blob: 9f5dc5318239eec9f97200a64df3978f37d609f8 [file] [log] [blame]
NAKAMURA Takumi84965032015-09-22 11:14:12 +00001//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
James Molloy87405c72015-08-14 11:09:09 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a demanded bits analysis. A demanded bit is one that
11// contributes to a result; bits that are not demanded can be either zero or
12// one without affecting control or data flow. For example in this sequence:
13//
14// %1 = add i32 %x, %y
15// %2 = trunc i32 %1 to i16
16//
17// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18// trunc.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Analysis/DemandedBits.h"
James Molloy87405c72015-08-14 11:09:09 +000023#include "llvm/ADT/DepthFirstIterator.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
James Molloybcd7f0a2015-10-08 12:39:59 +000026#include "llvm/ADT/StringExtras.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000027#include "llvm/Analysis/AssumptionCache.h"
James Molloy87405c72015-08-14 11:09:09 +000028#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/InstIterator.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000040#include "llvm/Support/KnownBits.h"
James Molloy87405c72015-08-14 11:09:09 +000041#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44#define DEBUG_TYPE "demanded-bits"
45
Michael Kupersteinde16b442016-04-18 23:55:01 +000046char DemandedBitsWrapperPass::ID = 0;
47INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
48 "Demanded bits analysis", false, false)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000049INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
James Molloy87405c72015-08-14 11:09:09 +000050INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Michael Kupersteinde16b442016-04-18 23:55:01 +000051INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
52 "Demanded bits analysis", false, false)
James Molloy87405c72015-08-14 11:09:09 +000053
Michael Kupersteinde16b442016-04-18 23:55:01 +000054DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
55 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
James Molloy87405c72015-08-14 11:09:09 +000056}
57
Michael Kupersteinde16b442016-04-18 23:55:01 +000058void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
James Molloy87405c72015-08-14 11:09:09 +000059 AU.setPreservesCFG();
Daniel Jasperaec2fa32016-12-19 08:22:17 +000060 AU.addRequired<AssumptionCacheTracker>();
James Molloy87405c72015-08-14 11:09:09 +000061 AU.addRequired<DominatorTreeWrapperPass>();
62 AU.setPreservesAll();
63}
64
Michael Kupersteinde16b442016-04-18 23:55:01 +000065void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
66 DB->print(OS);
67}
68
James Molloy87405c72015-08-14 11:09:09 +000069static bool isAlwaysLive(Instruction *I) {
70 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
71 I->isEHPad() || I->mayHaveSideEffects();
72}
73
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +000074void DemandedBits::determineLiveOperandBits(
75 const Instruction *UserI, const Instruction *I, unsigned OperandNo,
Craig Topperb45eabc2017-04-26 16:39:58 +000076 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
James Molloy87405c72015-08-14 11:09:09 +000077 unsigned BitWidth = AB.getBitWidth();
78
79 // We're called once per operand, but for some instructions, we need to
80 // compute known bits of both operands in order to determine the live bits of
81 // either (when both operands are instructions themselves). We don't,
82 // however, want to do this twice, so we cache the result in APInts that live
83 // in the caller. For the two-relevant-operands case, both operand values are
84 // provided here.
85 auto ComputeKnownBits =
86 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
87 const DataLayout &DL = I->getModule()->getDataLayout();
Craig Topperb45eabc2017-04-26 16:39:58 +000088 Known = KnownBits(BitWidth);
89 computeKnownBits(const_cast<Value *>(V1), Known, DL, 0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +000090 &AC, UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000091
92 if (V2) {
Craig Topperb45eabc2017-04-26 16:39:58 +000093 Known2 = KnownBits(BitWidth);
94 computeKnownBits(const_cast<Value *>(V2), Known2, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +000095 0, &AC, UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000096 }
97 };
98
99 switch (UserI->getOpcode()) {
100 default: break;
101 case Instruction::Call:
102 case Instruction::Invoke:
103 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
104 switch (II->getIntrinsicID()) {
105 default: break;
106 case Intrinsic::bswap:
107 // The alive bits of the input are the swapped alive bits of
108 // the output.
109 AB = AOut.byteSwap();
110 break;
Brian Gesiak0a7894d2017-04-13 16:44:25 +0000111 case Intrinsic::bitreverse:
112 AB = AOut.reverseBits();
113 break;
James Molloy87405c72015-08-14 11:09:09 +0000114 case Intrinsic::ctlz:
115 if (OperandNo == 0) {
116 // We need some output bits, so we need all bits of the
117 // input to the left of, and including, the leftmost bit
118 // known to be one.
119 ComputeKnownBits(BitWidth, I, nullptr);
120 AB = APInt::getHighBitsSet(BitWidth,
Craig Topperb45eabc2017-04-26 16:39:58 +0000121 std::min(BitWidth, Known.One.countLeadingZeros()+1));
James Molloy87405c72015-08-14 11:09:09 +0000122 }
123 break;
124 case Intrinsic::cttz:
125 if (OperandNo == 0) {
126 // We need some output bits, so we need all bits of the
127 // input to the right of, and including, the rightmost bit
128 // known to be one.
129 ComputeKnownBits(BitWidth, I, nullptr);
130 AB = APInt::getLowBitsSet(BitWidth,
Craig Topperb45eabc2017-04-26 16:39:58 +0000131 std::min(BitWidth, Known.One.countTrailingZeros()+1));
James Molloy87405c72015-08-14 11:09:09 +0000132 }
133 break;
134 }
135 break;
136 case Instruction::Add:
137 case Instruction::Sub:
James Molloybcd7f0a2015-10-08 12:39:59 +0000138 case Instruction::Mul:
James Molloy87405c72015-08-14 11:09:09 +0000139 // Find the highest live output bit. We don't need any more input
140 // bits than that (adds, and thus subtracts, ripple only to the
141 // left).
142 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
143 break;
144 case Instruction::Shl:
145 if (OperandNo == 0)
146 if (ConstantInt *CI =
147 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
148 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
149 AB = AOut.lshr(ShiftAmt);
150
151 // If the shift is nuw/nsw, then the high bits are not dead
152 // (because we've promised that they *must* be zero).
153 const ShlOperator *S = cast<ShlOperator>(UserI);
154 if (S->hasNoSignedWrap())
155 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
156 else if (S->hasNoUnsignedWrap())
157 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
158 }
159 break;
160 case Instruction::LShr:
161 if (OperandNo == 0)
162 if (ConstantInt *CI =
163 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
164 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
165 AB = AOut.shl(ShiftAmt);
166
167 // If the shift is exact, then the low bits are not dead
168 // (they must be zero).
169 if (cast<LShrOperator>(UserI)->isExact())
170 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
171 }
172 break;
173 case Instruction::AShr:
174 if (OperandNo == 0)
175 if (ConstantInt *CI =
176 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
177 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
178 AB = AOut.shl(ShiftAmt);
179 // Because the high input bit is replicated into the
180 // high-order bits of the result, if we need any of those
181 // bits, then we must keep the highest input bit.
182 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
183 .getBoolValue())
Craig Topper24db6b82017-04-28 16:58:05 +0000184 AB.setSignBit();
James Molloy87405c72015-08-14 11:09:09 +0000185
186 // If the shift is exact, then the low bits are not dead
187 // (they must be zero).
188 if (cast<AShrOperator>(UserI)->isExact())
189 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
190 }
191 break;
192 case Instruction::And:
193 AB = AOut;
194
195 // For bits that are known zero, the corresponding bits in the
196 // other operand are dead (unless they're both zero, in which
197 // case they can't both be dead, so just mark the LHS bits as
198 // dead).
199 if (OperandNo == 0) {
200 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
Craig Topperb45eabc2017-04-26 16:39:58 +0000201 AB &= ~Known2.Zero;
James Molloy87405c72015-08-14 11:09:09 +0000202 } else {
203 if (!isa<Instruction>(UserI->getOperand(0)))
204 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
Craig Topperb45eabc2017-04-26 16:39:58 +0000205 AB &= ~(Known.Zero & ~Known2.Zero);
James Molloy87405c72015-08-14 11:09:09 +0000206 }
207 break;
208 case Instruction::Or:
209 AB = AOut;
210
211 // For bits that are known one, the corresponding bits in the
212 // other operand are dead (unless they're both one, in which
213 // case they can't both be dead, so just mark the LHS bits as
214 // dead).
215 if (OperandNo == 0) {
216 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
Craig Topperb45eabc2017-04-26 16:39:58 +0000217 AB &= ~Known2.One;
James Molloy87405c72015-08-14 11:09:09 +0000218 } else {
219 if (!isa<Instruction>(UserI->getOperand(0)))
220 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
Craig Topperb45eabc2017-04-26 16:39:58 +0000221 AB &= ~(Known.One & ~Known2.One);
James Molloy87405c72015-08-14 11:09:09 +0000222 }
223 break;
224 case Instruction::Xor:
225 case Instruction::PHI:
226 AB = AOut;
227 break;
228 case Instruction::Trunc:
229 AB = AOut.zext(BitWidth);
230 break;
231 case Instruction::ZExt:
232 AB = AOut.trunc(BitWidth);
233 break;
234 case Instruction::SExt:
235 AB = AOut.trunc(BitWidth);
236 // Because the high input bit is replicated into the
237 // high-order bits of the result, if we need any of those
238 // bits, then we must keep the highest input bit.
239 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
240 AOut.getBitWidth() - BitWidth))
241 .getBoolValue())
Craig Topper24db6b82017-04-28 16:58:05 +0000242 AB.setSignBit();
James Molloy87405c72015-08-14 11:09:09 +0000243 break;
244 case Instruction::Select:
245 if (OperandNo != 0)
246 AB = AOut;
247 break;
248 }
249}
250
Michael Kupersteinde16b442016-04-18 23:55:01 +0000251bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000252 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Michael Kupersteinde16b442016-04-18 23:55:01 +0000253 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 DB.emplace(F, AC, DT);
James Molloyab9fdb92015-10-08 12:39:50 +0000255 return false;
256}
James Molloy87405c72015-08-14 11:09:09 +0000257
Michael Kupersteinde16b442016-04-18 23:55:01 +0000258void DemandedBitsWrapperPass::releaseMemory() {
259 DB.reset();
260}
261
James Molloyab9fdb92015-10-08 12:39:50 +0000262void DemandedBits::performAnalysis() {
263 if (Analyzed)
264 // Analysis already completed for this function.
265 return;
266 Analyzed = true;
James Molloyab9fdb92015-10-08 12:39:50 +0000267
James Molloy87405c72015-08-14 11:09:09 +0000268 Visited.clear();
269 AliveBits.clear();
270
271 SmallVector<Instruction*, 128> Worklist;
272
273 // Collect the set of "root" instructions that are known live.
Michael Kupersteinde16b442016-04-18 23:55:01 +0000274 for (Instruction &I : instructions(F)) {
James Molloy87405c72015-08-14 11:09:09 +0000275 if (!isAlwaysLive(&I))
276 continue;
277
278 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
279 // For integer-valued instructions, set up an initial empty set of alive
280 // bits and add the instruction to the work list. For other instructions
281 // add their operands to the work list (for integer values operands, mark
282 // all bits as live).
283 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000284 if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
James Molloy87405c72015-08-14 11:09:09 +0000285 Worklist.push_back(&I);
James Molloy87405c72015-08-14 11:09:09 +0000286
287 continue;
288 }
289
290 // Non-integer-typed instructions...
291 for (Use &OI : I.operands()) {
292 if (Instruction *J = dyn_cast<Instruction>(OI)) {
293 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
294 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
295 Worklist.push_back(J);
296 }
297 }
298 // To save memory, we don't add I to the Visited set here. Instead, we
299 // check isAlwaysLive on every instruction when searching for dead
300 // instructions later (we need to check isAlwaysLive for the
301 // integer-typed instructions anyway).
302 }
303
304 // Propagate liveness backwards to operands.
305 while (!Worklist.empty()) {
306 Instruction *UserI = Worklist.pop_back_val();
307
308 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
309 APInt AOut;
310 if (UserI->getType()->isIntegerTy()) {
311 AOut = AliveBits[UserI];
312 DEBUG(dbgs() << " Alive Out: " << AOut);
313 }
314 DEBUG(dbgs() << "\n");
315
316 if (!UserI->getType()->isIntegerTy())
317 Visited.insert(UserI);
318
Craig Topperb45eabc2017-04-26 16:39:58 +0000319 KnownBits Known, Known2;
James Molloy87405c72015-08-14 11:09:09 +0000320 // Compute the set of alive bits for each operand. These are anded into the
321 // existing set, if any, and if that changes the set of alive bits, the
322 // operand is added to the work-list.
323 for (Use &OI : UserI->operands()) {
324 if (Instruction *I = dyn_cast<Instruction>(OI)) {
325 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
326 unsigned BitWidth = IT->getBitWidth();
327 APInt AB = APInt::getAllOnesValue(BitWidth);
328 if (UserI->getType()->isIntegerTy() && !AOut &&
329 !isAlwaysLive(UserI)) {
330 AB = APInt(BitWidth, 0);
331 } else {
NAKAMURA Takumi84965032015-09-22 11:14:12 +0000332 // If all bits of the output are dead, then all bits of the input
James Molloy87405c72015-08-14 11:09:09 +0000333 // Bits of each operand that are used to compute alive bits of the
334 // output are alive, all others are dead.
335 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
Craig Topperb45eabc2017-04-26 16:39:58 +0000336 Known, Known2);
James Molloy87405c72015-08-14 11:09:09 +0000337 }
338
339 // If we've added to the set of alive bits (or the operand has not
340 // been previously visited), then re-queue the operand to be visited
341 // again.
342 APInt ABPrev(BitWidth, 0);
343 auto ABI = AliveBits.find(I);
344 if (ABI != AliveBits.end())
345 ABPrev = ABI->second;
346
347 APInt ABNew = AB | ABPrev;
348 if (ABNew != ABPrev || ABI == AliveBits.end()) {
349 AliveBits[I] = std::move(ABNew);
350 Worklist.push_back(I);
351 }
352 } else if (!Visited.count(I)) {
353 Worklist.push_back(I);
354 }
355 }
356 }
357 }
James Molloy87405c72015-08-14 11:09:09 +0000358}
359
360APInt DemandedBits::getDemandedBits(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000361 performAnalysis();
362
James Molloy87405c72015-08-14 11:09:09 +0000363 const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000364 auto Found = AliveBits.find(I);
365 if (Found != AliveBits.end())
366 return Found->second;
James Molloy87405c72015-08-14 11:09:09 +0000367 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
368}
369
370bool DemandedBits::isInstructionDead(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000371 performAnalysis();
372
James Molloy87405c72015-08-14 11:09:09 +0000373 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
374 !isAlwaysLive(I);
375}
376
Michael Kupersteinde16b442016-04-18 23:55:01 +0000377void DemandedBits::print(raw_ostream &OS) {
378 performAnalysis();
James Molloybcd7f0a2015-10-08 12:39:59 +0000379 for (auto &KV : AliveBits) {
380 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
381 << *KV.first << "\n";
382 }
383}
384
Michael Kupersteinde16b442016-04-18 23:55:01 +0000385FunctionPass *llvm::createDemandedBitsWrapperPass() {
386 return new DemandedBitsWrapperPass();
387}
388
Chandler Carruthdab4eae2016-11-23 17:53:26 +0000389AnalysisKey DemandedBitsAnalysis::Key;
Michael Kupersteinde16b442016-04-18 23:55:01 +0000390
391DemandedBits DemandedBitsAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +0000392 FunctionAnalysisManager &AM) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000393 auto &AC = AM.getResult<AssumptionAnalysis>(F);
Michael Kupersteinde16b442016-04-18 23:55:01 +0000394 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000395 return DemandedBits(F, AC, DT);
Michael Kupersteinde16b442016-04-18 23:55:01 +0000396}
397
398PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
399 FunctionAnalysisManager &AM) {
400 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
401 return PreservedAnalyses::all();
James Molloy87405c72015-08-14 11:09:09 +0000402}