factor provided by one of the other terms. We need to
2281 // check.
2282 APInt Factor = gcd(LHSCst, RHSCst);
2283 if (!Factor.isIntN(1)) {
2284 LHSCst = cast<SCEVConstant>(
2285 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2286 RHSCst = cast<SCEVConstant>(
2287 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2288 SmallVector<const SCEV *, 2> Operands;
2289 Operands.push_back(LHSCst);
2290 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2291 LHS = getMulExpr(Operands);
2292 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002293 Mul = dyn_cast<SCEVMulExpr>(LHS);
2294 if (!Mul)
2295 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002296 }
2297 }
2298 }
2299
2300 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2301 if (Mul->getOperand(i) == RHS) {
2302 SmallVector<const SCEV *, 2> Operands;
2303 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2304 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2305 return getMulExpr(Operands);
2306 }
2307 }
2308
2309 return getUDivExpr(LHS, RHS);
2310}
Chris Lattnerd934c702004-04-02 20:23:17 +00002311
Dan Gohman4d5435d2009-05-24 23:45:28 +00002312/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2313/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002314const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2315 const Loop *L,
2316 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002317 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002318 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002319 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002320 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002321 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002322 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002323 }
2324
2325 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002326 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002327}
2328
Dan Gohman4d5435d2009-05-24 23:45:28 +00002329/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2330/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002331const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002332ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002333 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002334 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002335#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002336 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002337 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002338 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002339 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002340 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002341 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002342 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002343#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002344
Dan Gohmanbe928e32008-06-18 16:23:07 +00002345 if (Operands.back()->isZero()) {
2346 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002347 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002348 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002349
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002350 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2351 // use that information to infer NUW and NSW flags. However, computing a
2352 // BE count requires calling getAddRecExpr, so we may not yet have a
2353 // meaningful BE count at this point (and if we don't, we'd be stuck
2354 // with a SCEVCouldNotCompute as the cached BE count).
2355
Andrew Trick8b55b732011-03-14 16:50:06 +00002356 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002357 // And vice-versa.
2358 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2359 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2360 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002361 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002362 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2363 E = Operands.end(); I != E; ++I)
2364 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002365 All = false;
2366 break;
2367 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002368 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002369 }
2370
Dan Gohman223a5d22008-08-08 18:33:12 +00002371 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002372 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002373 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002374 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002375 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002376 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002377 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002378 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002379 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002380 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002381 // AddRecs require their operands be loop-invariant with respect to their
2382 // loops. Don't perform this transformation if it would break this
2383 // requirement.
2384 bool AllInvariant = true;
2385 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002386 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002387 AllInvariant = false;
2388 break;
2389 }
2390 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002391 // Create a recurrence for the outer loop with the same step size.
2392 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002393 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2394 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002395 SCEV::NoWrapFlags OuterFlags =
2396 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002397
2398 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002399 AllInvariant = true;
2400 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002401 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002402 AllInvariant = false;
2403 break;
2404 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002405 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002406 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002407 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002408 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2409 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002410 SCEV::NoWrapFlags InnerFlags =
2411 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002412 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2413 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002414 }
2415 // Reset Operands to its original state.
2416 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002417 }
2418 }
2419
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002420 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2421 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002422 FoldingSetNodeID ID;
2423 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002424 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2425 ID.AddPointer(Operands[i]);
2426 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002427 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002428 SCEVAddRecExpr *S =
2429 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2430 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002431 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2432 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002433 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2434 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002435 UniqueSCEVs.InsertNode(S, IP);
2436 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002437 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002438 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002439}
2440
Dan Gohmanabd17092009-06-24 14:49:00 +00002441const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2442 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002443 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002444 Ops.push_back(LHS);
2445 Ops.push_back(RHS);
2446 return getSMaxExpr(Ops);
2447}
2448
Dan Gohmanaf752342009-07-07 17:06:11 +00002449const SCEV *
2450ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002451 assert(!Ops.empty() && "Cannot get empty smax!");
2452 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002453#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002454 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002455 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002456 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002457 "SCEVSMaxExpr operand types don't match!");
2458#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002459
2460 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002461 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002462
2463 // If there are any constants, fold them together.
2464 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002465 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002466 ++Idx;
2467 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002468 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002469 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002470 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002471 APIntOps::smax(LHSC->getValue()->getValue(),
2472 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002473 Ops[0] = getConstant(Fold);
2474 Ops.erase(Ops.begin()+1); // Erase the folded element
2475 if (Ops.size() == 1) return Ops[0];
2476 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002477 }
2478
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002479 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002480 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2481 Ops.erase(Ops.begin());
2482 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002483 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2484 // If we have an smax with a constant maximum-int, it will always be
2485 // maximum-int.
2486 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002487 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002488
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002489 if (Ops.size() == 1) return Ops[0];
2490 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002491
2492 // Find the first SMax
2493 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2494 ++Idx;
2495
2496 // Check to see if one of the operands is an SMax. If so, expand its operands
2497 // onto our operand list, and recurse to simplify.
2498 if (Idx < Ops.size()) {
2499 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002500 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002501 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002502 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002503 DeletedSMax = true;
2504 }
2505
2506 if (DeletedSMax)
2507 return getSMaxExpr(Ops);
2508 }
2509
2510 // Okay, check to see if the same value occurs in the operand list twice. If
2511 // so, delete one. Since we sorted the list, these values are required to
2512 // be adjacent.
2513 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002514 // X smax Y smax Y --> X smax Y
2515 // X smax Y --> X, if X is always greater than Y
2516 if (Ops[i] == Ops[i+1] ||
2517 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2518 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2519 --i; --e;
2520 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002521 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2522 --i; --e;
2523 }
2524
2525 if (Ops.size() == 1) return Ops[0];
2526
2527 assert(!Ops.empty() && "Reduced smax down to nothing!");
2528
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002529 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002530 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002531 FoldingSetNodeID ID;
2532 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002533 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2534 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002535 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002536 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002537 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2538 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002539 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2540 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002541 UniqueSCEVs.InsertNode(S, IP);
2542 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002543}
2544
Dan Gohmanabd17092009-06-24 14:49:00 +00002545const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2546 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002547 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002548 Ops.push_back(LHS);
2549 Ops.push_back(RHS);
2550 return getUMaxExpr(Ops);
2551}
2552
Dan Gohmanaf752342009-07-07 17:06:11 +00002553const SCEV *
2554ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002555 assert(!Ops.empty() && "Cannot get empty umax!");
2556 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002557#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002558 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002559 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002560 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002561 "SCEVUMaxExpr operand types don't match!");
2562#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002563
2564 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002565 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002566
2567 // If there are any constants, fold them together.
2568 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002569 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002570 ++Idx;
2571 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002572 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002573 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002574 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002575 APIntOps::umax(LHSC->getValue()->getValue(),
2576 RHSC->getValue()->getValue()));
2577 Ops[0] = getConstant(Fold);
2578 Ops.erase(Ops.begin()+1); // Erase the folded element
2579 if (Ops.size() == 1) return Ops[0];
2580 LHSC = cast<SCEVConstant>(Ops[0]);
2581 }
2582
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002583 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002584 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2585 Ops.erase(Ops.begin());
2586 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002587 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2588 // If we have an umax with a constant maximum-int, it will always be
2589 // maximum-int.
2590 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002591 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002592
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002593 if (Ops.size() == 1) return Ops[0];
2594 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002595
2596 // Find the first UMax
2597 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2598 ++Idx;
2599
2600 // Check to see if one of the operands is a UMax. If so, expand its operands
2601 // onto our operand list, and recurse to simplify.
2602 if (Idx < Ops.size()) {
2603 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002604 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002605 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002606 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002607 DeletedUMax = true;
2608 }
2609
2610 if (DeletedUMax)
2611 return getUMaxExpr(Ops);
2612 }
2613
2614 // Okay, check to see if the same value occurs in the operand list twice. If
2615 // so, delete one. Since we sorted the list, these values are required to
2616 // be adjacent.
2617 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002618 // X umax Y umax Y --> X umax Y
2619 // X umax Y --> X, if X is always greater than Y
2620 if (Ops[i] == Ops[i+1] ||
2621 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2622 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2623 --i; --e;
2624 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002625 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2626 --i; --e;
2627 }
2628
2629 if (Ops.size() == 1) return Ops[0];
2630
2631 assert(!Ops.empty() && "Reduced umax down to nothing!");
2632
2633 // Okay, it looks like we really DO need a umax expr. Check to see if we
2634 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002635 FoldingSetNodeID ID;
2636 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002637 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2638 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002639 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002640 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002641 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2642 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002643 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2644 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002645 UniqueSCEVs.InsertNode(S, IP);
2646 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002647}
2648
Dan Gohmanabd17092009-06-24 14:49:00 +00002649const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2650 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002651 // ~smax(~x, ~y) == smin(x, y).
2652 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2653}
2654
Dan Gohmanabd17092009-06-24 14:49:00 +00002655const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2656 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002657 // ~umax(~x, ~y) == umin(x, y)
2658 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2659}
2660
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002661const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002662 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002663 // constant expression and then folding it back into a ConstantInt.
2664 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002665 if (DL)
2666 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002667
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002668 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2669 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002670 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002671 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002672 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002673 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002674 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2675}
2676
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002677const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2678 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002679 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002680 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002681 // constant expression and then folding it back into a ConstantInt.
2682 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002683 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002684 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002685 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002686 }
Dan Gohman11862a62010-04-12 23:03:26 +00002687
Dan Gohmancf913832010-01-28 02:15:55 +00002688 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2689 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002690 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002691 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002692
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002693 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002694 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002695}
2696
Dan Gohmanaf752342009-07-07 17:06:11 +00002697const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002698 // Don't attempt to do anything other than create a SCEVUnknown object
2699 // here. createSCEV only calls getUnknown after checking for all other
2700 // interesting possibilities, and any other code that calls getUnknown
2701 // is doing so in order to hide a value from SCEV canonicalization.
2702
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002703 FoldingSetNodeID ID;
2704 ID.AddInteger(scUnknown);
2705 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00002706 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00002707 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2708 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2709 "Stale SCEVUnknown in uniquing map!");
2710 return S;
2711 }
2712 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2713 FirstUnknown);
2714 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002715 UniqueSCEVs.InsertNode(S, IP);
2716 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002717}
2718
Chris Lattnerd934c702004-04-02 20:23:17 +00002719//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002720// Basic SCEV Analysis and PHI Idiom Recognition Code
2721//
2722
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002723/// isSCEVable - Test if values of the given type are analyzable within
2724/// the SCEV framework. This primarily includes integer types, and it
2725/// can optionally include pointer types if the ScalarEvolution class
2726/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002727bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002728 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002729 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002730}
2731
2732/// getTypeSizeInBits - Return the size in bits of the specified type,
2733/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002734uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002735 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2736
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002737 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002738 if (DL)
2739 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002740
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002741 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002742 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002743 return Ty->getPrimitiveSizeInBits();
2744
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002745 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002746 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002747 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002748 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002749}
2750
2751/// getEffectiveSCEVType - Return a type with the same bitwidth as
2752/// the given type and which represents how SCEV will treat the given
2753/// type, for which isSCEVable must return true. For pointer types,
2754/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002755Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002756 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2757
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002758 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002759 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002760 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002761
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002762 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002763 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002764
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002765 if (DL)
2766 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002767
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002768 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002769 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002770}
Chris Lattnerd934c702004-04-02 20:23:17 +00002771
Dan Gohmanaf752342009-07-07 17:06:11 +00002772const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002773 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002774}
2775
Shuxin Yangefc4c012013-07-08 17:33:13 +00002776namespace {
2777 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2778 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2779 // is set iff if find such SCEVUnknown.
2780 //
2781 struct FindInvalidSCEVUnknown {
2782 bool FindOne;
2783 FindInvalidSCEVUnknown() { FindOne = false; }
2784 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002785 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002786 case scConstant:
2787 return false;
2788 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002789 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002790 FindOne = true;
2791 return false;
2792 default:
2793 return true;
2794 }
2795 }
2796 bool isDone() const { return FindOne; }
2797 };
2798}
2799
2800bool ScalarEvolution::checkValidity(const SCEV *S) const {
2801 FindInvalidSCEVUnknown F;
2802 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2803 ST.visitAll(S);
2804
2805 return !F.FindOne;
2806}
2807
Chris Lattnerd934c702004-04-02 20:23:17 +00002808/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2809/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002810const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002811 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002812
Shuxin Yangefc4c012013-07-08 17:33:13 +00002813 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2814 if (I != ValueExprMap.end()) {
2815 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002816 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002817 return S;
2818 else
2819 ValueExprMap.erase(I);
2820 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002821 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002822
2823 // The process of creating a SCEV for V may have caused other SCEVs
2824 // to have been created, so it's necessary to insert the new entry
2825 // from scratch, rather than trying to remember the insert position
2826 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002827 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002828 return S;
2829}
2830
Dan Gohman0a40ad92009-04-16 03:18:22 +00002831/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2832///
Dan Gohmanaf752342009-07-07 17:06:11 +00002833const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002834 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002835 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002836 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002837
Chris Lattner229907c2011-07-18 04:54:35 +00002838 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002839 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002840 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002841 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002842}
2843
2844/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002845const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002846 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002847 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002848 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002849
Chris Lattner229907c2011-07-18 04:54:35 +00002850 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002851 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002852 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002853 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002854 return getMinusSCEV(AllOnes, V);
2855}
2856
Andrew Trick8b55b732011-03-14 16:50:06 +00002857/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002858const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002860 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2861
Dan Gohman46f00a22010-07-20 16:53:00 +00002862 // Fast path: X - X --> 0.
2863 if (LHS == RHS)
2864 return getConstant(LHS->getType(), 0);
2865
Dan Gohman0a40ad92009-04-16 03:18:22 +00002866 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002867 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002868}
2869
2870/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2871/// input value to the specified type. If the type must be extended, it is zero
2872/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002873const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002874ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2875 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002876 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2877 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002878 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002880 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002881 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002882 return getTruncateExpr(V, Ty);
2883 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002884}
2885
2886/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2887/// input value to the specified type. If the type must be extended, it is sign
2888/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002889const SCEV *
2890ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002891 Type *Ty) {
2892 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002893 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2894 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002895 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002896 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002897 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002898 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002899 return getTruncateExpr(V, Ty);
2900 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002901}
2902
Dan Gohmane712a2f2009-05-13 03:46:30 +00002903/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2904/// input value to the specified type. If the type must be extended, it is zero
2905/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002906const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002907ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2908 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002909 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2910 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002911 "Cannot noop or zero extend with non-integer arguments!");
2912 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2913 "getNoopOrZeroExtend cannot truncate!");
2914 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2915 return V; // No conversion
2916 return getZeroExtendExpr(V, Ty);
2917}
2918
2919/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2920/// input value to the specified type. If the type must be extended, it is sign
2921/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002922const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002923ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2924 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002925 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2926 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002927 "Cannot noop or sign extend with non-integer arguments!");
2928 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2929 "getNoopOrSignExtend cannot truncate!");
2930 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2931 return V; // No conversion
2932 return getSignExtendExpr(V, Ty);
2933}
2934
Dan Gohman8db2edc2009-06-13 15:56:47 +00002935/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2936/// the input value to the specified type. If the type must be extended,
2937/// it is extended with unspecified bits. The conversion must not be
2938/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002939const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002940ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2941 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002942 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2943 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002944 "Cannot noop or any extend with non-integer arguments!");
2945 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2946 "getNoopOrAnyExtend cannot truncate!");
2947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2948 return V; // No conversion
2949 return getAnyExtendExpr(V, Ty);
2950}
2951
Dan Gohmane712a2f2009-05-13 03:46:30 +00002952/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2953/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002954const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002955ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2956 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002957 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2958 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002959 "Cannot truncate or noop with non-integer arguments!");
2960 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2961 "getTruncateOrNoop cannot extend!");
2962 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2963 return V; // No conversion
2964 return getTruncateExpr(V, Ty);
2965}
2966
Dan Gohman96212b62009-06-22 00:31:57 +00002967/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2968/// the types using zero-extension, and then perform a umax operation
2969/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002970const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2971 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002972 const SCEV *PromotedLHS = LHS;
2973 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00002974
2975 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2976 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2977 else
2978 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2979
2980 return getUMaxExpr(PromotedLHS, PromotedRHS);
2981}
2982
Dan Gohman2bc22302009-06-22 15:03:27 +00002983/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2984/// the types using zero-extension, and then perform a umin operation
2985/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002986const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2987 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002988 const SCEV *PromotedLHS = LHS;
2989 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00002990
2991 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2992 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2993 else
2994 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2995
2996 return getUMinExpr(PromotedLHS, PromotedRHS);
2997}
2998
Andrew Trick87716c92011-03-17 23:51:11 +00002999/// getPointerBase - Transitively follow the chain of pointer-type operands
3000/// until reaching a SCEV that does not have a single pointer operand. This
3001/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3002/// but corner cases do exist.
3003const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3004 // A pointer operand may evaluate to a nonpointer expression, such as null.
3005 if (!V->getType()->isPointerTy())
3006 return V;
3007
3008 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3009 return getPointerBase(Cast->getOperand());
3010 }
3011 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003012 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003013 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3014 I != E; ++I) {
3015 if ((*I)->getType()->isPointerTy()) {
3016 // Cannot find the base of an expression with multiple pointer operands.
3017 if (PtrOp)
3018 return V;
3019 PtrOp = *I;
3020 }
3021 }
3022 if (!PtrOp)
3023 return V;
3024 return getPointerBase(PtrOp);
3025 }
3026 return V;
3027}
3028
Dan Gohman0b89dff2009-07-25 01:13:03 +00003029/// PushDefUseChildren - Push users of the given Instruction
3030/// onto the given Worklist.
3031static void
3032PushDefUseChildren(Instruction *I,
3033 SmallVectorImpl<Instruction *> &Worklist) {
3034 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003035 for (User *U : I->users())
3036 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003037}
3038
3039/// ForgetSymbolicValue - This looks up computed SCEV values for all
3040/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003041/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003042/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003043void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003044ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003045 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003046 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003047
Dan Gohman0b89dff2009-07-25 01:13:03 +00003048 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003049 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003050 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003051 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003052 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003053
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003054 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003055 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003056 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003057 const SCEV *Old = It->second;
3058
Dan Gohman0b89dff2009-07-25 01:13:03 +00003059 // Short-circuit the def-use traversal if the symbolic name
3060 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003061 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003062 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003063
Dan Gohman0b89dff2009-07-25 01:13:03 +00003064 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003065 // structure, it's a PHI that's in the progress of being computed
3066 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3067 // additional loop trip count information isn't going to change anything.
3068 // In the second case, createNodeForPHI will perform the necessary
3069 // updates on its own when it gets to that point. In the third, we do
3070 // want to forget the SCEVUnknown.
3071 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003072 !isa<SCEVUnknown>(Old) ||
3073 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003074 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003075 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003076 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003077 }
3078
3079 PushDefUseChildren(I, Worklist);
3080 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003081}
Chris Lattnerd934c702004-04-02 20:23:17 +00003082
3083/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3084/// a loop header, making it a potential recurrence, or it doesn't.
3085///
Dan Gohmanaf752342009-07-07 17:06:11 +00003086const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003087 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3088 if (L->getHeader() == PN->getParent()) {
3089 // The loop may have multiple entrances or multiple exits; we can analyze
3090 // this phi as an addrec if it has a unique entry value and a unique
3091 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003092 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003093 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3094 Value *V = PN->getIncomingValue(i);
3095 if (L->contains(PN->getIncomingBlock(i))) {
3096 if (!BEValueV) {
3097 BEValueV = V;
3098 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003099 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003100 break;
3101 }
3102 } else if (!StartValueV) {
3103 StartValueV = V;
3104 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003105 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003106 break;
3107 }
3108 }
3109 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003110 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003111 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003112 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003113 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003114 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003115
3116 // Using this symbolic name for the PHI, analyze the value coming around
3117 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003118 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003119
3120 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3121 // has a special value for the first iteration of the loop.
3122
3123 // If the value coming around the backedge is an add with the symbolic
3124 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003125 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003126 // If there is a single occurrence of the symbolic value, replace it
3127 // with a recurrence.
3128 unsigned FoundIndex = Add->getNumOperands();
3129 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3130 if (Add->getOperand(i) == SymbolicName)
3131 if (FoundIndex == e) {
3132 FoundIndex = i;
3133 break;
3134 }
3135
3136 if (FoundIndex != Add->getNumOperands()) {
3137 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003138 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003139 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3140 if (i != FoundIndex)
3141 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003142 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003143
3144 // This is not a valid addrec if the step amount is varying each
3145 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003146 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003147 (isa<SCEVAddRecExpr>(Accum) &&
3148 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003149 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003150
3151 // If the increment doesn't overflow, then neither the addrec nor
3152 // the post-increment will overflow.
3153 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3154 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003155 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003156 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003157 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003158 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003159 // If the increment is an inbounds GEP, then we know the address
3160 // space cannot be wrapped around. We cannot make any guarantee
3161 // about signed or unsigned overflow because pointers are
3162 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003163 // pointer. We can guarantee that no unsigned wrap occurs if the
3164 // indices form a positive value.
3165 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003166 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003167
3168 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3169 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3170 Flags = setFlags(Flags, SCEV::FlagNUW);
3171 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003172 } else if (const SubOperator *OBO =
3173 dyn_cast<SubOperator>(BEValueV)) {
3174 if (OBO->hasNoUnsignedWrap())
3175 Flags = setFlags(Flags, SCEV::FlagNUW);
3176 if (OBO->hasNoSignedWrap())
3177 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003178 }
3179
Dan Gohman6635bb22010-04-12 07:49:36 +00003180 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003181 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003182
Dan Gohman51ad99d2010-01-21 02:09:26 +00003183 // Since the no-wrap flags are on the increment, they apply to the
3184 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003185 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003186 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003187 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003188
3189 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003190 // to be symbolic. We now need to go back and purge all of the
3191 // entries for the scalars that use the symbolic expression.
3192 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003193 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003194 return PHISCEV;
3195 }
3196 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003197 } else if (const SCEVAddRecExpr *AddRec =
3198 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003199 // Otherwise, this could be a loop like this:
3200 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3201 // In this case, j = {1,+,1} and BEValue is j.
3202 // Because the other in-value of i (0) fits the evolution of BEValue
3203 // i really is an addrec evolution.
3204 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003205 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003206
3207 // If StartVal = j.start - j.stride, we can use StartVal as the
3208 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003209 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003210 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003211 // FIXME: For constant StartVal, we should be able to infer
3212 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003213 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003214 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3215 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003216
3217 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003218 // to be symbolic. We now need to go back and purge all of the
3219 // entries for the scalars that use the symbolic expression.
3220 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003221 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003222 return PHISCEV;
3223 }
3224 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003225 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003226 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003227 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003228
Dan Gohmana9c205c2010-02-25 06:57:05 +00003229 // If the PHI has a single incoming value, follow that value, unless the
3230 // PHI's incoming blocks are in a different loop, in which case doing so
3231 // risks breaking LCSSA form. Instcombine would normally zap these, but
3232 // it doesn't have DominatorTree information, so it may miss cases.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003233 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003234 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003235 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003236
Chris Lattnerd934c702004-04-02 20:23:17 +00003237 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003238 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003239}
3240
Dan Gohmanee750d12009-05-08 20:26:55 +00003241/// createNodeForGEP - Expand GEP instructions into add and multiply
3242/// operations. This allows them to be analyzed by regular SCEV code.
3243///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003244const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003245 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003246 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003247 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003248 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003249 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003250
3251 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3252 // Add expression, because the Instruction may be guarded by control flow
3253 // and the no-overflow bits may not be valid for the expression in any
3254 // context.
3255 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3256
Dan Gohman1d2ded72010-05-03 22:09:21 +00003257 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003258 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003259 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003260 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003261 I != E; ++I) {
3262 Value *Index = *I;
3263 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003264 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003265 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003266 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003267 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003268
Dan Gohman16206132010-06-30 07:16:37 +00003269 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003270 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003271 } else {
3272 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003273 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003274 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003275 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003276 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3277
Dan Gohman16206132010-06-30 07:16:37 +00003278 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003279 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003280
3281 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003282 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003283 }
3284 }
Dan Gohman16206132010-06-30 07:16:37 +00003285
3286 // Get the SCEV for the GEP base.
3287 const SCEV *BaseS = getSCEV(Base);
3288
Dan Gohman16206132010-06-30 07:16:37 +00003289 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003290 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003291}
3292
Nick Lewycky3783b462007-11-22 07:59:40 +00003293/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3294/// guaranteed to end in (at every loop iteration). It is, at the same time,
3295/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3296/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003297uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003298ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003299 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003300 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003301
Dan Gohmana30370b2009-05-04 22:02:23 +00003302 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003303 return std::min(GetMinTrailingZeros(T->getOperand()),
3304 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003305
Dan Gohmana30370b2009-05-04 22:02:23 +00003306 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003307 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3308 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3309 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003310 }
3311
Dan Gohmana30370b2009-05-04 22:02:23 +00003312 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003313 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3314 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3315 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003316 }
3317
Dan Gohmana30370b2009-05-04 22:02:23 +00003318 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003319 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003320 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003321 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003322 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003323 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003324 }
3325
Dan Gohmana30370b2009-05-04 22:02:23 +00003326 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003327 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003328 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3329 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003330 for (unsigned i = 1, e = M->getNumOperands();
3331 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003332 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003333 BitWidth);
3334 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003335 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003336
Dan Gohmana30370b2009-05-04 22:02:23 +00003337 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003338 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003339 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003340 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003341 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003342 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003343 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003344
Dan Gohmana30370b2009-05-04 22:02:23 +00003345 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003346 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003347 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003348 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003349 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003350 return MinOpRes;
3351 }
3352
Dan Gohmana30370b2009-05-04 22:02:23 +00003353 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003354 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003355 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003356 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003358 return MinOpRes;
3359 }
3360
Dan Gohmanc702fc02009-06-19 23:29:04 +00003361 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3362 // For a SCEVUnknown, ask ValueTracking.
3363 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003364 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00003365 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003366 return Zeros.countTrailingOnes();
3367 }
3368
3369 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003370 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003371}
Chris Lattnerd934c702004-04-02 20:23:17 +00003372
Dan Gohmane65c9172009-07-13 21:35:55 +00003373/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3374///
3375ConstantRange
3376ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003377 // See if we've computed this range already.
3378 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3379 if (I != UnsignedRanges.end())
3380 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003381
3382 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003383 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003384
Dan Gohman85be4332010-01-26 19:19:05 +00003385 unsigned BitWidth = getTypeSizeInBits(S->getType());
3386 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3387
3388 // If the value has known zeros, the maximum unsigned value will have those
3389 // known zeros as well.
3390 uint32_t TZ = GetMinTrailingZeros(S);
3391 if (TZ != 0)
3392 ConservativeResult =
3393 ConstantRange(APInt::getMinValue(BitWidth),
3394 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3395
Dan Gohmane65c9172009-07-13 21:35:55 +00003396 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3397 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3398 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3399 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003400 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003401 }
3402
3403 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3404 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3405 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3406 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003407 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003408 }
3409
3410 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3411 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3412 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3413 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003414 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003415 }
3416
3417 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3418 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3419 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3420 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003421 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003422 }
3423
3424 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3425 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3426 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003427 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003428 }
3429
3430 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3431 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003432 return setUnsignedRange(ZExt,
3433 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003434 }
3435
3436 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3437 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003438 return setUnsignedRange(SExt,
3439 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003440 }
3441
3442 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3443 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003444 return setUnsignedRange(Trunc,
3445 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003446 }
3447
Dan Gohmane65c9172009-07-13 21:35:55 +00003448 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003449 // If there's no unsigned wrap, the value will never be less than its
3450 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003451 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003452 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003453 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003454 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003455 ConservativeResult.intersectWith(
3456 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003457
3458 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003459 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003460 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003461 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003462 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3463 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003464 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3465
3466 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003467 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003468
3469 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003470 ConstantRange StepRange = getSignedRange(Step);
3471 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3472 ConstantRange EndRange =
3473 StartRange.add(MaxBECountRange.multiply(StepRange));
3474
3475 // Check for overflow. This must be done with ConstantRange arithmetic
3476 // because we could be called from within the ScalarEvolution overflow
3477 // checking code.
3478 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3479 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3480 ConstantRange ExtMaxBECountRange =
3481 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3482 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3483 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3484 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003485 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003486
Dan Gohmane65c9172009-07-13 21:35:55 +00003487 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3488 EndRange.getUnsignedMin());
3489 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3490 EndRange.getUnsignedMax());
3491 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003492 return setUnsignedRange(AddRec, ConservativeResult);
3493 return setUnsignedRange(AddRec,
3494 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003495 }
3496 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003497
Dan Gohmaned756312010-11-17 20:23:08 +00003498 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003499 }
3500
3501 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3502 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003503 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003504 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003505 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003506 return setUnsignedRange(U, ConservativeResult);
3507 return setUnsignedRange(U,
3508 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003509 }
3510
Dan Gohmaned756312010-11-17 20:23:08 +00003511 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003512}
3513
Dan Gohmane65c9172009-07-13 21:35:55 +00003514/// getSignedRange - Determine the signed range for a particular SCEV.
3515///
3516ConstantRange
3517ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003518 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003519 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3520 if (I != SignedRanges.end())
3521 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003522
Dan Gohmane65c9172009-07-13 21:35:55 +00003523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003524 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003525
Dan Gohman51aaf022010-01-26 04:40:18 +00003526 unsigned BitWidth = getTypeSizeInBits(S->getType());
3527 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3528
3529 // If the value has known zeros, the maximum signed value will have those
3530 // known zeros as well.
3531 uint32_t TZ = GetMinTrailingZeros(S);
3532 if (TZ != 0)
3533 ConservativeResult =
3534 ConstantRange(APInt::getSignedMinValue(BitWidth),
3535 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3536
Dan Gohmane65c9172009-07-13 21:35:55 +00003537 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3538 ConstantRange X = getSignedRange(Add->getOperand(0));
3539 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3540 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003541 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003542 }
3543
Dan Gohmane65c9172009-07-13 21:35:55 +00003544 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3545 ConstantRange X = getSignedRange(Mul->getOperand(0));
3546 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3547 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003548 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003549 }
3550
Dan Gohmane65c9172009-07-13 21:35:55 +00003551 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3552 ConstantRange X = getSignedRange(SMax->getOperand(0));
3553 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3554 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003555 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003556 }
Dan Gohmand261d272009-06-24 01:05:09 +00003557
Dan Gohmane65c9172009-07-13 21:35:55 +00003558 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3559 ConstantRange X = getSignedRange(UMax->getOperand(0));
3560 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3561 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003562 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003563 }
Dan Gohmand261d272009-06-24 01:05:09 +00003564
Dan Gohmane65c9172009-07-13 21:35:55 +00003565 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3566 ConstantRange X = getSignedRange(UDiv->getLHS());
3567 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003568 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003569 }
Dan Gohmand261d272009-06-24 01:05:09 +00003570
Dan Gohmane65c9172009-07-13 21:35:55 +00003571 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3572 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003573 return setSignedRange(ZExt,
3574 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003575 }
3576
3577 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3578 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003579 return setSignedRange(SExt,
3580 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003581 }
3582
3583 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3584 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003585 return setSignedRange(Trunc,
3586 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003587 }
3588
Dan Gohmane65c9172009-07-13 21:35:55 +00003589 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003590 // If there's no signed wrap, and all the operands have the same sign or
3591 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003592 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003593 bool AllNonNeg = true;
3594 bool AllNonPos = true;
3595 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3596 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3597 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3598 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003599 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003600 ConservativeResult = ConservativeResult.intersectWith(
3601 ConstantRange(APInt(BitWidth, 0),
3602 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003603 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003604 ConservativeResult = ConservativeResult.intersectWith(
3605 ConstantRange(APInt::getSignedMinValue(BitWidth),
3606 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003607 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003608
3609 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003610 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003611 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003612 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003613 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3614 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003615 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3616
3617 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003618 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003619
3620 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003621 ConstantRange StepRange = getSignedRange(Step);
3622 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3623 ConstantRange EndRange =
3624 StartRange.add(MaxBECountRange.multiply(StepRange));
3625
3626 // Check for overflow. This must be done with ConstantRange arithmetic
3627 // because we could be called from within the ScalarEvolution overflow
3628 // checking code.
3629 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3630 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3631 ConstantRange ExtMaxBECountRange =
3632 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3633 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3634 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3635 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003636 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003637
Dan Gohmane65c9172009-07-13 21:35:55 +00003638 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3639 EndRange.getSignedMin());
3640 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3641 EndRange.getSignedMax());
3642 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003643 return setSignedRange(AddRec, ConservativeResult);
3644 return setSignedRange(AddRec,
3645 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003646 }
Dan Gohmand261d272009-06-24 01:05:09 +00003647 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003648
Dan Gohmaned756312010-11-17 20:23:08 +00003649 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003650 }
3651
Dan Gohmanc702fc02009-06-19 23:29:04 +00003652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3653 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003654 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003655 return setSignedRange(U, ConservativeResult);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003656 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
Hal Finkelff666bd2013-07-09 18:16:16 +00003657 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003658 return setSignedRange(U, ConservativeResult);
3659 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003660 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003661 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003662 }
3663
Dan Gohmaned756312010-11-17 20:23:08 +00003664 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003665}
3666
Chris Lattnerd934c702004-04-02 20:23:17 +00003667/// createSCEV - We know that there is no SCEV for the specified value.
3668/// Analyze the expression.
3669///
Dan Gohmanaf752342009-07-07 17:06:11 +00003670const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003671 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003672 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003673
Dan Gohman05e89732008-06-22 19:56:46 +00003674 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003675 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003676 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003677
3678 // Don't attempt to analyze instructions in blocks that aren't
3679 // reachable. Such instructions don't matter, and they aren't required
3680 // to obey basic rules for definitions dominating uses which this
3681 // analysis depends on.
3682 if (!DT->isReachableFromEntry(I->getParent()))
3683 return getUnknown(V);
3684 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003685 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003686 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3687 return getConstant(CI);
3688 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003689 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003690 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3691 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003692 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003693 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003694
Dan Gohman80ca01c2009-07-17 20:47:02 +00003695 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003696 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003697 case Instruction::Add: {
3698 // The simple thing to do would be to just call getSCEV on both operands
3699 // and call getAddExpr with the result. However if we're looking at a
3700 // bunch of things all added together, this can be quite inefficient,
3701 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3702 // Instead, gather up all the operands and make a single getAddExpr call.
3703 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003704 //
3705 // Don't apply this instruction's NSW or NUW flags to the new
3706 // expression. The instruction may be guarded by control flow that the
3707 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3708 // mapped to the same SCEV expression, and it would be incorrect to transfer
3709 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003710 SmallVector<const SCEV *, 4> AddOps;
3711 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003712 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3713 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3714 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3715 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003716 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003717 const SCEV *Op1 = getSCEV(U->getOperand(1));
3718 if (Opcode == Instruction::Sub)
3719 AddOps.push_back(getNegativeSCEV(Op1));
3720 else
3721 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003722 }
3723 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003724 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003725 }
3726 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003727 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003728 SmallVector<const SCEV *, 4> MulOps;
3729 MulOps.push_back(getSCEV(U->getOperand(1)));
3730 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003731 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003732 Op = U->getOperand(0)) {
3733 U = cast<Operator>(Op);
3734 MulOps.push_back(getSCEV(U->getOperand(1)));
3735 }
3736 MulOps.push_back(getSCEV(U->getOperand(0)));
3737 return getMulExpr(MulOps);
3738 }
Dan Gohman05e89732008-06-22 19:56:46 +00003739 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003740 return getUDivExpr(getSCEV(U->getOperand(0)),
3741 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003742 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003743 return getMinusSCEV(getSCEV(U->getOperand(0)),
3744 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003745 case Instruction::And:
3746 // For an expression like x&255 that merely masks off the high bits,
3747 // use zext(trunc(x)) as the SCEV expression.
3748 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003749 if (CI->isNullValue())
3750 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003751 if (CI->isAllOnesValue())
3752 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003753 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003754
3755 // Instcombine's ShrinkDemandedConstant may strip bits out of
3756 // constants, obscuring what would otherwise be a low-bits mask.
3757 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3758 // knew about to reconstruct a low-bits mask value.
3759 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003760 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003761 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003762 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003763 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003764
Nick Lewycky31eaca52014-01-27 10:04:03 +00003765 APInt EffectiveMask =
3766 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3767 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3768 const SCEV *MulCount = getConstant(
3769 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3770 return getMulExpr(
3771 getZeroExtendExpr(
3772 getTruncateExpr(
3773 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3774 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3775 U->getType()),
3776 MulCount);
3777 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003778 }
3779 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003780
Dan Gohman05e89732008-06-22 19:56:46 +00003781 case Instruction::Or:
3782 // If the RHS of the Or is a constant, we may have something like:
3783 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3784 // optimizations will transparently handle this case.
3785 //
3786 // In order for this transformation to be safe, the LHS must be of the
3787 // form X*(2^n) and the Or constant must be less than 2^n.
3788 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003789 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003790 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003791 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003792 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3793 // Build a plain add SCEV.
3794 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3795 // If the LHS of the add was an addrec and it has no-wrap flags,
3796 // transfer the no-wrap flags, since an or won't introduce a wrap.
3797 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3798 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003799 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3800 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003801 }
3802 return S;
3803 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003804 }
Dan Gohman05e89732008-06-22 19:56:46 +00003805 break;
3806 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003807 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003808 // If the RHS of the xor is a signbit, then this is just an add.
3809 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003810 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003811 return getAddExpr(getSCEV(U->getOperand(0)),
3812 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003813
3814 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003815 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003816 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003817
3818 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3819 // This is a variant of the check for xor with -1, and it handles
3820 // the case where instcombine has trimmed non-demanded bits out
3821 // of an xor with -1.
3822 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3823 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3824 if (BO->getOpcode() == Instruction::And &&
3825 LCI->getValue() == CI->getValue())
3826 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003827 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003828 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003829 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003830 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003831 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3832
Dan Gohman8b0a4192010-03-01 17:49:51 +00003833 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003834 // mask off the high bits. Complement the operand and
3835 // re-apply the zext.
3836 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3837 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3838
3839 // If C is a single bit, it may be in the sign-bit position
3840 // before the zero-extend. In this case, represent the xor
3841 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003842 APInt Trunc = CI->getValue().trunc(Z0TySize);
3843 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003844 Trunc.isSignBit())
3845 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3846 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003847 }
Dan Gohman05e89732008-06-22 19:56:46 +00003848 }
3849 break;
3850
3851 case Instruction::Shl:
3852 // Turn shift left of a constant amount into a multiply.
3853 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003854 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003855
3856 // If the shift count is not less than the bitwidth, the result of
3857 // the shift is undefined. Don't try to analyze it, because the
3858 // resolution chosen here may differ from the resolution chosen in
3859 // other parts of the compiler.
3860 if (SA->getValue().uge(BitWidth))
3861 break;
3862
Owen Andersonedb4a702009-07-24 23:12:02 +00003863 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003864 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003865 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003866 }
3867 break;
3868
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003869 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003870 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003871 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003872 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003873
3874 // If the shift count is not less than the bitwidth, the result of
3875 // the shift is undefined. Don't try to analyze it, because the
3876 // resolution chosen here may differ from the resolution chosen in
3877 // other parts of the compiler.
3878 if (SA->getValue().uge(BitWidth))
3879 break;
3880
Owen Andersonedb4a702009-07-24 23:12:02 +00003881 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003882 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003883 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003884 }
3885 break;
3886
Dan Gohman0ec05372009-04-21 02:26:00 +00003887 case Instruction::AShr:
3888 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3889 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003890 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003891 if (L->getOpcode() == Instruction::Shl &&
3892 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003893 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3894
3895 // If the shift count is not less than the bitwidth, the result of
3896 // the shift is undefined. Don't try to analyze it, because the
3897 // resolution chosen here may differ from the resolution chosen in
3898 // other parts of the compiler.
3899 if (CI->getValue().uge(BitWidth))
3900 break;
3901
Dan Gohmandf199482009-04-25 17:05:40 +00003902 uint64_t Amt = BitWidth - CI->getZExtValue();
3903 if (Amt == BitWidth)
3904 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003905 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003906 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003907 IntegerType::get(getContext(),
3908 Amt)),
3909 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003910 }
3911 break;
3912
Dan Gohman05e89732008-06-22 19:56:46 +00003913 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003914 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003915
3916 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003917 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003918
3919 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003920 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003921
3922 case Instruction::BitCast:
3923 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003924 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003925 return getSCEV(U->getOperand(0));
3926 break;
3927
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003928 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3929 // lead to pointer expressions which cannot safely be expanded to GEPs,
3930 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3931 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003932
Dan Gohmanee750d12009-05-08 20:26:55 +00003933 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003934 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003935
Dan Gohman05e89732008-06-22 19:56:46 +00003936 case Instruction::PHI:
3937 return createNodeForPHI(cast<PHINode>(U));
3938
3939 case Instruction::Select:
3940 // This could be a smax or umax that was lowered earlier.
3941 // Try to recover it.
3942 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3943 Value *LHS = ICI->getOperand(0);
3944 Value *RHS = ICI->getOperand(1);
3945 switch (ICI->getPredicate()) {
3946 case ICmpInst::ICMP_SLT:
3947 case ICmpInst::ICMP_SLE:
3948 std::swap(LHS, RHS);
3949 // fall through
3950 case ICmpInst::ICMP_SGT:
3951 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003952 // a >s b ? a+x : b+x -> smax(a, b)+x
3953 // a >s b ? b+x : a+x -> smin(a, b)+x
3954 if (LHS->getType() == U->getType()) {
3955 const SCEV *LS = getSCEV(LHS);
3956 const SCEV *RS = getSCEV(RHS);
3957 const SCEV *LA = getSCEV(U->getOperand(1));
3958 const SCEV *RA = getSCEV(U->getOperand(2));
3959 const SCEV *LDiff = getMinusSCEV(LA, LS);
3960 const SCEV *RDiff = getMinusSCEV(RA, RS);
3961 if (LDiff == RDiff)
3962 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3963 LDiff = getMinusSCEV(LA, RS);
3964 RDiff = getMinusSCEV(RA, LS);
3965 if (LDiff == RDiff)
3966 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3967 }
Dan Gohman05e89732008-06-22 19:56:46 +00003968 break;
3969 case ICmpInst::ICMP_ULT:
3970 case ICmpInst::ICMP_ULE:
3971 std::swap(LHS, RHS);
3972 // fall through
3973 case ICmpInst::ICMP_UGT:
3974 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003975 // a >u b ? a+x : b+x -> umax(a, b)+x
3976 // a >u b ? b+x : a+x -> umin(a, b)+x
3977 if (LHS->getType() == U->getType()) {
3978 const SCEV *LS = getSCEV(LHS);
3979 const SCEV *RS = getSCEV(RHS);
3980 const SCEV *LA = getSCEV(U->getOperand(1));
3981 const SCEV *RA = getSCEV(U->getOperand(2));
3982 const SCEV *LDiff = getMinusSCEV(LA, LS);
3983 const SCEV *RDiff = getMinusSCEV(RA, RS);
3984 if (LDiff == RDiff)
3985 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3986 LDiff = getMinusSCEV(LA, RS);
3987 RDiff = getMinusSCEV(RA, LS);
3988 if (LDiff == RDiff)
3989 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3990 }
Dan Gohman05e89732008-06-22 19:56:46 +00003991 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003992 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003993 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3994 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003995 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00003996 cast<ConstantInt>(RHS)->isZero()) {
3997 const SCEV *One = getConstant(LHS->getType(), 1);
3998 const SCEV *LS = getSCEV(LHS);
3999 const SCEV *LA = getSCEV(U->getOperand(1));
4000 const SCEV *RA = getSCEV(U->getOperand(2));
4001 const SCEV *LDiff = getMinusSCEV(LA, LS);
4002 const SCEV *RDiff = getMinusSCEV(RA, One);
4003 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004004 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004005 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004006 break;
4007 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004008 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4009 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004010 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004011 cast<ConstantInt>(RHS)->isZero()) {
4012 const SCEV *One = getConstant(LHS->getType(), 1);
4013 const SCEV *LS = getSCEV(LHS);
4014 const SCEV *LA = getSCEV(U->getOperand(1));
4015 const SCEV *RA = getSCEV(U->getOperand(2));
4016 const SCEV *LDiff = getMinusSCEV(LA, One);
4017 const SCEV *RDiff = getMinusSCEV(RA, LS);
4018 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004019 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004020 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004021 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004022 default:
4023 break;
4024 }
4025 }
4026
4027 default: // We cannot analyze this expression.
4028 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004029 }
4030
Dan Gohmanc8e23622009-04-21 23:15:49 +00004031 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004032}
4033
4034
4035
4036//===----------------------------------------------------------------------===//
4037// Iteration Count Computation Code
4038//
4039
Andrew Trick2b6860f2011-08-11 23:36:16 +00004040/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004041/// normal unsigned value. Returns 0 if the trip count is unknown or not
4042/// constant. Will also return 0 if the maximum trip count is very large (>=
4043/// 2^32).
4044///
4045/// This "trip count" assumes that control exits via ExitingBlock. More
4046/// precisely, it is the number of times that control may reach ExitingBlock
4047/// before taking the branch. For loops with multiple exits, it may not be the
4048/// number times that the loop header executes because the loop may exit
4049/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004050///
4051/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4052/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4053/// loop exits. getExitCount() may return an exact count for this branch
4054/// assuming no-signed-wrap. The number of well-defined iterations may actually
4055/// be higher than this trip count if this exit test is skipped and the loop
4056/// exits via a different branch. Ideally, getExitCount() would know whether it
4057/// depends on a NSW assumption, and we would only fall back to a conservative
4058/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004059unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004060getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004061 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004062 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004063 if (!ExitCount)
4064 return 0;
4065
4066 ConstantInt *ExitConst = ExitCount->getValue();
4067
4068 // Guard against huge trip counts.
4069 if (ExitConst->getValue().getActiveBits() > 32)
4070 return 0;
4071
4072 // In case of integer overflow, this returns 0, which is correct.
4073 return ((unsigned)ExitConst->getZExtValue()) + 1;
4074}
4075
4076/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4077/// trip count of this loop as a normal unsigned value, if possible. This
4078/// means that the actual trip count is always a multiple of the returned
4079/// value (don't forget the trip count could very well be zero as well!).
4080///
4081/// Returns 1 if the trip count is unknown or not guaranteed to be the
4082/// multiple of a constant (which is also the case if the trip count is simply
4083/// constant, use getSmallConstantTripCount for that case), Will also return 1
4084/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004085///
4086/// As explained in the comments for getSmallConstantTripCount, this assumes
4087/// that control exits the loop via ExitingBlock.
4088unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004089getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004090 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004091 if (ExitCount == getCouldNotCompute())
4092 return 1;
4093
4094 // Get the trip count from the BE count by adding 1.
4095 const SCEV *TCMul = getAddExpr(ExitCount,
4096 getConstant(ExitCount->getType(), 1));
4097 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4098 // to factor simple cases.
4099 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4100 TCMul = Mul->getOperand(0);
4101
4102 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4103 if (!MulC)
4104 return 1;
4105
4106 ConstantInt *Result = MulC->getValue();
4107
Hal Finkel30bd9342012-10-24 19:46:44 +00004108 // Guard against huge trip counts (this requires checking
4109 // for zero to handle the case where the trip count == -1 and the
4110 // addition wraps).
4111 if (!Result || Result->getValue().getActiveBits() > 32 ||
4112 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004113 return 1;
4114
4115 return (unsigned)Result->getZExtValue();
4116}
4117
Andrew Trick3ca3f982011-07-26 17:19:55 +00004118// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004119// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004120// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004121const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4122 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004123}
4124
Dan Gohman0bddac12009-02-24 18:55:53 +00004125/// getBackedgeTakenCount - If the specified loop has a predictable
4126/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4127/// object. The backedge-taken count is the number of times the loop header
4128/// will be branched to from within the loop. This is one less than the
4129/// trip count of the loop, since it doesn't count the first iteration,
4130/// when the header is branched to from outside the loop.
4131///
4132/// Note that it is not valid to call this method on a loop without a
4133/// loop-invariant backedge-taken count (see
4134/// hasLoopInvariantBackedgeTakenCount).
4135///
Dan Gohmanaf752342009-07-07 17:06:11 +00004136const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004137 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004138}
4139
4140/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4141/// return the least SCEV value that is known never to be less than the
4142/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004143const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004144 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004145}
4146
Dan Gohmandc191042009-07-08 19:23:34 +00004147/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4148/// onto the given Worklist.
4149static void
4150PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4151 BasicBlock *Header = L->getHeader();
4152
4153 // Push all Loop-header PHIs onto the Worklist stack.
4154 for (BasicBlock::iterator I = Header->begin();
4155 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4156 Worklist.push_back(PN);
4157}
4158
Dan Gohman2b8da352009-04-30 20:47:05 +00004159const ScalarEvolution::BackedgeTakenInfo &
4160ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004161 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004162 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004163 // update the value. The temporary CouldNotCompute value tells SCEV
4164 // code elsewhere that it shouldn't attempt to request a new
4165 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004166 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004167 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004168 if (!Pair.second)
4169 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004170
Andrew Trick3ca3f982011-07-26 17:19:55 +00004171 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4172 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4173 // must be cleared in this scope.
4174 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4175
4176 if (Result.getExact(this) != getCouldNotCompute()) {
4177 assert(isLoopInvariant(Result.getExact(this), L) &&
4178 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004179 "Computed backedge-taken count isn't loop invariant for loop!");
4180 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004181 }
4182 else if (Result.getMax(this) == getCouldNotCompute() &&
4183 isa<PHINode>(L->getHeader()->begin())) {
4184 // Only count loops that have phi nodes as not being computable.
4185 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004186 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004187
Chris Lattnera337f5e2011-01-09 02:16:18 +00004188 // Now that we know more about the trip count for this loop, forget any
4189 // existing SCEV values for PHI nodes in this loop since they are only
4190 // conservative estimates made without the benefit of trip count
4191 // information. This is similar to the code in forgetLoop, except that
4192 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004193 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004194 SmallVector<Instruction *, 16> Worklist;
4195 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004196
Chris Lattnera337f5e2011-01-09 02:16:18 +00004197 SmallPtrSet<Instruction *, 8> Visited;
4198 while (!Worklist.empty()) {
4199 Instruction *I = Worklist.pop_back_val();
4200 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004201
Chris Lattnera337f5e2011-01-09 02:16:18 +00004202 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004203 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004204 if (It != ValueExprMap.end()) {
4205 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004206
Chris Lattnera337f5e2011-01-09 02:16:18 +00004207 // SCEVUnknown for a PHI either means that it has an unrecognized
4208 // structure, or it's a PHI that's in the progress of being computed
4209 // by createNodeForPHI. In the former case, additional loop trip
4210 // count information isn't going to change anything. In the later
4211 // case, createNodeForPHI will perform the necessary updates on its
4212 // own when it gets to that point.
4213 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4214 forgetMemoizedResults(Old);
4215 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004216 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004217 if (PHINode *PN = dyn_cast<PHINode>(I))
4218 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004219 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004220
4221 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004222 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004223 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004224
4225 // Re-lookup the insert position, since the call to
4226 // ComputeBackedgeTakenCount above could result in a
4227 // recusive call to getBackedgeTakenInfo (on a different
4228 // loop), which would invalidate the iterator computed
4229 // earlier.
4230 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004231}
4232
Dan Gohman880c92a2009-10-31 15:04:55 +00004233/// forgetLoop - This method should be called by the client when it has
4234/// changed a loop in a way that may effect ScalarEvolution's ability to
4235/// compute a trip count, or if the loop is deleted.
4236void ScalarEvolution::forgetLoop(const Loop *L) {
4237 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004238 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4239 BackedgeTakenCounts.find(L);
4240 if (BTCPos != BackedgeTakenCounts.end()) {
4241 BTCPos->second.clear();
4242 BackedgeTakenCounts.erase(BTCPos);
4243 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004244
Dan Gohman880c92a2009-10-31 15:04:55 +00004245 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004246 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004247 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004248
Dan Gohmandc191042009-07-08 19:23:34 +00004249 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004250 while (!Worklist.empty()) {
4251 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004252 if (!Visited.insert(I)) continue;
4253
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004254 ValueExprMapType::iterator It =
4255 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004256 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004257 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004258 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004259 if (PHINode *PN = dyn_cast<PHINode>(I))
4260 ConstantEvolutionLoopExitValue.erase(PN);
4261 }
4262
4263 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004264 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004265
4266 // Forget all contained loops too, to avoid dangling entries in the
4267 // ValuesAtScopes map.
4268 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4269 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004270}
4271
Eric Christopheref6d5932010-07-29 01:25:38 +00004272/// forgetValue - This method should be called by the client when it has
4273/// changed a value in a way that may effect its value, or which may
4274/// disconnect it from a def-use chain linking it to a loop.
4275void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004276 Instruction *I = dyn_cast<Instruction>(V);
4277 if (!I) return;
4278
4279 // Drop information about expressions based on loop-header PHIs.
4280 SmallVector<Instruction *, 16> Worklist;
4281 Worklist.push_back(I);
4282
4283 SmallPtrSet<Instruction *, 8> Visited;
4284 while (!Worklist.empty()) {
4285 I = Worklist.pop_back_val();
4286 if (!Visited.insert(I)) continue;
4287
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004288 ValueExprMapType::iterator It =
4289 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004290 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004291 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004292 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004293 if (PHINode *PN = dyn_cast<PHINode>(I))
4294 ConstantEvolutionLoopExitValue.erase(PN);
4295 }
4296
4297 PushDefUseChildren(I, Worklist);
4298 }
4299}
4300
Andrew Trick3ca3f982011-07-26 17:19:55 +00004301/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004302/// exits. A computable result can only be return for loops with a single exit.
4303/// Returning the minimum taken count among all exits is incorrect because one
4304/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4305/// the limit of each loop test is never skipped. This is a valid assumption as
4306/// long as the loop exits via that test. For precise results, it is the
4307/// caller's responsibility to specify the relevant loop exit using
4308/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004309const SCEV *
4310ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4311 // If any exits were not computable, the loop is not computable.
4312 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4313
Andrew Trick90c7a102011-11-16 00:52:40 +00004314 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004315 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004316 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4317
Craig Topper9f008862014-04-15 04:59:12 +00004318 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004319 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004320 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004321
4322 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4323
4324 if (!BECount)
4325 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004326 else if (BECount != ENT->ExactNotTaken)
4327 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004328 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004329 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004330 return BECount;
4331}
4332
4333/// getExact - Get the exact not taken count for this loop exit.
4334const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004335ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004336 ScalarEvolution *SE) const {
4337 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004338 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004339
Andrew Trick77c55422011-08-02 04:23:35 +00004340 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004341 return ENT->ExactNotTaken;
4342 }
4343 return SE->getCouldNotCompute();
4344}
4345
4346/// getMax - Get the max backedge taken count for the loop.
4347const SCEV *
4348ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4349 return Max ? Max : SE->getCouldNotCompute();
4350}
4351
Andrew Trick9093e152013-03-26 03:14:53 +00004352bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4353 ScalarEvolution *SE) const {
4354 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4355 return true;
4356
4357 if (!ExitNotTaken.ExitingBlock)
4358 return false;
4359
4360 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004361 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004362
4363 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4364 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4365 return true;
4366 }
4367 }
4368 return false;
4369}
4370
Andrew Trick3ca3f982011-07-26 17:19:55 +00004371/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4372/// computable exit into a persistent ExitNotTakenInfo array.
4373ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4374 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4375 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4376
4377 if (!Complete)
4378 ExitNotTaken.setIncomplete();
4379
4380 unsigned NumExits = ExitCounts.size();
4381 if (NumExits == 0) return;
4382
Andrew Trick77c55422011-08-02 04:23:35 +00004383 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004384 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4385 if (NumExits == 1) return;
4386
4387 // Handle the rare case of multiple computable exits.
4388 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4389
4390 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4391 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4392 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004393 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004394 ENT->ExactNotTaken = ExitCounts[i].second;
4395 }
4396}
4397
4398/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4399void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004400 ExitNotTaken.ExitingBlock = nullptr;
4401 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004402 delete[] ExitNotTaken.getNextExit();
4403}
4404
Dan Gohman0bddac12009-02-24 18:55:53 +00004405/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4406/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004407ScalarEvolution::BackedgeTakenInfo
4408ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004409 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004410 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004411
Dan Gohman96212b62009-06-22 00:31:57 +00004412 // Examine all exits and pick the most conservative values.
Dan Gohmanaf752342009-07-07 17:06:11 +00004413 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004414 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004415 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Craig Topper9f008862014-04-15 04:59:12 +00004416 const SCEV *LatchMaxCount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004417 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohman96212b62009-06-22 00:31:57 +00004418 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004419 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4420 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004421 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004422 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004423 CouldComputeBECount = false;
4424 else
4425 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4426
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004427 if (MaxBECount == getCouldNotCompute())
Andrew Trick3ca3f982011-07-26 17:19:55 +00004428 MaxBECount = EL.Max;
Andrew Trick90c7a102011-11-16 00:52:40 +00004429 else if (EL.Max != getCouldNotCompute()) {
4430 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4431 // skip some loop tests. Taking the max over the exits is sufficiently
4432 // conservative. TODO: We could do better taking into consideration
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004433 // non-latch exits that dominate the latch.
4434 if (EL.MustExit && ExitingBlocks[i] == Latch)
4435 LatchMaxCount = EL.Max;
4436 else
4437 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
Andrew Trick90c7a102011-11-16 00:52:40 +00004438 }
Dan Gohman96212b62009-06-22 00:31:57 +00004439 }
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004440 // Be more precise in the easy case of a loop latch that must exit.
4441 if (LatchMaxCount) {
4442 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount);
4443 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004444 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004445}
4446
Andrew Trick3ca3f982011-07-26 17:19:55 +00004447/// ComputeExitLimit - Compute the number of times the backedge of the specified
4448/// loop will execute if it exits via the specified block.
4449ScalarEvolution::ExitLimit
4450ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004451
4452 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004453 // exit at this block and remember the exit block and whether all other targets
4454 // lead to the loop header.
4455 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004456 BasicBlock *Exit = nullptr;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004457 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4458 SI != SE; ++SI)
4459 if (!L->contains(*SI)) {
4460 if (Exit) // Multiple exit successors.
4461 return getCouldNotCompute();
4462 Exit = *SI;
4463 } else if (*SI != L->getHeader()) {
4464 MustExecuteLoopHeader = false;
4465 }
Dan Gohmance973df2009-06-24 04:48:43 +00004466
Chris Lattner18954852007-01-07 02:24:26 +00004467 // At this point, we know we have a conditional branch that determines whether
4468 // the loop is exited. However, we don't know if the branch is executed each
4469 // time through the loop. If not, then the execution count of the branch will
4470 // not be equal to the trip count of the loop.
4471 //
4472 // Currently we check for this by checking to see if the Exit branch goes to
4473 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004474 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004475 // loop header. This is common for un-rotated loops.
4476 //
4477 // If both of those tests fail, walk up the unique predecessor chain to the
4478 // header, stopping if there is an edge that doesn't exit the loop. If the
4479 // header is reached, the execution count of the branch will be equal to the
4480 // trip count of the loop.
4481 //
4482 // More extensive analysis could be done to handle more cases here.
4483 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004484 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004485 // The simple checks failed, try climbing the unique predecessor chain
4486 // up to the header.
4487 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004488 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004489 BasicBlock *Pred = BB->getUniquePredecessor();
4490 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004491 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004492 TerminatorInst *PredTerm = Pred->getTerminator();
4493 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4494 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4495 if (PredSucc == BB)
4496 continue;
4497 // If the predecessor has a successor that isn't BB and isn't
4498 // outside the loop, assume the worst.
4499 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004500 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004501 }
4502 if (Pred == L->getHeader()) {
4503 Ok = true;
4504 break;
4505 }
4506 BB = Pred;
4507 }
4508 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004509 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004510 }
4511
Benjamin Kramer5a188542014-02-11 15:44:32 +00004512 TerminatorInst *Term = ExitingBlock->getTerminator();
4513 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4514 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4515 // Proceed to the next level to examine the exit condition expression.
4516 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4517 BI->getSuccessor(1),
4518 /*IsSubExpr=*/false);
4519 }
4520
4521 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4522 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4523 /*IsSubExpr=*/false);
4524
4525 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004526}
4527
Andrew Trick3ca3f982011-07-26 17:19:55 +00004528/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004529/// backedge of the specified loop will execute if its exit condition
4530/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004531///
4532/// @param IsSubExpr is true if ExitCond does not directly control the exit
4533/// branch. In this case, we cannot assume that the loop only exits when the
4534/// condition is true and cannot infer that failing to meet the condition prior
4535/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004536ScalarEvolution::ExitLimit
4537ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4538 Value *ExitCond,
4539 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004540 BasicBlock *FBB,
4541 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004542 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004543 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4544 if (BO->getOpcode() == Instruction::And) {
4545 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004546 bool EitherMayExit = L->contains(TBB);
4547 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4548 IsSubExpr || EitherMayExit);
4549 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4550 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004551 const SCEV *BECount = getCouldNotCompute();
4552 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004553 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004554 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004555 // Both conditions must be true for the loop to continue executing.
4556 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004557 if (EL0.Exact == getCouldNotCompute() ||
4558 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004559 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004560 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004561 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4562 if (EL0.Max == getCouldNotCompute())
4563 MaxBECount = EL1.Max;
4564 else if (EL1.Max == getCouldNotCompute())
4565 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004566 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004567 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004568 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004569 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004570 // Both conditions must be true at the same time for the loop to exit.
4571 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004572 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004573 if (EL0.Max == EL1.Max)
4574 MaxBECount = EL0.Max;
4575 if (EL0.Exact == EL1.Exact)
4576 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004577 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004578 }
4579
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004580 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004581 }
4582 if (BO->getOpcode() == Instruction::Or) {
4583 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004584 bool EitherMayExit = L->contains(FBB);
4585 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4586 IsSubExpr || EitherMayExit);
4587 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4588 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004589 const SCEV *BECount = getCouldNotCompute();
4590 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004591 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004592 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004593 // Both conditions must be false for the loop to continue executing.
4594 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004595 if (EL0.Exact == getCouldNotCompute() ||
4596 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004597 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004598 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004599 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4600 if (EL0.Max == getCouldNotCompute())
4601 MaxBECount = EL1.Max;
4602 else if (EL1.Max == getCouldNotCompute())
4603 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004604 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004605 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004606 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004607 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004608 // Both conditions must be false at the same time for the loop to exit.
4609 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004610 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004611 if (EL0.Max == EL1.Max)
4612 MaxBECount = EL0.Max;
4613 if (EL0.Exact == EL1.Exact)
4614 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004615 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004616 }
4617
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004618 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004619 }
4620 }
4621
4622 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004623 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004624 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004625 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004626
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004627 // Check for a constant condition. These are normally stripped out by
4628 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4629 // preserve the CFG and is temporarily leaving constant conditions
4630 // in place.
4631 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4632 if (L->contains(FBB) == !CI->getZExtValue())
4633 // The backedge is always taken.
4634 return getCouldNotCompute();
4635 else
4636 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004637 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004638 }
4639
Eli Friedmanebf98b02009-05-09 12:32:42 +00004640 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004641 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004642}
4643
Andrew Trick3ca3f982011-07-26 17:19:55 +00004644/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004645/// backedge of the specified loop will execute if its exit condition
4646/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004647ScalarEvolution::ExitLimit
4648ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4649 ICmpInst *ExitCond,
4650 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004651 BasicBlock *FBB,
4652 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004653
Reid Spencer266e42b2006-12-23 06:05:41 +00004654 // If the condition was exit on true, convert the condition to exit on false
4655 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004656 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004657 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004658 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004659 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004660
4661 // Handle common loops like: for (X = "string"; *X; ++X)
4662 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4663 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004664 ExitLimit ItCnt =
4665 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004666 if (ItCnt.hasAnyInfo())
4667 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004668 }
4669
Dan Gohmanaf752342009-07-07 17:06:11 +00004670 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4671 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004672
4673 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004674 LHS = getSCEVAtScope(LHS, L);
4675 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004676
Dan Gohmance973df2009-06-24 04:48:43 +00004677 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004678 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004679 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004680 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004681 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004682 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004683 }
4684
Dan Gohman81585c12010-05-03 16:35:17 +00004685 // Simplify the operands before analyzing them.
4686 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4687
Chris Lattnerd934c702004-04-02 20:23:17 +00004688 // If we have a comparison of a chrec against a constant, try to use value
4689 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004690 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4691 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004692 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004693 // Form the constant range.
4694 ConstantRange CompRange(
4695 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004696
Dan Gohmanaf752342009-07-07 17:06:11 +00004697 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004698 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004699 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004700
Chris Lattnerd934c702004-04-02 20:23:17 +00004701 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004702 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004703 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004704 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004705 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004706 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004707 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004708 case ICmpInst::ICMP_EQ: { // while (X == Y)
4709 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004710 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4711 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004712 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004713 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004714 case ICmpInst::ICMP_SLT:
4715 case ICmpInst::ICMP_ULT: { // while (X < Y)
4716 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4717 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004718 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004719 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004720 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004721 case ICmpInst::ICMP_SGT:
4722 case ICmpInst::ICMP_UGT: { // while (X > Y)
4723 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4724 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004725 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004726 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004727 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004728 default:
Chris Lattner09169212004-04-02 20:26:46 +00004729#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004730 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004731 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004732 dbgs() << "[unsigned] ";
4733 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004734 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004735 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004736#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004737 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004738 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004739 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004740}
4741
Benjamin Kramer5a188542014-02-11 15:44:32 +00004742ScalarEvolution::ExitLimit
4743ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4744 SwitchInst *Switch,
4745 BasicBlock *ExitingBlock,
4746 bool IsSubExpr) {
4747 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4748
4749 // Give up if the exit is the default dest of a switch.
4750 if (Switch->getDefaultDest() == ExitingBlock)
4751 return getCouldNotCompute();
4752
4753 assert(L->contains(Switch->getDefaultDest()) &&
4754 "Default case must not exit the loop!");
4755 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4756 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4757
4758 // while (X != Y) --> while (X-Y != 0)
4759 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4760 if (EL.hasAnyInfo())
4761 return EL;
4762
4763 return getCouldNotCompute();
4764}
4765
Chris Lattnerec901cc2004-10-12 01:49:27 +00004766static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004767EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4768 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004769 const SCEV *InVal = SE.getConstant(C);
4770 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004771 assert(isa<SCEVConstant>(Val) &&
4772 "Evaluation of SCEV at constant didn't fold correctly?");
4773 return cast<SCEVConstant>(Val)->getValue();
4774}
4775
Andrew Trick3ca3f982011-07-26 17:19:55 +00004776/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004777/// 'icmp op load X, cst', try to see if we can compute the backedge
4778/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004779ScalarEvolution::ExitLimit
4780ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4781 LoadInst *LI,
4782 Constant *RHS,
4783 const Loop *L,
4784 ICmpInst::Predicate predicate) {
4785
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004786 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004787
4788 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004789 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004790 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004791 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004792
4793 // Make sure that it is really a constant global we are gepping, with an
4794 // initializer, and make sure the first IDX is really 0.
4795 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004797 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4798 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004799 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004800
4801 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00004802 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00004803 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004804 unsigned VarIdxNum = 0;
4805 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4806 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4807 Indexes.push_back(CI);
4808 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004809 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004810 VarIdx = GEP->getOperand(i);
4811 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00004812 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004813 }
4814
Andrew Trick7004e4b2012-03-26 22:33:59 +00004815 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4816 if (!VarIdx)
4817 return getCouldNotCompute();
4818
Chris Lattnerec901cc2004-10-12 01:49:27 +00004819 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4820 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004821 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004822 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004823
4824 // We can only recognize very limited forms of loop index expressions, in
4825 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004826 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004827 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004828 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4829 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004830 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004831
4832 unsigned MaxSteps = MaxBruteForceIterations;
4833 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004834 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004835 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004836 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004837
4838 // Form the GEP offset.
4839 Indexes[VarIdxNum] = Val;
4840
Chris Lattnere166a852012-01-24 05:49:24 +00004841 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4842 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00004843 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004844
4845 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004846 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004847 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004848 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004849#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004850 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004851 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4852 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004853#endif
4854 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004855 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004856 }
4857 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004858 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004859}
4860
4861
Chris Lattnerdd730472004-04-17 22:58:41 +00004862/// CanConstantFold - Return true if we can constant fold an instruction of the
4863/// specified type, assuming that all operands were constants.
4864static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004865 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004866 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4867 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004868 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004869
Chris Lattnerdd730472004-04-17 22:58:41 +00004870 if (const CallInst *CI = dyn_cast<CallInst>(I))
4871 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004872 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004873 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004874}
4875
Andrew Trick3a86ba72011-10-05 03:25:31 +00004876/// Determine whether this instruction can constant evolve within this loop
4877/// assuming its operands can all constant evolve.
4878static bool canConstantEvolve(Instruction *I, const Loop *L) {
4879 // An instruction outside of the loop can't be derived from a loop PHI.
4880 if (!L->contains(I)) return false;
4881
4882 if (isa<PHINode>(I)) {
4883 if (L->getHeader() == I->getParent())
4884 return true;
4885 else
4886 // We don't currently keep track of the control flow needed to evaluate
4887 // PHIs, so we cannot handle PHIs inside of loops.
4888 return false;
4889 }
4890
4891 // If we won't be able to constant fold this expression even if the operands
4892 // are constants, bail early.
4893 return CanConstantFold(I);
4894}
4895
4896/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4897/// recursing through each instruction operand until reaching a loop header phi.
4898static PHINode *
4899getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004900 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004901
4902 // Otherwise, we can evaluate this instruction if all of its operands are
4903 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00004904 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004905 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4906 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4907
4908 if (isa<Constant>(*OpI)) continue;
4909
4910 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00004911 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004912
4913 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004914 if (!P)
4915 // If this operand is already visited, reuse the prior result.
4916 // We may have P != PHI if this is the deepest point at which the
4917 // inconsistent paths meet.
4918 P = PHIMap.lookup(OpInst);
4919 if (!P) {
4920 // Recurse and memoize the results, whether a phi is found or not.
4921 // This recursive call invalidates pointers into PHIMap.
4922 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4923 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004924 }
Craig Topper9f008862014-04-15 04:59:12 +00004925 if (!P)
4926 return nullptr; // Not evolving from PHI
4927 if (PHI && PHI != P)
4928 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00004929 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004930 }
4931 // This is a expression evolving from a constant PHI!
4932 return PHI;
4933}
4934
Chris Lattnerdd730472004-04-17 22:58:41 +00004935/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4936/// in the loop that V is derived from. We allow arbitrary operations along the
4937/// way, but the operands of an operation must either be constants or a value
4938/// derived from a constant PHI. If this expression does not fit with these
4939/// constraints, return null.
4940static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00004941 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00004942 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00004943
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004944 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004945 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004946 }
Chris Lattnerdd730472004-04-17 22:58:41 +00004947
Andrew Trick3a86ba72011-10-05 03:25:31 +00004948 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00004949 DenseMap<Instruction *, PHINode *> PHIMap;
4950 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00004951}
4952
4953/// EvaluateExpression - Given an expression that passes the
4954/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4955/// in the loop has the value PHIVal. If we can't fold this expression for some
4956/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00004957static Constant *EvaluateExpression(Value *V, const Loop *L,
4958 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004959 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00004960 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004961 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00004962 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00004963 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00004964 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004965
Andrew Trick3a86ba72011-10-05 03:25:31 +00004966 if (Constant *C = Vals.lookup(I)) return C;
4967
Nick Lewyckya6674c72011-10-22 19:58:20 +00004968 // An instruction inside the loop depends on a value outside the loop that we
4969 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00004970 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00004971
4972 // An unmapped PHI can be due to a branch or another loop inside this loop,
4973 // or due to this not being the initial iteration through a loop where we
4974 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00004975 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00004976
Dan Gohmanf820bd32010-06-22 13:15:46 +00004977 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00004978
4979 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004980 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4981 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00004982 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00004983 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00004984 continue;
4985 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004986 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00004987 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00004988 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00004989 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00004990 }
4991
Nick Lewyckya6674c72011-10-22 19:58:20 +00004992 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00004993 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004994 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004995 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4996 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004997 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004998 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004999 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005000 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005001}
5002
5003/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5004/// in the header of its containing loop, we know the loop executes a
5005/// constant number of times, and the PHI node is just a recurrence
5006/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005007Constant *
5008ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005009 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005010 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005011 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005012 ConstantEvolutionLoopExitValue.find(PN);
5013 if (I != ConstantEvolutionLoopExitValue.end())
5014 return I->second;
5015
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005016 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005017 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005018
5019 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5020
Andrew Trick3a86ba72011-10-05 03:25:31 +00005021 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005022 BasicBlock *Header = L->getHeader();
5023 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005024
Chris Lattnerdd730472004-04-17 22:58:41 +00005025 // Since the loop is canonicalized, the PHI node must have two entries. One
5026 // entry must be a constant (coming in from outside of the loop), and the
5027 // second must be derived from the same PHI.
5028 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005029 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005030 for (BasicBlock::iterator I = Header->begin();
5031 (PHI = dyn_cast<PHINode>(I)); ++I) {
5032 Constant *StartCST =
5033 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005034 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005035 CurrentIterVals[PHI] = StartCST;
5036 }
5037 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005038 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005039
5040 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005041
5042 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005043 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005044 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005045
Dan Gohman0bddac12009-02-24 18:55:53 +00005046 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005047 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005048 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005049 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005050 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005051
Nick Lewyckya6674c72011-10-22 19:58:20 +00005052 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005053 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005054 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005055 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005056 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005057 if (!NextPHI)
5058 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005059 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005060
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005061 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5062
Nick Lewyckya6674c72011-10-22 19:58:20 +00005063 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5064 // cease to be able to evaluate one of them or if they stop evolving,
5065 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005066 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005067 for (DenseMap<Instruction *, Constant *>::const_iterator
5068 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5069 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005070 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005071 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5072 }
5073 // We use two distinct loops because EvaluateExpression may invalidate any
5074 // iterators into CurrentIterVals.
5075 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5076 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5077 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005078 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005079 if (!NextPHI) { // Not already computed.
5080 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005081 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005082 }
5083 if (NextPHI != I->second)
5084 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005085 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005086
5087 // If all entries in CurrentIterVals == NextIterVals then we can stop
5088 // iterating, the loop can't continue to change.
5089 if (StoppedEvolving)
5090 return RetVal = CurrentIterVals[PN];
5091
Andrew Trick3a86ba72011-10-05 03:25:31 +00005092 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005093 }
5094}
5095
Andrew Trick3ca3f982011-07-26 17:19:55 +00005096/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005097/// constant number of times (the condition evolves only from constants),
5098/// try to evaluate a few iterations of the loop until we get the exit
5099/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005100/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005101const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5102 Value *Cond,
5103 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005104 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005105 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005106
Dan Gohman866971e2010-06-19 14:17:24 +00005107 // If the loop is canonicalized, the PHI will have exactly two entries.
5108 // That's the only form we support here.
5109 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5110
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005111 DenseMap<Instruction *, Constant *> CurrentIterVals;
5112 BasicBlock *Header = L->getHeader();
5113 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5114
Dan Gohman866971e2010-06-19 14:17:24 +00005115 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005116 // second must be derived from the same PHI.
5117 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005118 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005119 for (BasicBlock::iterator I = Header->begin();
5120 (PHI = dyn_cast<PHINode>(I)); ++I) {
5121 Constant *StartCST =
5122 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005123 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005124 CurrentIterVals[PHI] = StartCST;
5125 }
5126 if (!CurrentIterVals.count(PN))
5127 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005128
5129 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5130 // the loop symbolically to determine when the condition gets a value of
5131 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005132
Andrew Trick90c7a102011-11-16 00:52:40 +00005133 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005134 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005135 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005136 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005137 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005138
Zhou Sheng75b871f2007-01-11 12:24:14 +00005139 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005140 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005141
Reid Spencer983e3b32007-03-01 07:25:48 +00005142 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005143 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005144 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005145 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005146
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005147 // Update all the PHI nodes for the next iteration.
5148 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005149
5150 // Create a list of which PHIs we need to compute. We want to do this before
5151 // calling EvaluateExpression on them because that may invalidate iterators
5152 // into CurrentIterVals.
5153 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005154 for (DenseMap<Instruction *, Constant *>::const_iterator
5155 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5156 PHINode *PHI = dyn_cast<PHINode>(I->first);
5157 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005158 PHIsToCompute.push_back(PHI);
5159 }
5160 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5161 E = PHIsToCompute.end(); I != E; ++I) {
5162 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005163 Constant *&NextPHI = NextIterVals[PHI];
5164 if (NextPHI) continue; // Already computed!
5165
5166 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005167 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005168 }
5169 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005170 }
5171
5172 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005173 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005174}
5175
Dan Gohman237d9e52009-09-03 15:00:26 +00005176/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005177/// at the specified scope in the program. The L value specifies a loop
5178/// nest to evaluate the expression at, where null is the top-level or a
5179/// specified loop is immediately inside of the loop.
5180///
5181/// This method can be used to compute the exit value for a variable defined
5182/// in a loop by querying what the value will hold in the parent loop.
5183///
Dan Gohman8ca08852009-05-24 23:25:42 +00005184/// In the case that a relevant loop exit value cannot be computed, the
5185/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005186const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005187 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005188 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5189 for (unsigned u = 0; u < Values.size(); u++) {
5190 if (Values[u].first == L)
5191 return Values[u].second ? Values[u].second : V;
5192 }
Craig Topper9f008862014-04-15 04:59:12 +00005193 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005194 // Otherwise compute it.
5195 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005196 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5197 for (unsigned u = Values2.size(); u > 0; u--) {
5198 if (Values2[u - 1].first == L) {
5199 Values2[u - 1].second = C;
5200 break;
5201 }
5202 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005203 return C;
5204}
5205
Nick Lewyckya6674c72011-10-22 19:58:20 +00005206/// This builds up a Constant using the ConstantExpr interface. That way, we
5207/// will return Constants for objects which aren't represented by a
5208/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5209/// Returns NULL if the SCEV isn't representable as a Constant.
5210static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005211 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005212 case scCouldNotCompute:
5213 case scAddRecExpr:
5214 break;
5215 case scConstant:
5216 return cast<SCEVConstant>(V)->getValue();
5217 case scUnknown:
5218 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5219 case scSignExtend: {
5220 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5221 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5222 return ConstantExpr::getSExt(CastOp, SS->getType());
5223 break;
5224 }
5225 case scZeroExtend: {
5226 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5227 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5228 return ConstantExpr::getZExt(CastOp, SZ->getType());
5229 break;
5230 }
5231 case scTruncate: {
5232 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5233 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5234 return ConstantExpr::getTrunc(CastOp, ST->getType());
5235 break;
5236 }
5237 case scAddExpr: {
5238 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5239 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005240 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5241 unsigned AS = PTy->getAddressSpace();
5242 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5243 C = ConstantExpr::getBitCast(C, DestPtrTy);
5244 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005245 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5246 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005247 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005248
5249 // First pointer!
5250 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005251 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005252 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005253 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005254 // The offsets have been converted to bytes. We can add bytes to an
5255 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005256 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005257 }
5258
5259 // Don't bother trying to sum two pointers. We probably can't
5260 // statically compute a load that results from it anyway.
5261 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005262 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005263
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005264 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5265 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005266 C2 = ConstantExpr::getIntegerCast(
5267 C2, Type::getInt32Ty(C->getContext()), true);
5268 C = ConstantExpr::getGetElementPtr(C, C2);
5269 } else
5270 C = ConstantExpr::getAdd(C, C2);
5271 }
5272 return C;
5273 }
5274 break;
5275 }
5276 case scMulExpr: {
5277 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5278 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5279 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005280 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005281 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5282 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005283 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005284 C = ConstantExpr::getMul(C, C2);
5285 }
5286 return C;
5287 }
5288 break;
5289 }
5290 case scUDivExpr: {
5291 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5292 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5293 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5294 if (LHS->getType() == RHS->getType())
5295 return ConstantExpr::getUDiv(LHS, RHS);
5296 break;
5297 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005298 case scSMaxExpr:
5299 case scUMaxExpr:
5300 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005301 }
Craig Topper9f008862014-04-15 04:59:12 +00005302 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005303}
5304
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005305const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005306 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005307
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005308 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005309 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005310 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005311 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005312 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005313 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5314 if (PHINode *PN = dyn_cast<PHINode>(I))
5315 if (PN->getParent() == LI->getHeader()) {
5316 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005317 // to see if the loop that contains it has a known backedge-taken
5318 // count. If so, we may be able to force computation of the exit
5319 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005320 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005321 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005322 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005323 // Okay, we know how many times the containing loop executes. If
5324 // this is a constant evolving PHI node, get the final value at
5325 // the specified iteration number.
5326 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005327 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005328 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005329 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005330 }
5331 }
5332
Reid Spencere6328ca2006-12-04 21:33:23 +00005333 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005334 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005335 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005336 // result. This is particularly useful for computing loop exit values.
5337 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005338 SmallVector<Constant *, 4> Operands;
5339 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005340 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5341 Value *Op = I->getOperand(i);
5342 if (Constant *C = dyn_cast<Constant>(Op)) {
5343 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005344 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005345 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005346
5347 // If any of the operands is non-constant and if they are
5348 // non-integer and non-pointer, don't even try to analyze them
5349 // with scev techniques.
5350 if (!isSCEVable(Op->getType()))
5351 return V;
5352
5353 const SCEV *OrigV = getSCEV(Op);
5354 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5355 MadeImprovement |= OrigV != OpV;
5356
Nick Lewyckya6674c72011-10-22 19:58:20 +00005357 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005358 if (!C) return V;
5359 if (C->getType() != Op->getType())
5360 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5361 Op->getType(),
5362 false),
5363 C, Op->getType());
5364 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005365 }
Dan Gohmance973df2009-06-24 04:48:43 +00005366
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005367 // Check to see if getSCEVAtScope actually made an improvement.
5368 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005369 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005370 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5371 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005372 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005373 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005374 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5375 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005376 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005377 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005378 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005379 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005380 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005381 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005382 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005383 }
5384 }
5385
5386 // This is some other type of SCEVUnknown, just return it.
5387 return V;
5388 }
5389
Dan Gohmana30370b2009-05-04 22:02:23 +00005390 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005391 // Avoid performing the look-up in the common case where the specified
5392 // expression has no loop-variant portions.
5393 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005394 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005395 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005396 // Okay, at least one of these operands is loop variant but might be
5397 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005398 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5399 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005400 NewOps.push_back(OpAtScope);
5401
5402 for (++i; i != e; ++i) {
5403 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005404 NewOps.push_back(OpAtScope);
5405 }
5406 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005407 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005408 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005409 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005410 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005411 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005412 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005413 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005414 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005415 }
5416 }
5417 // If we got here, all operands are loop invariant.
5418 return Comm;
5419 }
5420
Dan Gohmana30370b2009-05-04 22:02:23 +00005421 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005422 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5423 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005424 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5425 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005426 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005427 }
5428
5429 // If this is a loop recurrence for a loop that does not contain L, then we
5430 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005431 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005432 // First, attempt to evaluate each operand.
5433 // Avoid performing the look-up in the common case where the specified
5434 // expression has no loop-variant portions.
5435 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5436 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5437 if (OpAtScope == AddRec->getOperand(i))
5438 continue;
5439
5440 // Okay, at least one of these operands is loop variant but might be
5441 // foldable. Build a new instance of the folded commutative expression.
5442 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5443 AddRec->op_begin()+i);
5444 NewOps.push_back(OpAtScope);
5445 for (++i; i != e; ++i)
5446 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5447
Andrew Trick759ba082011-04-27 01:21:25 +00005448 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005449 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005450 AddRec->getNoWrapFlags(SCEV::FlagNW));
5451 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005452 // The addrec may be folded to a nonrecurrence, for example, if the
5453 // induction variable is multiplied by zero after constant folding. Go
5454 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005455 if (!AddRec)
5456 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005457 break;
5458 }
5459
5460 // If the scope is outside the addrec's loop, evaluate it by using the
5461 // loop exit value of the addrec.
5462 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005463 // To evaluate this recurrence, we need to know how many times the AddRec
5464 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005465 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005466 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005467
Eli Friedman61f67622008-08-04 23:49:06 +00005468 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005469 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005470 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005471
Dan Gohman8ca08852009-05-24 23:25:42 +00005472 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005473 }
5474
Dan Gohmana30370b2009-05-04 22:02:23 +00005475 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005476 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005477 if (Op == Cast->getOperand())
5478 return Cast; // must be loop invariant
5479 return getZeroExtendExpr(Op, Cast->getType());
5480 }
5481
Dan Gohmana30370b2009-05-04 22:02:23 +00005482 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005483 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005484 if (Op == Cast->getOperand())
5485 return Cast; // must be loop invariant
5486 return getSignExtendExpr(Op, Cast->getType());
5487 }
5488
Dan Gohmana30370b2009-05-04 22:02:23 +00005489 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005490 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005491 if (Op == Cast->getOperand())
5492 return Cast; // must be loop invariant
5493 return getTruncateExpr(Op, Cast->getType());
5494 }
5495
Torok Edwinfbcc6632009-07-14 16:55:14 +00005496 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005497}
5498
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005499/// getSCEVAtScope - This is a convenience function which does
5500/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005501const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005502 return getSCEVAtScope(getSCEV(V), L);
5503}
5504
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005505/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5506/// following equation:
5507///
5508/// A * X = B (mod N)
5509///
5510/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5511/// A and B isn't important.
5512///
5513/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005514static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005515 ScalarEvolution &SE) {
5516 uint32_t BW = A.getBitWidth();
5517 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5518 assert(A != 0 && "A must be non-zero.");
5519
5520 // 1. D = gcd(A, N)
5521 //
5522 // The gcd of A and N may have only one prime factor: 2. The number of
5523 // trailing zeros in A is its multiplicity
5524 uint32_t Mult2 = A.countTrailingZeros();
5525 // D = 2^Mult2
5526
5527 // 2. Check if B is divisible by D.
5528 //
5529 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5530 // is not less than multiplicity of this prime factor for D.
5531 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005532 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005533
5534 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5535 // modulo (N / D).
5536 //
5537 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5538 // bit width during computations.
5539 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5540 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005541 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005542 APInt I = AD.multiplicativeInverse(Mod);
5543
5544 // 4. Compute the minimum unsigned root of the equation:
5545 // I * (B / D) mod (N / D)
5546 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5547
5548 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5549 // bits.
5550 return SE.getConstant(Result.trunc(BW));
5551}
Chris Lattnerd934c702004-04-02 20:23:17 +00005552
5553/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5554/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5555/// might be the same) or two SCEVCouldNotCompute objects.
5556///
Dan Gohmanaf752342009-07-07 17:06:11 +00005557static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005558SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005559 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005560 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5561 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5562 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005563
Chris Lattnerd934c702004-04-02 20:23:17 +00005564 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005565 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005566 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005567 return std::make_pair(CNC, CNC);
5568 }
5569
Reid Spencer983e3b32007-03-01 07:25:48 +00005570 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005571 const APInt &L = LC->getValue()->getValue();
5572 const APInt &M = MC->getValue()->getValue();
5573 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005574 APInt Two(BitWidth, 2);
5575 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005576
Dan Gohmance973df2009-06-24 04:48:43 +00005577 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005578 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005579 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005580 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5581 // The B coefficient is M-N/2
5582 APInt B(M);
5583 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005584
Reid Spencer983e3b32007-03-01 07:25:48 +00005585 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005586 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005587
Reid Spencer983e3b32007-03-01 07:25:48 +00005588 // Compute the B^2-4ac term.
5589 APInt SqrtTerm(B);
5590 SqrtTerm *= B;
5591 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005592
Nick Lewyckyfb780832012-08-01 09:14:36 +00005593 if (SqrtTerm.isNegative()) {
5594 // The loop is provably infinite.
5595 const SCEV *CNC = SE.getCouldNotCompute();
5596 return std::make_pair(CNC, CNC);
5597 }
5598
Reid Spencer983e3b32007-03-01 07:25:48 +00005599 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5600 // integer value or else APInt::sqrt() will assert.
5601 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005602
Dan Gohmance973df2009-06-24 04:48:43 +00005603 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005604 // The divisions must be performed as signed divisions.
5605 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005606 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005607 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005608 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005609 return std::make_pair(CNC, CNC);
5610 }
5611
Owen Anderson47db9412009-07-22 00:24:57 +00005612 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005613
5614 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005615 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005616 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005617 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005618
Dan Gohmance973df2009-06-24 04:48:43 +00005619 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005620 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005621 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005622}
5623
5624/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005625/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005626///
5627/// This is only used for loops with a "x != y" exit test. The exit condition is
5628/// now expressed as a single expression, V = x-y. So the exit test is
5629/// effectively V != 0. We know and take advantage of the fact that this
5630/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005631ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005632ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005633 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005635 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005636 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005637 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005638 }
5639
Dan Gohman48f82222009-05-04 22:30:44 +00005640 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005641 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005642 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005643
Chris Lattnerdff679f2011-01-09 22:39:48 +00005644 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5645 // the quadratic equation to solve it.
5646 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5647 std::pair<const SCEV *,const SCEV *> Roots =
5648 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005649 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5650 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005651 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005652#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005653 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005654 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005655#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005656 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005657 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005658 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5659 R1->getValue(),
5660 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005661 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005662 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005663
Chris Lattnerd934c702004-04-02 20:23:17 +00005664 // We can only use this value if the chrec ends up with an exact zero
5665 // value at this index. When solving for "X*X != 5", for example, we
5666 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005667 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005668 if (Val->isZero())
5669 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005670 }
5671 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005672 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005673 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005674
Chris Lattnerdff679f2011-01-09 22:39:48 +00005675 // Otherwise we can only handle this if it is affine.
5676 if (!AddRec->isAffine())
5677 return getCouldNotCompute();
5678
5679 // If this is an affine expression, the execution count of this branch is
5680 // the minimum unsigned root of the following equation:
5681 //
5682 // Start + Step*N = 0 (mod 2^BW)
5683 //
5684 // equivalent to:
5685 //
5686 // Step*N = -Start (mod 2^BW)
5687 //
5688 // where BW is the common bit width of Start and Step.
5689
5690 // Get the initial value for the loop.
5691 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5692 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5693
5694 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005695 //
5696 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5697 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5698 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5699 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005700 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00005701 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005702 return getCouldNotCompute();
5703
Andrew Trick8b55b732011-03-14 16:50:06 +00005704 // For positive steps (counting up until unsigned overflow):
5705 // N = -Start/Step (as unsigned)
5706 // For negative steps (counting down to zero):
5707 // N = Start/-Step
5708 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005709 bool CountDown = StepC->getValue()->getValue().isNegative();
5710 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005711
5712 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005713 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5714 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005715 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5716 ConstantRange CR = getUnsignedRange(Start);
5717 const SCEV *MaxBECount;
5718 if (!CountDown && CR.getUnsignedMin().isMinValue())
5719 // When counting up, the worst starting value is 1, not 0.
5720 MaxBECount = CR.getUnsignedMax().isMinValue()
5721 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5722 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5723 else
5724 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5725 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005726 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005727 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005728
Andrew Trickf1781db2011-03-14 17:28:02 +00005729 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005730 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5731 // that the value will either become zero (and thus the loop terminates), that
5732 // the loop will terminate through some other exit condition first, or that
5733 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005734 // value, even with nonunit stride, and exit later via the same branch. Note
5735 // that we can skip this exit if loop later exits via a different
5736 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005737 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005738 // This is only valid for expressions that directly compute the loop exit. It
5739 // is invalid for subexpressions in which the loop may exit through this
5740 // branch even if this subexpression is false. In that case, the trip count
5741 // computed by this udiv could be smaller than the number of well-defined
5742 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005743 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5744 const SCEV *Exact =
5745 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5746 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5747 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00005748
5749 // If Step is a power of two that evenly divides Start we know that the loop
5750 // will always terminate. Start may not be a constant so we just have the
5751 // number of trailing zeros available. This is safe even in presence of
5752 // overflow as the recurrence will overflow to exactly 0.
5753 const APInt &StepV = StepC->getValue()->getValue();
5754 if (StepV.isPowerOf2() &&
5755 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5756 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5757
Chris Lattnerdff679f2011-01-09 22:39:48 +00005758 // Then, try to solve the above equation provided that Start is constant.
5759 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5760 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5761 -StartC->getValue()->getValue(),
5762 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005763 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005764}
5765
5766/// HowFarToNonZero - Return the number of times a backedge checking the
5767/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005768/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005769ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005770ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005771 // Loops that look like: while (X == 0) are very strange indeed. We don't
5772 // handle them yet except for the trivial case. This could be expanded in the
5773 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005774
Chris Lattnerd934c702004-04-02 20:23:17 +00005775 // If the value is a constant, check to see if it is known to be non-zero
5776 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005777 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005778 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005779 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005780 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005781 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005782
Chris Lattnerd934c702004-04-02 20:23:17 +00005783 // We could implement others, but I really doubt anyone writes loops like
5784 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005785 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005786}
5787
Dan Gohmanf9081a22008-09-15 22:18:04 +00005788/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5789/// (which may not be an immediate predecessor) which has exactly one
5790/// successor from which BB is reachable, or null if no such block is
5791/// found.
5792///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005793std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005794ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005795 // If the block has a unique predecessor, then there is no path from the
5796 // predecessor to the block that does not go through the direct edge
5797 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005798 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005799 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005800
5801 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005802 // If the header has a unique predecessor outside the loop, it must be
5803 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005804 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005805 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005806
Dan Gohman4e3c1132010-04-15 16:19:08 +00005807 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005808}
5809
Dan Gohman450f4e02009-06-20 00:35:32 +00005810/// HasSameValue - SCEV structural equivalence is usually sufficient for
5811/// testing whether two expressions are equal, however for the purposes of
5812/// looking for a condition guarding a loop, it can be useful to be a little
5813/// more general, since a front-end may have replicated the controlling
5814/// expression.
5815///
Dan Gohmanaf752342009-07-07 17:06:11 +00005816static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005817 // Quick check to see if they are the same SCEV.
5818 if (A == B) return true;
5819
5820 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5821 // two different instructions with the same value. Check for this case.
5822 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5823 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5824 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5825 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005826 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005827 return true;
5828
5829 // Otherwise assume they may have a different value.
5830 return false;
5831}
5832
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005833/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005834/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005835///
5836bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005837 const SCEV *&LHS, const SCEV *&RHS,
5838 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005839 bool Changed = false;
5840
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005841 // If we hit the max recursion limit bail out.
5842 if (Depth >= 3)
5843 return false;
5844
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005845 // Canonicalize a constant to the right side.
5846 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5847 // Check for both operands constant.
5848 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5849 if (ConstantExpr::getICmp(Pred,
5850 LHSC->getValue(),
5851 RHSC->getValue())->isNullValue())
5852 goto trivially_false;
5853 else
5854 goto trivially_true;
5855 }
5856 // Otherwise swap the operands to put the constant on the right.
5857 std::swap(LHS, RHS);
5858 Pred = ICmpInst::getSwappedPredicate(Pred);
5859 Changed = true;
5860 }
5861
5862 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005863 // addrec's loop, put the addrec on the left. Also make a dominance check,
5864 // as both operands could be addrecs loop-invariant in each other's loop.
5865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5866 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005867 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005868 std::swap(LHS, RHS);
5869 Pred = ICmpInst::getSwappedPredicate(Pred);
5870 Changed = true;
5871 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005872 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005873
5874 // If there's a constant operand, canonicalize comparisons with boundary
5875 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5876 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5877 const APInt &RA = RC->getValue()->getValue();
5878 switch (Pred) {
5879 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5880 case ICmpInst::ICMP_EQ:
5881 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005882 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5883 if (!RA)
5884 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5885 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005886 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5887 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005888 RHS = AE->getOperand(1);
5889 LHS = ME->getOperand(1);
5890 Changed = true;
5891 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005892 break;
5893 case ICmpInst::ICMP_UGE:
5894 if ((RA - 1).isMinValue()) {
5895 Pred = ICmpInst::ICMP_NE;
5896 RHS = getConstant(RA - 1);
5897 Changed = true;
5898 break;
5899 }
5900 if (RA.isMaxValue()) {
5901 Pred = ICmpInst::ICMP_EQ;
5902 Changed = true;
5903 break;
5904 }
5905 if (RA.isMinValue()) goto trivially_true;
5906
5907 Pred = ICmpInst::ICMP_UGT;
5908 RHS = getConstant(RA - 1);
5909 Changed = true;
5910 break;
5911 case ICmpInst::ICMP_ULE:
5912 if ((RA + 1).isMaxValue()) {
5913 Pred = ICmpInst::ICMP_NE;
5914 RHS = getConstant(RA + 1);
5915 Changed = true;
5916 break;
5917 }
5918 if (RA.isMinValue()) {
5919 Pred = ICmpInst::ICMP_EQ;
5920 Changed = true;
5921 break;
5922 }
5923 if (RA.isMaxValue()) goto trivially_true;
5924
5925 Pred = ICmpInst::ICMP_ULT;
5926 RHS = getConstant(RA + 1);
5927 Changed = true;
5928 break;
5929 case ICmpInst::ICMP_SGE:
5930 if ((RA - 1).isMinSignedValue()) {
5931 Pred = ICmpInst::ICMP_NE;
5932 RHS = getConstant(RA - 1);
5933 Changed = true;
5934 break;
5935 }
5936 if (RA.isMaxSignedValue()) {
5937 Pred = ICmpInst::ICMP_EQ;
5938 Changed = true;
5939 break;
5940 }
5941 if (RA.isMinSignedValue()) goto trivially_true;
5942
5943 Pred = ICmpInst::ICMP_SGT;
5944 RHS = getConstant(RA - 1);
5945 Changed = true;
5946 break;
5947 case ICmpInst::ICMP_SLE:
5948 if ((RA + 1).isMaxSignedValue()) {
5949 Pred = ICmpInst::ICMP_NE;
5950 RHS = getConstant(RA + 1);
5951 Changed = true;
5952 break;
5953 }
5954 if (RA.isMinSignedValue()) {
5955 Pred = ICmpInst::ICMP_EQ;
5956 Changed = true;
5957 break;
5958 }
5959 if (RA.isMaxSignedValue()) goto trivially_true;
5960
5961 Pred = ICmpInst::ICMP_SLT;
5962 RHS = getConstant(RA + 1);
5963 Changed = true;
5964 break;
5965 case ICmpInst::ICMP_UGT:
5966 if (RA.isMinValue()) {
5967 Pred = ICmpInst::ICMP_NE;
5968 Changed = true;
5969 break;
5970 }
5971 if ((RA + 1).isMaxValue()) {
5972 Pred = ICmpInst::ICMP_EQ;
5973 RHS = getConstant(RA + 1);
5974 Changed = true;
5975 break;
5976 }
5977 if (RA.isMaxValue()) goto trivially_false;
5978 break;
5979 case ICmpInst::ICMP_ULT:
5980 if (RA.isMaxValue()) {
5981 Pred = ICmpInst::ICMP_NE;
5982 Changed = true;
5983 break;
5984 }
5985 if ((RA - 1).isMinValue()) {
5986 Pred = ICmpInst::ICMP_EQ;
5987 RHS = getConstant(RA - 1);
5988 Changed = true;
5989 break;
5990 }
5991 if (RA.isMinValue()) goto trivially_false;
5992 break;
5993 case ICmpInst::ICMP_SGT:
5994 if (RA.isMinSignedValue()) {
5995 Pred = ICmpInst::ICMP_NE;
5996 Changed = true;
5997 break;
5998 }
5999 if ((RA + 1).isMaxSignedValue()) {
6000 Pred = ICmpInst::ICMP_EQ;
6001 RHS = getConstant(RA + 1);
6002 Changed = true;
6003 break;
6004 }
6005 if (RA.isMaxSignedValue()) goto trivially_false;
6006 break;
6007 case ICmpInst::ICMP_SLT:
6008 if (RA.isMaxSignedValue()) {
6009 Pred = ICmpInst::ICMP_NE;
6010 Changed = true;
6011 break;
6012 }
6013 if ((RA - 1).isMinSignedValue()) {
6014 Pred = ICmpInst::ICMP_EQ;
6015 RHS = getConstant(RA - 1);
6016 Changed = true;
6017 break;
6018 }
6019 if (RA.isMinSignedValue()) goto trivially_false;
6020 break;
6021 }
6022 }
6023
6024 // Check for obvious equality.
6025 if (HasSameValue(LHS, RHS)) {
6026 if (ICmpInst::isTrueWhenEqual(Pred))
6027 goto trivially_true;
6028 if (ICmpInst::isFalseWhenEqual(Pred))
6029 goto trivially_false;
6030 }
6031
Dan Gohman81585c12010-05-03 16:35:17 +00006032 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6033 // adding or subtracting 1 from one of the operands.
6034 switch (Pred) {
6035 case ICmpInst::ICMP_SLE:
6036 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6037 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006038 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006039 Pred = ICmpInst::ICMP_SLT;
6040 Changed = true;
6041 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006042 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006043 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006044 Pred = ICmpInst::ICMP_SLT;
6045 Changed = true;
6046 }
6047 break;
6048 case ICmpInst::ICMP_SGE:
6049 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006050 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006051 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006052 Pred = ICmpInst::ICMP_SGT;
6053 Changed = true;
6054 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6055 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006056 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006057 Pred = ICmpInst::ICMP_SGT;
6058 Changed = true;
6059 }
6060 break;
6061 case ICmpInst::ICMP_ULE:
6062 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006063 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006064 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006065 Pred = ICmpInst::ICMP_ULT;
6066 Changed = true;
6067 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006068 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006069 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006070 Pred = ICmpInst::ICMP_ULT;
6071 Changed = true;
6072 }
6073 break;
6074 case ICmpInst::ICMP_UGE:
6075 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006076 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006077 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006078 Pred = ICmpInst::ICMP_UGT;
6079 Changed = true;
6080 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006081 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006082 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006083 Pred = ICmpInst::ICMP_UGT;
6084 Changed = true;
6085 }
6086 break;
6087 default:
6088 break;
6089 }
6090
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006091 // TODO: More simplifications are possible here.
6092
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006093 // Recursively simplify until we either hit a recursion limit or nothing
6094 // changes.
6095 if (Changed)
6096 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6097
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006098 return Changed;
6099
6100trivially_true:
6101 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006102 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006103 Pred = ICmpInst::ICMP_EQ;
6104 return true;
6105
6106trivially_false:
6107 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006108 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006109 Pred = ICmpInst::ICMP_NE;
6110 return true;
6111}
6112
Dan Gohmane65c9172009-07-13 21:35:55 +00006113bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6114 return getSignedRange(S).getSignedMax().isNegative();
6115}
6116
6117bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6118 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6119}
6120
6121bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6122 return !getSignedRange(S).getSignedMin().isNegative();
6123}
6124
6125bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6126 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6127}
6128
6129bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6130 return isKnownNegative(S) || isKnownPositive(S);
6131}
6132
6133bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6134 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006135 // Canonicalize the inputs first.
6136 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6137
Dan Gohman07591692010-04-11 22:16:48 +00006138 // If LHS or RHS is an addrec, check to see if the condition is true in
6139 // every iteration of the loop.
6140 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
6141 if (isLoopEntryGuardedByCond(
6142 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6143 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006144 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman07591692010-04-11 22:16:48 +00006145 return true;
6146 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6147 if (isLoopEntryGuardedByCond(
6148 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6149 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006150 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman07591692010-04-11 22:16:48 +00006151 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006152
Dan Gohman07591692010-04-11 22:16:48 +00006153 // Otherwise see what can be done with known constant ranges.
6154 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6155}
6156
6157bool
6158ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6159 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006160 if (HasSameValue(LHS, RHS))
6161 return ICmpInst::isTrueWhenEqual(Pred);
6162
Dan Gohman07591692010-04-11 22:16:48 +00006163 // This code is split out from isKnownPredicate because it is called from
6164 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006165 switch (Pred) {
6166 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006167 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006168 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006169 std::swap(LHS, RHS);
6170 case ICmpInst::ICMP_SLT: {
6171 ConstantRange LHSRange = getSignedRange(LHS);
6172 ConstantRange RHSRange = getSignedRange(RHS);
6173 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6174 return true;
6175 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6176 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006177 break;
6178 }
6179 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006180 std::swap(LHS, RHS);
6181 case ICmpInst::ICMP_SLE: {
6182 ConstantRange LHSRange = getSignedRange(LHS);
6183 ConstantRange RHSRange = getSignedRange(RHS);
6184 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6185 return true;
6186 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6187 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006188 break;
6189 }
6190 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006191 std::swap(LHS, RHS);
6192 case ICmpInst::ICMP_ULT: {
6193 ConstantRange LHSRange = getUnsignedRange(LHS);
6194 ConstantRange RHSRange = getUnsignedRange(RHS);
6195 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6196 return true;
6197 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6198 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006199 break;
6200 }
6201 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006202 std::swap(LHS, RHS);
6203 case ICmpInst::ICMP_ULE: {
6204 ConstantRange LHSRange = getUnsignedRange(LHS);
6205 ConstantRange RHSRange = getUnsignedRange(RHS);
6206 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6207 return true;
6208 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6209 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006210 break;
6211 }
6212 case ICmpInst::ICMP_NE: {
6213 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6214 return true;
6215 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6216 return true;
6217
6218 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6219 if (isKnownNonZero(Diff))
6220 return true;
6221 break;
6222 }
6223 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006224 // The check at the top of the function catches the case where
6225 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006226 break;
6227 }
6228 return false;
6229}
6230
6231/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6232/// protected by a conditional between LHS and RHS. This is used to
6233/// to eliminate casts.
6234bool
6235ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6236 ICmpInst::Predicate Pred,
6237 const SCEV *LHS, const SCEV *RHS) {
6238 // Interpret a null as meaning no loop, where there is obviously no guard
6239 // (interprocedural conditions notwithstanding).
6240 if (!L) return true;
6241
6242 BasicBlock *Latch = L->getLoopLatch();
6243 if (!Latch)
6244 return false;
6245
6246 BranchInst *LoopContinuePredicate =
6247 dyn_cast<BranchInst>(Latch->getTerminator());
6248 if (!LoopContinuePredicate ||
6249 LoopContinuePredicate->isUnconditional())
6250 return false;
6251
Dan Gohmane18c2d62010-08-10 23:46:30 +00006252 return isImpliedCond(Pred, LHS, RHS,
6253 LoopContinuePredicate->getCondition(),
Dan Gohman430f0cc2009-07-21 23:03:19 +00006254 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohmane65c9172009-07-13 21:35:55 +00006255}
6256
Dan Gohmanb50349a2010-04-11 19:27:13 +00006257/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006258/// by a conditional between LHS and RHS. This is used to help avoid max
6259/// expressions in loop trip counts, and to eliminate casts.
6260bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006261ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6262 ICmpInst::Predicate Pred,
6263 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006264 // Interpret a null as meaning no loop, where there is obviously no guard
6265 // (interprocedural conditions notwithstanding).
6266 if (!L) return false;
6267
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006268 // Starting at the loop predecessor, climb up the predecessor chain, as long
6269 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006270 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006271 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006272 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006273 Pair.first;
6274 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006275
6276 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006277 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006278 if (!LoopEntryPredicate ||
6279 LoopEntryPredicate->isUnconditional())
6280 continue;
6281
Dan Gohmane18c2d62010-08-10 23:46:30 +00006282 if (isImpliedCond(Pred, LHS, RHS,
6283 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006284 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006285 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006286 }
6287
Dan Gohman2a62fd92008-08-12 20:17:31 +00006288 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006289}
6290
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006291/// RAII wrapper to prevent recursive application of isImpliedCond.
6292/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6293/// currently evaluating isImpliedCond.
6294struct MarkPendingLoopPredicate {
6295 Value *Cond;
6296 DenseSet<Value*> &LoopPreds;
6297 bool Pending;
6298
6299 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6300 : Cond(C), LoopPreds(LP) {
6301 Pending = !LoopPreds.insert(Cond).second;
6302 }
6303 ~MarkPendingLoopPredicate() {
6304 if (!Pending)
6305 LoopPreds.erase(Cond);
6306 }
6307};
6308
Dan Gohman430f0cc2009-07-21 23:03:19 +00006309/// isImpliedCond - Test whether the condition described by Pred, LHS,
6310/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006311bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006312 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006313 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006314 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006315 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6316 if (Mark.Pending)
6317 return false;
6318
Dan Gohman8b0a4192010-03-01 17:49:51 +00006319 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006320 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006321 if (BO->getOpcode() == Instruction::And) {
6322 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006323 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6324 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006325 } else if (BO->getOpcode() == Instruction::Or) {
6326 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006327 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6328 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006329 }
6330 }
6331
Dan Gohmane18c2d62010-08-10 23:46:30 +00006332 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006333 if (!ICI) return false;
6334
Dan Gohmane65c9172009-07-13 21:35:55 +00006335 // Bail if the ICmp's operands' types are wider than the needed type
6336 // before attempting to call getSCEV on them. This avoids infinite
6337 // recursion, since the analysis of widening casts can require loop
6338 // exit condition information for overflow checking, which would
6339 // lead back here.
6340 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006341 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006342 return false;
6343
Andrew Trickfa594032012-11-29 18:35:13 +00006344 // Now that we found a conditional branch that dominates the loop or controls
6345 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006346 ICmpInst::Predicate FoundPred;
6347 if (Inverse)
6348 FoundPred = ICI->getInversePredicate();
6349 else
6350 FoundPred = ICI->getPredicate();
6351
6352 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6353 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006354
6355 // Balance the types. The case where FoundLHS' type is wider than
6356 // LHS' type is checked for above.
6357 if (getTypeSizeInBits(LHS->getType()) >
6358 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006359 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006360 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6361 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6362 } else {
6363 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6364 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6365 }
6366 }
6367
Dan Gohman430f0cc2009-07-21 23:03:19 +00006368 // Canonicalize the query to match the way instcombine will have
6369 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006370 if (SimplifyICmpOperands(Pred, LHS, RHS))
6371 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006372 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006373 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6374 if (FoundLHS == FoundRHS)
6375 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006376
6377 // Check to see if we can make the LHS or RHS match.
6378 if (LHS == FoundRHS || RHS == FoundLHS) {
6379 if (isa<SCEVConstant>(RHS)) {
6380 std::swap(FoundLHS, FoundRHS);
6381 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6382 } else {
6383 std::swap(LHS, RHS);
6384 Pred = ICmpInst::getSwappedPredicate(Pred);
6385 }
6386 }
6387
6388 // Check whether the found predicate is the same as the desired predicate.
6389 if (FoundPred == Pred)
6390 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6391
6392 // Check whether swapping the found predicate makes it the same as the
6393 // desired predicate.
6394 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6395 if (isa<SCEVConstant>(RHS))
6396 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6397 else
6398 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6399 RHS, LHS, FoundLHS, FoundRHS);
6400 }
6401
6402 // Check whether the actual condition is beyond sufficient.
6403 if (FoundPred == ICmpInst::ICMP_EQ)
6404 if (ICmpInst::isTrueWhenEqual(Pred))
6405 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6406 return true;
6407 if (Pred == ICmpInst::ICMP_NE)
6408 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6409 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6410 return true;
6411
6412 // Otherwise assume the worst.
6413 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006414}
6415
Dan Gohman430f0cc2009-07-21 23:03:19 +00006416/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006417/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006418/// and FoundRHS is true.
6419bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6420 const SCEV *LHS, const SCEV *RHS,
6421 const SCEV *FoundLHS,
6422 const SCEV *FoundRHS) {
6423 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6424 FoundLHS, FoundRHS) ||
6425 // ~x < ~y --> x > y
6426 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6427 getNotSCEV(FoundRHS),
6428 getNotSCEV(FoundLHS));
6429}
6430
6431/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006432/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006433/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006434bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006435ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6436 const SCEV *LHS, const SCEV *RHS,
6437 const SCEV *FoundLHS,
6438 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006439 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006440 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6441 case ICmpInst::ICMP_EQ:
6442 case ICmpInst::ICMP_NE:
6443 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6444 return true;
6445 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006446 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006447 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006448 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6449 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006450 return true;
6451 break;
6452 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006453 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006454 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6455 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006456 return true;
6457 break;
6458 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006459 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006460 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6461 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006462 return true;
6463 break;
6464 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006465 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006466 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6467 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006468 return true;
6469 break;
6470 }
6471
6472 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006473}
6474
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006475// Verify if an linear IV with positive stride can overflow when in a
6476// less-than comparison, knowing the invariant term of the comparison, the
6477// stride and the knowledge of NSW/NUW flags on the recurrence.
6478bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6479 bool IsSigned, bool NoWrap) {
6480 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006481
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006482 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6483 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006484
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006485 if (IsSigned) {
6486 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6487 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6488 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6489 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006490
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006491 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6492 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006493 }
Dan Gohman01048422009-06-21 23:46:38 +00006494
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006495 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6496 APInt MaxValue = APInt::getMaxValue(BitWidth);
6497 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6498 .getUnsignedMax();
6499
6500 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6501 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6502}
6503
6504// Verify if an linear IV with negative stride can overflow when in a
6505// greater-than comparison, knowing the invariant term of the comparison,
6506// the stride and the knowledge of NSW/NUW flags on the recurrence.
6507bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6508 bool IsSigned, bool NoWrap) {
6509 if (NoWrap) return false;
6510
6511 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6512 const SCEV *One = getConstant(Stride->getType(), 1);
6513
6514 if (IsSigned) {
6515 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6516 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6517 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6518 .getSignedMax();
6519
6520 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6521 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6522 }
6523
6524 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6525 APInt MinValue = APInt::getMinValue(BitWidth);
6526 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6527 .getUnsignedMax();
6528
6529 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6530 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6531}
6532
6533// Compute the backedge taken count knowing the interval difference, the
6534// stride and presence of the equality in the comparison.
6535const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6536 bool Equality) {
6537 const SCEV *One = getConstant(Step->getType(), 1);
6538 Delta = Equality ? getAddExpr(Delta, Step)
6539 : getAddExpr(Delta, getMinusSCEV(Step, One));
6540 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006541}
6542
Chris Lattner587a75b2005-08-15 23:33:51 +00006543/// HowManyLessThans - Return the number of times a backedge containing the
6544/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006545/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006546///
6547/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6548/// control the branch. In this case, we can only compute an iteration count for
6549/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006550ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006551ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006552 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006553 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006554 // We handle only IV < Invariant
6555 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006556 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006557
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006558 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006559
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006560 // Avoid weird loops
6561 if (!IV || IV->getLoop() != L || !IV->isAffine())
6562 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006563
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006564 bool NoWrap = !IsSubExpr &&
6565 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006566
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006567 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006568
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006569 // Avoid negative or zero stride values
6570 if (!isKnownPositive(Stride))
6571 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006572
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006573 // Avoid proven overflow cases: this will ensure that the backedge taken count
6574 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6575 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6576 // behaviors like the case of C language.
6577 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6578 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006579
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006580 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6581 : ICmpInst::ICMP_ULT;
6582 const SCEV *Start = IV->getStart();
6583 const SCEV *End = RHS;
6584 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6585 End = IsSigned ? getSMaxExpr(RHS, Start)
6586 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006587
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006588 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006589
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006590 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6591 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006592
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006593 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6594 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006595
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006596 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6597 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6598 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006599
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006600 // Although End can be a MAX expression we estimate MaxEnd considering only
6601 // the case End = RHS. This is safe because in the other case (End - Start)
6602 // is zero, leading to a zero maximum backedge taken count.
6603 APInt MaxEnd =
6604 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6605 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6606
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006607 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006608 if (isa<SCEVConstant>(BECount))
6609 MaxBECount = BECount;
6610 else
6611 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6612 getConstant(MinStride), false);
6613
6614 if (isa<SCEVCouldNotCompute>(MaxBECount))
6615 MaxBECount = BECount;
6616
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006617 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006618}
6619
6620ScalarEvolution::ExitLimit
6621ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6622 const Loop *L, bool IsSigned,
6623 bool IsSubExpr) {
6624 // We handle only IV > Invariant
6625 if (!isLoopInvariant(RHS, L))
6626 return getCouldNotCompute();
6627
6628 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6629
6630 // Avoid weird loops
6631 if (!IV || IV->getLoop() != L || !IV->isAffine())
6632 return getCouldNotCompute();
6633
6634 bool NoWrap = !IsSubExpr &&
6635 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6636
6637 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6638
6639 // Avoid negative or zero stride values
6640 if (!isKnownPositive(Stride))
6641 return getCouldNotCompute();
6642
6643 // Avoid proven overflow cases: this will ensure that the backedge taken count
6644 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6645 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6646 // behaviors like the case of C language.
6647 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6648 return getCouldNotCompute();
6649
6650 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6651 : ICmpInst::ICMP_UGT;
6652
6653 const SCEV *Start = IV->getStart();
6654 const SCEV *End = RHS;
6655 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6656 End = IsSigned ? getSMinExpr(RHS, Start)
6657 : getUMinExpr(RHS, Start);
6658
6659 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6660
6661 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6662 : getUnsignedRange(Start).getUnsignedMax();
6663
6664 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6665 : getUnsignedRange(Stride).getUnsignedMin();
6666
6667 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6668 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6669 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6670
6671 // Although End can be a MIN expression we estimate MinEnd considering only
6672 // the case End = RHS. This is safe because in the other case (Start - End)
6673 // is zero, leading to a zero maximum backedge taken count.
6674 APInt MinEnd =
6675 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6676 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6677
6678
6679 const SCEV *MaxBECount = getCouldNotCompute();
6680 if (isa<SCEVConstant>(BECount))
6681 MaxBECount = BECount;
6682 else
6683 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6684 getConstant(MinStride), false);
6685
6686 if (isa<SCEVCouldNotCompute>(MaxBECount))
6687 MaxBECount = BECount;
6688
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006689 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006690}
6691
Chris Lattnerd934c702004-04-02 20:23:17 +00006692/// getNumIterationsInRange - Return the number of iterations of this loop that
6693/// produce values in the specified constant range. Another way of looking at
6694/// this is that it returns the first iteration number where the value is not in
6695/// the condition, thus computing the exit count. If the iteration count can't
6696/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006697const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006698 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006699 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006700 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006701
6702 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006703 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006704 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006705 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006706 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006707 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006708 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006709 if (const SCEVAddRecExpr *ShiftedAddRec =
6710 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006711 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006712 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006713 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006714 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006715 }
6716
6717 // The only time we can solve this is when we have all constant indices.
6718 // Otherwise, we cannot determine the overflow conditions.
6719 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6720 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006721 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006722
6723
6724 // Okay at this point we know that all elements of the chrec are constants and
6725 // that the start element is zero.
6726
6727 // First check to see if the range contains zero. If not, the first
6728 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006729 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006730 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006731 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006732
Chris Lattnerd934c702004-04-02 20:23:17 +00006733 if (isAffine()) {
6734 // If this is an affine expression then we have this situation:
6735 // Solve {0,+,A} in Range === Ax in Range
6736
Nick Lewycky52460262007-07-16 02:08:00 +00006737 // We know that zero is in the range. If A is positive then we know that
6738 // the upper value of the range must be the first possible exit value.
6739 // If A is negative then the lower of the range is the last possible loop
6740 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006741 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006742 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6743 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006744
Nick Lewycky52460262007-07-16 02:08:00 +00006745 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006746 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006747 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006748
6749 // Evaluate at the exit value. If we really did fall out of the valid
6750 // range, then we computed our trip count, otherwise wrap around or other
6751 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006752 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006753 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006754 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006755
6756 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006757 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006758 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006759 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006760 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006761 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006762 } else if (isQuadratic()) {
6763 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6764 // quadratic equation to solve it. To do this, we must frame our problem in
6765 // terms of figuring out when zero is crossed, instead of when
6766 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006767 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006768 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006769 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6770 // getNoWrapFlags(FlagNW)
6771 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006772
6773 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006774 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006775 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006776 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6777 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006778 if (R1) {
6779 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006780 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006781 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006782 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006783 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006784 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006785
Chris Lattnerd934c702004-04-02 20:23:17 +00006786 // Make sure the root is not off by one. The returned iteration should
6787 // not be in the range, but the previous one should be. When solving
6788 // for "X*X < 5", for example, we should not return a root of 2.
6789 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006790 R1->getValue(),
6791 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006792 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006793 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006794 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006795 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006796
Dan Gohmana37eaf22007-10-22 18:31:58 +00006797 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006798 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006799 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006800 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006801 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006802
Chris Lattnerd934c702004-04-02 20:23:17 +00006803 // If R1 was not in the range, then it is a good return value. Make
6804 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006805 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006806 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006807 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006808 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006809 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006810 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006811 }
6812 }
6813 }
6814
Dan Gohman31efa302009-04-18 17:58:19 +00006815 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006816}
6817
Sebastian Pop448712b2014-05-07 18:01:20 +00006818namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006819struct FindUndefs {
6820 bool Found;
6821 FindUndefs() : Found(false) {}
6822
6823 bool follow(const SCEV *S) {
6824 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6825 if (isa<UndefValue>(C->getValue()))
6826 Found = true;
6827 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6828 if (isa<UndefValue>(C->getValue()))
6829 Found = true;
6830 }
6831
6832 // Keep looking if we haven't found it yet.
6833 return !Found;
6834 }
6835 bool isDone() const {
6836 // Stop recursion if we have found an undef.
6837 return Found;
6838 }
6839};
6840}
6841
6842// Return true when S contains at least an undef value.
6843static inline bool
6844containsUndefs(const SCEV *S) {
6845 FindUndefs F;
6846 SCEVTraversal<FindUndefs> ST(F);
6847 ST.visitAll(S);
6848
6849 return F.Found;
6850}
6851
6852namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00006853// Collect all steps of SCEV expressions.
6854struct SCEVCollectStrides {
6855 ScalarEvolution &SE;
6856 SmallVectorImpl<const SCEV *> &Strides;
6857
6858 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6859 : SE(SE), Strides(S) {}
6860
6861 bool follow(const SCEV *S) {
6862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6863 Strides.push_back(AR->getStepRecurrence(SE));
6864 return true;
6865 }
6866 bool isDone() const { return false; }
6867};
6868
6869// Collect all SCEVUnknown and SCEVMulExpr expressions.
6870struct SCEVCollectTerms {
6871 SmallVectorImpl<const SCEV *> &Terms;
6872
6873 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6874 : Terms(T) {}
6875
6876 bool follow(const SCEV *S) {
6877 if (isa<SCEVUnknown>(S) || isa<SCEVConstant>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00006878 if (!containsUndefs(S))
6879 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00006880
6881 // Stop recursion: once we collected a term, do not walk its operands.
6882 return false;
6883 }
6884
6885 // Keep looking.
6886 return true;
6887 }
6888 bool isDone() const { return false; }
6889};
6890}
6891
6892/// Find parametric terms in this SCEVAddRecExpr.
6893void SCEVAddRecExpr::collectParametricTerms(
6894 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6895 SmallVector<const SCEV *, 4> Strides;
6896 SCEVCollectStrides StrideCollector(SE, Strides);
6897 visitAll(this, StrideCollector);
6898
6899 DEBUG({
6900 dbgs() << "Strides:\n";
6901 for (const SCEV *S : Strides)
6902 dbgs() << *S << "\n";
6903 });
6904
6905 for (const SCEV *S : Strides) {
6906 SCEVCollectTerms TermCollector(Terms);
6907 visitAll(S, TermCollector);
6908 }
6909
6910 DEBUG({
6911 dbgs() << "Terms:\n";
6912 for (const SCEV *T : Terms)
6913 dbgs() << *T << "\n";
6914 });
6915}
6916
Sebastian Popc62c6792013-11-12 22:47:20 +00006917static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6918 APInt A = C1->getValue()->getValue();
6919 APInt B = C2->getValue()->getValue();
6920 uint32_t ABW = A.getBitWidth();
6921 uint32_t BBW = B.getBitWidth();
6922
6923 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006924 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006925 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006926 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006927
6928 return APIntOps::srem(A, B);
6929}
6930
6931static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6932 APInt A = C1->getValue()->getValue();
6933 APInt B = C2->getValue()->getValue();
6934 uint32_t ABW = A.getBitWidth();
6935 uint32_t BBW = B.getBitWidth();
6936
6937 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006938 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006939 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006940 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006941
6942 return APIntOps::sdiv(A, B);
6943}
6944
6945namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00006946struct FindSCEVSize {
6947 int Size;
6948 FindSCEVSize() : Size(0) {}
6949
6950 bool follow(const SCEV *S) {
6951 ++Size;
6952 // Keep looking at all operands of S.
6953 return true;
6954 }
6955 bool isDone() const {
6956 return false;
6957 }
6958};
6959}
6960
6961// Returns the size of the SCEV S.
6962static inline int sizeOfSCEV(const SCEV *S) {
6963 FindSCEVSize F;
6964 SCEVTraversal<FindSCEVSize> ST(F);
6965 ST.visitAll(S);
6966 return F.Size;
6967}
6968
6969namespace {
6970
6971struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Sebastian Popc62c6792013-11-12 22:47:20 +00006972public:
Sebastian Pop448712b2014-05-07 18:01:20 +00006973 // Computes the Quotient and Remainder of the division of Numerator by
6974 // Denominator.
6975 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
6976 const SCEV *Denominator, const SCEV **Quotient,
6977 const SCEV **Remainder) {
Sebastian Popb8d56f42014-05-07 19:00:37 +00006978 assert(Numerator && Denominator && "Uninitialized SCEV");
Sebastian Popc62c6792013-11-12 22:47:20 +00006979
Sebastian Pop448712b2014-05-07 18:01:20 +00006980 SCEVDivision D(SE, Numerator, Denominator);
Sebastian Popc62c6792013-11-12 22:47:20 +00006981
Sebastian Pop448712b2014-05-07 18:01:20 +00006982 // Check for the trivial case here to avoid having to check for it in the
6983 // rest of the code.
6984 if (Numerator == Denominator) {
6985 *Quotient = D.One;
6986 *Remainder = D.Zero;
6987 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00006988 }
6989
Sebastian Pop448712b2014-05-07 18:01:20 +00006990 if (Numerator == D.Zero) {
6991 *Quotient = D.Zero;
6992 *Remainder = D.Zero;
6993 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00006994 }
6995
Sebastian Pop448712b2014-05-07 18:01:20 +00006996 // Split the Denominator when it is a product.
6997 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
6998 const SCEV *Q, *R;
6999 *Quotient = Numerator;
7000 for (const SCEV *Op : T->operands()) {
7001 divide(SE, *Quotient, Op, &Q, &R);
7002 *Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007003
Sebastian Pop448712b2014-05-07 18:01:20 +00007004 // Bail out when the Numerator is not divisible by one of the terms of
7005 // the Denominator.
7006 if (R != D.Zero) {
7007 *Quotient = D.Zero;
7008 *Remainder = Numerator;
7009 return;
7010 }
7011 }
7012 *Remainder = D.Zero;
7013 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007014 }
7015
Sebastian Pop448712b2014-05-07 18:01:20 +00007016 D.visit(Numerator);
7017 *Quotient = D.Quotient;
7018 *Remainder = D.Remainder;
Sebastian Popc62c6792013-11-12 22:47:20 +00007019 }
7020
Sebastian Pop448712b2014-05-07 18:01:20 +00007021 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7022 : SE(S), Denominator(Denominator) {
7023 Zero = SE.getConstant(Denominator->getType(), 0);
7024 One = SE.getConstant(Denominator->getType(), 1);
Sebastian Popc62c6792013-11-12 22:47:20 +00007025
Sebastian Pop448712b2014-05-07 18:01:20 +00007026 // By default, we don't know how to divide Expr by Denominator.
7027 // Providing the default here simplifies the rest of the code.
7028 Quotient = Zero;
7029 Remainder = Numerator;
7030 }
7031
7032 // Except in the trivial case described above, we do not know how to divide
7033 // Expr by Denominator for the following functions with empty implementation.
7034 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
7035 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
7036 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
7037 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
7038 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
7039 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
7040 void visitUnknown(const SCEVUnknown *Numerator) {}
7041 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7042
7043 void visitConstant(const SCEVConstant *Numerator) {
7044 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7045 Quotient = SE.getConstant(sdiv(Numerator, D));
7046 Remainder = SE.getConstant(srem(Numerator, D));
7047 return;
7048 }
7049 }
7050
7051 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7052 const SCEV *StartQ, *StartR, *StepQ, *StepR;
7053 assert(Numerator->isAffine() && "Numerator should be affine");
7054 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7055 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7056 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7057 Numerator->getNoWrapFlags());
7058 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7059 Numerator->getNoWrapFlags());
7060 }
7061
7062 void visitAddExpr(const SCEVAddExpr *Numerator) {
7063 SmallVector<const SCEV *, 2> Qs, Rs;
7064 for (const SCEV *Op : Numerator->operands()) {
7065 const SCEV *Q, *R;
7066 divide(SE, Op, Denominator, &Q, &R);
7067 Qs.push_back(Q);
7068 Rs.push_back(R);
Sebastian Popc62c6792013-11-12 22:47:20 +00007069 }
7070
Sebastian Pop448712b2014-05-07 18:01:20 +00007071 if (Qs.size() == 1) {
7072 Quotient = Qs[0];
7073 Remainder = Rs[0];
7074 return;
7075 }
7076
7077 Quotient = SE.getAddExpr(Qs);
7078 Remainder = SE.getAddExpr(Rs);
7079 }
7080
7081 void visitMulExpr(const SCEVMulExpr *Numerator) {
7082 SmallVector<const SCEV *, 2> Qs;
7083
7084 bool FoundDenominatorTerm = false;
7085 for (const SCEV *Op : Numerator->operands()) {
7086 if (FoundDenominatorTerm) {
7087 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007088 continue;
Sebastian Popc62c6792013-11-12 22:47:20 +00007089 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007090
7091 // Check whether Denominator divides one of the product operands.
7092 const SCEV *Q, *R;
7093 divide(SE, Op, Denominator, &Q, &R);
7094 if (R != Zero) {
7095 Qs.push_back(Op);
7096 continue;
7097 }
7098 FoundDenominatorTerm = true;
7099 Qs.push_back(Q);
Sebastian Popc62c6792013-11-12 22:47:20 +00007100 }
7101
Sebastian Pop448712b2014-05-07 18:01:20 +00007102 if (FoundDenominatorTerm) {
7103 Remainder = Zero;
7104 if (Qs.size() == 1)
7105 Quotient = Qs[0];
7106 else
7107 Quotient = SE.getMulExpr(Qs);
7108 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007109 }
7110
Sebastian Pop448712b2014-05-07 18:01:20 +00007111 if (!isa<SCEVUnknown>(Denominator)) {
7112 Quotient = Zero;
7113 Remainder = Numerator;
7114 return;
Sebastian Pop9738e832014-04-08 21:21:10 +00007115 }
7116
Sebastian Pop448712b2014-05-07 18:01:20 +00007117 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7118 ValueToValueMap RewriteMap;
7119 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7120 cast<SCEVConstant>(Zero)->getValue();
7121 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
Sebastian Popc62c6792013-11-12 22:47:20 +00007122
Sebastian Pop448712b2014-05-07 18:01:20 +00007123 // Quotient is (Numerator - Remainder) divided by Denominator.
7124 const SCEV *Q, *R;
7125 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7126 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7127 // This SCEV does not seem to simplify: fail the division here.
7128 Quotient = Zero;
7129 Remainder = Numerator;
7130 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007131 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007132 divide(SE, Diff, Denominator, &Q, &R);
7133 assert(R == Zero &&
7134 "(Numerator - Remainder) should evenly divide Denominator");
7135 Quotient = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007136 }
7137
Sebastian Pop448712b2014-05-07 18:01:20 +00007138private:
7139 ScalarEvolution &SE;
7140 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7141};
7142}
Sebastian Popc62c6792013-11-12 22:47:20 +00007143
Sebastian Pop448712b2014-05-07 18:01:20 +00007144// Find the Greatest Common Divisor of A and B.
7145static const SCEV *
7146findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) {
Sebastian Popc62c6792013-11-12 22:47:20 +00007147
Sebastian Pop448712b2014-05-07 18:01:20 +00007148 if (const SCEVConstant *CA = dyn_cast<SCEVConstant>(A))
7149 if (const SCEVConstant *CB = dyn_cast<SCEVConstant>(B))
7150 return SE.getConstant(gcd(CA, CB));
Sebastian Popc62c6792013-11-12 22:47:20 +00007151
Sebastian Pop448712b2014-05-07 18:01:20 +00007152 const SCEV *One = SE.getConstant(A->getType(), 1);
7153 if (isa<SCEVConstant>(A) && isa<SCEVUnknown>(B))
Sebastian Popc62c6792013-11-12 22:47:20 +00007154 return One;
Sebastian Pop448712b2014-05-07 18:01:20 +00007155 if (isa<SCEVUnknown>(A) && isa<SCEVConstant>(B))
7156 return One;
7157
7158 const SCEV *Q, *R;
7159 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(A)) {
7160 SmallVector<const SCEV *, 2> Qs;
7161 for (const SCEV *Op : M->operands())
7162 Qs.push_back(findGCD(SE, Op, B));
7163 return SE.getMulExpr(Qs);
7164 }
7165 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(B)) {
7166 SmallVector<const SCEV *, 2> Qs;
7167 for (const SCEV *Op : M->operands())
7168 Qs.push_back(findGCD(SE, A, Op));
7169 return SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007170 }
7171
Sebastian Pop448712b2014-05-07 18:01:20 +00007172 const SCEV *Zero = SE.getConstant(A->getType(), 0);
7173 SCEVDivision::divide(SE, A, B, &Q, &R);
7174 if (R == Zero)
7175 return B;
Sebastian Popc62c6792013-11-12 22:47:20 +00007176
Sebastian Pop448712b2014-05-07 18:01:20 +00007177 SCEVDivision::divide(SE, B, A, &Q, &R);
7178 if (R == Zero)
7179 return A;
Sebastian Popc62c6792013-11-12 22:47:20 +00007180
Sebastian Pop448712b2014-05-07 18:01:20 +00007181 return One;
7182}
Sebastian Popc62c6792013-11-12 22:47:20 +00007183
Sebastian Pop448712b2014-05-07 18:01:20 +00007184// Find the Greatest Common Divisor of all the SCEVs in Terms.
7185static const SCEV *
7186findGCD(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) {
7187 assert(Terms.size() > 0 && "Terms vector is empty");
Sebastian Popc62c6792013-11-12 22:47:20 +00007188
Sebastian Pop448712b2014-05-07 18:01:20 +00007189 const SCEV *GCD = Terms[0];
7190 for (const SCEV *T : Terms)
7191 GCD = findGCD(SE, GCD, T);
Sebastian Popc62c6792013-11-12 22:47:20 +00007192
Sebastian Pop448712b2014-05-07 18:01:20 +00007193 return GCD;
7194}
Sebastian Popc62c6792013-11-12 22:47:20 +00007195
Sebastian Pop448712b2014-05-07 18:01:20 +00007196static void findArrayDimensionsRec(ScalarEvolution &SE,
7197 SmallVectorImpl<const SCEV *> &Terms,
7198 SmallVectorImpl<const SCEV *> &Sizes,
7199 const SCEV *Zero, const SCEV *One) {
7200 // The GCD of all Terms is the dimension of the innermost dimension.
7201 const SCEV *GCD = findGCD(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007202
Sebastian Pop448712b2014-05-07 18:01:20 +00007203 // End of recursion.
7204 if (Terms.size() == 1) {
7205 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(GCD)) {
7206 SmallVector<const SCEV *, 2> Qs;
7207 for (const SCEV *Op : M->operands())
7208 if (!isa<SCEVConstant>(Op))
7209 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007210
Sebastian Pop448712b2014-05-07 18:01:20 +00007211 GCD = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007212 }
7213
Sebastian Pop448712b2014-05-07 18:01:20 +00007214 Sizes.push_back(GCD);
7215 return;
Sebastian Popc62c6792013-11-12 22:47:20 +00007216 }
7217
Sebastian Pop448712b2014-05-07 18:01:20 +00007218 for (unsigned I = 0; I < Terms.size(); ++I) {
7219 // Normalize the terms before the next call to findArrayDimensionsRec.
7220 const SCEV *Q, *R;
7221 SCEVDivision::divide(SE, Terms[I], GCD, &Q, &R);
7222 assert(R == Zero && "GCD does not evenly divide one of the terms");
7223 Terms[I] = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007224 }
7225
Tobias Grosser3080cf12014-05-08 07:55:34 +00007226 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007227 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7228 return isa<SCEVConstant>(E);
7229 }),
7230 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007231
Sebastian Pop448712b2014-05-07 18:01:20 +00007232 if (Terms.size() > 0)
7233 findArrayDimensionsRec(SE, Terms, Sizes, Zero, One);
7234 Sizes.push_back(GCD);
7235}
Sebastian Popc62c6792013-11-12 22:47:20 +00007236
Sebastian Pop448712b2014-05-07 18:01:20 +00007237namespace {
7238struct FindParameter {
7239 bool FoundParameter;
7240 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007241
Sebastian Pop448712b2014-05-07 18:01:20 +00007242 bool follow(const SCEV *S) {
7243 if (isa<SCEVUnknown>(S)) {
7244 FoundParameter = true;
7245 // Stop recursion: we found a parameter.
7246 return false;
7247 }
7248 // Keep looking.
7249 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007250 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007251 bool isDone() const {
7252 // Stop recursion if we have found a parameter.
7253 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007254 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007255};
7256}
7257
Sebastian Pop448712b2014-05-07 18:01:20 +00007258// Returns true when S contains at least a SCEVUnknown parameter.
7259static inline bool
7260containsParameters(const SCEV *S) {
7261 FindParameter F;
7262 SCEVTraversal<FindParameter> ST(F);
7263 ST.visitAll(S);
7264
7265 return F.FoundParameter;
7266}
7267
7268// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7269static inline bool
7270containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7271 for (const SCEV *T : Terms)
7272 if (containsParameters(T))
7273 return true;
7274 return false;
7275}
7276
7277// Return the number of product terms in S.
7278static inline int numberOfTerms(const SCEV *S) {
7279 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7280 return Expr->getNumOperands();
7281 return 1;
7282}
7283
7284/// Second step of delinearization: compute the array dimensions Sizes from the
7285/// set of Terms extracted from the memory access function of this SCEVAddRec.
7286void SCEVAddRecExpr::findArrayDimensions(
7287 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms,
7288 SmallVectorImpl<const SCEV *> &Sizes) const {
7289
7290 if (Terms.size() < 2)
7291 return;
7292
7293 // Early return when Terms do not contain parameters: we do not delinearize
7294 // non parametric SCEVs.
7295 if (!containsParameters(Terms))
7296 return;
7297
7298 DEBUG({
7299 dbgs() << "Terms:\n";
7300 for (const SCEV *T : Terms)
7301 dbgs() << *T << "\n";
7302 });
7303
7304 // Remove duplicates.
7305 std::sort(Terms.begin(), Terms.end());
7306 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7307
7308 // Put larger terms first.
7309 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7310 return numberOfTerms(LHS) > numberOfTerms(RHS);
7311 });
7312
7313 DEBUG({
7314 dbgs() << "Terms after sorting:\n";
7315 for (const SCEV *T : Terms)
7316 dbgs() << *T << "\n";
7317 });
7318
7319 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7320 const SCEV *One = SE.getConstant(this->getType(), 1);
7321 findArrayDimensionsRec(SE, Terms, Sizes, Zero, One);
7322
7323 DEBUG({
7324 dbgs() << "Sizes:\n";
7325 for (const SCEV *S : Sizes)
7326 dbgs() << *S << "\n";
7327 });
7328}
7329
7330/// Third step of delinearization: compute the access functions for the
7331/// Subscripts based on the dimensions in Sizes.
7332const SCEV *SCEVAddRecExpr::computeAccessFunctions(
7333 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7334 SmallVectorImpl<const SCEV *> &Sizes) const {
7335 // Early exit in case this SCEV is not an affine multivariate function.
7336 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7337 if (!this->isAffine())
7338 return Zero;
7339
7340 const SCEV *Res = this, *Remainder = Zero;
7341 int Last = Sizes.size() - 1;
7342 for (int i = Last; i >= 0; i--) {
7343 const SCEV *Q, *R;
7344 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7345
7346 DEBUG({
7347 dbgs() << "Res: " << *Res << "\n";
7348 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7349 dbgs() << "Res divided by Sizes[i]:\n";
7350 dbgs() << "Quotient: " << *Q << "\n";
7351 dbgs() << "Remainder: " << *R << "\n";
7352 });
7353
7354 Res = Q;
7355
7356 if (i == Last) {
7357 // Do not record the last subscript corresponding to the size of elements
7358 // in the array.
7359 Remainder = R;
7360 continue;
7361 }
7362
7363 // Record the access function for the current subscript.
7364 Subscripts.push_back(R);
7365 }
7366
7367 // Also push in last position the remainder of the last division: it will be
7368 // the access function of the innermost dimension.
7369 Subscripts.push_back(Res);
7370
7371 std::reverse(Subscripts.begin(), Subscripts.end());
7372
7373 DEBUG({
7374 dbgs() << "Subscripts:\n";
7375 for (const SCEV *S : Subscripts)
7376 dbgs() << *S << "\n";
7377 });
7378 return Remainder;
7379}
7380
Sebastian Popc62c6792013-11-12 22:47:20 +00007381/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7382/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007383/// is the offset start of the array. The SCEV->delinearize algorithm computes
7384/// the multiples of SCEV coefficients: that is a pattern matching of sub
7385/// expressions in the stride and base of a SCEV corresponding to the
7386/// computation of a GCD (greatest common divisor) of base and stride. When
7387/// SCEV->delinearize fails, it returns the SCEV unchanged.
7388///
7389/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7390///
7391/// void foo(long n, long m, long o, double A[n][m][o]) {
7392///
7393/// for (long i = 0; i < n; i++)
7394/// for (long j = 0; j < m; j++)
7395/// for (long k = 0; k < o; k++)
7396/// A[i][j][k] = 1.0;
7397/// }
7398///
7399/// the delinearization input is the following AddRec SCEV:
7400///
7401/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7402///
7403/// From this SCEV, we are able to say that the base offset of the access is %A
7404/// because it appears as an offset that does not divide any of the strides in
7405/// the loops:
7406///
7407/// CHECK: Base offset: %A
7408///
7409/// and then SCEV->delinearize determines the size of some of the dimensions of
7410/// the array as these are the multiples by which the strides are happening:
7411///
7412/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7413///
7414/// Note that the outermost dimension remains of UnknownSize because there are
7415/// no strides that would help identifying the size of the last dimension: when
7416/// the array has been statically allocated, one could compute the size of that
7417/// dimension by dividing the overall size of the array by the size of the known
7418/// dimensions: %m * %o * 8.
7419///
7420/// Finally delinearize provides the access functions for the array reference
7421/// that does correspond to A[i][j][k] of the above C testcase:
7422///
7423/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7424///
7425/// The testcases are checking the output of a function pass:
7426/// DelinearizationPass that walks through all loads and stores of a function
7427/// asking for the SCEV of the memory access with respect to all enclosing
7428/// loops, calling SCEV->delinearize on that and printing the results.
7429
Sebastian Popc62c6792013-11-12 22:47:20 +00007430const SCEV *
7431SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7432 SmallVectorImpl<const SCEV *> &Subscripts,
7433 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007434 // First step: collect parametric terms.
7435 SmallVector<const SCEV *, 4> Terms;
7436 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007437
Sebastian Pop448712b2014-05-07 18:01:20 +00007438 // Second step: find subscript sizes.
7439 findArrayDimensions(SE, Terms, Sizes);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007440
Sebastian Pop448712b2014-05-07 18:01:20 +00007441 // Third step: compute the access functions for each subscript.
7442 const SCEV *Remainder = computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007443
Sebastian Pop448712b2014-05-07 18:01:20 +00007444 DEBUG({
7445 dbgs() << "succeeded to delinearize " << *this << "\n";
7446 dbgs() << "ArrayDecl[UnknownSize]";
7447 for (const SCEV *S : Sizes)
7448 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007449
Sebastian Pop448712b2014-05-07 18:01:20 +00007450 dbgs() << "ArrayRef";
7451 for (const SCEV *S : Sizes)
7452 dbgs() << "[" << *S << "]";
7453 dbgs() << "\n";
7454 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007455
7456 return Remainder;
7457}
Chris Lattnerd934c702004-04-02 20:23:17 +00007458
7459//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007460// SCEVCallbackVH Class Implementation
7461//===----------------------------------------------------------------------===//
7462
Dan Gohmand33a0902009-05-19 19:22:47 +00007463void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007464 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007465 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7466 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007467 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007468 // this now dangles!
7469}
7470
Dan Gohman7a066722010-07-28 01:09:07 +00007471void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007472 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007473
Dan Gohman48f82222009-05-04 22:30:44 +00007474 // Forget all the expressions associated with users of the old value,
7475 // so that future queries will recompute the expressions using the new
7476 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007477 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007478 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007479 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007480 while (!Worklist.empty()) {
7481 User *U = Worklist.pop_back_val();
7482 // Deleting the Old value will cause this to dangle. Postpone
7483 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007484 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007485 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007486 if (!Visited.insert(U))
7487 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007488 if (PHINode *PN = dyn_cast<PHINode>(U))
7489 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007490 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007491 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007492 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007493 // Delete the Old value.
7494 if (PHINode *PN = dyn_cast<PHINode>(Old))
7495 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007496 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007497 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007498}
7499
Dan Gohmand33a0902009-05-19 19:22:47 +00007500ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007501 : CallbackVH(V), SE(se) {}
7502
7503//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007504// ScalarEvolution Class Implementation
7505//===----------------------------------------------------------------------===//
7506
Dan Gohmanc8e23622009-04-21 23:15:49 +00007507ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007508 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7509 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007510 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007511}
7512
Chris Lattnerd934c702004-04-02 20:23:17 +00007513bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007514 this->F = &F;
7515 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007516 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007517 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007518 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007519 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007520 return false;
7521}
7522
7523void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007524 // Iterate through all the SCEVUnknown instances and call their
7525 // destructors, so that they release their references to their values.
7526 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7527 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007528 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007529
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007530 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007531
7532 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7533 // that a loop had multiple computable exits.
7534 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7535 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7536 I != E; ++I) {
7537 I->second.clear();
7538 }
7539
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007540 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7541
Dan Gohmanc8e23622009-04-21 23:15:49 +00007542 BackedgeTakenCounts.clear();
7543 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007544 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007545 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007546 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007547 UnsignedRanges.clear();
7548 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007549 UniqueSCEVs.clear();
7550 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007551}
7552
7553void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7554 AU.setPreservesAll();
Chris Lattnerd934c702004-04-02 20:23:17 +00007555 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007556 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007557 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007558}
7559
Dan Gohmanc8e23622009-04-21 23:15:49 +00007560bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007561 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007562}
7563
Dan Gohmanc8e23622009-04-21 23:15:49 +00007564static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007565 const Loop *L) {
7566 // Print all inner loops first
7567 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7568 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007569
Dan Gohmanbc694912010-01-09 18:17:45 +00007570 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007571 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007572 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007573
Dan Gohmancb0efec2009-12-18 01:14:11 +00007574 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007575 L->getExitBlocks(ExitBlocks);
7576 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007577 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007578
Dan Gohman0bddac12009-02-24 18:55:53 +00007579 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7580 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007581 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007582 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007583 }
7584
Dan Gohmanbc694912010-01-09 18:17:45 +00007585 OS << "\n"
7586 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007587 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007588 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007589
7590 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7591 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7592 } else {
7593 OS << "Unpredictable max backedge-taken count. ";
7594 }
7595
7596 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007597}
7598
Dan Gohmancb0efec2009-12-18 01:14:11 +00007599void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007600 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007601 // out SCEV values of all instructions that are interesting. Doing
7602 // this potentially causes it to create new SCEV objects though,
7603 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007604 // observable from outside the class though, so casting away the
7605 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007606 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007607
Dan Gohmanbc694912010-01-09 18:17:45 +00007608 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007609 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007610 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007611 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007612 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007613 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007614 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007615 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007616 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007617
Dan Gohmanb9063a82009-06-19 17:49:54 +00007618 const Loop *L = LI->getLoopFor((*I).getParent());
7619
Dan Gohmanaf752342009-07-07 17:06:11 +00007620 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007621 if (AtUse != SV) {
7622 OS << " --> ";
7623 AtUse->print(OS);
7624 }
7625
7626 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007627 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007628 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007629 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007630 OS << "<<Unknown>>";
7631 } else {
7632 OS << *ExitValue;
7633 }
7634 }
7635
Chris Lattnerd934c702004-04-02 20:23:17 +00007636 OS << "\n";
7637 }
7638
Dan Gohmanbc694912010-01-09 18:17:45 +00007639 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007640 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007641 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007642 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7643 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007644}
Dan Gohmane20f8242009-04-21 00:47:46 +00007645
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007646ScalarEvolution::LoopDisposition
7647ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007648 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7649 for (unsigned u = 0; u < Values.size(); u++) {
7650 if (Values[u].first == L)
7651 return Values[u].second;
7652 }
7653 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007654 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007655 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7656 for (unsigned u = Values2.size(); u > 0; u--) {
7657 if (Values2[u - 1].first == L) {
7658 Values2[u - 1].second = D;
7659 break;
7660 }
7661 }
7662 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007663}
7664
7665ScalarEvolution::LoopDisposition
7666ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007667 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007668 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007669 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007670 case scTruncate:
7671 case scZeroExtend:
7672 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007673 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007674 case scAddRecExpr: {
7675 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7676
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007677 // If L is the addrec's loop, it's computable.
7678 if (AR->getLoop() == L)
7679 return LoopComputable;
7680
Dan Gohmanafd6db92010-11-17 21:23:15 +00007681 // Add recurrences are never invariant in the function-body (null loop).
7682 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007683 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007684
7685 // This recurrence is variant w.r.t. L if L contains AR's loop.
7686 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007687 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007688
7689 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7690 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007691 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007692
7693 // This recurrence is variant w.r.t. L if any of its operands
7694 // are variant.
7695 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7696 I != E; ++I)
7697 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007698 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007699
7700 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007701 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007702 }
7703 case scAddExpr:
7704 case scMulExpr:
7705 case scUMaxExpr:
7706 case scSMaxExpr: {
7707 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007708 bool HasVarying = false;
7709 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7710 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007711 LoopDisposition D = getLoopDisposition(*I, L);
7712 if (D == LoopVariant)
7713 return LoopVariant;
7714 if (D == LoopComputable)
7715 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007716 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007717 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007718 }
7719 case scUDivExpr: {
7720 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007721 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7722 if (LD == LoopVariant)
7723 return LoopVariant;
7724 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7725 if (RD == LoopVariant)
7726 return LoopVariant;
7727 return (LD == LoopInvariant && RD == LoopInvariant) ?
7728 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007729 }
7730 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007731 // All non-instruction values are loop invariant. All instructions are loop
7732 // invariant if they are not contained in the specified loop.
7733 // Instructions are never considered invariant in the function body
7734 // (null loop) because they are defined within the "loop".
7735 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7736 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7737 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007738 case scCouldNotCompute:
7739 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007740 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007741 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007742}
7743
7744bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7745 return getLoopDisposition(S, L) == LoopInvariant;
7746}
7747
7748bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7749 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007750}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007751
Dan Gohman8ea83d82010-11-18 00:34:22 +00007752ScalarEvolution::BlockDisposition
7753ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007754 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7755 for (unsigned u = 0; u < Values.size(); u++) {
7756 if (Values[u].first == BB)
7757 return Values[u].second;
7758 }
7759 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007760 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007761 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7762 for (unsigned u = Values2.size(); u > 0; u--) {
7763 if (Values2[u - 1].first == BB) {
7764 Values2[u - 1].second = D;
7765 break;
7766 }
7767 }
7768 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007769}
7770
Dan Gohman8ea83d82010-11-18 00:34:22 +00007771ScalarEvolution::BlockDisposition
7772ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007773 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007774 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007775 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007776 case scTruncate:
7777 case scZeroExtend:
7778 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007779 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007780 case scAddRecExpr: {
7781 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007782 // to test for proper dominance too, because the instruction which
7783 // produces the addrec's value is a PHI, and a PHI effectively properly
7784 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007785 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7786 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007787 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007788 }
7789 // FALL THROUGH into SCEVNAryExpr handling.
7790 case scAddExpr:
7791 case scMulExpr:
7792 case scUMaxExpr:
7793 case scSMaxExpr: {
7794 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007795 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007796 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007797 I != E; ++I) {
7798 BlockDisposition D = getBlockDisposition(*I, BB);
7799 if (D == DoesNotDominateBlock)
7800 return DoesNotDominateBlock;
7801 if (D == DominatesBlock)
7802 Proper = false;
7803 }
7804 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007805 }
7806 case scUDivExpr: {
7807 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007808 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7809 BlockDisposition LD = getBlockDisposition(LHS, BB);
7810 if (LD == DoesNotDominateBlock)
7811 return DoesNotDominateBlock;
7812 BlockDisposition RD = getBlockDisposition(RHS, BB);
7813 if (RD == DoesNotDominateBlock)
7814 return DoesNotDominateBlock;
7815 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7816 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007817 }
7818 case scUnknown:
7819 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007820 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7821 if (I->getParent() == BB)
7822 return DominatesBlock;
7823 if (DT->properlyDominates(I->getParent(), BB))
7824 return ProperlyDominatesBlock;
7825 return DoesNotDominateBlock;
7826 }
7827 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007828 case scCouldNotCompute:
7829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007830 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007831 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007832}
7833
7834bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7835 return getBlockDisposition(S, BB) >= DominatesBlock;
7836}
7837
7838bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7839 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007840}
Dan Gohman534749b2010-11-17 22:27:42 +00007841
Andrew Trick365e31c2012-07-13 23:33:03 +00007842namespace {
7843// Search for a SCEV expression node within an expression tree.
7844// Implements SCEVTraversal::Visitor.
7845struct SCEVSearch {
7846 const SCEV *Node;
7847 bool IsFound;
7848
7849 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7850
7851 bool follow(const SCEV *S) {
7852 IsFound |= (S == Node);
7853 return !IsFound;
7854 }
7855 bool isDone() const { return IsFound; }
7856};
7857}
7858
Dan Gohman534749b2010-11-17 22:27:42 +00007859bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007860 SCEVSearch Search(Op);
7861 visitAll(S, Search);
7862 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007863}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007864
7865void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7866 ValuesAtScopes.erase(S);
7867 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007868 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007869 UnsignedRanges.erase(S);
7870 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007871
7872 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7873 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7874 BackedgeTakenInfo &BEInfo = I->second;
7875 if (BEInfo.hasOperand(S, this)) {
7876 BEInfo.clear();
7877 BackedgeTakenCounts.erase(I++);
7878 }
7879 else
7880 ++I;
7881 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00007882}
Benjamin Kramer214935e2012-10-26 17:31:32 +00007883
7884typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007885
Alp Tokercb402912014-01-24 17:20:08 +00007886/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007887static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7888 size_t Pos = 0;
7889 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7890 Str.replace(Pos, From.size(), To.data(), To.size());
7891 Pos += To.size();
7892 }
7893}
7894
Benjamin Kramer214935e2012-10-26 17:31:32 +00007895/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7896static void
7897getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7898 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7899 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7900
7901 std::string &S = Map[L];
7902 if (S.empty()) {
7903 raw_string_ostream OS(S);
7904 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007905
7906 // false and 0 are semantically equivalent. This can happen in dead loops.
7907 replaceSubString(OS.str(), "false", "0");
7908 // Remove wrap flags, their use in SCEV is highly fragile.
7909 // FIXME: Remove this when SCEV gets smarter about them.
7910 replaceSubString(OS.str(), "<nw>", "");
7911 replaceSubString(OS.str(), "<nsw>", "");
7912 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00007913 }
7914 }
7915}
7916
7917void ScalarEvolution::verifyAnalysis() const {
7918 if (!VerifySCEV)
7919 return;
7920
7921 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7922
7923 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7924 // FIXME: It would be much better to store actual values instead of strings,
7925 // but SCEV pointers will change if we drop the caches.
7926 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7927 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7928 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7929
7930 // Gather stringified backedge taken counts for all loops without using
7931 // SCEV's caches.
7932 SE.releaseMemory();
7933 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7934 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7935
7936 // Now compare whether they're the same with and without caches. This allows
7937 // verifying that no pass changed the cache.
7938 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7939 "New loops suddenly appeared!");
7940
7941 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7942 OldE = BackedgeDumpsOld.end(),
7943 NewI = BackedgeDumpsNew.begin();
7944 OldI != OldE; ++OldI, ++NewI) {
7945 assert(OldI->first == NewI->first && "Loop order changed!");
7946
7947 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7948 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007949 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00007950 // means that a pass is buggy or SCEV has to learn a new pattern but is
7951 // usually not harmful.
7952 if (OldI->second != NewI->second &&
7953 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007954 NewI->second.find("undef") == std::string::npos &&
7955 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00007956 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007957 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00007958 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007959 << "' changed from '" << OldI->second
7960 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00007961 std::abort();
7962 }
7963 }
7964
7965 // TODO: Verify more things.
7966}