blob: 2327ba4995cee259e11b6def9aa1f8fe3e983632 [file] [log] [blame]
Chris Lattner2b295a02010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
Chandler Carrutha9174582015-01-22 05:25:13 +000014#include "InstCombineInternal.h"
Guozhi Wei7b390ec2016-03-17 18:47:20 +000015#include "llvm/ADT/SetVector.h"
Eli Friedman911e12f2011-07-20 21:57:23 +000016#include "llvm/Analysis/ConstantFolding.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000017#include "llvm/IR/DataLayout.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000018#include "llvm/IR/PatternMatch.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000019#include "llvm/Analysis/TargetLibraryInfo.h"
Chris Lattner2b295a02010-01-04 07:53:58 +000020using namespace llvm;
21using namespace PatternMatch;
22
Chandler Carruth964daaa2014-04-22 02:55:47 +000023#define DEBUG_TYPE "instcombine"
24
Sanjay Patel2fbab9d82015-09-09 14:34:26 +000025/// Analyze 'Val', seeing if it is a simple linear expression.
26/// If so, decompose it, returning some value X, such that Val is
Chris Lattner59d95742010-01-04 07:59:07 +000027/// X*Scale+Offset.
28///
Sanjay Patele2834412015-09-09 14:54:29 +000029static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman05a65552010-05-28 04:33:04 +000030 uint64_t &Offset) {
Chris Lattner59d95742010-01-04 07:59:07 +000031 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
32 Offset = CI->getZExtValue();
33 Scale = 0;
Dan Gohman05a65552010-05-28 04:33:04 +000034 return ConstantInt::get(Val->getType(), 0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000035 }
Craig Topper3529aa52013-01-24 05:22:40 +000036
Chris Lattneraaccc8d2010-01-05 20:57:30 +000037 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Bob Wilson3c68b622011-07-08 22:09:33 +000038 // Cannot look past anything that might overflow.
39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
Stepan Dyatkovskiycb2a1a32012-05-05 07:09:40 +000040 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
Bob Wilson3c68b622011-07-08 22:09:33 +000041 Scale = 1;
42 Offset = 0;
43 return Val;
44 }
45
Chris Lattner59d95742010-01-04 07:59:07 +000046 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
47 if (I->getOpcode() == Instruction::Shl) {
48 // This is a value scaled by '1 << the shift amt'.
Dan Gohman05a65552010-05-28 04:33:04 +000049 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattner59d95742010-01-04 07:59:07 +000050 Offset = 0;
51 return I->getOperand(0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000052 }
Craig Topper3529aa52013-01-24 05:22:40 +000053
Chris Lattneraaccc8d2010-01-05 20:57:30 +000054 if (I->getOpcode() == Instruction::Mul) {
Chris Lattner59d95742010-01-04 07:59:07 +000055 // This value is scaled by 'RHS'.
56 Scale = RHS->getZExtValue();
57 Offset = 0;
58 return I->getOperand(0);
Chris Lattneraaccc8d2010-01-05 20:57:30 +000059 }
Craig Topper3529aa52013-01-24 05:22:40 +000060
Chris Lattneraaccc8d2010-01-05 20:57:30 +000061 if (I->getOpcode() == Instruction::Add) {
Craig Topper3529aa52013-01-24 05:22:40 +000062 // We have X+C. Check to see if we really have (X*C2)+C1,
Chris Lattner59d95742010-01-04 07:59:07 +000063 // where C1 is divisible by C2.
64 unsigned SubScale;
Craig Topper3529aa52013-01-24 05:22:40 +000065 Value *SubVal =
Sanjay Patele2834412015-09-09 14:54:29 +000066 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Chris Lattner59d95742010-01-04 07:59:07 +000067 Offset += RHS->getZExtValue();
68 Scale = SubScale;
69 return SubVal;
70 }
71 }
72 }
73
74 // Otherwise, we can't look past this.
75 Scale = 1;
76 Offset = 0;
77 return Val;
78}
79
Sanjay Patel2fbab9d82015-09-09 14:34:26 +000080/// If we find a cast of an allocation instruction, try to eliminate the cast by
81/// moving the type information into the alloc.
Chris Lattner59d95742010-01-04 07:59:07 +000082Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
83 AllocaInst &AI) {
Chris Lattner229907c2011-07-18 04:54:35 +000084 PointerType *PTy = cast<PointerType>(CI.getType());
Craig Topper3529aa52013-01-24 05:22:40 +000085
Chris Lattner59d95742010-01-04 07:59:07 +000086 BuilderTy AllocaBuilder(*Builder);
Duncan P. N. Exon Smith9f8aaf22015-10-13 16:59:33 +000087 AllocaBuilder.SetInsertPoint(&AI);
Chris Lattner59d95742010-01-04 07:59:07 +000088
89 // Get the type really allocated and the type casted to.
Chris Lattner229907c2011-07-18 04:54:35 +000090 Type *AllocElTy = AI.getAllocatedType();
91 Type *CastElTy = PTy->getElementType();
Craig Topperf40110f2014-04-25 05:29:35 +000092 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +000093
Mehdi Aminia28d91d2015-03-10 02:37:25 +000094 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
95 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +000096 if (CastElTyAlign < AllocElTyAlign) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +000097
98 // If the allocation has multiple uses, only promote it if we are strictly
99 // increasing the alignment of the resultant allocation. If we keep it the
Devang Patelfbb482b2011-03-08 22:12:11 +0000100 // same, we open the door to infinite loops of various kinds.
Craig Topperf40110f2014-04-25 05:29:35 +0000101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000102
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000103 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
104 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +0000105 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000106
Jim Grosbach95d2eb92013-03-06 05:44:53 +0000107 // If the allocation has multiple uses, only promote it if we're not
108 // shrinking the amount of memory being allocated.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000109 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
110 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
Craig Topperf40110f2014-04-25 05:29:35 +0000111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
Jim Grosbach95d2eb92013-03-06 05:44:53 +0000112
Chris Lattner59d95742010-01-04 07:59:07 +0000113 // See if we can satisfy the modulus by pulling a scale out of the array
114 // size argument.
115 unsigned ArraySizeScale;
Dan Gohman05a65552010-05-28 04:33:04 +0000116 uint64_t ArrayOffset;
Chris Lattner59d95742010-01-04 07:59:07 +0000117 Value *NumElements = // See if the array size is a decomposable linear expr.
Sanjay Patele2834412015-09-09 14:54:29 +0000118 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
Craig Topper3529aa52013-01-24 05:22:40 +0000119
Chris Lattner59d95742010-01-04 07:59:07 +0000120 // If we can now satisfy the modulus, by using a non-1 scale, we really can
121 // do the xform.
122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
Craig Topperf40110f2014-04-25 05:29:35 +0000123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000124
125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
Craig Topperf40110f2014-04-25 05:29:35 +0000126 Value *Amt = nullptr;
Chris Lattner59d95742010-01-04 07:59:07 +0000127 if (Scale == 1) {
128 Amt = NumElements;
129 } else {
Dan Gohman05a65552010-05-28 04:33:04 +0000130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattner59d95742010-01-04 07:59:07 +0000131 // Insert before the alloca, not before the cast.
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000132 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
Chris Lattner59d95742010-01-04 07:59:07 +0000133 }
Craig Topper3529aa52013-01-24 05:22:40 +0000134
Dan Gohman05a65552010-05-28 04:33:04 +0000135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattner59d95742010-01-04 07:59:07 +0000137 Offset, true);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000138 Amt = AllocaBuilder.CreateAdd(Amt, Off);
Chris Lattner59d95742010-01-04 07:59:07 +0000139 }
Craig Topper3529aa52013-01-24 05:22:40 +0000140
Chris Lattner59d95742010-01-04 07:59:07 +0000141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
142 New->setAlignment(AI.getAlignment());
143 New->takeName(&AI);
Hans Wennborge36e1162014-04-28 17:40:03 +0000144 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
Craig Topper3529aa52013-01-24 05:22:40 +0000145
Chris Lattner59d95742010-01-04 07:59:07 +0000146 // If the allocation has multiple real uses, insert a cast and change all
147 // things that used it to use the new cast. This will also hack on CI, but it
148 // will die soon.
Devang Patelfbb482b2011-03-08 22:12:11 +0000149 if (!AI.hasOneUse()) {
Chris Lattner59d95742010-01-04 07:59:07 +0000150 // New is the allocation instruction, pointer typed. AI is the original
151 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
152 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
Sanjay Patel4b198802016-02-01 22:23:39 +0000153 replaceInstUsesWith(AI, NewCast);
Chris Lattner59d95742010-01-04 07:59:07 +0000154 }
Sanjay Patel4b198802016-02-01 22:23:39 +0000155 return replaceInstUsesWith(CI, New);
Chris Lattner59d95742010-01-04 07:59:07 +0000156}
157
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000158/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
159/// true for, actually insert the code to evaluate the expression.
Craig Topper3529aa52013-01-24 05:22:40 +0000160Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Chris Lattner92be2ad2010-01-04 07:54:59 +0000161 bool isSigned) {
Chris Lattner9242ae02010-01-08 19:28:47 +0000162 if (Constant *C = dyn_cast<Constant>(V)) {
163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000164 // If we got a constantexpr back, try to simplify it with DL info.
Chris Lattner9242ae02010-01-08 19:28:47 +0000165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000166 C = ConstantFoldConstantExpression(CE, DL, TLI);
Chris Lattner9242ae02010-01-08 19:28:47 +0000167 return C;
168 }
Chris Lattner92be2ad2010-01-04 07:54:59 +0000169
170 // Otherwise, it must be an instruction.
171 Instruction *I = cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000172 Instruction *Res = nullptr;
Chris Lattner92be2ad2010-01-04 07:54:59 +0000173 unsigned Opc = I->getOpcode();
174 switch (Opc) {
175 case Instruction::Add:
176 case Instruction::Sub:
177 case Instruction::Mul:
178 case Instruction::And:
179 case Instruction::Or:
180 case Instruction::Xor:
181 case Instruction::AShr:
182 case Instruction::LShr:
183 case Instruction::Shl:
184 case Instruction::UDiv:
185 case Instruction::URem: {
186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189 break;
Craig Topper3529aa52013-01-24 05:22:40 +0000190 }
Chris Lattner92be2ad2010-01-04 07:54:59 +0000191 case Instruction::Trunc:
192 case Instruction::ZExt:
193 case Instruction::SExt:
194 // If the source type of the cast is the type we're trying for then we can
195 // just return the source. There's no need to insert it because it is not
196 // new.
197 if (I->getOperand(0)->getType() == Ty)
198 return I->getOperand(0);
Craig Topper3529aa52013-01-24 05:22:40 +0000199
Chris Lattner92be2ad2010-01-04 07:54:59 +0000200 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner39d2daa2010-01-10 20:25:54 +0000201 // This also handles the case of zext(trunc(x)) -> zext(x).
202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203 Opc == Instruction::SExt);
Chris Lattner92be2ad2010-01-04 07:54:59 +0000204 break;
205 case Instruction::Select: {
206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208 Res = SelectInst::Create(I->getOperand(0), True, False);
209 break;
210 }
211 case Instruction::PHI: {
212 PHINode *OPN = cast<PHINode>(I);
Jay Foad52131342011-03-30 11:28:46 +0000213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
Chris Lattner92be2ad2010-01-04 07:54:59 +0000214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000215 Value *V =
216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
Chris Lattner92be2ad2010-01-04 07:54:59 +0000217 NPN->addIncoming(V, OPN->getIncomingBlock(i));
218 }
219 Res = NPN;
220 break;
221 }
Craig Topper3529aa52013-01-24 05:22:40 +0000222 default:
Chris Lattner92be2ad2010-01-04 07:54:59 +0000223 // TODO: Can handle more cases here.
224 llvm_unreachable("Unreachable!");
Chris Lattner92be2ad2010-01-04 07:54:59 +0000225 }
Craig Topper3529aa52013-01-24 05:22:40 +0000226
Chris Lattner92be2ad2010-01-04 07:54:59 +0000227 Res->takeName(I);
Eli Friedman35211c62011-05-27 00:19:40 +0000228 return InsertNewInstWith(Res, *I);
Chris Lattner92be2ad2010-01-04 07:54:59 +0000229}
Chris Lattner2b295a02010-01-04 07:53:58 +0000230
231
232/// This function is a wrapper around CastInst::isEliminableCastPair. It
233/// simply extracts arguments and returns what that function returns.
Craig Topper3529aa52013-01-24 05:22:40 +0000234static Instruction::CastOps
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235isEliminableCastPair(const CastInst *CI, ///< First cast instruction
236 unsigned opcode, ///< Opcode for the second cast
237 Type *DstTy, ///< Target type for the second cast
238 const DataLayout &DL) {
Chris Lattner229907c2011-07-18 04:54:35 +0000239 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
240 Type *MidTy = CI->getType(); // B from above
Chris Lattner2b295a02010-01-04 07:53:58 +0000241
242 // Get the opcodes of the two Cast instructions
243 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
244 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245 Type *SrcIntPtrTy =
246 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
247 Type *MidIntPtrTy =
248 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
249 Type *DstIntPtrTy =
250 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000251 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
Duncan Sandse2395dc2012-10-30 16:03:32 +0000252 DstTy, SrcIntPtrTy, MidIntPtrTy,
253 DstIntPtrTy);
Micah Villmow12d91272012-10-24 15:52:52 +0000254
Chris Lattner2b295a02010-01-04 07:53:58 +0000255 // We don't want to form an inttoptr or ptrtoint that converts to an integer
256 // type that differs from the pointer size.
Duncan Sandse2395dc2012-10-30 16:03:32 +0000257 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
258 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
Chris Lattner2b295a02010-01-04 07:53:58 +0000259 Res = 0;
Craig Topper3529aa52013-01-24 05:22:40 +0000260
Chris Lattner2b295a02010-01-04 07:53:58 +0000261 return Instruction::CastOps(Res);
262}
263
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000264/// Return true if the cast from "V to Ty" actually results in any code being
265/// generated and is interesting to optimize out.
266/// If the cast can be eliminated by some other simple transformation, we prefer
Chris Lattner4e8137d2010-02-11 06:26:33 +0000267/// to do the simplification first.
268bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Chris Lattner229907c2011-07-18 04:54:35 +0000269 Type *Ty) {
Chris Lattner4e8137d2010-02-11 06:26:33 +0000270 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner2b295a02010-01-04 07:53:58 +0000271 if (V->getType() == Ty || isa<Constant>(V)) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000272
Chris Lattner4e8137d2010-02-11 06:26:33 +0000273 // If this is another cast that can be eliminated, we prefer to have it
274 // eliminated.
Chris Lattner2b295a02010-01-04 07:53:58 +0000275 if (const CastInst *CI = dyn_cast<CastInst>(V))
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000276 if (isEliminableCastPair(CI, opc, Ty, DL))
Chris Lattner2b295a02010-01-04 07:53:58 +0000277 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000278
Chris Lattner4e8137d2010-02-11 06:26:33 +0000279 // If this is a vector sext from a compare, then we don't want to break the
280 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands19d0b472010-02-16 11:11:14 +0000281 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner4e8137d2010-02-11 06:26:33 +0000282 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000283
Chris Lattner2b295a02010-01-04 07:53:58 +0000284 return true;
285}
286
287
288/// @brief Implement the transforms common to all CastInst visitors.
289Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
290 Value *Src = CI.getOperand(0);
291
292 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
293 // eliminate it now.
294 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Craig Topper3529aa52013-01-24 05:22:40 +0000295 if (Instruction::CastOps opc =
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000296 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000297 // The first cast (CSrc) is eliminable so we need to fix up or replace
298 // the second cast (CI). CSrc will then have a good chance of being dead.
299 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
300 }
301 }
302
303 // If we are casting a select then fold the cast into the select
304 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
305 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
306 return NV;
307
308 // If we are casting a PHI then fold the cast into the PHI
309 if (isa<PHINode>(Src)) {
310 // We don't do this if this would create a PHI node with an illegal type if
311 // it is currently legal.
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000312 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
Chris Lattner2b295a02010-01-04 07:53:58 +0000313 ShouldChangeType(CI.getType(), Src->getType()))
314 if (Instruction *NV = FoldOpIntoPhi(CI))
315 return NV;
316 }
Craig Topper3529aa52013-01-24 05:22:40 +0000317
Craig Topperf40110f2014-04-25 05:29:35 +0000318 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000319}
320
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000321/// Return true if we can evaluate the specified expression tree as type Ty
322/// instead of its larger type, and arrive with the same value.
323/// This is used by code that tries to eliminate truncates.
Chris Lattnerc3aca382010-01-10 00:58:42 +0000324///
325/// Ty will always be a type smaller than V. We should return true if trunc(V)
326/// can be computed by computing V in the smaller type. If V is an instruction,
327/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
328/// makes sense if x and y can be efficiently truncated.
329///
Chris Lattner172630a2010-01-11 02:43:35 +0000330/// This function works on both vectors and scalars.
331///
Sanjay Patele2834412015-09-09 14:54:29 +0000332static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
Hal Finkel60db0582014-09-07 18:57:58 +0000333 Instruction *CxtI) {
Chris Lattnerc3aca382010-01-10 00:58:42 +0000334 // We can always evaluate constants in another type.
335 if (isa<Constant>(V))
336 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000337
Chris Lattnerc3aca382010-01-10 00:58:42 +0000338 Instruction *I = dyn_cast<Instruction>(V);
339 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000340
Chris Lattner229907c2011-07-18 04:54:35 +0000341 Type *OrigTy = V->getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000342
Chris Lattnera6b13562010-01-11 22:45:25 +0000343 // If this is an extension from the dest type, we can eliminate it, even if it
344 // has multiple uses.
Craig Topper3529aa52013-01-24 05:22:40 +0000345 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattnerc3aca382010-01-10 00:58:42 +0000346 I->getOperand(0)->getType() == Ty)
347 return true;
348
349 // We can't extend or shrink something that has multiple uses: doing so would
350 // require duplicating the instruction in general, which isn't profitable.
351 if (!I->hasOneUse()) return false;
352
353 unsigned Opc = I->getOpcode();
354 switch (Opc) {
355 case Instruction::Add:
356 case Instruction::Sub:
357 case Instruction::Mul:
358 case Instruction::And:
359 case Instruction::Or:
360 case Instruction::Xor:
361 // These operators can all arbitrarily be extended or truncated.
Sanjay Patele2834412015-09-09 14:54:29 +0000362 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000364
365 case Instruction::UDiv:
366 case Instruction::URem: {
367 // UDiv and URem can be truncated if all the truncated bits are zero.
368 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369 uint32_t BitWidth = Ty->getScalarSizeInBits();
370 if (BitWidth < OrigBitWidth) {
371 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
Hal Finkel60db0582014-09-07 18:57:58 +0000372 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
Sanjay Patele2834412015-09-09 14:54:29 +0000374 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000376 }
377 }
378 break;
379 }
380 case Instruction::Shl:
381 // If we are truncating the result of this SHL, and if it's a shift of a
382 // constant amount, we can always perform a SHL in a smaller type.
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
384 uint32_t BitWidth = Ty->getScalarSizeInBits();
385 if (CI->getLimitedValue(BitWidth) < BitWidth)
Sanjay Patele2834412015-09-09 14:54:29 +0000386 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000387 }
388 break;
389 case Instruction::LShr:
390 // If this is a truncate of a logical shr, we can truncate it to a smaller
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000391 // lshr iff we know that the bits we would otherwise be shifting in are
Chris Lattnerc3aca382010-01-10 00:58:42 +0000392 // already zeros.
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
394 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
395 uint32_t BitWidth = Ty->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000396 if (IC.MaskedValueIsZero(I->getOperand(0),
397 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
Chris Lattnerc3aca382010-01-10 00:58:42 +0000398 CI->getLimitedValue(BitWidth) < BitWidth) {
Sanjay Patele2834412015-09-09 14:54:29 +0000399 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000400 }
401 }
402 break;
403 case Instruction::Trunc:
404 // trunc(trunc(x)) -> trunc(x)
405 return true;
Chris Lattner73984342010-08-27 20:32:06 +0000406 case Instruction::ZExt:
407 case Instruction::SExt:
408 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
409 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
410 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000411 case Instruction::Select: {
412 SelectInst *SI = cast<SelectInst>(I);
Sanjay Patele2834412015-09-09 14:54:29 +0000413 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
414 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000415 }
416 case Instruction::PHI: {
417 // We can change a phi if we can change all operands. Note that we never
418 // get into trouble with cyclic PHIs here because we only consider
419 // instructions with a single use.
420 PHINode *PN = cast<PHINode>(I);
Pete Cooper833f34d2015-05-12 20:05:31 +0000421 for (Value *IncValue : PN->incoming_values())
Sanjay Patele2834412015-09-09 14:54:29 +0000422 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
Chris Lattnerc3aca382010-01-10 00:58:42 +0000423 return false;
424 return true;
425 }
426 default:
427 // TODO: Can handle more cases here.
428 break;
429 }
Craig Topper3529aa52013-01-24 05:22:40 +0000430
Chris Lattnerc3aca382010-01-10 00:58:42 +0000431 return false;
432}
433
Sanjay Patelf727e382015-12-14 16:16:54 +0000434/// Given a vector that is bitcast to an integer, optionally logically
435/// right-shifted, and truncated, convert it to an extractelement.
436/// Example (big endian):
437/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
438/// --->
439/// extractelement <4 x i32> %X, 1
440static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
441 const DataLayout &DL) {
442 Value *TruncOp = Trunc.getOperand(0);
443 Type *DestType = Trunc.getType();
444 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
445 return nullptr;
446
447 Value *VecInput = nullptr;
448 ConstantInt *ShiftVal = nullptr;
449 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
450 m_LShr(m_BitCast(m_Value(VecInput)),
451 m_ConstantInt(ShiftVal)))) ||
452 !isa<VectorType>(VecInput->getType()))
453 return nullptr;
454
455 VectorType *VecType = cast<VectorType>(VecInput->getType());
456 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
457 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
458 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
459
460 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
461 return nullptr;
462
463 // If the element type of the vector doesn't match the result type,
464 // bitcast it to a vector type that we can extract from.
465 unsigned NumVecElts = VecWidth / DestWidth;
466 if (VecType->getElementType() != DestType) {
467 VecType = VectorType::get(DestType, NumVecElts);
468 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
469 }
470
471 unsigned Elt = ShiftAmount / DestWidth;
472 if (DL.isBigEndian())
473 Elt = NumVecElts - 1 - Elt;
474
475 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
476}
477
Chris Lattnerc3aca382010-01-10 00:58:42 +0000478Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattner883550a2010-01-10 01:00:46 +0000479 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattnerc3aca382010-01-10 00:58:42 +0000480 return Result;
Craig Topper3529aa52013-01-24 05:22:40 +0000481
James Molloy2b21a7c2015-05-20 18:41:25 +0000482 // Test if the trunc is the user of a select which is part of a
483 // minimum or maximum operation. If so, don't do any more simplification.
484 // Even simplifying demanded bits can break the canonical form of a
485 // min/max.
486 Value *LHS, *RHS;
487 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
James Molloy134bec22015-08-11 09:12:57 +0000488 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
James Molloy2b21a7c2015-05-20 18:41:25 +0000489 return nullptr;
490
Craig Topper3529aa52013-01-24 05:22:40 +0000491 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +0000492 // purpose is to compute bits we don't care about.
493 if (SimplifyDemandedInstructionBits(CI))
494 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +0000495
Chris Lattnerc3aca382010-01-10 00:58:42 +0000496 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +0000497 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000498
Chris Lattnerc3aca382010-01-10 00:58:42 +0000499 // Attempt to truncate the entire input expression tree to the destination
500 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner2b295a02010-01-04 07:53:58 +0000501 // expression tree to something weird like i93 unless the source is also
502 // strange.
Duncan Sands19d0b472010-02-16 11:11:14 +0000503 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Sanjay Patele2834412015-09-09 14:54:29 +0000504 canEvaluateTruncated(Src, DestTy, *this, &CI)) {
Craig Topper3529aa52013-01-24 05:22:40 +0000505
Chris Lattner2b295a02010-01-04 07:53:58 +0000506 // If this cast is a truncate, evaluting in a different type always
Chris Lattner8600dd32010-01-05 23:00:30 +0000507 // eliminates the cast, so it is always a win.
Chris Lattner3057c372010-01-07 23:41:00 +0000508 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohmana4abd032010-05-25 21:50:35 +0000509 " to avoid cast: " << CI << '\n');
Chris Lattner3057c372010-01-07 23:41:00 +0000510 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
511 assert(Res->getType() == DestTy);
Sanjay Patel4b198802016-02-01 22:23:39 +0000512 return replaceInstUsesWith(CI, Res);
Chris Lattner3057c372010-01-07 23:41:00 +0000513 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000514
Chris Lattnera93c63c2010-01-05 22:21:18 +0000515 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
516 if (DestTy->getScalarSizeInBits() == 1) {
Sanjay Patelf09d1bf2015-11-17 18:37:23 +0000517 Constant *One = ConstantInt::get(SrcTy, 1);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000518 Src = Builder->CreateAnd(Src, One);
Chris Lattner2b295a02010-01-04 07:53:58 +0000519 Value *Zero = Constant::getNullValue(Src->getType());
520 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
521 }
Craig Topper3529aa52013-01-24 05:22:40 +0000522
Chris Lattner90cd7462010-08-27 18:31:05 +0000523 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Craig Topperf40110f2014-04-25 05:29:35 +0000524 Value *A = nullptr; ConstantInt *Cst = nullptr;
Chris Lattner9c10d582011-01-15 06:32:33 +0000525 if (Src->hasOneUse() &&
526 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
Chris Lattner90cd7462010-08-27 18:31:05 +0000527 // We have three types to worry about here, the type of A, the source of
528 // the truncate (MidSize), and the destination of the truncate. We know that
529 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
530 // between ASize and ResultSize.
531 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +0000532
Chris Lattner90cd7462010-08-27 18:31:05 +0000533 // If the shift amount is larger than the size of A, then the result is
534 // known to be zero because all the input bits got shifted out.
535 if (Cst->getZExtValue() >= ASize)
Sanjay Patel4b198802016-02-01 22:23:39 +0000536 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
Chris Lattner90cd7462010-08-27 18:31:05 +0000537
538 // Since we're doing an lshr and a zero extend, and know that the shift
539 // amount is smaller than ASize, it is always safe to do the shift in A's
540 // type, then zero extend or truncate to the result.
541 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
542 Shift->takeName(Src);
Sanjay Patelf09d1bf2015-11-17 18:37:23 +0000543 return CastInst::CreateIntegerCast(Shift, DestTy, false);
Chris Lattner90cd7462010-08-27 18:31:05 +0000544 }
Craig Topper3529aa52013-01-24 05:22:40 +0000545
Jakub Kuderski58ea4ee2015-09-10 11:31:20 +0000546 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
547 // conversion.
548 // It works because bits coming from sign extension have the same value as
Sanjay Patel1de794a2015-11-17 18:46:56 +0000549 // the sign bit of the original value; performing ashr instead of lshr
Jakub Kuderski58ea4ee2015-09-10 11:31:20 +0000550 // generates bits of the same value as the sign bit.
551 if (Src->hasOneUse() &&
552 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
553 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
554 const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
555 // This optimization can be only performed when zero bits generated by
556 // the original lshr aren't pulled into the value after truncation, so we
Sanjay Patel1de794a2015-11-17 18:46:56 +0000557 // can only shift by values smaller than the size of destination type (in
Jakub Kuderski58ea4ee2015-09-10 11:31:20 +0000558 // bits).
559 if (Cst->getValue().ult(ASize)) {
560 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
561 Shift->takeName(Src);
562 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
563 }
564 }
565
Chris Lattner9c10d582011-01-15 06:32:33 +0000566 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
567 // type isn't non-native.
Sanjay Patelf09d1bf2015-11-17 18:37:23 +0000568 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
569 ShouldChangeType(SrcTy, DestTy) &&
Chris Lattner9c10d582011-01-15 06:32:33 +0000570 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
Sanjay Patelf09d1bf2015-11-17 18:37:23 +0000571 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
Chris Lattner9c10d582011-01-15 06:32:33 +0000572 return BinaryOperator::CreateAnd(NewTrunc,
Sanjay Patelf09d1bf2015-11-17 18:37:23 +0000573 ConstantExpr::getTrunc(Cst, DestTy));
Chris Lattner9c10d582011-01-15 06:32:33 +0000574 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000575
Sanjay Patelf727e382015-12-14 16:16:54 +0000576 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
577 return I;
578
Craig Topperf40110f2014-04-25 05:29:35 +0000579 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000580}
581
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000582/// Transform (zext icmp) to bitwise / integer operations in order to eliminate
583/// the icmp.
Chris Lattner2b295a02010-01-04 07:53:58 +0000584Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
585 bool DoXform) {
586 // If we are just checking for a icmp eq of a single bit and zext'ing it
587 // to an integer, then shift the bit to the appropriate place and then
588 // cast to integer to avoid the comparison.
589 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
590 const APInt &Op1CV = Op1C->getValue();
Craig Topper3529aa52013-01-24 05:22:40 +0000591
Chris Lattner2b295a02010-01-04 07:53:58 +0000592 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
593 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
594 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
Sanjay Patel16395dd2015-12-30 18:31:30 +0000595 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000596 if (!DoXform) return ICI;
597
598 Value *In = ICI->getOperand(0);
599 Value *Sh = ConstantInt::get(In->getType(),
Sanjay Patel16395dd2015-12-30 18:31:30 +0000600 In->getType()->getScalarSizeInBits() - 1);
601 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
Chris Lattner2b295a02010-01-04 07:53:58 +0000602 if (In->getType() != CI.getType())
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000603 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner2b295a02010-01-04 07:53:58 +0000604
605 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
606 Constant *One = ConstantInt::get(In->getType(), 1);
Sanjay Patel16395dd2015-12-30 18:31:30 +0000607 In = Builder->CreateXor(In, One, In->getName() + ".not");
Chris Lattner2b295a02010-01-04 07:53:58 +0000608 }
609
Sanjay Patel4b198802016-02-01 22:23:39 +0000610 return replaceInstUsesWith(CI, In);
Chris Lattner2b295a02010-01-04 07:53:58 +0000611 }
Chad Rosier385d9f62011-11-30 01:59:59 +0000612
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000613 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
614 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
615 // zext (X == 1) to i32 --> X iff X has only the low bit set.
616 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
617 // zext (X != 0) to i32 --> X iff X has only the low bit set.
618 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
619 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
620 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
Craig Topper3529aa52013-01-24 05:22:40 +0000621 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
Chris Lattner2b295a02010-01-04 07:53:58 +0000622 // This only works for EQ and NE
623 ICI->isEquality()) {
624 // If Op1C some other power of two, convert:
625 uint32_t BitWidth = Op1C->getType()->getBitWidth();
626 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000627 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
Craig Topper3529aa52013-01-24 05:22:40 +0000628
Chris Lattner2b295a02010-01-04 07:53:58 +0000629 APInt KnownZeroMask(~KnownZero);
630 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
631 if (!DoXform) return ICI;
632
633 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
634 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
635 // (X&4) == 2 --> false
636 // (X&4) != 2 --> true
637 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
638 isNE);
639 Res = ConstantExpr::getZExt(Res, CI.getType());
Sanjay Patel4b198802016-02-01 22:23:39 +0000640 return replaceInstUsesWith(CI, Res);
Chris Lattner2b295a02010-01-04 07:53:58 +0000641 }
Craig Topper3529aa52013-01-24 05:22:40 +0000642
Sanjay Patel16395dd2015-12-30 18:31:30 +0000643 uint32_t ShAmt = KnownZeroMask.logBase2();
Chris Lattner2b295a02010-01-04 07:53:58 +0000644 Value *In = ICI->getOperand(0);
Sanjay Patel16395dd2015-12-30 18:31:30 +0000645 if (ShAmt) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000646 // Perform a logical shr by shiftamt.
647 // Insert the shift to put the result in the low bit.
Sanjay Patel16395dd2015-12-30 18:31:30 +0000648 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
649 In->getName() + ".lobit");
Chris Lattner2b295a02010-01-04 07:53:58 +0000650 }
Craig Topper3529aa52013-01-24 05:22:40 +0000651
Chris Lattner2b295a02010-01-04 07:53:58 +0000652 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
653 Constant *One = ConstantInt::get(In->getType(), 1);
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000654 In = Builder->CreateXor(In, One);
Chris Lattner2b295a02010-01-04 07:53:58 +0000655 }
Craig Topper3529aa52013-01-24 05:22:40 +0000656
Chris Lattner2b295a02010-01-04 07:53:58 +0000657 if (CI.getType() == In->getType())
Sanjay Patel4b198802016-02-01 22:23:39 +0000658 return replaceInstUsesWith(CI, In);
Chris Lattner18d7fc82010-08-27 22:24:38 +0000659 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner2b295a02010-01-04 07:53:58 +0000660 }
661 }
662 }
663
664 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
665 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
666 // may lead to additional simplifications.
667 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000668 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
Chris Lattner2b295a02010-01-04 07:53:58 +0000669 uint32_t BitWidth = ITy->getBitWidth();
670 Value *LHS = ICI->getOperand(0);
671 Value *RHS = ICI->getOperand(1);
672
673 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
674 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +0000675 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
676 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
Chris Lattner2b295a02010-01-04 07:53:58 +0000677
678 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
679 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
680 APInt UnknownBit = ~KnownBits;
681 if (UnknownBit.countPopulation() == 1) {
682 if (!DoXform) return ICI;
683
684 Value *Result = Builder->CreateXor(LHS, RHS);
685
686 // Mask off any bits that are set and won't be shifted away.
687 if (KnownOneLHS.uge(UnknownBit))
688 Result = Builder->CreateAnd(Result,
689 ConstantInt::get(ITy, UnknownBit));
690
691 // Shift the bit we're testing down to the lsb.
692 Result = Builder->CreateLShr(
693 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
694
695 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
696 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
697 Result->takeName(ICI);
Sanjay Patel4b198802016-02-01 22:23:39 +0000698 return replaceInstUsesWith(CI, Result);
Chris Lattner2b295a02010-01-04 07:53:58 +0000699 }
700 }
701 }
702 }
703
Craig Topperf40110f2014-04-25 05:29:35 +0000704 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000705}
706
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000707/// Determine if the specified value can be computed in the specified wider type
708/// and produce the same low bits. If not, return false.
Chris Lattner172630a2010-01-11 02:43:35 +0000709///
Chris Lattner12bd8992010-01-11 03:32:00 +0000710/// If this function returns true, it can also return a non-zero number of bits
711/// (in BitsToClear) which indicates that the value it computes is correct for
712/// the zero extend, but that the additional BitsToClear bits need to be zero'd
713/// out. For example, to promote something like:
714///
715/// %B = trunc i64 %A to i32
716/// %C = lshr i32 %B, 8
717/// %E = zext i32 %C to i64
718///
719/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
720/// set to 8 to indicate that the promoted value needs to have bits 24-31
721/// cleared in addition to bits 32-63. Since an 'and' will be generated to
722/// clear the top bits anyway, doing this has no extra cost.
723///
Chris Lattner172630a2010-01-11 02:43:35 +0000724/// This function works on both vectors and scalars.
Sanjay Patele2834412015-09-09 14:54:29 +0000725static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
Hal Finkel60db0582014-09-07 18:57:58 +0000726 InstCombiner &IC, Instruction *CxtI) {
Chris Lattner12bd8992010-01-11 03:32:00 +0000727 BitsToClear = 0;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000728 if (isa<Constant>(V))
729 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000730
Chris Lattnerc3aca382010-01-10 00:58:42 +0000731 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000732 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000733
Chris Lattnerc3aca382010-01-10 00:58:42 +0000734 // If the input is a truncate from the destination type, we can trivially
Jakob Stoklund Olesenc5c4e962012-06-22 16:36:43 +0000735 // eliminate it.
736 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000737 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000738
Chris Lattnerc3aca382010-01-10 00:58:42 +0000739 // We can't extend or shrink something that has multiple uses: doing so would
740 // require duplicating the instruction in general, which isn't profitable.
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000741 if (!I->hasOneUse()) return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000742
Chris Lattner12bd8992010-01-11 03:32:00 +0000743 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000744 switch (Opc) {
Chris Lattner39d2daa2010-01-10 20:25:54 +0000745 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
746 case Instruction::SExt: // zext(sext(x)) -> sext(x).
747 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
748 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000749 case Instruction::And:
Chris Lattnerc3aca382010-01-10 00:58:42 +0000750 case Instruction::Or:
751 case Instruction::Xor:
Chris Lattnerc3aca382010-01-10 00:58:42 +0000752 case Instruction::Add:
753 case Instruction::Sub:
754 case Instruction::Mul:
Sanjay Patele2834412015-09-09 14:54:29 +0000755 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
756 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
Chris Lattner12bd8992010-01-11 03:32:00 +0000757 return false;
758 // These can all be promoted if neither operand has 'bits to clear'.
759 if (BitsToClear == 0 && Tmp == 0)
760 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000761
Chris Lattner0a854202010-01-11 04:05:13 +0000762 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
763 // other side, BitsToClear is ok.
764 if (Tmp == 0 &&
765 (Opc == Instruction::And || Opc == Instruction::Or ||
766 Opc == Instruction::Xor)) {
767 // We use MaskedValueIsZero here for generality, but the case we care
768 // about the most is constant RHS.
769 unsigned VSize = V->getType()->getScalarSizeInBits();
Hal Finkel60db0582014-09-07 18:57:58 +0000770 if (IC.MaskedValueIsZero(I->getOperand(1),
771 APInt::getHighBitsSet(VSize, BitsToClear),
772 0, CxtI))
Chris Lattner0a854202010-01-11 04:05:13 +0000773 return true;
774 }
Craig Topper3529aa52013-01-24 05:22:40 +0000775
Chris Lattner0a854202010-01-11 04:05:13 +0000776 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner12bd8992010-01-11 03:32:00 +0000777 return false;
Craig Topper3529aa52013-01-24 05:22:40 +0000778
Benjamin Kramer14e915f2013-05-10 16:26:37 +0000779 case Instruction::Shl:
780 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
781 // upper bits we can reduce BitsToClear by the shift amount.
782 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
Sanjay Patele2834412015-09-09 14:54:29 +0000783 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
Benjamin Kramer14e915f2013-05-10 16:26:37 +0000784 return false;
785 uint64_t ShiftAmt = Amt->getZExtValue();
786 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
787 return true;
788 }
789 return false;
Chris Lattner12bd8992010-01-11 03:32:00 +0000790 case Instruction::LShr:
791 // We can promote lshr(x, cst) if we can promote x. This requires the
792 // ultimate 'and' to clear out the high zero bits we're clearing out though.
793 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
Sanjay Patele2834412015-09-09 14:54:29 +0000794 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
Chris Lattner12bd8992010-01-11 03:32:00 +0000795 return false;
796 BitsToClear += Amt->getZExtValue();
797 if (BitsToClear > V->getType()->getScalarSizeInBits())
798 BitsToClear = V->getType()->getScalarSizeInBits();
799 return true;
800 }
801 // Cannot promote variable LSHR.
802 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000803 case Instruction::Select:
Sanjay Patele2834412015-09-09 14:54:29 +0000804 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
805 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
Chris Lattner0a854202010-01-11 04:05:13 +0000806 // TODO: If important, we could handle the case when the BitsToClear are
807 // known zero in the disagreeing side.
Chris Lattner12bd8992010-01-11 03:32:00 +0000808 Tmp != BitsToClear)
809 return false;
810 return true;
Craig Topper3529aa52013-01-24 05:22:40 +0000811
Chris Lattnerc3aca382010-01-10 00:58:42 +0000812 case Instruction::PHI: {
813 // We can change a phi if we can change all operands. Note that we never
814 // get into trouble with cyclic PHIs here because we only consider
815 // instructions with a single use.
816 PHINode *PN = cast<PHINode>(I);
Sanjay Patele2834412015-09-09 14:54:29 +0000817 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
Chris Lattner12bd8992010-01-11 03:32:00 +0000818 return false;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000819 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Sanjay Patele2834412015-09-09 14:54:29 +0000820 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
Chris Lattner0a854202010-01-11 04:05:13 +0000821 // TODO: If important, we could handle the case when the BitsToClear
822 // are known zero in the disagreeing input.
Chris Lattner12bd8992010-01-11 03:32:00 +0000823 Tmp != BitsToClear)
824 return false;
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000825 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000826 }
827 default:
828 // TODO: Can handle more cases here.
Chris Lattnerb7be7cc2010-01-10 02:50:04 +0000829 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +0000830 }
831}
832
Chris Lattner2b295a02010-01-04 07:53:58 +0000833Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Nick Lewycky80ea0032013-01-14 20:56:10 +0000834 // If this zero extend is only used by a truncate, let the truncate be
Chris Lattner49d2c972010-01-10 02:39:31 +0000835 // eliminated before we try to optimize this zext.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000836 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
Craig Topperf40110f2014-04-25 05:29:35 +0000837 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +0000838
Chris Lattner2b295a02010-01-04 07:53:58 +0000839 // If one of the common conversion will work, do it.
Chris Lattner883550a2010-01-10 01:00:46 +0000840 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner2b295a02010-01-04 07:53:58 +0000841 return Result;
842
Craig Topper3529aa52013-01-24 05:22:40 +0000843 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +0000844 // purpose is to compute bits we don't care about.
845 if (SimplifyDemandedInstructionBits(CI))
846 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +0000847
Chris Lattner883550a2010-01-10 01:00:46 +0000848 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +0000849 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Craig Topper3529aa52013-01-24 05:22:40 +0000850
Chris Lattnerc3aca382010-01-10 00:58:42 +0000851 // Attempt to extend the entire input expression tree to the destination
852 // type. Only do this if the dest type is a simple type, don't convert the
853 // expression tree to something weird like i93 unless the source is also
854 // strange.
Chris Lattner12bd8992010-01-11 03:32:00 +0000855 unsigned BitsToClear;
Duncan Sands19d0b472010-02-16 11:11:14 +0000856 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Sanjay Patele2834412015-09-09 14:54:29 +0000857 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
Chris Lattner12bd8992010-01-11 03:32:00 +0000858 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
859 "Unreasonable BitsToClear");
Craig Topper3529aa52013-01-24 05:22:40 +0000860
Chris Lattner49d2c972010-01-10 02:39:31 +0000861 // Okay, we can transform this! Insert the new expression now.
862 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Weiming Zhao24fbef52015-12-17 19:53:41 +0000863 " to avoid zero extend: " << CI << '\n');
Chris Lattner49d2c972010-01-10 02:39:31 +0000864 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
865 assert(Res->getType() == DestTy);
Craig Topper3529aa52013-01-24 05:22:40 +0000866
Chris Lattner12bd8992010-01-11 03:32:00 +0000867 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
868 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +0000869
Chris Lattner49d2c972010-01-10 02:39:31 +0000870 // If the high bits are already filled with zeros, just replace this
871 // cast with the result.
Hal Finkel60db0582014-09-07 18:57:58 +0000872 if (MaskedValueIsZero(Res,
873 APInt::getHighBitsSet(DestBitSize,
874 DestBitSize-SrcBitsKept),
875 0, &CI))
Sanjay Patel4b198802016-02-01 22:23:39 +0000876 return replaceInstUsesWith(CI, Res);
Craig Topper3529aa52013-01-24 05:22:40 +0000877
Chris Lattner49d2c972010-01-10 02:39:31 +0000878 // We need to emit an AND to clear the high bits.
Chris Lattner39d2daa2010-01-10 20:25:54 +0000879 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner12bd8992010-01-11 03:32:00 +0000880 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner49d2c972010-01-10 02:39:31 +0000881 return BinaryOperator::CreateAnd(Res, C);
Chris Lattnerc3aca382010-01-10 00:58:42 +0000882 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000883
884 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
885 // types and if the sizes are just right we can convert this into a logical
886 // 'and' which will be much cheaper than the pair of casts.
887 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerd8509422010-01-10 07:08:30 +0000888 // TODO: Subsume this into EvaluateInDifferentType.
Craig Topper3529aa52013-01-24 05:22:40 +0000889
Chris Lattner2b295a02010-01-04 07:53:58 +0000890 // Get the sizes of the types involved. We know that the intermediate type
891 // will be smaller than A or C, but don't know the relation between A and C.
892 Value *A = CSrc->getOperand(0);
893 unsigned SrcSize = A->getType()->getScalarSizeInBits();
894 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
895 unsigned DstSize = CI.getType()->getScalarSizeInBits();
896 // If we're actually extending zero bits, then if
897 // SrcSize < DstSize: zext(a & mask)
898 // SrcSize == DstSize: a & mask
899 // SrcSize > DstSize: trunc(a) & mask
900 if (SrcSize < DstSize) {
901 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
902 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
903 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
904 return new ZExtInst(And, CI.getType());
905 }
Craig Topper3529aa52013-01-24 05:22:40 +0000906
Chris Lattner2b295a02010-01-04 07:53:58 +0000907 if (SrcSize == DstSize) {
908 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
909 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
910 AndValue));
911 }
912 if (SrcSize > DstSize) {
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000913 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
Chris Lattner2b295a02010-01-04 07:53:58 +0000914 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
Craig Topper3529aa52013-01-24 05:22:40 +0000915 return BinaryOperator::CreateAnd(Trunc,
Chris Lattner2b295a02010-01-04 07:53:58 +0000916 ConstantInt::get(Trunc->getType(),
Chris Lattnerd8509422010-01-10 07:08:30 +0000917 AndValue));
Chris Lattner2b295a02010-01-04 07:53:58 +0000918 }
919 }
920
921 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
922 return transformZExtICmp(ICI, CI);
923
924 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
925 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
926 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
927 // of the (zext icmp) will be transformed.
928 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
929 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
930 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
931 (transformZExtICmp(LHS, CI, false) ||
932 transformZExtICmp(RHS, CI, false))) {
933 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
934 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
935 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
936 }
937 }
938
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000939 // zext(trunc(X) & C) -> (X & zext(C)).
940 Constant *C;
941 Value *X;
942 if (SrcI &&
943 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
944 X->getType() == CI.getType())
945 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
Chris Lattner2b295a02010-01-04 07:53:58 +0000946
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000947 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
948 Value *And;
949 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
950 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
951 X->getType() == CI.getType()) {
952 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
953 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
954 }
Chris Lattner2b295a02010-01-04 07:53:58 +0000955
Chris Lattnerfd7e42b2010-01-05 21:04:47 +0000956 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000957 if (SrcI && SrcI->hasOneUse() &&
958 SrcI->getType()->getScalarType()->isIntegerTy(1) &&
959 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
Chris Lattnerfd7e42b2010-01-05 21:04:47 +0000960 Value *New = Builder->CreateZExt(X, CI.getType());
961 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
962 }
Craig Topper3529aa52013-01-24 05:22:40 +0000963
Craig Topperf40110f2014-04-25 05:29:35 +0000964 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +0000965}
966
Sanjay Patel2fbab9d82015-09-09 14:34:26 +0000967/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000968Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
969 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
970 ICmpInst::Predicate Pred = ICI->getPredicate();
971
David Majnemerc8bdd232014-10-27 05:47:49 +0000972 // Don't bother if Op1 isn't of vector or integer type.
973 if (!Op1->getType()->isIntOrIntVectorTy())
974 return nullptr;
975
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000976 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Benjamin Kramer8b94c292011-04-01 22:29:18 +0000977 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
978 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000979 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
Sanjay Patel5e4c46d2016-03-02 01:04:09 +0000980 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000981
982 Value *Sh = ConstantInt::get(Op0->getType(),
Sanjay Patel5e4c46d2016-03-02 01:04:09 +0000983 Op0->getType()->getScalarSizeInBits()-1);
984 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000985 if (In->getType() != CI.getType())
Benjamin Kramer547b6c52011-09-27 20:39:19 +0000986 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000987
Sanjay Patel5e4c46d2016-03-02 01:04:09 +0000988 if (Pred == ICmpInst::ICMP_SGT)
989 In = Builder->CreateNot(In, In->getName()+".not");
Sanjay Patel4b198802016-02-01 22:23:39 +0000990 return replaceInstUsesWith(CI, In);
Benjamin Kramer398b8c52011-04-01 20:09:03 +0000991 }
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000992 }
Benjamin Kramerd1217652011-04-01 20:09:10 +0000993
Benjamin Kramerb80e1692014-01-19 20:05:13 +0000994 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Benjamin Kramerd1217652011-04-01 20:09:10 +0000995 // If we know that only one bit of the LHS of the icmp can be set and we
996 // have an equality comparison with zero or a power of 2, we can transform
997 // the icmp and sext into bitwise/integer operations.
Benjamin Kramer5cad4532011-04-01 22:22:11 +0000998 if (ICI->hasOneUse() &&
999 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
Benjamin Kramerd1217652011-04-01 20:09:10 +00001000 unsigned BitWidth = Op1C->getType()->getBitWidth();
1001 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel60db0582014-09-07 18:57:58 +00001002 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
Benjamin Kramerd1217652011-04-01 20:09:10 +00001003
Benjamin Kramerac2d5652011-04-01 20:15:16 +00001004 APInt KnownZeroMask(~KnownZero);
1005 if (KnownZeroMask.isPowerOf2()) {
Benjamin Kramerd1217652011-04-01 20:09:10 +00001006 Value *In = ICI->getOperand(0);
1007
Benjamin Kramer50a281a2011-04-02 18:50:58 +00001008 // If the icmp tests for a known zero bit we can constant fold it.
1009 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1010 Value *V = Pred == ICmpInst::ICMP_NE ?
1011 ConstantInt::getAllOnesValue(CI.getType()) :
1012 ConstantInt::getNullValue(CI.getType());
Sanjay Patel4b198802016-02-01 22:23:39 +00001013 return replaceInstUsesWith(CI, V);
Benjamin Kramer50a281a2011-04-02 18:50:58 +00001014 }
Benjamin Kramer5cad4532011-04-01 22:22:11 +00001015
Benjamin Kramerd1217652011-04-01 20:09:10 +00001016 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1017 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1018 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1019 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1020 // Perform a right shift to place the desired bit in the LSB.
1021 if (ShiftAmt)
1022 In = Builder->CreateLShr(In,
1023 ConstantInt::get(In->getType(), ShiftAmt));
1024
1025 // At this point "In" is either 1 or 0. Subtract 1 to turn
1026 // {1, 0} -> {0, -1}.
1027 In = Builder->CreateAdd(In,
1028 ConstantInt::getAllOnesValue(In->getType()),
1029 "sext");
1030 } else {
1031 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramer5cad4532011-04-01 22:22:11 +00001032 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
Benjamin Kramerd1217652011-04-01 20:09:10 +00001033 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1034 // Perform a left shift to place the desired bit in the MSB.
1035 if (ShiftAmt)
1036 In = Builder->CreateShl(In,
1037 ConstantInt::get(In->getType(), ShiftAmt));
1038
1039 // Distribute the bit over the whole bit width.
1040 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1041 BitWidth - 1), "sext");
1042 }
1043
1044 if (CI.getType() == In->getType())
Sanjay Patel4b198802016-02-01 22:23:39 +00001045 return replaceInstUsesWith(CI, In);
Benjamin Kramerd1217652011-04-01 20:09:10 +00001046 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1047 }
1048 }
Benjamin Kramer398b8c52011-04-01 20:09:03 +00001049 }
1050
Craig Topperf40110f2014-04-25 05:29:35 +00001051 return nullptr;
Benjamin Kramer398b8c52011-04-01 20:09:03 +00001052}
1053
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001054/// Return true if we can take the specified value and return it as type Ty
1055/// without inserting any new casts and without changing the value of the common
1056/// low bits. This is used by code that tries to promote integer operations to
1057/// a wider types will allow us to eliminate the extension.
Chris Lattnerc3aca382010-01-10 00:58:42 +00001058///
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001059/// This function works on both vectors and scalars.
Chris Lattnerc3aca382010-01-10 00:58:42 +00001060///
Sanjay Patele2834412015-09-09 14:54:29 +00001061static bool canEvaluateSExtd(Value *V, Type *Ty) {
Chris Lattnerc3aca382010-01-10 00:58:42 +00001062 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1063 "Can't sign extend type to a smaller type");
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001064 // If this is a constant, it can be trivially promoted.
1065 if (isa<Constant>(V))
1066 return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001067
Chris Lattnerc3aca382010-01-10 00:58:42 +00001068 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001069 if (!I) return false;
Craig Topper3529aa52013-01-24 05:22:40 +00001070
Jakob Stoklund Olesenc5c4e962012-06-22 16:36:43 +00001071 // If this is a truncate from the dest type, we can trivially eliminate it.
1072 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001073 return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001074
Chris Lattnerc3aca382010-01-10 00:58:42 +00001075 // We can't extend or shrink something that has multiple uses: doing so would
1076 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001077 if (!I->hasOneUse()) return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001078
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001079 switch (I->getOpcode()) {
Chris Lattner7dd540e2010-01-10 20:30:41 +00001080 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1081 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1082 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1083 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001084 case Instruction::And:
1085 case Instruction::Or:
1086 case Instruction::Xor:
Chris Lattnerc3aca382010-01-10 00:58:42 +00001087 case Instruction::Add:
1088 case Instruction::Sub:
Chris Lattnerc3aca382010-01-10 00:58:42 +00001089 case Instruction::Mul:
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001090 // These operators can all arbitrarily be extended if their inputs can.
Sanjay Patele2834412015-09-09 14:54:29 +00001091 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1092 canEvaluateSExtd(I->getOperand(1), Ty);
Craig Topper3529aa52013-01-24 05:22:40 +00001093
Chris Lattnerc3aca382010-01-10 00:58:42 +00001094 //case Instruction::Shl: TODO
1095 //case Instruction::LShr: TODO
Craig Topper3529aa52013-01-24 05:22:40 +00001096
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001097 case Instruction::Select:
Sanjay Patele2834412015-09-09 14:54:29 +00001098 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1099 canEvaluateSExtd(I->getOperand(2), Ty);
Craig Topper3529aa52013-01-24 05:22:40 +00001100
Chris Lattnerc3aca382010-01-10 00:58:42 +00001101 case Instruction::PHI: {
1102 // We can change a phi if we can change all operands. Note that we never
1103 // get into trouble with cyclic PHIs here because we only consider
1104 // instructions with a single use.
1105 PHINode *PN = cast<PHINode>(I);
Pete Cooper833f34d2015-05-12 20:05:31 +00001106 for (Value *IncValue : PN->incoming_values())
Sanjay Patele2834412015-09-09 14:54:29 +00001107 if (!canEvaluateSExtd(IncValue, Ty)) return false;
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001108 return true;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001109 }
1110 default:
1111 // TODO: Can handle more cases here.
1112 break;
1113 }
Craig Topper3529aa52013-01-24 05:22:40 +00001114
Chris Lattner1a05fdd2010-01-10 07:57:20 +00001115 return false;
Chris Lattnerc3aca382010-01-10 00:58:42 +00001116}
1117
Chris Lattner2b295a02010-01-04 07:53:58 +00001118Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Arnaud A. de Grandmaison2e4df4f2013-02-13 00:19:19 +00001119 // If this sign extend is only used by a truncate, let the truncate be
1120 // eliminated before we try to optimize this sext.
Chandler Carruthcdf47882014-03-09 03:16:01 +00001121 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
Craig Topperf40110f2014-04-25 05:29:35 +00001122 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +00001123
Chris Lattner883550a2010-01-10 01:00:46 +00001124 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner2b295a02010-01-04 07:53:58 +00001125 return I;
Craig Topper3529aa52013-01-24 05:22:40 +00001126
1127 // See if we can simplify any instructions used by the input whose sole
Chris Lattner883550a2010-01-10 01:00:46 +00001128 // purpose is to compute bits we don't care about.
1129 if (SimplifyDemandedInstructionBits(CI))
1130 return &CI;
Craig Topper3529aa52013-01-24 05:22:40 +00001131
Chris Lattner2b295a02010-01-04 07:53:58 +00001132 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00001133 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
Chris Lattnerc3aca382010-01-10 00:58:42 +00001134
Philip Reames9ae15202015-02-14 00:05:36 +00001135 // If we know that the value being extended is positive, we can use a zext
1136 // instead.
1137 bool KnownZero, KnownOne;
1138 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1139 if (KnownZero) {
1140 Value *ZExt = Builder->CreateZExt(Src, DestTy);
Sanjay Patel4b198802016-02-01 22:23:39 +00001141 return replaceInstUsesWith(CI, ZExt);
Philip Reames9ae15202015-02-14 00:05:36 +00001142 }
1143
Chris Lattnerc3aca382010-01-10 00:58:42 +00001144 // Attempt to extend the entire input expression tree to the destination
1145 // type. Only do this if the dest type is a simple type, don't convert the
1146 // expression tree to something weird like i93 unless the source is also
1147 // strange.
Duncan Sands19d0b472010-02-16 11:11:14 +00001148 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Sanjay Patele2834412015-09-09 14:54:29 +00001149 canEvaluateSExtd(Src, DestTy)) {
Chris Lattner2fff10c2010-01-10 07:40:50 +00001150 // Okay, we can transform this! Insert the new expression now.
1151 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Weiming Zhao24fbef52015-12-17 19:53:41 +00001152 " to avoid sign extend: " << CI << '\n');
Chris Lattner2fff10c2010-01-10 07:40:50 +00001153 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1154 assert(Res->getType() == DestTy);
1155
Chris Lattnerc3aca382010-01-10 00:58:42 +00001156 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1157 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattner2fff10c2010-01-10 07:40:50 +00001158
1159 // If the high bits are already filled with sign bit, just replace this
1160 // cast with the result.
Hal Finkel60db0582014-09-07 18:57:58 +00001161 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
Sanjay Patel4b198802016-02-01 22:23:39 +00001162 return replaceInstUsesWith(CI, Res);
Craig Topper3529aa52013-01-24 05:22:40 +00001163
Chris Lattner2fff10c2010-01-10 07:40:50 +00001164 // We need to emit a shl + ashr to do the sign extend.
1165 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1166 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1167 ShAmt);
Chris Lattnerc3aca382010-01-10 00:58:42 +00001168 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001169
Chris Lattner43f2fa62010-01-18 22:19:16 +00001170 // If this input is a trunc from our destination, then turn sext(trunc(x))
1171 // into shifts.
1172 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1173 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1174 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1175 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Craig Topper3529aa52013-01-24 05:22:40 +00001176
Chris Lattner43f2fa62010-01-18 22:19:16 +00001177 // We need to emit a shl + ashr to do the sign extend.
1178 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1179 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1180 return BinaryOperator::CreateAShr(Res, ShAmt);
1181 }
Nate Begeman7aa18bf2010-12-17 23:12:19 +00001182
Benjamin Kramer398b8c52011-04-01 20:09:03 +00001183 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1184 return transformSExtICmp(ICI, CI);
Bill Wendling5e360552010-12-17 23:27:41 +00001185
Chris Lattner2b295a02010-01-04 07:53:58 +00001186 // If the input is a shl/ashr pair of a same constant, then this is a sign
1187 // extension from a smaller value. If we could trust arbitrary bitwidth
1188 // integers, we could turn this into a truncate to the smaller bit and then
1189 // use a sext for the whole extension. Since we don't, look deeper and check
1190 // for a truncate. If the source and dest are the same type, eliminate the
1191 // trunc and extend and just do shifts. For example, turn:
1192 // %a = trunc i32 %i to i8
1193 // %b = shl i8 %a, 6
1194 // %c = ashr i8 %b, 6
1195 // %d = sext i8 %c to i32
1196 // into:
1197 // %a = shl i32 %i, 30
1198 // %d = ashr i32 %a, 30
Craig Topperf40110f2014-04-25 05:29:35 +00001199 Value *A = nullptr;
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001200 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Craig Topperf40110f2014-04-25 05:29:35 +00001201 ConstantInt *BA = nullptr, *CA = nullptr;
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001202 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner2b295a02010-01-04 07:53:58 +00001203 m_ConstantInt(CA))) &&
Chris Lattnerc95a7a22010-01-10 01:04:31 +00001204 BA == CA && A->getType() == CI.getType()) {
1205 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1206 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1207 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1208 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1209 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1210 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner2b295a02010-01-04 07:53:58 +00001211 }
Craig Topper3529aa52013-01-24 05:22:40 +00001212
Craig Topperf40110f2014-04-25 05:29:35 +00001213 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001214}
1215
1216
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001217/// Return a Constant* for the specified floating-point constant if it fits
Chris Lattner2b295a02010-01-04 07:53:58 +00001218/// in the specified FP type without changing its value.
Sanjay Patele2834412015-09-09 14:54:29 +00001219static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
Chris Lattner2b295a02010-01-04 07:53:58 +00001220 bool losesInfo;
1221 APFloat F = CFP->getValueAPF();
1222 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1223 if (!losesInfo)
1224 return ConstantFP::get(CFP->getContext(), F);
Craig Topperf40110f2014-04-25 05:29:35 +00001225 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001226}
1227
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001228/// If this is a floating-point extension instruction, look
Chris Lattner2b295a02010-01-04 07:53:58 +00001229/// through it until we get the source value.
Sanjay Patele2834412015-09-09 14:54:29 +00001230static Value *lookThroughFPExtensions(Value *V) {
Chris Lattner2b295a02010-01-04 07:53:58 +00001231 if (Instruction *I = dyn_cast<Instruction>(V))
1232 if (I->getOpcode() == Instruction::FPExt)
Sanjay Patele2834412015-09-09 14:54:29 +00001233 return lookThroughFPExtensions(I->getOperand(0));
Craig Topper3529aa52013-01-24 05:22:40 +00001234
Chris Lattner2b295a02010-01-04 07:53:58 +00001235 // If this value is a constant, return the constant in the smallest FP type
1236 // that can accurately represent it. This allows us to turn
1237 // (float)((double)X+2.0) into x+2.0f.
1238 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1239 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1240 return V; // No constant folding of this.
Dan Gohman518cda42011-12-17 00:04:22 +00001241 // See if the value can be truncated to half and then reextended.
Sanjay Patele2834412015-09-09 14:54:29 +00001242 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
Dan Gohman518cda42011-12-17 00:04:22 +00001243 return V;
Chris Lattner2b295a02010-01-04 07:53:58 +00001244 // See if the value can be truncated to float and then reextended.
Sanjay Patele2834412015-09-09 14:54:29 +00001245 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
Chris Lattner2b295a02010-01-04 07:53:58 +00001246 return V;
Benjamin Kramerccce8ba2010-01-05 13:12:22 +00001247 if (CFP->getType()->isDoubleTy())
Chris Lattner2b295a02010-01-04 07:53:58 +00001248 return V; // Won't shrink.
Sanjay Patele2834412015-09-09 14:54:29 +00001249 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
Chris Lattner2b295a02010-01-04 07:53:58 +00001250 return V;
1251 // Don't try to shrink to various long double types.
1252 }
Craig Topper3529aa52013-01-24 05:22:40 +00001253
Chris Lattner2b295a02010-01-04 07:53:58 +00001254 return V;
1255}
1256
1257Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1258 if (Instruction *I = commonCastTransforms(CI))
1259 return I;
Stephen Canonc4549642013-11-28 21:38:05 +00001260 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
Sanjay Patel5a7bdc92015-11-21 16:16:29 +00001261 // simplify this expression to avoid one or more of the trunc/extend
Stephen Canonc4549642013-11-28 21:38:05 +00001262 // operations if we can do so without changing the numerical results.
1263 //
1264 // The exact manner in which the widths of the operands interact to limit
1265 // what we can and cannot do safely varies from operation to operation, and
1266 // is explained below in the various case statements.
Chris Lattner2b295a02010-01-04 07:53:58 +00001267 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1268 if (OpI && OpI->hasOneUse()) {
Sanjay Patele2834412015-09-09 14:54:29 +00001269 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1270 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
Stephen Canonc4549642013-11-28 21:38:05 +00001271 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1272 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1273 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1274 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1275 unsigned DstWidth = CI.getType()->getFPMantissaWidth();
Chris Lattner2b295a02010-01-04 07:53:58 +00001276 switch (OpI->getOpcode()) {
Stephen Canonc4549642013-11-28 21:38:05 +00001277 default: break;
1278 case Instruction::FAdd:
1279 case Instruction::FSub:
1280 // For addition and subtraction, the infinitely precise result can
1281 // essentially be arbitrarily wide; proving that double rounding
1282 // will not occur because the result of OpI is exact (as we will for
1283 // FMul, for example) is hopeless. However, we *can* nonetheless
1284 // frequently know that double rounding cannot occur (or that it is
Alp Tokercb402912014-01-24 17:20:08 +00001285 // innocuous) by taking advantage of the specific structure of
Stephen Canonc4549642013-11-28 21:38:05 +00001286 // infinitely-precise results that admit double rounding.
1287 //
Alp Tokercb402912014-01-24 17:20:08 +00001288 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
Stephen Canonc4549642013-11-28 21:38:05 +00001289 // to represent both sources, we can guarantee that the double
1290 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1291 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1292 // for proof of this fact).
1293 //
1294 // Note: Figueroa does not consider the case where DstFormat !=
1295 // SrcFormat. It's possible (likely even!) that this analysis
1296 // could be tightened for those cases, but they are rare (the main
1297 // case of interest here is (float)((double)float + float)).
1298 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1299 if (LHSOrig->getType() != CI.getType())
1300 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1301 if (RHSOrig->getType() != CI.getType())
1302 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001303 Instruction *RI =
1304 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1305 RI->copyFastMathFlags(OpI);
1306 return RI;
Chris Lattner2b295a02010-01-04 07:53:58 +00001307 }
Stephen Canonc4549642013-11-28 21:38:05 +00001308 break;
1309 case Instruction::FMul:
1310 // For multiplication, the infinitely precise result has at most
1311 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1312 // that such a value can be exactly represented, then no double
1313 // rounding can possibly occur; we can safely perform the operation
1314 // in the destination format if it can represent both sources.
1315 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1316 if (LHSOrig->getType() != CI.getType())
1317 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1318 if (RHSOrig->getType() != CI.getType())
1319 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001320 Instruction *RI =
1321 BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1322 RI->copyFastMathFlags(OpI);
1323 return RI;
Stephen Canonc4549642013-11-28 21:38:05 +00001324 }
1325 break;
1326 case Instruction::FDiv:
1327 // For division, we use again use the bound from Figueroa's
1328 // dissertation. I am entirely certain that this bound can be
1329 // tightened in the unbalanced operand case by an analysis based on
1330 // the diophantine rational approximation bound, but the well-known
1331 // condition used here is a good conservative first pass.
1332 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1333 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1334 if (LHSOrig->getType() != CI.getType())
1335 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1336 if (RHSOrig->getType() != CI.getType())
1337 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001338 Instruction *RI =
1339 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1340 RI->copyFastMathFlags(OpI);
1341 return RI;
Stephen Canonc4549642013-11-28 21:38:05 +00001342 }
1343 break;
1344 case Instruction::FRem:
1345 // Remainder is straightforward. Remainder is always exact, so the
1346 // type of OpI doesn't enter into things at all. We simply evaluate
1347 // in whichever source type is larger, then convert to the
1348 // destination type.
Steven Wuf179d122014-12-12 18:48:37 +00001349 if (SrcWidth == OpWidth)
Steven Wu1f7402a2014-12-12 17:21:54 +00001350 break;
Steven Wu1f7402a2014-12-12 17:21:54 +00001351 if (LHSWidth < SrcWidth)
1352 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1353 else if (RHSWidth <= SrcWidth)
1354 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1355 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1356 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1357 if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1358 RI->copyFastMathFlags(OpI);
1359 return CastInst::CreateFPCast(ExactResult, CI.getType());
1360 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001361 }
Owen Andersondbf0ca52013-01-10 22:06:52 +00001362
1363 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1364 if (BinaryOperator::isFNeg(OpI)) {
1365 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1366 CI.getType());
Owen Anderson48b842e2014-01-18 00:48:14 +00001367 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1368 RI->copyFastMathFlags(OpI);
1369 return RI;
Owen Andersondbf0ca52013-01-10 22:06:52 +00001370 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001371 }
Owen Andersondbf0ca52013-01-10 22:06:52 +00001372
Owen Anderson5797bfd2013-10-03 21:08:05 +00001373 // (fptrunc (select cond, R1, Cst)) -->
1374 // (select cond, (fptrunc R1), (fptrunc Cst))
James Molloy134bec22015-08-11 09:12:57 +00001375 //
1376 // - but only if this isn't part of a min/max operation, else we'll
1377 // ruin min/max canonical form which is to have the select and
1378 // compare's operands be of the same type with no casts to look through.
1379 Value *LHS, *RHS;
Owen Anderson5797bfd2013-10-03 21:08:05 +00001380 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1381 if (SI &&
1382 (isa<ConstantFP>(SI->getOperand(1)) ||
James Molloy134bec22015-08-11 09:12:57 +00001383 isa<ConstantFP>(SI->getOperand(2))) &&
1384 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
Owen Anderson5797bfd2013-10-03 21:08:05 +00001385 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1386 CI.getType());
1387 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1388 CI.getType());
1389 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1390 }
1391
Owen Andersondbf0ca52013-01-10 22:06:52 +00001392 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1393 if (II) {
1394 switch (II->getIntrinsicID()) {
1395 default: break;
1396 case Intrinsic::fabs: {
1397 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1398 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1399 CI.getType());
1400 Type *IntrinsicType[] = { CI.getType() };
Sanjay Patelaf674fb2015-12-14 17:24:23 +00001401 Function *Overload = Intrinsic::getDeclaration(
1402 CI.getModule(), II->getIntrinsicID(), IntrinsicType);
Owen Andersondbf0ca52013-01-10 22:06:52 +00001403
David Majnemer231a68c2016-04-29 08:07:20 +00001404 SmallVector<OperandBundleDef, 1> OpBundles;
1405 II->getOperandBundlesAsDefs(OpBundles);
1406
Owen Andersondbf0ca52013-01-10 22:06:52 +00001407 Value *Args[] = { InnerTrunc };
David Majnemer231a68c2016-04-29 08:07:20 +00001408 return CallInst::Create(Overload, Args, OpBundles, II->getName());
Owen Andersondbf0ca52013-01-10 22:06:52 +00001409 }
1410 }
1411 }
1412
Craig Topperf40110f2014-04-25 05:29:35 +00001413 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001414}
1415
1416Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1417 return commonCastTransforms(CI);
1418}
1419
Mehdi Aminib9a0fa42015-02-16 21:47:54 +00001420// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1421// This is safe if the intermediate type has enough bits in its mantissa to
1422// accurately represent all values of X. For example, this won't work with
1423// i64 -> float -> i64.
1424Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1425 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1426 return nullptr;
1427 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1428
1429 Value *SrcI = OpI->getOperand(0);
1430 Type *FITy = FI.getType();
1431 Type *OpITy = OpI->getType();
1432 Type *SrcTy = SrcI->getType();
1433 bool IsInputSigned = isa<SIToFPInst>(OpI);
1434 bool IsOutputSigned = isa<FPToSIInst>(FI);
1435
1436 // We can safely assume the conversion won't overflow the output range,
1437 // because (for example) (uint8_t)18293.f is undefined behavior.
1438
1439 // Since we can assume the conversion won't overflow, our decision as to
1440 // whether the input will fit in the float should depend on the minimum
1441 // of the input range and output range.
1442
1443 // This means this is also safe for a signed input and unsigned output, since
1444 // a negative input would lead to undefined behavior.
1445 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1446 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1447 int ActualSize = std::min(InputSize, OutputSize);
1448
1449 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1450 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1451 if (IsInputSigned && IsOutputSigned)
1452 return new SExtInst(SrcI, FITy);
1453 return new ZExtInst(SrcI, FITy);
1454 }
1455 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1456 return new TruncInst(SrcI, FITy);
1457 if (SrcTy == FITy)
Sanjay Patel4b198802016-02-01 22:23:39 +00001458 return replaceInstUsesWith(FI, SrcI);
Mehdi Aminib9a0fa42015-02-16 21:47:54 +00001459 return new BitCastInst(SrcI, FITy);
1460 }
1461 return nullptr;
1462}
1463
Chris Lattner2b295a02010-01-04 07:53:58 +00001464Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1465 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
Craig Topperf40110f2014-04-25 05:29:35 +00001466 if (!OpI)
Chris Lattner2b295a02010-01-04 07:53:58 +00001467 return commonCastTransforms(FI);
1468
Mehdi Aminib9a0fa42015-02-16 21:47:54 +00001469 if (Instruction *I = FoldItoFPtoI(FI))
1470 return I;
Chris Lattner2b295a02010-01-04 07:53:58 +00001471
1472 return commonCastTransforms(FI);
1473}
1474
1475Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1476 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
Craig Topperf40110f2014-04-25 05:29:35 +00001477 if (!OpI)
Chris Lattner2b295a02010-01-04 07:53:58 +00001478 return commonCastTransforms(FI);
Craig Topper3529aa52013-01-24 05:22:40 +00001479
Mehdi Aminib9a0fa42015-02-16 21:47:54 +00001480 if (Instruction *I = FoldItoFPtoI(FI))
1481 return I;
Craig Topper3529aa52013-01-24 05:22:40 +00001482
Chris Lattner2b295a02010-01-04 07:53:58 +00001483 return commonCastTransforms(FI);
1484}
1485
1486Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1487 return commonCastTransforms(CI);
1488}
1489
1490Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1491 return commonCastTransforms(CI);
1492}
1493
Chris Lattner2b295a02010-01-04 07:53:58 +00001494Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman949458d2010-02-02 01:44:02 +00001495 // If the source integer type is not the intptr_t type for this target, do a
1496 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1497 // cast to be exposed to other transforms.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001498 unsigned AS = CI.getAddressSpace();
1499 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1500 DL.getPointerSizeInBits(AS)) {
1501 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1502 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1503 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
Benjamin Kramer944e0ab2013-02-05 20:22:40 +00001504
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001505 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1506 return new IntToPtrInst(P, CI.getType());
Chris Lattner2b295a02010-01-04 07:53:58 +00001507 }
Craig Topper3529aa52013-01-24 05:22:40 +00001508
Chris Lattner2b295a02010-01-04 07:53:58 +00001509 if (Instruction *I = commonCastTransforms(CI))
1510 return I;
1511
Craig Topperf40110f2014-04-25 05:29:35 +00001512 return nullptr;
Chris Lattner2b295a02010-01-04 07:53:58 +00001513}
1514
Chris Lattnera93c63c2010-01-05 22:21:18 +00001515/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1516Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1517 Value *Src = CI.getOperand(0);
Craig Topper3529aa52013-01-24 05:22:40 +00001518
Chris Lattnera93c63c2010-01-05 22:21:18 +00001519 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1520 // If casting the result of a getelementptr instruction with no offset, turn
1521 // this into a cast of the original pointer!
Jingyue Wu77145d92014-06-06 21:52:55 +00001522 if (GEP->hasAllZeroIndices() &&
1523 // If CI is an addrspacecast and GEP changes the poiner type, merging
1524 // GEP into CI would undo canonicalizing addrspacecast with different
1525 // pointer types, causing infinite loops.
1526 (!isa<AddrSpaceCastInst>(CI) ||
1527 GEP->getType() == GEP->getPointerOperand()->getType())) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001528 // Changing the cast operand is usually not a good idea but it is safe
Craig Topper3529aa52013-01-24 05:22:40 +00001529 // here because the pointer operand is being replaced with another
Chris Lattnera93c63c2010-01-05 22:21:18 +00001530 // pointer operand so the opcode doesn't need to change.
1531 Worklist.Add(GEP);
1532 CI.setOperand(0, GEP->getOperand(0));
1533 return &CI;
1534 }
Chris Lattnera93c63c2010-01-05 22:21:18 +00001535 }
Craig Topper3529aa52013-01-24 05:22:40 +00001536
Chris Lattnera93c63c2010-01-05 22:21:18 +00001537 return commonCastTransforms(CI);
1538}
1539
1540Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman949458d2010-02-02 01:44:02 +00001541 // If the destination integer type is not the intptr_t type for this target,
1542 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1543 // to be exposed to other transforms.
Benjamin Kramere4778752013-02-05 19:21:56 +00001544
Matt Arsenault745101d2013-08-21 19:53:10 +00001545 Type *Ty = CI.getType();
1546 unsigned AS = CI.getPointerAddressSpace();
1547
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001548 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
Matt Arsenault745101d2013-08-21 19:53:10 +00001549 return commonPointerCastTransforms(CI);
1550
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001551 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
Matt Arsenault745101d2013-08-21 19:53:10 +00001552 if (Ty->isVectorTy()) // Handle vectors of pointers.
1553 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1554
1555 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1556 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
Chris Lattnera93c63c2010-01-05 22:21:18 +00001557}
1558
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001559/// This input value (which is known to have vector type) is being zero extended
1560/// or truncated to the specified vector type.
1561/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
Chris Lattner02b0df52010-05-08 21:50:26 +00001562///
1563/// The source and destination vector types may have different element types.
Sanjay Patele2834412015-09-09 14:54:29 +00001564static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
Chris Lattner02b0df52010-05-08 21:50:26 +00001565 InstCombiner &IC) {
1566 // We can only do this optimization if the output is a multiple of the input
1567 // element size, or the input is a multiple of the output element size.
1568 // Convert the input type to have the same element type as the output.
Chris Lattner229907c2011-07-18 04:54:35 +00001569 VectorType *SrcTy = cast<VectorType>(InVal->getType());
Craig Topper3529aa52013-01-24 05:22:40 +00001570
Chris Lattner02b0df52010-05-08 21:50:26 +00001571 if (SrcTy->getElementType() != DestTy->getElementType()) {
1572 // The input types don't need to be identical, but for now they must be the
1573 // same size. There is no specific reason we couldn't handle things like
1574 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
Craig Topper3529aa52013-01-24 05:22:40 +00001575 // there yet.
Chris Lattner02b0df52010-05-08 21:50:26 +00001576 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1577 DestTy->getElementType()->getPrimitiveSizeInBits())
Craig Topperf40110f2014-04-25 05:29:35 +00001578 return nullptr;
Craig Topper3529aa52013-01-24 05:22:40 +00001579
Chris Lattner02b0df52010-05-08 21:50:26 +00001580 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1581 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1582 }
Craig Topper3529aa52013-01-24 05:22:40 +00001583
Chris Lattner02b0df52010-05-08 21:50:26 +00001584 // Now that the element types match, get the shuffle mask and RHS of the
1585 // shuffle to use, which depends on whether we're increasing or decreasing the
1586 // size of the input.
Chris Lattner8213c8a2012-02-06 21:56:39 +00001587 SmallVector<uint32_t, 16> ShuffleMask;
Chris Lattner02b0df52010-05-08 21:50:26 +00001588 Value *V2;
Craig Topper3529aa52013-01-24 05:22:40 +00001589
Chris Lattner02b0df52010-05-08 21:50:26 +00001590 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1591 // If we're shrinking the number of elements, just shuffle in the low
1592 // elements from the input and use undef as the second shuffle input.
1593 V2 = UndefValue::get(SrcTy);
1594 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
Chris Lattner8213c8a2012-02-06 21:56:39 +00001595 ShuffleMask.push_back(i);
Craig Topper3529aa52013-01-24 05:22:40 +00001596
Chris Lattner02b0df52010-05-08 21:50:26 +00001597 } else {
1598 // If we're increasing the number of elements, shuffle in all of the
1599 // elements from InVal and fill the rest of the result elements with zeros
1600 // from a constant zero.
1601 V2 = Constant::getNullValue(SrcTy);
1602 unsigned SrcElts = SrcTy->getNumElements();
1603 for (unsigned i = 0, e = SrcElts; i != e; ++i)
Chris Lattner8213c8a2012-02-06 21:56:39 +00001604 ShuffleMask.push_back(i);
Chris Lattner02b0df52010-05-08 21:50:26 +00001605
1606 // The excess elements reference the first element of the zero input.
Chris Lattner8213c8a2012-02-06 21:56:39 +00001607 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1608 ShuffleMask.push_back(SrcElts);
Chris Lattner02b0df52010-05-08 21:50:26 +00001609 }
Craig Topper3529aa52013-01-24 05:22:40 +00001610
Chris Lattner8213c8a2012-02-06 21:56:39 +00001611 return new ShuffleVectorInst(InVal, V2,
1612 ConstantDataVector::get(V2->getContext(),
1613 ShuffleMask));
Chris Lattner02b0df52010-05-08 21:50:26 +00001614}
1615
Chris Lattner229907c2011-07-18 04:54:35 +00001616static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001617 return Value % Ty->getPrimitiveSizeInBits() == 0;
1618}
1619
Chris Lattner229907c2011-07-18 04:54:35 +00001620static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001621 return Value / Ty->getPrimitiveSizeInBits();
1622}
1623
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001624/// V is a value which is inserted into a vector of VecEltTy.
1625/// Look through the value to see if we can decompose it into
Chris Lattnerdd660102010-08-28 01:20:38 +00001626/// insertions into the vector. See the example in the comment for
1627/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1628/// The type of V is always a non-zero multiple of VecEltTy's size.
Richard Sandifordfeb34712013-08-12 07:26:09 +00001629/// Shift is the number of bits between the lsb of V and the lsb of
1630/// the vector.
Chris Lattnerdd660102010-08-28 01:20:38 +00001631///
1632/// This returns false if the pattern can't be matched or true if it can,
1633/// filling in Elements with the elements found here.
Sanjay Patele2834412015-09-09 14:54:29 +00001634static bool collectInsertionElements(Value *V, unsigned Shift,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001635 SmallVectorImpl<Value *> &Elements,
1636 Type *VecEltTy, bool isBigEndian) {
Richard Sandifordfeb34712013-08-12 07:26:09 +00001637 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1638 "Shift should be a multiple of the element type size");
1639
Chris Lattner50df36a2010-08-28 03:36:51 +00001640 // Undef values never contribute useful bits to the result.
1641 if (isa<UndefValue>(V)) return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001642
Chris Lattnerdd660102010-08-28 01:20:38 +00001643 // If we got down to a value of the right type, we win, try inserting into the
1644 // right element.
1645 if (V->getType() == VecEltTy) {
Chris Lattnerd0214f32010-08-28 01:50:57 +00001646 // Inserting null doesn't actually insert any elements.
1647 if (Constant *C = dyn_cast<Constant>(V))
1648 if (C->isNullValue())
1649 return true;
Craig Topper3529aa52013-01-24 05:22:40 +00001650
Richard Sandifordfeb34712013-08-12 07:26:09 +00001651 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001652 if (isBigEndian)
Richard Sandifordfeb34712013-08-12 07:26:09 +00001653 ElementIndex = Elements.size() - ElementIndex - 1;
1654
Chris Lattnerdd660102010-08-28 01:20:38 +00001655 // Fail if multiple elements are inserted into this slot.
Craig Topperf40110f2014-04-25 05:29:35 +00001656 if (Elements[ElementIndex])
Chris Lattnerdd660102010-08-28 01:20:38 +00001657 return false;
Craig Topper3529aa52013-01-24 05:22:40 +00001658
Chris Lattnerdd660102010-08-28 01:20:38 +00001659 Elements[ElementIndex] = V;
1660 return true;
1661 }
Craig Topper3529aa52013-01-24 05:22:40 +00001662
Chris Lattnerd0214f32010-08-28 01:50:57 +00001663 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnerdd660102010-08-28 01:20:38 +00001664 // Figure out the # elements this provides, and bitcast it or slice it up
1665 // as required.
Chris Lattnerd0214f32010-08-28 01:50:57 +00001666 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1667 VecEltTy);
1668 // If the constant is the size of a vector element, we just need to bitcast
1669 // it to the right type so it gets properly inserted.
1670 if (NumElts == 1)
Sanjay Patele2834412015-09-09 14:54:29 +00001671 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001672 Shift, Elements, VecEltTy, isBigEndian);
Craig Topper3529aa52013-01-24 05:22:40 +00001673
Chris Lattnerd0214f32010-08-28 01:50:57 +00001674 // Okay, this is a constant that covers multiple elements. Slice it up into
1675 // pieces and insert each element-sized piece into the vector.
1676 if (!isa<IntegerType>(C->getType()))
1677 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1678 C->getType()->getPrimitiveSizeInBits()));
1679 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Chris Lattner229907c2011-07-18 04:54:35 +00001680 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
Craig Topper3529aa52013-01-24 05:22:40 +00001681
Chris Lattnerd0214f32010-08-28 01:50:57 +00001682 for (unsigned i = 0; i != NumElts; ++i) {
Richard Sandifordfeb34712013-08-12 07:26:09 +00001683 unsigned ShiftI = Shift+i*ElementSize;
Chris Lattnerd0214f32010-08-28 01:50:57 +00001684 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
Richard Sandifordfeb34712013-08-12 07:26:09 +00001685 ShiftI));
Chris Lattnerd0214f32010-08-28 01:50:57 +00001686 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
Sanjay Patele2834412015-09-09 14:54:29 +00001687 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001688 isBigEndian))
Chris Lattnerd0214f32010-08-28 01:50:57 +00001689 return false;
1690 }
1691 return true;
1692 }
Craig Topper3529aa52013-01-24 05:22:40 +00001693
Chris Lattnerdd660102010-08-28 01:20:38 +00001694 if (!V->hasOneUse()) return false;
Craig Topper3529aa52013-01-24 05:22:40 +00001695
Chris Lattnerdd660102010-08-28 01:20:38 +00001696 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001697 if (!I) return false;
Chris Lattnerdd660102010-08-28 01:20:38 +00001698 switch (I->getOpcode()) {
1699 default: return false; // Unhandled case.
1700 case Instruction::BitCast:
Sanjay Patele2834412015-09-09 14:54:29 +00001701 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001702 isBigEndian);
Chris Lattnerdd660102010-08-28 01:20:38 +00001703 case Instruction::ZExt:
1704 if (!isMultipleOfTypeSize(
1705 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1706 VecEltTy))
1707 return false;
Sanjay Patele2834412015-09-09 14:54:29 +00001708 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001709 isBigEndian);
Chris Lattnerdd660102010-08-28 01:20:38 +00001710 case Instruction::Or:
Sanjay Patele2834412015-09-09 14:54:29 +00001711 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001712 isBigEndian) &&
Sanjay Patele2834412015-09-09 14:54:29 +00001713 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001714 isBigEndian);
Chris Lattnerdd660102010-08-28 01:20:38 +00001715 case Instruction::Shl: {
1716 // Must be shifting by a constant that is a multiple of the element size.
1717 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001718 if (!CI) return false;
Richard Sandifordfeb34712013-08-12 07:26:09 +00001719 Shift += CI->getZExtValue();
1720 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
Sanjay Patele2834412015-09-09 14:54:29 +00001721 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001722 isBigEndian);
Chris Lattnerdd660102010-08-28 01:20:38 +00001723 }
Craig Topper3529aa52013-01-24 05:22:40 +00001724
Chris Lattnerdd660102010-08-28 01:20:38 +00001725 }
1726}
1727
1728
Sanjay Patel2fbab9d82015-09-09 14:34:26 +00001729/// If the input is an 'or' instruction, we may be doing shifts and ors to
1730/// assemble the elements of the vector manually.
Chris Lattnerdd660102010-08-28 01:20:38 +00001731/// Try to rip the code out and replace it with insertelements. This is to
1732/// optimize code like this:
1733///
1734/// %tmp37 = bitcast float %inc to i32
1735/// %tmp38 = zext i32 %tmp37 to i64
1736/// %tmp31 = bitcast float %inc5 to i32
1737/// %tmp32 = zext i32 %tmp31 to i64
1738/// %tmp33 = shl i64 %tmp32, 32
1739/// %ins35 = or i64 %tmp33, %tmp38
1740/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1741///
1742/// Into two insertelements that do "buildvector{%inc, %inc5}".
Sanjay Patele2834412015-09-09 14:54:29 +00001743static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
Chris Lattnerdd660102010-08-28 01:20:38 +00001744 InstCombiner &IC) {
Chris Lattner229907c2011-07-18 04:54:35 +00001745 VectorType *DestVecTy = cast<VectorType>(CI.getType());
Chris Lattnerdd660102010-08-28 01:20:38 +00001746 Value *IntInput = CI.getOperand(0);
1747
1748 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
Sanjay Patele2834412015-09-09 14:54:29 +00001749 if (!collectInsertionElements(IntInput, 0, Elements,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001750 DestVecTy->getElementType(),
1751 IC.getDataLayout().isBigEndian()))
Craig Topperf40110f2014-04-25 05:29:35 +00001752 return nullptr;
Chris Lattnerdd660102010-08-28 01:20:38 +00001753
1754 // If we succeeded, we know that all of the element are specified by Elements
1755 // or are zero if Elements has a null entry. Recast this as a set of
1756 // insertions.
1757 Value *Result = Constant::getNullValue(CI.getType());
1758 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
Craig Topperf40110f2014-04-25 05:29:35 +00001759 if (!Elements[i]) continue; // Unset element.
Craig Topper3529aa52013-01-24 05:22:40 +00001760
Chris Lattnerdd660102010-08-28 01:20:38 +00001761 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1762 IC.Builder->getInt32(i));
1763 }
Craig Topper3529aa52013-01-24 05:22:40 +00001764
Chris Lattnerdd660102010-08-28 01:20:38 +00001765 return Result;
1766}
1767
Sanjay Patel1d49fc92015-12-12 16:44:48 +00001768/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1769/// vector followed by extract element. The backend tends to handle bitcasts of
1770/// vectors better than bitcasts of scalars because vector registers are
1771/// usually not type-specific like scalar integer or scalar floating-point.
1772static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1773 InstCombiner &IC,
1774 const DataLayout &DL) {
Sanjay Patelc83fd952015-12-10 17:09:28 +00001775 // TODO: Create and use a pattern matcher for ExtractElementInst.
1776 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1777 if (!ExtElt || !ExtElt->hasOneUse())
1778 return nullptr;
1779
Sanjay Patel1d49fc92015-12-12 16:44:48 +00001780 // The bitcast must be to a vectorizable type, otherwise we can't make a new
1781 // type to extract from.
1782 Type *DestType = BitCast.getType();
1783 if (!VectorType::isValidElementType(DestType))
Sanjay Patelc83fd952015-12-10 17:09:28 +00001784 return nullptr;
1785
Sanjay Patel1d49fc92015-12-12 16:44:48 +00001786 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1787 auto *NewVecType = VectorType::get(DestType, NumElts);
1788 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1789 NewVecType, "bc");
1790 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
Sanjay Patelc83fd952015-12-10 17:09:28 +00001791}
1792
Guozhi Wei7b390ec2016-03-17 18:47:20 +00001793/// This function handles following case
1794///
1795/// A -> B cast
1796/// PHI
1797/// B -> A cast
1798///
1799/// All the related PHI nodes can be replaced by new PHI nodes with type A.
1800/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1801Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1802 Value *Src = CI.getOperand(0);
1803 Type *SrcTy = Src->getType(); // Type B
1804 Type *DestTy = CI.getType(); // Type A
1805
1806 SmallVector<PHINode *, 4> PhiWorklist;
1807 SmallSetVector<PHINode *, 4> OldPhiNodes;
1808
1809 // Find all of the A->B casts and PHI nodes.
1810 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
1811 // OldPhiNodes is used to track all known PHI nodes, before adding a new
1812 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
1813 PhiWorklist.push_back(PN);
1814 OldPhiNodes.insert(PN);
1815 while (!PhiWorklist.empty()) {
1816 auto *OldPN = PhiWorklist.pop_back_val();
1817 for (Value *IncValue : OldPN->incoming_values()) {
1818 if (isa<Constant>(IncValue))
1819 continue;
1820
1821 auto *LI = dyn_cast<LoadInst>(IncValue);
1822 if (LI) {
1823 if (LI->hasOneUse() && LI->isSimple())
1824 continue;
1825 // If a LoadInst has more than one use, changing the type of loaded
1826 // value may create another bitcast.
1827 return nullptr;
1828 }
1829
1830 auto *PNode = dyn_cast<PHINode>(IncValue);
1831 if (PNode) {
1832 if (OldPhiNodes.insert(PNode))
1833 PhiWorklist.push_back(PNode);
1834 continue;
1835 }
1836
1837 auto *BCI = dyn_cast<BitCastInst>(IncValue);
1838 // We can't handle other instructions.
1839 if (!BCI)
1840 return nullptr;
1841
1842 // Verify it's a A->B cast.
1843 Type *TyA = BCI->getOperand(0)->getType();
1844 Type *TyB = BCI->getType();
1845 if (TyA != DestTy || TyB != SrcTy)
1846 return nullptr;
1847 }
1848 }
1849
1850 // For each old PHI node, create a corresponding new PHI node with a type A.
1851 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
1852 for (auto *OldPN : OldPhiNodes) {
1853 Builder->SetInsertPoint(OldPN);
1854 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
1855 NewPNodes[OldPN] = NewPN;
1856 }
1857
1858 // Fill in the operands of new PHI nodes.
1859 for (auto *OldPN : OldPhiNodes) {
1860 PHINode *NewPN = NewPNodes[OldPN];
1861 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
1862 Value *V = OldPN->getOperand(j);
1863 Value *NewV = nullptr;
1864 if (auto *C = dyn_cast<Constant>(V)) {
1865 NewV = Builder->CreateBitCast(C, DestTy);
1866 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
1867 Builder->SetInsertPoint(OldPN->getIncomingBlock(j)->getTerminator());
1868 NewV = Builder->CreateBitCast(LI, DestTy);
1869 Worklist.Add(LI);
1870 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
1871 NewV = BCI->getOperand(0);
1872 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
1873 NewV = NewPNodes[PrevPN];
1874 }
1875 assert(NewV);
1876 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
1877 }
1878 }
1879
1880 // If there is a store with type B, change it to type A.
1881 for (User *U : PN->users()) {
1882 auto *SI = dyn_cast<StoreInst>(U);
1883 if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
1884 Builder->SetInsertPoint(SI);
1885 SI->setOperand(0, Builder->CreateBitCast(NewPNodes[PN], SrcTy));
1886 Worklist.Add(SI);
1887 }
1888 }
1889
1890 return replaceInstUsesWith(CI, NewPNodes[PN]);
1891}
1892
Chris Lattner2b295a02010-01-04 07:53:58 +00001893Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1894 // If the operands are integer typed then apply the integer transforms,
1895 // otherwise just apply the common ones.
1896 Value *Src = CI.getOperand(0);
Chris Lattner229907c2011-07-18 04:54:35 +00001897 Type *SrcTy = Src->getType();
1898 Type *DestTy = CI.getType();
Chris Lattner2b295a02010-01-04 07:53:58 +00001899
Chris Lattner2b295a02010-01-04 07:53:58 +00001900 // Get rid of casts from one type to the same type. These are useless and can
1901 // be replaced by the operand.
1902 if (DestTy == Src->getType())
Sanjay Patel4b198802016-02-01 22:23:39 +00001903 return replaceInstUsesWith(CI, Src);
Chris Lattner2b295a02010-01-04 07:53:58 +00001904
Chris Lattner229907c2011-07-18 04:54:35 +00001905 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1906 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1907 Type *DstElTy = DstPTy->getElementType();
1908 Type *SrcElTy = SrcPTy->getElementType();
Craig Topper3529aa52013-01-24 05:22:40 +00001909
Chris Lattner2b295a02010-01-04 07:53:58 +00001910 // If we are casting a alloca to a pointer to a type of the same
1911 // size, rewrite the allocation instruction to allocate the "right" type.
1912 // There is no need to modify malloc calls because it is their bitcast that
1913 // needs to be cleaned up.
1914 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1915 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1916 return V;
Craig Topper3529aa52013-01-24 05:22:40 +00001917
Chris Lattner2b295a02010-01-04 07:53:58 +00001918 // If the source and destination are pointers, and this cast is equivalent
1919 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1920 // This can enhance SROA and other transforms that want type-safe pointers.
Chris Lattner2b295a02010-01-04 07:53:58 +00001921 unsigned NumZeros = 0;
Craig Topper3529aa52013-01-24 05:22:40 +00001922 while (SrcElTy != DstElTy &&
Duncan Sands19d0b472010-02-16 11:11:14 +00001923 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner2b295a02010-01-04 07:53:58 +00001924 SrcElTy->getNumContainedTypes() /* not "{}" */) {
Benjamin Kramer2a7404a2015-04-18 16:52:08 +00001925 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
Chris Lattner2b295a02010-01-04 07:53:58 +00001926 ++NumZeros;
1927 }
1928
1929 // If we found a path from the src to dest, create the getelementptr now.
1930 if (SrcElTy == DstElTy) {
Benjamin Kramer2a7404a2015-04-18 16:52:08 +00001931 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
Jay Foadd1b78492011-07-25 09:48:08 +00001932 return GetElementPtrInst::CreateInBounds(Src, Idxs);
Chris Lattner2b295a02010-01-04 07:53:58 +00001933 }
1934 }
Craig Topper3529aa52013-01-24 05:22:40 +00001935
Chris Lattner229907c2011-07-18 04:54:35 +00001936 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands19d0b472010-02-16 11:11:14 +00001937 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001938 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1939 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner2b295a02010-01-04 07:53:58 +00001940 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner2b295a02010-01-04 07:53:58 +00001941 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1942 }
Craig Topper3529aa52013-01-24 05:22:40 +00001943
Chris Lattnerdd660102010-08-28 01:20:38 +00001944 if (isa<IntegerType>(SrcTy)) {
1945 // If this is a cast from an integer to vector, check to see if the input
1946 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1947 // the casts with a shuffle and (potentially) a bitcast.
1948 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1949 CastInst *SrcCast = cast<CastInst>(Src);
1950 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1951 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
Sanjay Patele2834412015-09-09 14:54:29 +00001952 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
Chris Lattner02b0df52010-05-08 21:50:26 +00001953 cast<VectorType>(DestTy), *this))
Chris Lattnerdd660102010-08-28 01:20:38 +00001954 return I;
1955 }
Craig Topper3529aa52013-01-24 05:22:40 +00001956
Chris Lattnerdd660102010-08-28 01:20:38 +00001957 // If the input is an 'or' instruction, we may be doing shifts and ors to
1958 // assemble the elements of the vector manually. Try to rip the code out
1959 // and replace it with insertelements.
Sanjay Patele2834412015-09-09 14:54:29 +00001960 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
Sanjay Patel4b198802016-02-01 22:23:39 +00001961 return replaceInstUsesWith(CI, V);
Chris Lattner02b0df52010-05-08 21:50:26 +00001962 }
Chris Lattner2b295a02010-01-04 07:53:58 +00001963 }
1964
Chris Lattner229907c2011-07-18 04:54:35 +00001965 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Michael Ilseman74a6da92013-02-11 21:41:44 +00001966 if (SrcVTy->getNumElements() == 1) {
1967 // If our destination is not a vector, then make this a straight
1968 // scalar-scalar cast.
1969 if (!DestTy->isVectorTy()) {
1970 Value *Elem =
1971 Builder->CreateExtractElement(Src,
1972 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1973 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1974 }
1975
1976 // Otherwise, see if our source is an insert. If so, then use the scalar
1977 // component directly.
1978 if (InsertElementInst *IEI =
1979 dyn_cast<InsertElementInst>(CI.getOperand(0)))
1980 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1981 DestTy);
Chris Lattner2b295a02010-01-04 07:53:58 +00001982 }
1983 }
1984
1985 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001986 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmaneb7111b2010-04-07 23:22:42 +00001987 // a bitcast to a vector with the same # elts.
Craig Topper3529aa52013-01-24 05:22:40 +00001988 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001989 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001990 SVI->getType()->getNumElements() ==
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001991 SVI->getOperand(0)->getType()->getVectorNumElements()) {
Chris Lattnera93c63c2010-01-05 22:21:18 +00001992 BitCastInst *Tmp;
1993 // If either of the operands is a cast from CI.getType(), then
1994 // evaluating the shuffle in the casted destination's type will allow
1995 // us to eliminate at least one cast.
Craig Topper3529aa52013-01-24 05:22:40 +00001996 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001997 Tmp->getOperand(0)->getType() == DestTy) ||
Craig Topper3529aa52013-01-24 05:22:40 +00001998 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Chris Lattnera93c63c2010-01-05 22:21:18 +00001999 Tmp->getOperand(0)->getType() == DestTy)) {
2000 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
2001 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
2002 // Return a new shuffle vector. Use the same element ID's, as we
2003 // know the vector types match #elts.
2004 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner2b295a02010-01-04 07:53:58 +00002005 }
2006 }
2007 }
Craig Topper3529aa52013-01-24 05:22:40 +00002008
Guozhi Wei7b390ec2016-03-17 18:47:20 +00002009 // Handle the A->B->A cast, and there is an intervening PHI node.
2010 if (PHINode *PN = dyn_cast<PHINode>(Src))
2011 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2012 return I;
2013
Sanjay Patel1d49fc92015-12-12 16:44:48 +00002014 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
Sanjay Patelc83fd952015-12-10 17:09:28 +00002015 return I;
2016
Duncan Sands19d0b472010-02-16 11:11:14 +00002017 if (SrcTy->isPointerTy())
Chris Lattnera93c63c2010-01-05 22:21:18 +00002018 return commonPointerCastTransforms(CI);
2019 return commonCastTransforms(CI);
Chris Lattner2b295a02010-01-04 07:53:58 +00002020}
Matt Arsenaulta9e95ab2013-11-15 05:45:08 +00002021
2022Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
Manuel Jacobb4db99c2014-07-16 01:34:21 +00002023 // If the destination pointer element type is not the same as the source's
2024 // first do a bitcast to the destination type, and then the addrspacecast.
2025 // This allows the cast to be exposed to other transforms.
Jingyue Wu77145d92014-06-06 21:52:55 +00002026 Value *Src = CI.getOperand(0);
2027 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2028 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2029
2030 Type *DestElemTy = DestTy->getElementType();
2031 if (SrcTy->getElementType() != DestElemTy) {
2032 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
Jingyue Wubaabe502014-06-15 21:40:57 +00002033 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2034 // Handle vectors of pointers.
2035 MidTy = VectorType::get(MidTy, VT->getNumElements());
2036 }
Jingyue Wu77145d92014-06-06 21:52:55 +00002037
2038 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
2039 return new AddrSpaceCastInst(NewBitCast, CI.getType());
2040 }
2041
Matt Arsenault2d353d12014-01-14 20:00:45 +00002042 return commonPointerCastTransforms(CI);
Matt Arsenaulta9e95ab2013-11-15 05:45:08 +00002043}