blob: 6706f34ba691618f0d88014b601eb5c0780cb5f8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
114 %result = shl i32 %X, i8 3
115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
151 ; Declare the string constant as a global constant. 
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 
153
154 ; External declaration of the puts function 
155 declare i32 @puts(i8* nocapture) nounwind 
156
157 ; Definition of main function
158 define i32 @main() { ; i32()*  
159 ; Convert [13 x i8]* to i8 *... 
160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
162 ; Call puts function to write out the string to stdout. 
163 call i32 @puts(i8* %cast210)
164 ret i32 0 
165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
265 "one definition rule" — "ODR"). Such languages can use the
266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
682 loads and stores to the structure may be assumed by the callee to
683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
824 smashing protector. It is in the form of a "canary"—a random value
825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
828 or not.
829
830 If a function that has an ``ssp`` attribute is inlined into a
831 function that doesn't have an ``ssp`` attribute, then the resulting
832 function will have an ``ssp`` attribute.
833``sspreq``
834 This attribute indicates that the function should *always* emit a
835 stack smashing protector. This overrides the ``ssp`` function
836 attribute.
837
838 If a function that has an ``sspreq`` attribute is inlined into a
839 function that doesn't have an ``sspreq`` attribute or which has an
840 ``ssp`` attribute, then the resulting function will have an
841 ``sspreq`` attribute.
842``uwtable``
843 This attribute indicates that the ABI being targeted requires that
844 an unwind table entry be produce for this function even if we can
845 show that no exceptions passes by it. This is normally the case for
846 the ELF x86-64 abi, but it can be disabled for some compilation
847 units.
James Molloy4f6fb952012-12-20 16:04:27 +0000848``noduplicate``
849 This attribute indicates that calls to the function cannot be
850 duplicated. A call to a ``noduplicate`` function may be moved
851 within its parent function, but may not be duplicated within
852 its parent function.
853
854 A function containing a ``noduplicate`` call may still
855 be an inlining candidate, provided that the call is not
856 duplicated by inlining. That implies that the function has
857 internal linkage and only has one call site, so the original
858 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000859
860.. _moduleasm:
861
862Module-Level Inline Assembly
863----------------------------
864
865Modules may contain "module-level inline asm" blocks, which corresponds
866to the GCC "file scope inline asm" blocks. These blocks are internally
867concatenated by LLVM and treated as a single unit, but may be separated
868in the ``.ll`` file if desired. The syntax is very simple:
869
870.. code-block:: llvm
871
872 module asm "inline asm code goes here"
873 module asm "more can go here"
874
875The strings can contain any character by escaping non-printable
876characters. The escape sequence used is simply "\\xx" where "xx" is the
877two digit hex code for the number.
878
879The inline asm code is simply printed to the machine code .s file when
880assembly code is generated.
881
882Data Layout
883-----------
884
885A module may specify a target specific data layout string that specifies
886how data is to be laid out in memory. The syntax for the data layout is
887simply:
888
889.. code-block:: llvm
890
891 target datalayout = "layout specification"
892
893The *layout specification* consists of a list of specifications
894separated by the minus sign character ('-'). Each specification starts
895with a letter and may include other information after the letter to
896define some aspect of the data layout. The specifications accepted are
897as follows:
898
899``E``
900 Specifies that the target lays out data in big-endian form. That is,
901 the bits with the most significance have the lowest address
902 location.
903``e``
904 Specifies that the target lays out data in little-endian form. That
905 is, the bits with the least significance have the lowest address
906 location.
907``S<size>``
908 Specifies the natural alignment of the stack in bits. Alignment
909 promotion of stack variables is limited to the natural stack
910 alignment to avoid dynamic stack realignment. The stack alignment
911 must be a multiple of 8-bits. If omitted, the natural stack
912 alignment defaults to "unspecified", which does not prevent any
913 alignment promotions.
914``p[n]:<size>:<abi>:<pref>``
915 This specifies the *size* of a pointer and its ``<abi>`` and
916 ``<pref>``\erred alignments for address space ``n``. All sizes are in
917 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
918 preceding ``:`` should be omitted too. The address space, ``n`` is
919 optional, and if not specified, denotes the default address space 0.
920 The value of ``n`` must be in the range [1,2^23).
921``i<size>:<abi>:<pref>``
922 This specifies the alignment for an integer type of a given bit
923 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
924``v<size>:<abi>:<pref>``
925 This specifies the alignment for a vector type of a given bit
926 ``<size>``.
927``f<size>:<abi>:<pref>``
928 This specifies the alignment for a floating point type of a given bit
929 ``<size>``. Only values of ``<size>`` that are supported by the target
930 will work. 32 (float) and 64 (double) are supported on all targets; 80
931 or 128 (different flavors of long double) are also supported on some
932 targets.
933``a<size>:<abi>:<pref>``
934 This specifies the alignment for an aggregate type of a given bit
935 ``<size>``.
936``s<size>:<abi>:<pref>``
937 This specifies the alignment for a stack object of a given bit
938 ``<size>``.
939``n<size1>:<size2>:<size3>...``
940 This specifies a set of native integer widths for the target CPU in
941 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
942 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
943 this set are considered to support most general arithmetic operations
944 efficiently.
945
946When constructing the data layout for a given target, LLVM starts with a
947default set of specifications which are then (possibly) overridden by
948the specifications in the ``datalayout`` keyword. The default
949specifications are given in this list:
950
951- ``E`` - big endian
952- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
953- ``p1:32:32:32`` - 32-bit pointers with 32-bit alignment for address
954 space 1
955- ``p2:16:32:32`` - 16-bit pointers with 32-bit alignment for address
956 space 2
957- ``i1:8:8`` - i1 is 8-bit (byte) aligned
958- ``i8:8:8`` - i8 is 8-bit (byte) aligned
959- ``i16:16:16`` - i16 is 16-bit aligned
960- ``i32:32:32`` - i32 is 32-bit aligned
961- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
962 alignment of 64-bits
963- ``f32:32:32`` - float is 32-bit aligned
964- ``f64:64:64`` - double is 64-bit aligned
965- ``v64:64:64`` - 64-bit vector is 64-bit aligned
966- ``v128:128:128`` - 128-bit vector is 128-bit aligned
967- ``a0:0:1`` - aggregates are 8-bit aligned
968- ``s0:64:64`` - stack objects are 64-bit aligned
969
970When LLVM is determining the alignment for a given type, it uses the
971following rules:
972
973#. If the type sought is an exact match for one of the specifications,
974 that specification is used.
975#. If no match is found, and the type sought is an integer type, then
976 the smallest integer type that is larger than the bitwidth of the
977 sought type is used. If none of the specifications are larger than
978 the bitwidth then the largest integer type is used. For example,
979 given the default specifications above, the i7 type will use the
980 alignment of i8 (next largest) while both i65 and i256 will use the
981 alignment of i64 (largest specified).
982#. If no match is found, and the type sought is a vector type, then the
983 largest vector type that is smaller than the sought vector type will
984 be used as a fall back. This happens because <128 x double> can be
985 implemented in terms of 64 <2 x double>, for example.
986
987The function of the data layout string may not be what you expect.
988Notably, this is not a specification from the frontend of what alignment
989the code generator should use.
990
991Instead, if specified, the target data layout is required to match what
992the ultimate *code generator* expects. This string is used by the
993mid-level optimizers to improve code, and this only works if it matches
994what the ultimate code generator uses. If you would like to generate IR
995that does not embed this target-specific detail into the IR, then you
996don't have to specify the string. This will disable some optimizations
997that require precise layout information, but this also prevents those
998optimizations from introducing target specificity into the IR.
999
1000.. _pointeraliasing:
1001
1002Pointer Aliasing Rules
1003----------------------
1004
1005Any memory access must be done through a pointer value associated with
1006an address range of the memory access, otherwise the behavior is
1007undefined. Pointer values are associated with address ranges according
1008to the following rules:
1009
1010- A pointer value is associated with the addresses associated with any
1011 value it is *based* on.
1012- An address of a global variable is associated with the address range
1013 of the variable's storage.
1014- The result value of an allocation instruction is associated with the
1015 address range of the allocated storage.
1016- A null pointer in the default address-space is associated with no
1017 address.
1018- An integer constant other than zero or a pointer value returned from
1019 a function not defined within LLVM may be associated with address
1020 ranges allocated through mechanisms other than those provided by
1021 LLVM. Such ranges shall not overlap with any ranges of addresses
1022 allocated by mechanisms provided by LLVM.
1023
1024A pointer value is *based* on another pointer value according to the
1025following rules:
1026
1027- A pointer value formed from a ``getelementptr`` operation is *based*
1028 on the first operand of the ``getelementptr``.
1029- The result value of a ``bitcast`` is *based* on the operand of the
1030 ``bitcast``.
1031- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1032 values that contribute (directly or indirectly) to the computation of
1033 the pointer's value.
1034- The "*based* on" relationship is transitive.
1035
1036Note that this definition of *"based"* is intentionally similar to the
1037definition of *"based"* in C99, though it is slightly weaker.
1038
1039LLVM IR does not associate types with memory. The result type of a
1040``load`` merely indicates the size and alignment of the memory from
1041which to load, as well as the interpretation of the value. The first
1042operand type of a ``store`` similarly only indicates the size and
1043alignment of the store.
1044
1045Consequently, type-based alias analysis, aka TBAA, aka
1046``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1047:ref:`Metadata <metadata>` may be used to encode additional information
1048which specialized optimization passes may use to implement type-based
1049alias analysis.
1050
1051.. _volatile:
1052
1053Volatile Memory Accesses
1054------------------------
1055
1056Certain memory accesses, such as :ref:`load <i_load>`'s,
1057:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1058marked ``volatile``. The optimizers must not change the number of
1059volatile operations or change their order of execution relative to other
1060volatile operations. The optimizers *may* change the order of volatile
1061operations relative to non-volatile operations. This is not Java's
1062"volatile" and has no cross-thread synchronization behavior.
1063
1064.. _memmodel:
1065
1066Memory Model for Concurrent Operations
1067--------------------------------------
1068
1069The LLVM IR does not define any way to start parallel threads of
1070execution or to register signal handlers. Nonetheless, there are
1071platform-specific ways to create them, and we define LLVM IR's behavior
1072in their presence. This model is inspired by the C++0x memory model.
1073
1074For a more informal introduction to this model, see the :doc:`Atomics`.
1075
1076We define a *happens-before* partial order as the least partial order
1077that
1078
1079- Is a superset of single-thread program order, and
1080- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1081 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1082 techniques, like pthread locks, thread creation, thread joining,
1083 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1084 Constraints <ordering>`).
1085
1086Note that program order does not introduce *happens-before* edges
1087between a thread and signals executing inside that thread.
1088
1089Every (defined) read operation (load instructions, memcpy, atomic
1090loads/read-modify-writes, etc.) R reads a series of bytes written by
1091(defined) write operations (store instructions, atomic
1092stores/read-modify-writes, memcpy, etc.). For the purposes of this
1093section, initialized globals are considered to have a write of the
1094initializer which is atomic and happens before any other read or write
1095of the memory in question. For each byte of a read R, R\ :sub:`byte`
1096may see any write to the same byte, except:
1097
1098- If write\ :sub:`1` happens before write\ :sub:`2`, and
1099 write\ :sub:`2` happens before R\ :sub:`byte`, then
1100 R\ :sub:`byte` does not see write\ :sub:`1`.
1101- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1102 R\ :sub:`byte` does not see write\ :sub:`3`.
1103
1104Given that definition, R\ :sub:`byte` is defined as follows:
1105
1106- If R is volatile, the result is target-dependent. (Volatile is
1107 supposed to give guarantees which can support ``sig_atomic_t`` in
1108 C/C++, and may be used for accesses to addresses which do not behave
1109 like normal memory. It does not generally provide cross-thread
1110 synchronization.)
1111- Otherwise, if there is no write to the same byte that happens before
1112 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1113- Otherwise, if R\ :sub:`byte` may see exactly one write,
1114 R\ :sub:`byte` returns the value written by that write.
1115- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1116 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1117 Memory Ordering Constraints <ordering>` section for additional
1118 constraints on how the choice is made.
1119- Otherwise R\ :sub:`byte` returns ``undef``.
1120
1121R returns the value composed of the series of bytes it read. This
1122implies that some bytes within the value may be ``undef`` **without**
1123the entire value being ``undef``. Note that this only defines the
1124semantics of the operation; it doesn't mean that targets will emit more
1125than one instruction to read the series of bytes.
1126
1127Note that in cases where none of the atomic intrinsics are used, this
1128model places only one restriction on IR transformations on top of what
1129is required for single-threaded execution: introducing a store to a byte
1130which might not otherwise be stored is not allowed in general.
1131(Specifically, in the case where another thread might write to and read
1132from an address, introducing a store can change a load that may see
1133exactly one write into a load that may see multiple writes.)
1134
1135.. _ordering:
1136
1137Atomic Memory Ordering Constraints
1138----------------------------------
1139
1140Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1141:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1142:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1143an ordering parameter that determines which other atomic instructions on
1144the same address they *synchronize with*. These semantics are borrowed
1145from Java and C++0x, but are somewhat more colloquial. If these
1146descriptions aren't precise enough, check those specs (see spec
1147references in the :doc:`atomics guide <Atomics>`).
1148:ref:`fence <i_fence>` instructions treat these orderings somewhat
1149differently since they don't take an address. See that instruction's
1150documentation for details.
1151
1152For a simpler introduction to the ordering constraints, see the
1153:doc:`Atomics`.
1154
1155``unordered``
1156 The set of values that can be read is governed by the happens-before
1157 partial order. A value cannot be read unless some operation wrote
1158 it. This is intended to provide a guarantee strong enough to model
1159 Java's non-volatile shared variables. This ordering cannot be
1160 specified for read-modify-write operations; it is not strong enough
1161 to make them atomic in any interesting way.
1162``monotonic``
1163 In addition to the guarantees of ``unordered``, there is a single
1164 total order for modifications by ``monotonic`` operations on each
1165 address. All modification orders must be compatible with the
1166 happens-before order. There is no guarantee that the modification
1167 orders can be combined to a global total order for the whole program
1168 (and this often will not be possible). The read in an atomic
1169 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1170 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1171 order immediately before the value it writes. If one atomic read
1172 happens before another atomic read of the same address, the later
1173 read must see the same value or a later value in the address's
1174 modification order. This disallows reordering of ``monotonic`` (or
1175 stronger) operations on the same address. If an address is written
1176 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1177 read that address repeatedly, the other threads must eventually see
1178 the write. This corresponds to the C++0x/C1x
1179 ``memory_order_relaxed``.
1180``acquire``
1181 In addition to the guarantees of ``monotonic``, a
1182 *synchronizes-with* edge may be formed with a ``release`` operation.
1183 This is intended to model C++'s ``memory_order_acquire``.
1184``release``
1185 In addition to the guarantees of ``monotonic``, if this operation
1186 writes a value which is subsequently read by an ``acquire``
1187 operation, it *synchronizes-with* that operation. (This isn't a
1188 complete description; see the C++0x definition of a release
1189 sequence.) This corresponds to the C++0x/C1x
1190 ``memory_order_release``.
1191``acq_rel`` (acquire+release)
1192 Acts as both an ``acquire`` and ``release`` operation on its
1193 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1194``seq_cst`` (sequentially consistent)
1195 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1196 operation which only reads, ``release`` for an operation which only
1197 writes), there is a global total order on all
1198 sequentially-consistent operations on all addresses, which is
1199 consistent with the *happens-before* partial order and with the
1200 modification orders of all the affected addresses. Each
1201 sequentially-consistent read sees the last preceding write to the
1202 same address in this global order. This corresponds to the C++0x/C1x
1203 ``memory_order_seq_cst`` and Java volatile.
1204
1205.. _singlethread:
1206
1207If an atomic operation is marked ``singlethread``, it only *synchronizes
1208with* or participates in modification and seq\_cst total orderings with
1209other operations running in the same thread (for example, in signal
1210handlers).
1211
1212.. _fastmath:
1213
1214Fast-Math Flags
1215---------------
1216
1217LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1218:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1219:ref:`frem <i_frem>`) have the following flags that can set to enable
1220otherwise unsafe floating point operations
1221
1222``nnan``
1223 No NaNs - Allow optimizations to assume the arguments and result are not
1224 NaN. Such optimizations are required to retain defined behavior over
1225 NaNs, but the value of the result is undefined.
1226
1227``ninf``
1228 No Infs - Allow optimizations to assume the arguments and result are not
1229 +/-Inf. Such optimizations are required to retain defined behavior over
1230 +/-Inf, but the value of the result is undefined.
1231
1232``nsz``
1233 No Signed Zeros - Allow optimizations to treat the sign of a zero
1234 argument or result as insignificant.
1235
1236``arcp``
1237 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1238 argument rather than perform division.
1239
1240``fast``
1241 Fast - Allow algebraically equivalent transformations that may
1242 dramatically change results in floating point (e.g. reassociate). This
1243 flag implies all the others.
1244
1245.. _typesystem:
1246
1247Type System
1248===========
1249
1250The LLVM type system is one of the most important features of the
1251intermediate representation. Being typed enables a number of
1252optimizations to be performed on the intermediate representation
1253directly, without having to do extra analyses on the side before the
1254transformation. A strong type system makes it easier to read the
1255generated code and enables novel analyses and transformations that are
1256not feasible to perform on normal three address code representations.
1257
1258Type Classifications
1259--------------------
1260
1261The types fall into a few useful classifications:
1262
1263
1264.. list-table::
1265 :header-rows: 1
1266
1267 * - Classification
1268 - Types
1269
1270 * - :ref:`integer <t_integer>`
1271 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1272 ``i64``, ...
1273
1274 * - :ref:`floating point <t_floating>`
1275 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1276 ``ppc_fp128``
1277
1278
1279 * - first class
1280
1281 .. _t_firstclass:
1282
1283 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1284 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1285 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1286 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1287
1288 * - :ref:`primitive <t_primitive>`
1289 - :ref:`label <t_label>`,
1290 :ref:`void <t_void>`,
1291 :ref:`integer <t_integer>`,
1292 :ref:`floating point <t_floating>`,
1293 :ref:`x86mmx <t_x86mmx>`,
1294 :ref:`metadata <t_metadata>`.
1295
1296 * - :ref:`derived <t_derived>`
1297 - :ref:`array <t_array>`,
1298 :ref:`function <t_function>`,
1299 :ref:`pointer <t_pointer>`,
1300 :ref:`structure <t_struct>`,
1301 :ref:`vector <t_vector>`,
1302 :ref:`opaque <t_opaque>`.
1303
1304The :ref:`first class <t_firstclass>` types are perhaps the most important.
1305Values of these types are the only ones which can be produced by
1306instructions.
1307
1308.. _t_primitive:
1309
1310Primitive Types
1311---------------
1312
1313The primitive types are the fundamental building blocks of the LLVM
1314system.
1315
1316.. _t_integer:
1317
1318Integer Type
1319^^^^^^^^^^^^
1320
1321Overview:
1322"""""""""
1323
1324The integer type is a very simple type that simply specifies an
1325arbitrary bit width for the integer type desired. Any bit width from 1
1326bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1327
1328Syntax:
1329"""""""
1330
1331::
1332
1333 iN
1334
1335The number of bits the integer will occupy is specified by the ``N``
1336value.
1337
1338Examples:
1339"""""""""
1340
1341+----------------+------------------------------------------------+
1342| ``i1`` | a single-bit integer. |
1343+----------------+------------------------------------------------+
1344| ``i32`` | a 32-bit integer. |
1345+----------------+------------------------------------------------+
1346| ``i1942652`` | a really big integer of over 1 million bits. |
1347+----------------+------------------------------------------------+
1348
1349.. _t_floating:
1350
1351Floating Point Types
1352^^^^^^^^^^^^^^^^^^^^
1353
1354.. list-table::
1355 :header-rows: 1
1356
1357 * - Type
1358 - Description
1359
1360 * - ``half``
1361 - 16-bit floating point value
1362
1363 * - ``float``
1364 - 32-bit floating point value
1365
1366 * - ``double``
1367 - 64-bit floating point value
1368
1369 * - ``fp128``
1370 - 128-bit floating point value (112-bit mantissa)
1371
1372 * - ``x86_fp80``
1373 - 80-bit floating point value (X87)
1374
1375 * - ``ppc_fp128``
1376 - 128-bit floating point value (two 64-bits)
1377
1378.. _t_x86mmx:
1379
1380X86mmx Type
1381^^^^^^^^^^^
1382
1383Overview:
1384"""""""""
1385
1386The x86mmx type represents a value held in an MMX register on an x86
1387machine. The operations allowed on it are quite limited: parameters and
1388return values, load and store, and bitcast. User-specified MMX
1389instructions are represented as intrinsic or asm calls with arguments
1390and/or results of this type. There are no arrays, vectors or constants
1391of this type.
1392
1393Syntax:
1394"""""""
1395
1396::
1397
1398 x86mmx
1399
1400.. _t_void:
1401
1402Void Type
1403^^^^^^^^^
1404
1405Overview:
1406"""""""""
1407
1408The void type does not represent any value and has no size.
1409
1410Syntax:
1411"""""""
1412
1413::
1414
1415 void
1416
1417.. _t_label:
1418
1419Label Type
1420^^^^^^^^^^
1421
1422Overview:
1423"""""""""
1424
1425The label type represents code labels.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 label
1433
1434.. _t_metadata:
1435
1436Metadata Type
1437^^^^^^^^^^^^^
1438
1439Overview:
1440"""""""""
1441
1442The metadata type represents embedded metadata. No derived types may be
1443created from metadata except for :ref:`function <t_function>` arguments.
1444
1445Syntax:
1446"""""""
1447
1448::
1449
1450 metadata
1451
1452.. _t_derived:
1453
1454Derived Types
1455-------------
1456
1457The real power in LLVM comes from the derived types in the system. This
1458is what allows a programmer to represent arrays, functions, pointers,
1459and other useful types. Each of these types contain one or more element
1460types which may be a primitive type, or another derived type. For
1461example, it is possible to have a two dimensional array, using an array
1462as the element type of another array.
1463
1464.. _t_aggregate:
1465
1466Aggregate Types
1467^^^^^^^^^^^^^^^
1468
1469Aggregate Types are a subset of derived types that can contain multiple
1470member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1471aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1472aggregate types.
1473
1474.. _t_array:
1475
1476Array Type
1477^^^^^^^^^^
1478
1479Overview:
1480"""""""""
1481
1482The array type is a very simple derived type that arranges elements
1483sequentially in memory. The array type requires a size (number of
1484elements) and an underlying data type.
1485
1486Syntax:
1487"""""""
1488
1489::
1490
1491 [<# elements> x <elementtype>]
1492
1493The number of elements is a constant integer value; ``elementtype`` may
1494be any type with a size.
1495
1496Examples:
1497"""""""""
1498
1499+------------------+--------------------------------------+
1500| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1501+------------------+--------------------------------------+
1502| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1503+------------------+--------------------------------------+
1504| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1505+------------------+--------------------------------------+
1506
1507Here are some examples of multidimensional arrays:
1508
1509+-----------------------------+----------------------------------------------------------+
1510| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1511+-----------------------------+----------------------------------------------------------+
1512| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1513+-----------------------------+----------------------------------------------------------+
1514| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1515+-----------------------------+----------------------------------------------------------+
1516
1517There is no restriction on indexing beyond the end of the array implied
1518by a static type (though there are restrictions on indexing beyond the
1519bounds of an allocated object in some cases). This means that
1520single-dimension 'variable sized array' addressing can be implemented in
1521LLVM with a zero length array type. An implementation of 'pascal style
1522arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1523example.
1524
1525.. _t_function:
1526
1527Function Type
1528^^^^^^^^^^^^^
1529
1530Overview:
1531"""""""""
1532
1533The function type can be thought of as a function signature. It consists
1534of a return type and a list of formal parameter types. The return type
1535of a function type is a first class type or a void type.
1536
1537Syntax:
1538"""""""
1539
1540::
1541
1542 <returntype> (<parameter list>)
1543
1544...where '``<parameter list>``' is a comma-separated list of type
1545specifiers. Optionally, the parameter list may include a type ``...``,
1546which indicates that the function takes a variable number of arguments.
1547Variable argument functions can access their arguments with the
1548:ref:`variable argument handling intrinsic <int_varargs>` functions.
1549'``<returntype>``' is any type except :ref:`label <t_label>`.
1550
1551Examples:
1552"""""""""
1553
1554+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1555| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1556+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1557| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1558+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1559| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1560+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1561| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1563
1564.. _t_struct:
1565
1566Structure Type
1567^^^^^^^^^^^^^^
1568
1569Overview:
1570"""""""""
1571
1572The structure type is used to represent a collection of data members
1573together in memory. The elements of a structure may be any type that has
1574a size.
1575
1576Structures in memory are accessed using '``load``' and '``store``' by
1577getting a pointer to a field with the '``getelementptr``' instruction.
1578Structures in registers are accessed using the '``extractvalue``' and
1579'``insertvalue``' instructions.
1580
1581Structures may optionally be "packed" structures, which indicate that
1582the alignment of the struct is one byte, and that there is no padding
1583between the elements. In non-packed structs, padding between field types
1584is inserted as defined by the DataLayout string in the module, which is
1585required to match what the underlying code generator expects.
1586
1587Structures can either be "literal" or "identified". A literal structure
1588is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1589identified types are always defined at the top level with a name.
1590Literal types are uniqued by their contents and can never be recursive
1591or opaque since there is no way to write one. Identified types can be
1592recursive, can be opaqued, and are never uniqued.
1593
1594Syntax:
1595"""""""
1596
1597::
1598
1599 %T1 = type { <type list> } ; Identified normal struct type
1600 %T2 = type <{ <type list> }> ; Identified packed struct type
1601
1602Examples:
1603"""""""""
1604
1605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1606| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1607+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1608| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
1609+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1610| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1611+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1612
1613.. _t_opaque:
1614
1615Opaque Structure Types
1616^^^^^^^^^^^^^^^^^^^^^^
1617
1618Overview:
1619"""""""""
1620
1621Opaque structure types are used to represent named structure types that
1622do not have a body specified. This corresponds (for example) to the C
1623notion of a forward declared structure.
1624
1625Syntax:
1626"""""""
1627
1628::
1629
1630 %X = type opaque
1631 %52 = type opaque
1632
1633Examples:
1634"""""""""
1635
1636+--------------+-------------------+
1637| ``opaque`` | An opaque type. |
1638+--------------+-------------------+
1639
1640.. _t_pointer:
1641
1642Pointer Type
1643^^^^^^^^^^^^
1644
1645Overview:
1646"""""""""
1647
1648The pointer type is used to specify memory locations. Pointers are
1649commonly used to reference objects in memory.
1650
1651Pointer types may have an optional address space attribute defining the
1652numbered address space where the pointed-to object resides. The default
1653address space is number zero. The semantics of non-zero address spaces
1654are target-specific.
1655
1656Note that LLVM does not permit pointers to void (``void*``) nor does it
1657permit pointers to labels (``label*``). Use ``i8*`` instead.
1658
1659Syntax:
1660"""""""
1661
1662::
1663
1664 <type> *
1665
1666Examples:
1667"""""""""
1668
1669+-------------------------+--------------------------------------------------------------------------------------------------------------+
1670| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1671+-------------------------+--------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1673+-------------------------+--------------------------------------------------------------------------------------------------------------+
1674| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1675+-------------------------+--------------------------------------------------------------------------------------------------------------+
1676
1677.. _t_vector:
1678
1679Vector Type
1680^^^^^^^^^^^
1681
1682Overview:
1683"""""""""
1684
1685A vector type is a simple derived type that represents a vector of
1686elements. Vector types are used when multiple primitive data are
1687operated in parallel using a single instruction (SIMD). A vector type
1688requires a size (number of elements) and an underlying primitive data
1689type. Vector types are considered :ref:`first class <t_firstclass>`.
1690
1691Syntax:
1692"""""""
1693
1694::
1695
1696 < <# elements> x <elementtype> >
1697
1698The number of elements is a constant integer value larger than 0;
1699elementtype may be any integer or floating point type, or a pointer to
1700these types. Vectors of size zero are not allowed.
1701
1702Examples:
1703"""""""""
1704
1705+-------------------+--------------------------------------------------+
1706| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1707+-------------------+--------------------------------------------------+
1708| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1709+-------------------+--------------------------------------------------+
1710| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1711+-------------------+--------------------------------------------------+
1712| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1713+-------------------+--------------------------------------------------+
1714
1715Constants
1716=========
1717
1718LLVM has several different basic types of constants. This section
1719describes them all and their syntax.
1720
1721Simple Constants
1722----------------
1723
1724**Boolean constants**
1725 The two strings '``true``' and '``false``' are both valid constants
1726 of the ``i1`` type.
1727**Integer constants**
1728 Standard integers (such as '4') are constants of the
1729 :ref:`integer <t_integer>` type. Negative numbers may be used with
1730 integer types.
1731**Floating point constants**
1732 Floating point constants use standard decimal notation (e.g.
1733 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1734 hexadecimal notation (see below). The assembler requires the exact
1735 decimal value of a floating-point constant. For example, the
1736 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1737 decimal in binary. Floating point constants must have a :ref:`floating
1738 point <t_floating>` type.
1739**Null pointer constants**
1740 The identifier '``null``' is recognized as a null pointer constant
1741 and must be of :ref:`pointer type <t_pointer>`.
1742
1743The one non-intuitive notation for constants is the hexadecimal form of
1744floating point constants. For example, the form
1745'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1746than) '``double 4.5e+15``'. The only time hexadecimal floating point
1747constants are required (and the only time that they are generated by the
1748disassembler) is when a floating point constant must be emitted but it
1749cannot be represented as a decimal floating point number in a reasonable
1750number of digits. For example, NaN's, infinities, and other special
1751values are represented in their IEEE hexadecimal format so that assembly
1752and disassembly do not cause any bits to change in the constants.
1753
1754When using the hexadecimal form, constants of types half, float, and
1755double are represented using the 16-digit form shown above (which
1756matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001757must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001758precision, respectively. Hexadecimal format is always used for long
1759double, and there are three forms of long double. The 80-bit format used
1760by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1761128-bit format used by PowerPC (two adjacent doubles) is represented by
1762``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1763represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1764supported target uses this format. Long doubles will only work if they
1765match the long double format on your target. The IEEE 16-bit format
1766(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1767digits. All hexadecimal formats are big-endian (sign bit at the left).
1768
1769There are no constants of type x86mmx.
1770
1771Complex Constants
1772-----------------
1773
1774Complex constants are a (potentially recursive) combination of simple
1775constants and smaller complex constants.
1776
1777**Structure constants**
1778 Structure constants are represented with notation similar to
1779 structure type definitions (a comma separated list of elements,
1780 surrounded by braces (``{}``)). For example:
1781 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1782 "``@G = external global i32``". Structure constants must have
1783 :ref:`structure type <t_struct>`, and the number and types of elements
1784 must match those specified by the type.
1785**Array constants**
1786 Array constants are represented with notation similar to array type
1787 definitions (a comma separated list of elements, surrounded by
1788 square brackets (``[]``)). For example:
1789 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1790 :ref:`array type <t_array>`, and the number and types of elements must
1791 match those specified by the type.
1792**Vector constants**
1793 Vector constants are represented with notation similar to vector
1794 type definitions (a comma separated list of elements, surrounded by
1795 less-than/greater-than's (``<>``)). For example:
1796 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1797 must have :ref:`vector type <t_vector>`, and the number and types of
1798 elements must match those specified by the type.
1799**Zero initialization**
1800 The string '``zeroinitializer``' can be used to zero initialize a
1801 value to zero of *any* type, including scalar and
1802 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1803 having to print large zero initializers (e.g. for large arrays) and
1804 is always exactly equivalent to using explicit zero initializers.
1805**Metadata node**
1806 A metadata node is a structure-like constant with :ref:`metadata
1807 type <t_metadata>`. For example:
1808 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1809 constants that are meant to be interpreted as part of the
1810 instruction stream, metadata is a place to attach additional
1811 information such as debug info.
1812
1813Global Variable and Function Addresses
1814--------------------------------------
1815
1816The addresses of :ref:`global variables <globalvars>` and
1817:ref:`functions <functionstructure>` are always implicitly valid
1818(link-time) constants. These constants are explicitly referenced when
1819the :ref:`identifier for the global <identifiers>` is used and always have
1820:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1821file:
1822
1823.. code-block:: llvm
1824
1825 @X = global i32 17
1826 @Y = global i32 42
1827 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1828
1829.. _undefvalues:
1830
1831Undefined Values
1832----------------
1833
1834The string '``undef``' can be used anywhere a constant is expected, and
1835indicates that the user of the value may receive an unspecified
1836bit-pattern. Undefined values may be of any type (other than '``label``'
1837or '``void``') and be used anywhere a constant is permitted.
1838
1839Undefined values are useful because they indicate to the compiler that
1840the program is well defined no matter what value is used. This gives the
1841compiler more freedom to optimize. Here are some examples of
1842(potentially surprising) transformations that are valid (in pseudo IR):
1843
1844.. code-block:: llvm
1845
1846 %A = add %X, undef
1847 %B = sub %X, undef
1848 %C = xor %X, undef
1849 Safe:
1850 %A = undef
1851 %B = undef
1852 %C = undef
1853
1854This is safe because all of the output bits are affected by the undef
1855bits. Any output bit can have a zero or one depending on the input bits.
1856
1857.. code-block:: llvm
1858
1859 %A = or %X, undef
1860 %B = and %X, undef
1861 Safe:
1862 %A = -1
1863 %B = 0
1864 Unsafe:
1865 %A = undef
1866 %B = undef
1867
1868These logical operations have bits that are not always affected by the
1869input. For example, if ``%X`` has a zero bit, then the output of the
1870'``and``' operation will always be a zero for that bit, no matter what
1871the corresponding bit from the '``undef``' is. As such, it is unsafe to
1872optimize or assume that the result of the '``and``' is '``undef``'.
1873However, it is safe to assume that all bits of the '``undef``' could be
18740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1875all the bits of the '``undef``' operand to the '``or``' could be set,
1876allowing the '``or``' to be folded to -1.
1877
1878.. code-block:: llvm
1879
1880 %A = select undef, %X, %Y
1881 %B = select undef, 42, %Y
1882 %C = select %X, %Y, undef
1883 Safe:
1884 %A = %X (or %Y)
1885 %B = 42 (or %Y)
1886 %C = %Y
1887 Unsafe:
1888 %A = undef
1889 %B = undef
1890 %C = undef
1891
1892This set of examples shows that undefined '``select``' (and conditional
1893branch) conditions can go *either way*, but they have to come from one
1894of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1895both known to have a clear low bit, then ``%A`` would have to have a
1896cleared low bit. However, in the ``%C`` example, the optimizer is
1897allowed to assume that the '``undef``' operand could be the same as
1898``%Y``, allowing the whole '``select``' to be eliminated.
1899
1900.. code-block:: llvm
1901
1902 %A = xor undef, undef
1903
1904 %B = undef
1905 %C = xor %B, %B
1906
1907 %D = undef
1908 %E = icmp lt %D, 4
1909 %F = icmp gte %D, 4
1910
1911 Safe:
1912 %A = undef
1913 %B = undef
1914 %C = undef
1915 %D = undef
1916 %E = undef
1917 %F = undef
1918
1919This example points out that two '``undef``' operands are not
1920necessarily the same. This can be surprising to people (and also matches
1921C semantics) where they assume that "``X^X``" is always zero, even if
1922``X`` is undefined. This isn't true for a number of reasons, but the
1923short answer is that an '``undef``' "variable" can arbitrarily change
1924its value over its "live range". This is true because the variable
1925doesn't actually *have a live range*. Instead, the value is logically
1926read from arbitrary registers that happen to be around when needed, so
1927the value is not necessarily consistent over time. In fact, ``%A`` and
1928``%C`` need to have the same semantics or the core LLVM "replace all
1929uses with" concept would not hold.
1930
1931.. code-block:: llvm
1932
1933 %A = fdiv undef, %X
1934 %B = fdiv %X, undef
1935 Safe:
1936 %A = undef
1937 b: unreachable
1938
1939These examples show the crucial difference between an *undefined value*
1940and *undefined behavior*. An undefined value (like '``undef``') is
1941allowed to have an arbitrary bit-pattern. This means that the ``%A``
1942operation can be constant folded to '``undef``', because the '``undef``'
1943could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1944However, in the second example, we can make a more aggressive
1945assumption: because the ``undef`` is allowed to be an arbitrary value,
1946we are allowed to assume that it could be zero. Since a divide by zero
1947has *undefined behavior*, we are allowed to assume that the operation
1948does not execute at all. This allows us to delete the divide and all
1949code after it. Because the undefined operation "can't happen", the
1950optimizer can assume that it occurs in dead code.
1951
1952.. code-block:: llvm
1953
1954 a: store undef -> %X
1955 b: store %X -> undef
1956 Safe:
1957 a: <deleted>
1958 b: unreachable
1959
1960These examples reiterate the ``fdiv`` example: a store *of* an undefined
1961value can be assumed to not have any effect; we can assume that the
1962value is overwritten with bits that happen to match what was already
1963there. However, a store *to* an undefined location could clobber
1964arbitrary memory, therefore, it has undefined behavior.
1965
1966.. _poisonvalues:
1967
1968Poison Values
1969-------------
1970
1971Poison values are similar to :ref:`undef values <undefvalues>`, however
1972they also represent the fact that an instruction or constant expression
1973which cannot evoke side effects has nevertheless detected a condition
1974which results in undefined behavior.
1975
1976There is currently no way of representing a poison value in the IR; they
1977only exist when produced by operations such as :ref:`add <i_add>` with
1978the ``nsw`` flag.
1979
1980Poison value behavior is defined in terms of value *dependence*:
1981
1982- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
1983- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
1984 their dynamic predecessor basic block.
1985- Function arguments depend on the corresponding actual argument values
1986 in the dynamic callers of their functions.
1987- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
1988 instructions that dynamically transfer control back to them.
1989- :ref:`Invoke <i_invoke>` instructions depend on the
1990 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
1991 call instructions that dynamically transfer control back to them.
1992- Non-volatile loads and stores depend on the most recent stores to all
1993 of the referenced memory addresses, following the order in the IR
1994 (including loads and stores implied by intrinsics such as
1995 :ref:`@llvm.memcpy <int_memcpy>`.)
1996- An instruction with externally visible side effects depends on the
1997 most recent preceding instruction with externally visible side
1998 effects, following the order in the IR. (This includes :ref:`volatile
1999 operations <volatile>`.)
2000- An instruction *control-depends* on a :ref:`terminator
2001 instruction <terminators>` if the terminator instruction has
2002 multiple successors and the instruction is always executed when
2003 control transfers to one of the successors, and may not be executed
2004 when control is transferred to another.
2005- Additionally, an instruction also *control-depends* on a terminator
2006 instruction if the set of instructions it otherwise depends on would
2007 be different if the terminator had transferred control to a different
2008 successor.
2009- Dependence is transitive.
2010
2011Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2012with the additional affect that any instruction which has a *dependence*
2013on a poison value has undefined behavior.
2014
2015Here are some examples:
2016
2017.. code-block:: llvm
2018
2019 entry:
2020 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2021 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2022 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2023 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2024
2025 store i32 %poison, i32* @g ; Poison value stored to memory.
2026 %poison2 = load i32* @g ; Poison value loaded back from memory.
2027
2028 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2029
2030 %narrowaddr = bitcast i32* @g to i16*
2031 %wideaddr = bitcast i32* @g to i64*
2032 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2033 %poison4 = load i64* %wideaddr ; Returns a poison value.
2034
2035 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2036 br i1 %cmp, label %true, label %end ; Branch to either destination.
2037
2038 true:
2039 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2040 ; it has undefined behavior.
2041 br label %end
2042
2043 end:
2044 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2045 ; Both edges into this PHI are
2046 ; control-dependent on %cmp, so this
2047 ; always results in a poison value.
2048
2049 store volatile i32 0, i32* @g ; This would depend on the store in %true
2050 ; if %cmp is true, or the store in %entry
2051 ; otherwise, so this is undefined behavior.
2052
2053 br i1 %cmp, label %second_true, label %second_end
2054 ; The same branch again, but this time the
2055 ; true block doesn't have side effects.
2056
2057 second_true:
2058 ; No side effects!
2059 ret void
2060
2061 second_end:
2062 store volatile i32 0, i32* @g ; This time, the instruction always depends
2063 ; on the store in %end. Also, it is
2064 ; control-equivalent to %end, so this is
2065 ; well-defined (ignoring earlier undefined
2066 ; behavior in this example).
2067
2068.. _blockaddress:
2069
2070Addresses of Basic Blocks
2071-------------------------
2072
2073``blockaddress(@function, %block)``
2074
2075The '``blockaddress``' constant computes the address of the specified
2076basic block in the specified function, and always has an ``i8*`` type.
2077Taking the address of the entry block is illegal.
2078
2079This value only has defined behavior when used as an operand to the
2080':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2081against null. Pointer equality tests between labels addresses results in
2082undefined behavior — though, again, comparison against null is ok, and
2083no label is equal to the null pointer. This may be passed around as an
2084opaque pointer sized value as long as the bits are not inspected. This
2085allows ``ptrtoint`` and arithmetic to be performed on these values so
2086long as the original value is reconstituted before the ``indirectbr``
2087instruction.
2088
2089Finally, some targets may provide defined semantics when using the value
2090as the operand to an inline assembly, but that is target specific.
2091
2092Constant Expressions
2093--------------------
2094
2095Constant expressions are used to allow expressions involving other
2096constants to be used as constants. Constant expressions may be of any
2097:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2098that does not have side effects (e.g. load and call are not supported).
2099The following is the syntax for constant expressions:
2100
2101``trunc (CST to TYPE)``
2102 Truncate a constant to another type. The bit size of CST must be
2103 larger than the bit size of TYPE. Both types must be integers.
2104``zext (CST to TYPE)``
2105 Zero extend a constant to another type. The bit size of CST must be
2106 smaller than the bit size of TYPE. Both types must be integers.
2107``sext (CST to TYPE)``
2108 Sign extend a constant to another type. The bit size of CST must be
2109 smaller than the bit size of TYPE. Both types must be integers.
2110``fptrunc (CST to TYPE)``
2111 Truncate a floating point constant to another floating point type.
2112 The size of CST must be larger than the size of TYPE. Both types
2113 must be floating point.
2114``fpext (CST to TYPE)``
2115 Floating point extend a constant to another type. The size of CST
2116 must be smaller or equal to the size of TYPE. Both types must be
2117 floating point.
2118``fptoui (CST to TYPE)``
2119 Convert a floating point constant to the corresponding unsigned
2120 integer constant. TYPE must be a scalar or vector integer type. CST
2121 must be of scalar or vector floating point type. Both CST and TYPE
2122 must be scalars, or vectors of the same number of elements. If the
2123 value won't fit in the integer type, the results are undefined.
2124``fptosi (CST to TYPE)``
2125 Convert a floating point constant to the corresponding signed
2126 integer constant. TYPE must be a scalar or vector integer type. CST
2127 must be of scalar or vector floating point type. Both CST and TYPE
2128 must be scalars, or vectors of the same number of elements. If the
2129 value won't fit in the integer type, the results are undefined.
2130``uitofp (CST to TYPE)``
2131 Convert an unsigned integer constant to the corresponding floating
2132 point constant. TYPE must be a scalar or vector floating point type.
2133 CST must be of scalar or vector integer type. Both CST and TYPE must
2134 be scalars, or vectors of the same number of elements. If the value
2135 won't fit in the floating point type, the results are undefined.
2136``sitofp (CST to TYPE)``
2137 Convert a signed integer constant to the corresponding floating
2138 point constant. TYPE must be a scalar or vector floating point type.
2139 CST must be of scalar or vector integer type. Both CST and TYPE must
2140 be scalars, or vectors of the same number of elements. If the value
2141 won't fit in the floating point type, the results are undefined.
2142``ptrtoint (CST to TYPE)``
2143 Convert a pointer typed constant to the corresponding integer
2144 constant ``TYPE`` must be an integer type. ``CST`` must be of
2145 pointer type. The ``CST`` value is zero extended, truncated, or
2146 unchanged to make it fit in ``TYPE``.
2147``inttoptr (CST to TYPE)``
2148 Convert an integer constant to a pointer constant. TYPE must be a
2149 pointer type. CST must be of integer type. The CST value is zero
2150 extended, truncated, or unchanged to make it fit in a pointer size.
2151 This one is *really* dangerous!
2152``bitcast (CST to TYPE)``
2153 Convert a constant, CST, to another TYPE. The constraints of the
2154 operands are the same as those for the :ref:`bitcast
2155 instruction <i_bitcast>`.
2156``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2157 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2158 constants. As with the :ref:`getelementptr <i_getelementptr>`
2159 instruction, the index list may have zero or more indexes, which are
2160 required to make sense for the type of "CSTPTR".
2161``select (COND, VAL1, VAL2)``
2162 Perform the :ref:`select operation <i_select>` on constants.
2163``icmp COND (VAL1, VAL2)``
2164 Performs the :ref:`icmp operation <i_icmp>` on constants.
2165``fcmp COND (VAL1, VAL2)``
2166 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2167``extractelement (VAL, IDX)``
2168 Perform the :ref:`extractelement operation <i_extractelement>` on
2169 constants.
2170``insertelement (VAL, ELT, IDX)``
2171 Perform the :ref:`insertelement operation <i_insertelement>` on
2172 constants.
2173``shufflevector (VEC1, VEC2, IDXMASK)``
2174 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2175 constants.
2176``extractvalue (VAL, IDX0, IDX1, ...)``
2177 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2178 constants. The index list is interpreted in a similar manner as
2179 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2180 least one index value must be specified.
2181``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2182 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2183 The index list is interpreted in a similar manner as indices in a
2184 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2185 value must be specified.
2186``OPCODE (LHS, RHS)``
2187 Perform the specified operation of the LHS and RHS constants. OPCODE
2188 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2189 binary <bitwiseops>` operations. The constraints on operands are
2190 the same as those for the corresponding instruction (e.g. no bitwise
2191 operations on floating point values are allowed).
2192
2193Other Values
2194============
2195
2196Inline Assembler Expressions
2197----------------------------
2198
2199LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2200Inline Assembly <moduleasm>`) through the use of a special value. This
2201value represents the inline assembler as a string (containing the
2202instructions to emit), a list of operand constraints (stored as a
2203string), a flag that indicates whether or not the inline asm expression
2204has side effects, and a flag indicating whether the function containing
2205the asm needs to align its stack conservatively. An example inline
2206assembler expression is:
2207
2208.. code-block:: llvm
2209
2210 i32 (i32) asm "bswap $0", "=r,r"
2211
2212Inline assembler expressions may **only** be used as the callee operand
2213of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2214Thus, typically we have:
2215
2216.. code-block:: llvm
2217
2218 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2219
2220Inline asms with side effects not visible in the constraint list must be
2221marked as having side effects. This is done through the use of the
2222'``sideeffect``' keyword, like so:
2223
2224.. code-block:: llvm
2225
2226 call void asm sideeffect "eieio", ""()
2227
2228In some cases inline asms will contain code that will not work unless
2229the stack is aligned in some way, such as calls or SSE instructions on
2230x86, yet will not contain code that does that alignment within the asm.
2231The compiler should make conservative assumptions about what the asm
2232might contain and should generate its usual stack alignment code in the
2233prologue if the '``alignstack``' keyword is present:
2234
2235.. code-block:: llvm
2236
2237 call void asm alignstack "eieio", ""()
2238
2239Inline asms also support using non-standard assembly dialects. The
2240assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2241the inline asm is using the Intel dialect. Currently, ATT and Intel are
2242the only supported dialects. An example is:
2243
2244.. code-block:: llvm
2245
2246 call void asm inteldialect "eieio", ""()
2247
2248If multiple keywords appear the '``sideeffect``' keyword must come
2249first, the '``alignstack``' keyword second and the '``inteldialect``'
2250keyword last.
2251
2252Inline Asm Metadata
2253^^^^^^^^^^^^^^^^^^^
2254
2255The call instructions that wrap inline asm nodes may have a
2256"``!srcloc``" MDNode attached to it that contains a list of constant
2257integers. If present, the code generator will use the integer as the
2258location cookie value when report errors through the ``LLVMContext``
2259error reporting mechanisms. This allows a front-end to correlate backend
2260errors that occur with inline asm back to the source code that produced
2261it. For example:
2262
2263.. code-block:: llvm
2264
2265 call void asm sideeffect "something bad", ""(), !srcloc !42
2266 ...
2267 !42 = !{ i32 1234567 }
2268
2269It is up to the front-end to make sense of the magic numbers it places
2270in the IR. If the MDNode contains multiple constants, the code generator
2271will use the one that corresponds to the line of the asm that the error
2272occurs on.
2273
2274.. _metadata:
2275
2276Metadata Nodes and Metadata Strings
2277-----------------------------------
2278
2279LLVM IR allows metadata to be attached to instructions in the program
2280that can convey extra information about the code to the optimizers and
2281code generator. One example application of metadata is source-level
2282debug information. There are two metadata primitives: strings and nodes.
2283All metadata has the ``metadata`` type and is identified in syntax by a
2284preceding exclamation point ('``!``').
2285
2286A metadata string is a string surrounded by double quotes. It can
2287contain any character by escaping non-printable characters with
2288"``\xx``" where "``xx``" is the two digit hex code. For example:
2289"``!"test\00"``".
2290
2291Metadata nodes are represented with notation similar to structure
2292constants (a comma separated list of elements, surrounded by braces and
2293preceded by an exclamation point). Metadata nodes can have any values as
2294their operand. For example:
2295
2296.. code-block:: llvm
2297
2298 !{ metadata !"test\00", i32 10}
2299
2300A :ref:`named metadata <namedmetadatastructure>` is a collection of
2301metadata nodes, which can be looked up in the module symbol table. For
2302example:
2303
2304.. code-block:: llvm
2305
2306 !foo = metadata !{!4, !3}
2307
2308Metadata can be used as function arguments. Here ``llvm.dbg.value``
2309function is using two metadata arguments:
2310
2311.. code-block:: llvm
2312
2313 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2314
2315Metadata can be attached with an instruction. Here metadata ``!21`` is
2316attached to the ``add`` instruction using the ``!dbg`` identifier:
2317
2318.. code-block:: llvm
2319
2320 %indvar.next = add i64 %indvar, 1, !dbg !21
2321
2322More information about specific metadata nodes recognized by the
2323optimizers and code generator is found below.
2324
2325'``tbaa``' Metadata
2326^^^^^^^^^^^^^^^^^^^
2327
2328In LLVM IR, memory does not have types, so LLVM's own type system is not
2329suitable for doing TBAA. Instead, metadata is added to the IR to
2330describe a type system of a higher level language. This can be used to
2331implement typical C/C++ TBAA, but it can also be used to implement
2332custom alias analysis behavior for other languages.
2333
2334The current metadata format is very simple. TBAA metadata nodes have up
2335to three fields, e.g.:
2336
2337.. code-block:: llvm
2338
2339 !0 = metadata !{ metadata !"an example type tree" }
2340 !1 = metadata !{ metadata !"int", metadata !0 }
2341 !2 = metadata !{ metadata !"float", metadata !0 }
2342 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2343
2344The first field is an identity field. It can be any value, usually a
2345metadata string, which uniquely identifies the type. The most important
2346name in the tree is the name of the root node. Two trees with different
2347root node names are entirely disjoint, even if they have leaves with
2348common names.
2349
2350The second field identifies the type's parent node in the tree, or is
2351null or omitted for a root node. A type is considered to alias all of
2352its descendants and all of its ancestors in the tree. Also, a type is
2353considered to alias all types in other trees, so that bitcode produced
2354from multiple front-ends is handled conservatively.
2355
2356If the third field is present, it's an integer which if equal to 1
2357indicates that the type is "constant" (meaning
2358``pointsToConstantMemory`` should return true; see `other useful
2359AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2360
2361'``tbaa.struct``' Metadata
2362^^^^^^^^^^^^^^^^^^^^^^^^^^
2363
2364The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2365aggregate assignment operations in C and similar languages, however it
2366is defined to copy a contiguous region of memory, which is more than
2367strictly necessary for aggregate types which contain holes due to
2368padding. Also, it doesn't contain any TBAA information about the fields
2369of the aggregate.
2370
2371``!tbaa.struct`` metadata can describe which memory subregions in a
2372memcpy are padding and what the TBAA tags of the struct are.
2373
2374The current metadata format is very simple. ``!tbaa.struct`` metadata
2375nodes are a list of operands which are in conceptual groups of three.
2376For each group of three, the first operand gives the byte offset of a
2377field in bytes, the second gives its size in bytes, and the third gives
2378its tbaa tag. e.g.:
2379
2380.. code-block:: llvm
2381
2382 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2383
2384This describes a struct with two fields. The first is at offset 0 bytes
2385with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2386and has size 4 bytes and has tbaa tag !2.
2387
2388Note that the fields need not be contiguous. In this example, there is a
23894 byte gap between the two fields. This gap represents padding which
2390does not carry useful data and need not be preserved.
2391
2392'``fpmath``' Metadata
2393^^^^^^^^^^^^^^^^^^^^^
2394
2395``fpmath`` metadata may be attached to any instruction of floating point
2396type. It can be used to express the maximum acceptable error in the
2397result of that instruction, in ULPs, thus potentially allowing the
2398compiler to use a more efficient but less accurate method of computing
2399it. ULP is defined as follows:
2400
2401 If ``x`` is a real number that lies between two finite consecutive
2402 floating-point numbers ``a`` and ``b``, without being equal to one
2403 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2404 distance between the two non-equal finite floating-point numbers
2405 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2406
2407The metadata node shall consist of a single positive floating point
2408number representing the maximum relative error, for example:
2409
2410.. code-block:: llvm
2411
2412 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2413
2414'``range``' Metadata
2415^^^^^^^^^^^^^^^^^^^^
2416
2417``range`` metadata may be attached only to loads of integer types. It
2418expresses the possible ranges the loaded value is in. The ranges are
2419represented with a flattened list of integers. The loaded value is known
2420to be in the union of the ranges defined by each consecutive pair. Each
2421pair has the following properties:
2422
2423- The type must match the type loaded by the instruction.
2424- The pair ``a,b`` represents the range ``[a,b)``.
2425- Both ``a`` and ``b`` are constants.
2426- The range is allowed to wrap.
2427- The range should not represent the full or empty set. That is,
2428 ``a!=b``.
2429
2430In addition, the pairs must be in signed order of the lower bound and
2431they must be non-contiguous.
2432
2433Examples:
2434
2435.. code-block:: llvm
2436
2437 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2438 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2439 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2440 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2441 ...
2442 !0 = metadata !{ i8 0, i8 2 }
2443 !1 = metadata !{ i8 255, i8 2 }
2444 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2445 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2446
2447Module Flags Metadata
2448=====================
2449
2450Information about the module as a whole is difficult to convey to LLVM's
2451subsystems. The LLVM IR isn't sufficient to transmit this information.
2452The ``llvm.module.flags`` named metadata exists in order to facilitate
2453this. These flags are in the form of key / value pairs — much like a
2454dictionary — making it easy for any subsystem who cares about a flag to
2455look it up.
2456
2457The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2458Each triplet has the following form:
2459
2460- The first element is a *behavior* flag, which specifies the behavior
2461 when two (or more) modules are merged together, and it encounters two
2462 (or more) metadata with the same ID. The supported behaviors are
2463 described below.
2464- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002465 metadata. Each module may only have one flag entry for each unique ID (not
2466 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002467- The third element is the value of the flag.
2468
2469When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002470``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2471each unique metadata ID string, there will be exactly one entry in the merged
2472modules ``llvm.module.flags`` metadata table, and the value for that entry will
2473be determined by the merge behavior flag, as described below. The only exception
2474is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002475
2476The following behaviors are supported:
2477
2478.. list-table::
2479 :header-rows: 1
2480 :widths: 10 90
2481
2482 * - Value
2483 - Behavior
2484
2485 * - 1
2486 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002487 Emits an error if two values disagree, otherwise the resulting value
2488 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490 * - 2
2491 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002492 Emits a warning if two values disagree. The result value will be the
2493 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002494
2495 * - 3
2496 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002497 Adds a requirement that another module flag be present and have a
2498 specified value after linking is performed. The value must be a
2499 metadata pair, where the first element of the pair is the ID of the
2500 module flag to be restricted, and the second element of the pair is
2501 the value the module flag should be restricted to. This behavior can
2502 be used to restrict the allowable results (via triggering of an
2503 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002504
2505 * - 4
2506 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002507 Uses the specified value, regardless of the behavior or value of the
2508 other module. If both modules specify **Override**, but the values
2509 differ, an error will be emitted.
2510
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002511 * - 5
2512 - **Append**
2513 Appends the two values, which are required to be metadata nodes.
2514
2515 * - 6
2516 - **AppendUnique**
2517 Appends the two values, which are required to be metadata
2518 nodes. However, duplicate entries in the second list are dropped
2519 during the append operation.
2520
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002521It is an error for a particular unique flag ID to have multiple behaviors,
2522except in the case of **Require** (which adds restrictions on another metadata
2523value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002524
2525An example of module flags:
2526
2527.. code-block:: llvm
2528
2529 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2530 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2531 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2532 !3 = metadata !{ i32 3, metadata !"qux",
2533 metadata !{
2534 metadata !"foo", i32 1
2535 }
2536 }
2537 !llvm.module.flags = !{ !0, !1, !2, !3 }
2538
2539- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2540 if two or more ``!"foo"`` flags are seen is to emit an error if their
2541 values are not equal.
2542
2543- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2544 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002545 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002546
2547- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2548 behavior if two or more ``!"qux"`` flags are seen is to emit a
2549 warning if their values are not equal.
2550
2551- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2552
2553 ::
2554
2555 metadata !{ metadata !"foo", i32 1 }
2556
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002557 The behavior is to emit an error if the ``llvm.module.flags`` does not
2558 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2559 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002560
2561Objective-C Garbage Collection Module Flags Metadata
2562----------------------------------------------------
2563
2564On the Mach-O platform, Objective-C stores metadata about garbage
2565collection in a special section called "image info". The metadata
2566consists of a version number and a bitmask specifying what types of
2567garbage collection are supported (if any) by the file. If two or more
2568modules are linked together their garbage collection metadata needs to
2569be merged rather than appended together.
2570
2571The Objective-C garbage collection module flags metadata consists of the
2572following key-value pairs:
2573
2574.. list-table::
2575 :header-rows: 1
2576 :widths: 30 70
2577
2578 * - Key
2579 - Value
2580
2581 * - ``Objective-C Version``
2582 - **[Required]** — The Objective-C ABI version. Valid values are 1 and 2.
2583
2584 * - ``Objective-C Image Info Version``
2585 - **[Required]** — The version of the image info section. Currently
2586 always 0.
2587
2588 * - ``Objective-C Image Info Section``
2589 - **[Required]** — The section to place the metadata. Valid values are
2590 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2591 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2592 Objective-C ABI version 2.
2593
2594 * - ``Objective-C Garbage Collection``
2595 - **[Required]** — Specifies whether garbage collection is supported or
2596 not. Valid values are 0, for no garbage collection, and 2, for garbage
2597 collection supported.
2598
2599 * - ``Objective-C GC Only``
2600 - **[Optional]** — Specifies that only garbage collection is supported.
2601 If present, its value must be 6. This flag requires that the
2602 ``Objective-C Garbage Collection`` flag have the value 2.
2603
2604Some important flag interactions:
2605
2606- If a module with ``Objective-C Garbage Collection`` set to 0 is
2607 merged with a module with ``Objective-C Garbage Collection`` set to
2608 2, then the resulting module has the
2609 ``Objective-C Garbage Collection`` flag set to 0.
2610- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2611 merged with a module with ``Objective-C GC Only`` set to 6.
2612
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002613Automatic Linker Flags Module Flags Metadata
2614--------------------------------------------
2615
2616Some targets support embedding flags to the linker inside individual object
2617files. Typically this is used in conjunction with language extensions which
2618allow source files to explicitly declare the libraries they depend on, and have
2619these automatically be transmitted to the linker via object files.
2620
2621These flags are encoded in the IR using metadata in the module flags section,
2622using the ``Linker Options`` key. The merge behavior for this flag is required
2623to be ``AppendUnique``, and the value for the key is expected to be a metadata
2624node which should be a list of other metadata nodes, each of which should be a
2625list of metadata strings defining linker options.
2626
2627For example, the following metadata section specifies two separate sets of
2628linker options, presumably to link against ``libz`` and the ``Cocoa``
2629framework::
2630
2631 !0 = metadata !{ i32 6, "Linker Options",
2632 metadata !{
2633 !metadata { metadata !"-lz" },
2634 !metadata { metadata !"-framework", metadata !"Cocoa" } } }
2635 !llvm.module.flags = !{ !0 }
2636
2637The metadata encoding as lists of lists of options, as opposed to a collapsed
2638list of options, is chosen so that the IR encoding can use multiple option
2639strings to specify e.g., a single library, while still having that specifier be
2640preserved as an atomic element that can be recognized by a target specific
2641assembly writer or object file emitter.
2642
2643Each individual option is required to be either a valid option for the target's
2644linker, or an option that is reserved by the target specific assembly writer or
2645object file emitter. No other aspect of these options is defined by the IR.
2646
Sean Silvab084af42012-12-07 10:36:55 +00002647Intrinsic Global Variables
2648==========================
2649
2650LLVM has a number of "magic" global variables that contain data that
2651affect code generation or other IR semantics. These are documented here.
2652All globals of this sort should have a section specified as
2653"``llvm.metadata``". This section and all globals that start with
2654"``llvm.``" are reserved for use by LLVM.
2655
2656The '``llvm.used``' Global Variable
2657-----------------------------------
2658
2659The ``@llvm.used`` global is an array with i8\* element type which has
2660:ref:`appending linkage <linkage_appending>`. This array contains a list of
2661pointers to global variables and functions which may optionally have a
2662pointer cast formed of bitcast or getelementptr. For example, a legal
2663use of it is:
2664
2665.. code-block:: llvm
2666
2667 @X = global i8 4
2668 @Y = global i32 123
2669
2670 @llvm.used = appending global [2 x i8*] [
2671 i8* @X,
2672 i8* bitcast (i32* @Y to i8*)
2673 ], section "llvm.metadata"
2674
2675If a global variable appears in the ``@llvm.used`` list, then the
2676compiler, assembler, and linker are required to treat the symbol as if
2677there is a reference to the global that it cannot see. For example, if a
2678variable has internal linkage and no references other than that from the
2679``@llvm.used`` list, it cannot be deleted. This is commonly used to
2680represent references from inline asms and other things the compiler
2681cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2682
2683On some targets, the code generator must emit a directive to the
2684assembler or object file to prevent the assembler and linker from
2685molesting the symbol.
2686
2687The '``llvm.compiler.used``' Global Variable
2688--------------------------------------------
2689
2690The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2691directive, except that it only prevents the compiler from touching the
2692symbol. On targets that support it, this allows an intelligent linker to
2693optimize references to the symbol without being impeded as it would be
2694by ``@llvm.used``.
2695
2696This is a rare construct that should only be used in rare circumstances,
2697and should not be exposed to source languages.
2698
2699The '``llvm.global_ctors``' Global Variable
2700-------------------------------------------
2701
2702.. code-block:: llvm
2703
2704 %0 = type { i32, void ()* }
2705 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2706
2707The ``@llvm.global_ctors`` array contains a list of constructor
2708functions and associated priorities. The functions referenced by this
2709array will be called in ascending order of priority (i.e. lowest first)
2710when the module is loaded. The order of functions with the same priority
2711is not defined.
2712
2713The '``llvm.global_dtors``' Global Variable
2714-------------------------------------------
2715
2716.. code-block:: llvm
2717
2718 %0 = type { i32, void ()* }
2719 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2720
2721The ``@llvm.global_dtors`` array contains a list of destructor functions
2722and associated priorities. The functions referenced by this array will
2723be called in descending order of priority (i.e. highest first) when the
2724module is loaded. The order of functions with the same priority is not
2725defined.
2726
2727Instruction Reference
2728=====================
2729
2730The LLVM instruction set consists of several different classifications
2731of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2732instructions <binaryops>`, :ref:`bitwise binary
2733instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2734:ref:`other instructions <otherops>`.
2735
2736.. _terminators:
2737
2738Terminator Instructions
2739-----------------------
2740
2741As mentioned :ref:`previously <functionstructure>`, every basic block in a
2742program ends with a "Terminator" instruction, which indicates which
2743block should be executed after the current block is finished. These
2744terminator instructions typically yield a '``void``' value: they produce
2745control flow, not values (the one exception being the
2746':ref:`invoke <i_invoke>`' instruction).
2747
2748The terminator instructions are: ':ref:`ret <i_ret>`',
2749':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2750':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2751':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2752
2753.. _i_ret:
2754
2755'``ret``' Instruction
2756^^^^^^^^^^^^^^^^^^^^^
2757
2758Syntax:
2759"""""""
2760
2761::
2762
2763 ret <type> <value> ; Return a value from a non-void function
2764 ret void ; Return from void function
2765
2766Overview:
2767"""""""""
2768
2769The '``ret``' instruction is used to return control flow (and optionally
2770a value) from a function back to the caller.
2771
2772There are two forms of the '``ret``' instruction: one that returns a
2773value and then causes control flow, and one that just causes control
2774flow to occur.
2775
2776Arguments:
2777""""""""""
2778
2779The '``ret``' instruction optionally accepts a single argument, the
2780return value. The type of the return value must be a ':ref:`first
2781class <t_firstclass>`' type.
2782
2783A function is not :ref:`well formed <wellformed>` if it it has a non-void
2784return type and contains a '``ret``' instruction with no return value or
2785a return value with a type that does not match its type, or if it has a
2786void return type and contains a '``ret``' instruction with a return
2787value.
2788
2789Semantics:
2790""""""""""
2791
2792When the '``ret``' instruction is executed, control flow returns back to
2793the calling function's context. If the caller is a
2794":ref:`call <i_call>`" instruction, execution continues at the
2795instruction after the call. If the caller was an
2796":ref:`invoke <i_invoke>`" instruction, execution continues at the
2797beginning of the "normal" destination block. If the instruction returns
2798a value, that value shall set the call or invoke instruction's return
2799value.
2800
2801Example:
2802""""""""
2803
2804.. code-block:: llvm
2805
2806 ret i32 5 ; Return an integer value of 5
2807 ret void ; Return from a void function
2808 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2809
2810.. _i_br:
2811
2812'``br``' Instruction
2813^^^^^^^^^^^^^^^^^^^^
2814
2815Syntax:
2816"""""""
2817
2818::
2819
2820 br i1 <cond>, label <iftrue>, label <iffalse>
2821 br label <dest> ; Unconditional branch
2822
2823Overview:
2824"""""""""
2825
2826The '``br``' instruction is used to cause control flow to transfer to a
2827different basic block in the current function. There are two forms of
2828this instruction, corresponding to a conditional branch and an
2829unconditional branch.
2830
2831Arguments:
2832""""""""""
2833
2834The conditional branch form of the '``br``' instruction takes a single
2835'``i1``' value and two '``label``' values. The unconditional form of the
2836'``br``' instruction takes a single '``label``' value as a target.
2837
2838Semantics:
2839""""""""""
2840
2841Upon execution of a conditional '``br``' instruction, the '``i1``'
2842argument is evaluated. If the value is ``true``, control flows to the
2843'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2844to the '``iffalse``' ``label`` argument.
2845
2846Example:
2847""""""""
2848
2849.. code-block:: llvm
2850
2851 Test:
2852 %cond = icmp eq i32 %a, %b
2853 br i1 %cond, label %IfEqual, label %IfUnequal
2854 IfEqual:
2855 ret i32 1
2856 IfUnequal:
2857 ret i32 0
2858
2859.. _i_switch:
2860
2861'``switch``' Instruction
2862^^^^^^^^^^^^^^^^^^^^^^^^
2863
2864Syntax:
2865"""""""
2866
2867::
2868
2869 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2870
2871Overview:
2872"""""""""
2873
2874The '``switch``' instruction is used to transfer control flow to one of
2875several different places. It is a generalization of the '``br``'
2876instruction, allowing a branch to occur to one of many possible
2877destinations.
2878
2879Arguments:
2880""""""""""
2881
2882The '``switch``' instruction uses three parameters: an integer
2883comparison value '``value``', a default '``label``' destination, and an
2884array of pairs of comparison value constants and '``label``'s. The table
2885is not allowed to contain duplicate constant entries.
2886
2887Semantics:
2888""""""""""
2889
2890The ``switch`` instruction specifies a table of values and destinations.
2891When the '``switch``' instruction is executed, this table is searched
2892for the given value. If the value is found, control flow is transferred
2893to the corresponding destination; otherwise, control flow is transferred
2894to the default destination.
2895
2896Implementation:
2897"""""""""""""""
2898
2899Depending on properties of the target machine and the particular
2900``switch`` instruction, this instruction may be code generated in
2901different ways. For example, it could be generated as a series of
2902chained conditional branches or with a lookup table.
2903
2904Example:
2905""""""""
2906
2907.. code-block:: llvm
2908
2909 ; Emulate a conditional br instruction
2910 %Val = zext i1 %value to i32
2911 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2912
2913 ; Emulate an unconditional br instruction
2914 switch i32 0, label %dest [ ]
2915
2916 ; Implement a jump table:
2917 switch i32 %val, label %otherwise [ i32 0, label %onzero
2918 i32 1, label %onone
2919 i32 2, label %ontwo ]
2920
2921.. _i_indirectbr:
2922
2923'``indirectbr``' Instruction
2924^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2925
2926Syntax:
2927"""""""
2928
2929::
2930
2931 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2932
2933Overview:
2934"""""""""
2935
2936The '``indirectbr``' instruction implements an indirect branch to a
2937label within the current function, whose address is specified by
2938"``address``". Address must be derived from a
2939:ref:`blockaddress <blockaddress>` constant.
2940
2941Arguments:
2942""""""""""
2943
2944The '``address``' argument is the address of the label to jump to. The
2945rest of the arguments indicate the full set of possible destinations
2946that the address may point to. Blocks are allowed to occur multiple
2947times in the destination list, though this isn't particularly useful.
2948
2949This destination list is required so that dataflow analysis has an
2950accurate understanding of the CFG.
2951
2952Semantics:
2953""""""""""
2954
2955Control transfers to the block specified in the address argument. All
2956possible destination blocks must be listed in the label list, otherwise
2957this instruction has undefined behavior. This implies that jumps to
2958labels defined in other functions have undefined behavior as well.
2959
2960Implementation:
2961"""""""""""""""
2962
2963This is typically implemented with a jump through a register.
2964
2965Example:
2966""""""""
2967
2968.. code-block:: llvm
2969
2970 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2971
2972.. _i_invoke:
2973
2974'``invoke``' Instruction
2975^^^^^^^^^^^^^^^^^^^^^^^^
2976
2977Syntax:
2978"""""""
2979
2980::
2981
2982 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
2983 to label <normal label> unwind label <exception label>
2984
2985Overview:
2986"""""""""
2987
2988The '``invoke``' instruction causes control to transfer to a specified
2989function, with the possibility of control flow transfer to either the
2990'``normal``' label or the '``exception``' label. If the callee function
2991returns with the "``ret``" instruction, control flow will return to the
2992"normal" label. If the callee (or any indirect callees) returns via the
2993":ref:`resume <i_resume>`" instruction or other exception handling
2994mechanism, control is interrupted and continued at the dynamically
2995nearest "exception" label.
2996
2997The '``exception``' label is a `landing
2998pad <ExceptionHandling.html#overview>`_ for the exception. As such,
2999'``exception``' label is required to have the
3000":ref:`landingpad <i_landingpad>`" instruction, which contains the
3001information about the behavior of the program after unwinding happens,
3002as its first non-PHI instruction. The restrictions on the
3003"``landingpad``" instruction's tightly couples it to the "``invoke``"
3004instruction, so that the important information contained within the
3005"``landingpad``" instruction can't be lost through normal code motion.
3006
3007Arguments:
3008""""""""""
3009
3010This instruction requires several arguments:
3011
3012#. The optional "cconv" marker indicates which :ref:`calling
3013 convention <callingconv>` the call should use. If none is
3014 specified, the call defaults to using C calling conventions.
3015#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3016 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3017 are valid here.
3018#. '``ptr to function ty``': shall be the signature of the pointer to
3019 function value being invoked. In most cases, this is a direct
3020 function invocation, but indirect ``invoke``'s are just as possible,
3021 branching off an arbitrary pointer to function value.
3022#. '``function ptr val``': An LLVM value containing a pointer to a
3023 function to be invoked.
3024#. '``function args``': argument list whose types match the function
3025 signature argument types and parameter attributes. All arguments must
3026 be of :ref:`first class <t_firstclass>` type. If the function signature
3027 indicates the function accepts a variable number of arguments, the
3028 extra arguments can be specified.
3029#. '``normal label``': the label reached when the called function
3030 executes a '``ret``' instruction.
3031#. '``exception label``': the label reached when a callee returns via
3032 the :ref:`resume <i_resume>` instruction or other exception handling
3033 mechanism.
3034#. The optional :ref:`function attributes <fnattrs>` list. Only
3035 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3036 attributes are valid here.
3037
3038Semantics:
3039""""""""""
3040
3041This instruction is designed to operate as a standard '``call``'
3042instruction in most regards. The primary difference is that it
3043establishes an association with a label, which is used by the runtime
3044library to unwind the stack.
3045
3046This instruction is used in languages with destructors to ensure that
3047proper cleanup is performed in the case of either a ``longjmp`` or a
3048thrown exception. Additionally, this is important for implementation of
3049'``catch``' clauses in high-level languages that support them.
3050
3051For the purposes of the SSA form, the definition of the value returned
3052by the '``invoke``' instruction is deemed to occur on the edge from the
3053current block to the "normal" label. If the callee unwinds then no
3054return value is available.
3055
3056Example:
3057""""""""
3058
3059.. code-block:: llvm
3060
3061 %retval = invoke i32 @Test(i32 15) to label %Continue
3062 unwind label %TestCleanup ; {i32}:retval set
3063 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3064 unwind label %TestCleanup ; {i32}:retval set
3065
3066.. _i_resume:
3067
3068'``resume``' Instruction
3069^^^^^^^^^^^^^^^^^^^^^^^^
3070
3071Syntax:
3072"""""""
3073
3074::
3075
3076 resume <type> <value>
3077
3078Overview:
3079"""""""""
3080
3081The '``resume``' instruction is a terminator instruction that has no
3082successors.
3083
3084Arguments:
3085""""""""""
3086
3087The '``resume``' instruction requires one argument, which must have the
3088same type as the result of any '``landingpad``' instruction in the same
3089function.
3090
3091Semantics:
3092""""""""""
3093
3094The '``resume``' instruction resumes propagation of an existing
3095(in-flight) exception whose unwinding was interrupted with a
3096:ref:`landingpad <i_landingpad>` instruction.
3097
3098Example:
3099""""""""
3100
3101.. code-block:: llvm
3102
3103 resume { i8*, i32 } %exn
3104
3105.. _i_unreachable:
3106
3107'``unreachable``' Instruction
3108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3109
3110Syntax:
3111"""""""
3112
3113::
3114
3115 unreachable
3116
3117Overview:
3118"""""""""
3119
3120The '``unreachable``' instruction has no defined semantics. This
3121instruction is used to inform the optimizer that a particular portion of
3122the code is not reachable. This can be used to indicate that the code
3123after a no-return function cannot be reached, and other facts.
3124
3125Semantics:
3126""""""""""
3127
3128The '``unreachable``' instruction has no defined semantics.
3129
3130.. _binaryops:
3131
3132Binary Operations
3133-----------------
3134
3135Binary operators are used to do most of the computation in a program.
3136They require two operands of the same type, execute an operation on
3137them, and produce a single value. The operands might represent multiple
3138data, as is the case with the :ref:`vector <t_vector>` data type. The
3139result value has the same type as its operands.
3140
3141There are several different binary operators:
3142
3143.. _i_add:
3144
3145'``add``' Instruction
3146^^^^^^^^^^^^^^^^^^^^^
3147
3148Syntax:
3149"""""""
3150
3151::
3152
3153 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3154 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3155 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3156 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3157
3158Overview:
3159"""""""""
3160
3161The '``add``' instruction returns the sum of its two operands.
3162
3163Arguments:
3164""""""""""
3165
3166The two arguments to the '``add``' instruction must be
3167:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3168arguments must have identical types.
3169
3170Semantics:
3171""""""""""
3172
3173The value produced is the integer sum of the two operands.
3174
3175If the sum has unsigned overflow, the result returned is the
3176mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3177the result.
3178
3179Because LLVM integers use a two's complement representation, this
3180instruction is appropriate for both signed and unsigned integers.
3181
3182``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3183respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3184result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3185unsigned and/or signed overflow, respectively, occurs.
3186
3187Example:
3188""""""""
3189
3190.. code-block:: llvm
3191
3192 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3193
3194.. _i_fadd:
3195
3196'``fadd``' Instruction
3197^^^^^^^^^^^^^^^^^^^^^^
3198
3199Syntax:
3200"""""""
3201
3202::
3203
3204 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3205
3206Overview:
3207"""""""""
3208
3209The '``fadd``' instruction returns the sum of its two operands.
3210
3211Arguments:
3212""""""""""
3213
3214The two arguments to the '``fadd``' instruction must be :ref:`floating
3215point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3216Both arguments must have identical types.
3217
3218Semantics:
3219""""""""""
3220
3221The value produced is the floating point sum of the two operands. This
3222instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3223which are optimization hints to enable otherwise unsafe floating point
3224optimizations:
3225
3226Example:
3227""""""""
3228
3229.. code-block:: llvm
3230
3231 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3232
3233'``sub``' Instruction
3234^^^^^^^^^^^^^^^^^^^^^
3235
3236Syntax:
3237"""""""
3238
3239::
3240
3241 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3242 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3243 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3244 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3245
3246Overview:
3247"""""""""
3248
3249The '``sub``' instruction returns the difference of its two operands.
3250
3251Note that the '``sub``' instruction is used to represent the '``neg``'
3252instruction present in most other intermediate representations.
3253
3254Arguments:
3255""""""""""
3256
3257The two arguments to the '``sub``' instruction must be
3258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3259arguments must have identical types.
3260
3261Semantics:
3262""""""""""
3263
3264The value produced is the integer difference of the two operands.
3265
3266If the difference has unsigned overflow, the result returned is the
3267mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3268the result.
3269
3270Because LLVM integers use a two's complement representation, this
3271instruction is appropriate for both signed and unsigned integers.
3272
3273``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3274respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3275result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3276unsigned and/or signed overflow, respectively, occurs.
3277
3278Example:
3279""""""""
3280
3281.. code-block:: llvm
3282
3283 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3284 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3285
3286.. _i_fsub:
3287
3288'``fsub``' Instruction
3289^^^^^^^^^^^^^^^^^^^^^^
3290
3291Syntax:
3292"""""""
3293
3294::
3295
3296 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3297
3298Overview:
3299"""""""""
3300
3301The '``fsub``' instruction returns the difference of its two operands.
3302
3303Note that the '``fsub``' instruction is used to represent the '``fneg``'
3304instruction present in most other intermediate representations.
3305
3306Arguments:
3307""""""""""
3308
3309The two arguments to the '``fsub``' instruction must be :ref:`floating
3310point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3311Both arguments must have identical types.
3312
3313Semantics:
3314""""""""""
3315
3316The value produced is the floating point difference of the two operands.
3317This instruction can also take any number of :ref:`fast-math
3318flags <fastmath>`, which are optimization hints to enable otherwise
3319unsafe floating point optimizations:
3320
3321Example:
3322""""""""
3323
3324.. code-block:: llvm
3325
3326 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3327 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3328
3329'``mul``' Instruction
3330^^^^^^^^^^^^^^^^^^^^^
3331
3332Syntax:
3333"""""""
3334
3335::
3336
3337 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3338 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3339 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3340 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3341
3342Overview:
3343"""""""""
3344
3345The '``mul``' instruction returns the product of its two operands.
3346
3347Arguments:
3348""""""""""
3349
3350The two arguments to the '``mul``' instruction must be
3351:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3352arguments must have identical types.
3353
3354Semantics:
3355""""""""""
3356
3357The value produced is the integer product of the two operands.
3358
3359If the result of the multiplication has unsigned overflow, the result
3360returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3361bit width of the result.
3362
3363Because LLVM integers use a two's complement representation, and the
3364result is the same width as the operands, this instruction returns the
3365correct result for both signed and unsigned integers. If a full product
3366(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3367sign-extended or zero-extended as appropriate to the width of the full
3368product.
3369
3370``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3371respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3372result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3373unsigned and/or signed overflow, respectively, occurs.
3374
3375Example:
3376""""""""
3377
3378.. code-block:: llvm
3379
3380 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3381
3382.. _i_fmul:
3383
3384'``fmul``' Instruction
3385^^^^^^^^^^^^^^^^^^^^^^
3386
3387Syntax:
3388"""""""
3389
3390::
3391
3392 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3393
3394Overview:
3395"""""""""
3396
3397The '``fmul``' instruction returns the product of its two operands.
3398
3399Arguments:
3400""""""""""
3401
3402The two arguments to the '``fmul``' instruction must be :ref:`floating
3403point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3404Both arguments must have identical types.
3405
3406Semantics:
3407""""""""""
3408
3409The value produced is the floating point product of the two operands.
3410This instruction can also take any number of :ref:`fast-math
3411flags <fastmath>`, which are optimization hints to enable otherwise
3412unsafe floating point optimizations:
3413
3414Example:
3415""""""""
3416
3417.. code-block:: llvm
3418
3419 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3420
3421'``udiv``' Instruction
3422^^^^^^^^^^^^^^^^^^^^^^
3423
3424Syntax:
3425"""""""
3426
3427::
3428
3429 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3430 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3431
3432Overview:
3433"""""""""
3434
3435The '``udiv``' instruction returns the quotient of its two operands.
3436
3437Arguments:
3438""""""""""
3439
3440The two arguments to the '``udiv``' instruction must be
3441:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3442arguments must have identical types.
3443
3444Semantics:
3445""""""""""
3446
3447The value produced is the unsigned integer quotient of the two operands.
3448
3449Note that unsigned integer division and signed integer division are
3450distinct operations; for signed integer division, use '``sdiv``'.
3451
3452Division by zero leads to undefined behavior.
3453
3454If the ``exact`` keyword is present, the result value of the ``udiv`` is
3455a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3456such, "((a udiv exact b) mul b) == a").
3457
3458Example:
3459""""""""
3460
3461.. code-block:: llvm
3462
3463 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3464
3465'``sdiv``' Instruction
3466^^^^^^^^^^^^^^^^^^^^^^
3467
3468Syntax:
3469"""""""
3470
3471::
3472
3473 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3474 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3475
3476Overview:
3477"""""""""
3478
3479The '``sdiv``' instruction returns the quotient of its two operands.
3480
3481Arguments:
3482""""""""""
3483
3484The two arguments to the '``sdiv``' instruction must be
3485:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3486arguments must have identical types.
3487
3488Semantics:
3489""""""""""
3490
3491The value produced is the signed integer quotient of the two operands
3492rounded towards zero.
3493
3494Note that signed integer division and unsigned integer division are
3495distinct operations; for unsigned integer division, use '``udiv``'.
3496
3497Division by zero leads to undefined behavior. Overflow also leads to
3498undefined behavior; this is a rare case, but can occur, for example, by
3499doing a 32-bit division of -2147483648 by -1.
3500
3501If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3502a :ref:`poison value <poisonvalues>` if the result would be rounded.
3503
3504Example:
3505""""""""
3506
3507.. code-block:: llvm
3508
3509 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3510
3511.. _i_fdiv:
3512
3513'``fdiv``' Instruction
3514^^^^^^^^^^^^^^^^^^^^^^
3515
3516Syntax:
3517"""""""
3518
3519::
3520
3521 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3522
3523Overview:
3524"""""""""
3525
3526The '``fdiv``' instruction returns the quotient of its two operands.
3527
3528Arguments:
3529""""""""""
3530
3531The two arguments to the '``fdiv``' instruction must be :ref:`floating
3532point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3533Both arguments must have identical types.
3534
3535Semantics:
3536""""""""""
3537
3538The value produced is the floating point quotient of the two operands.
3539This instruction can also take any number of :ref:`fast-math
3540flags <fastmath>`, which are optimization hints to enable otherwise
3541unsafe floating point optimizations:
3542
3543Example:
3544""""""""
3545
3546.. code-block:: llvm
3547
3548 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3549
3550'``urem``' Instruction
3551^^^^^^^^^^^^^^^^^^^^^^
3552
3553Syntax:
3554"""""""
3555
3556::
3557
3558 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3559
3560Overview:
3561"""""""""
3562
3563The '``urem``' instruction returns the remainder from the unsigned
3564division of its two arguments.
3565
3566Arguments:
3567""""""""""
3568
3569The two arguments to the '``urem``' instruction must be
3570:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3571arguments must have identical types.
3572
3573Semantics:
3574""""""""""
3575
3576This instruction returns the unsigned integer *remainder* of a division.
3577This instruction always performs an unsigned division to get the
3578remainder.
3579
3580Note that unsigned integer remainder and signed integer remainder are
3581distinct operations; for signed integer remainder, use '``srem``'.
3582
3583Taking the remainder of a division by zero leads to undefined behavior.
3584
3585Example:
3586""""""""
3587
3588.. code-block:: llvm
3589
3590 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3591
3592'``srem``' Instruction
3593^^^^^^^^^^^^^^^^^^^^^^
3594
3595Syntax:
3596"""""""
3597
3598::
3599
3600 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3601
3602Overview:
3603"""""""""
3604
3605The '``srem``' instruction returns the remainder from the signed
3606division of its two operands. This instruction can also take
3607:ref:`vector <t_vector>` versions of the values in which case the elements
3608must be integers.
3609
3610Arguments:
3611""""""""""
3612
3613The two arguments to the '``srem``' instruction must be
3614:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3615arguments must have identical types.
3616
3617Semantics:
3618""""""""""
3619
3620This instruction returns the *remainder* of a division (where the result
3621is either zero or has the same sign as the dividend, ``op1``), not the
3622*modulo* operator (where the result is either zero or has the same sign
3623as the divisor, ``op2``) of a value. For more information about the
3624difference, see `The Math
3625Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3626table of how this is implemented in various languages, please see
3627`Wikipedia: modulo
3628operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3629
3630Note that signed integer remainder and unsigned integer remainder are
3631distinct operations; for unsigned integer remainder, use '``urem``'.
3632
3633Taking the remainder of a division by zero leads to undefined behavior.
3634Overflow also leads to undefined behavior; this is a rare case, but can
3635occur, for example, by taking the remainder of a 32-bit division of
3636-2147483648 by -1. (The remainder doesn't actually overflow, but this
3637rule lets srem be implemented using instructions that return both the
3638result of the division and the remainder.)
3639
3640Example:
3641""""""""
3642
3643.. code-block:: llvm
3644
3645 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3646
3647.. _i_frem:
3648
3649'``frem``' Instruction
3650^^^^^^^^^^^^^^^^^^^^^^
3651
3652Syntax:
3653"""""""
3654
3655::
3656
3657 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3658
3659Overview:
3660"""""""""
3661
3662The '``frem``' instruction returns the remainder from the division of
3663its two operands.
3664
3665Arguments:
3666""""""""""
3667
3668The two arguments to the '``frem``' instruction must be :ref:`floating
3669point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3670Both arguments must have identical types.
3671
3672Semantics:
3673""""""""""
3674
3675This instruction returns the *remainder* of a division. The remainder
3676has the same sign as the dividend. This instruction can also take any
3677number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3678to enable otherwise unsafe floating point optimizations:
3679
3680Example:
3681""""""""
3682
3683.. code-block:: llvm
3684
3685 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3686
3687.. _bitwiseops:
3688
3689Bitwise Binary Operations
3690-------------------------
3691
3692Bitwise binary operators are used to do various forms of bit-twiddling
3693in a program. They are generally very efficient instructions and can
3694commonly be strength reduced from other instructions. They require two
3695operands of the same type, execute an operation on them, and produce a
3696single value. The resulting value is the same type as its operands.
3697
3698'``shl``' Instruction
3699^^^^^^^^^^^^^^^^^^^^^
3700
3701Syntax:
3702"""""""
3703
3704::
3705
3706 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3707 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3708 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3709 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3710
3711Overview:
3712"""""""""
3713
3714The '``shl``' instruction returns the first operand shifted to the left
3715a specified number of bits.
3716
3717Arguments:
3718""""""""""
3719
3720Both arguments to the '``shl``' instruction must be the same
3721:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3722'``op2``' is treated as an unsigned value.
3723
3724Semantics:
3725""""""""""
3726
3727The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3728where ``n`` is the width of the result. If ``op2`` is (statically or
3729dynamically) negative or equal to or larger than the number of bits in
3730``op1``, the result is undefined. If the arguments are vectors, each
3731vector element of ``op1`` is shifted by the corresponding shift amount
3732in ``op2``.
3733
3734If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3735value <poisonvalues>` if it shifts out any non-zero bits. If the
3736``nsw`` keyword is present, then the shift produces a :ref:`poison
3737value <poisonvalues>` if it shifts out any bits that disagree with the
3738resultant sign bit. As such, NUW/NSW have the same semantics as they
3739would if the shift were expressed as a mul instruction with the same
3740nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3748 <result> = shl i32 4, 2 ; yields {i32}: 16
3749 <result> = shl i32 1, 10 ; yields {i32}: 1024
3750 <result> = shl i32 1, 32 ; undefined
3751 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3752
3753'``lshr``' Instruction
3754^^^^^^^^^^^^^^^^^^^^^^
3755
3756Syntax:
3757"""""""
3758
3759::
3760
3761 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3762 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3763
3764Overview:
3765"""""""""
3766
3767The '``lshr``' instruction (logical shift right) returns the first
3768operand shifted to the right a specified number of bits with zero fill.
3769
3770Arguments:
3771""""""""""
3772
3773Both arguments to the '``lshr``' instruction must be the same
3774:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3775'``op2``' is treated as an unsigned value.
3776
3777Semantics:
3778""""""""""
3779
3780This instruction always performs a logical shift right operation. The
3781most significant bits of the result will be filled with zero bits after
3782the shift. If ``op2`` is (statically or dynamically) equal to or larger
3783than the number of bits in ``op1``, the result is undefined. If the
3784arguments are vectors, each vector element of ``op1`` is shifted by the
3785corresponding shift amount in ``op2``.
3786
3787If the ``exact`` keyword is present, the result value of the ``lshr`` is
3788a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3789non-zero.
3790
3791Example:
3792""""""""
3793
3794.. code-block:: llvm
3795
3796 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3797 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3798 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3799 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3800 <result> = lshr i32 1, 32 ; undefined
3801 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3802
3803'``ashr``' Instruction
3804^^^^^^^^^^^^^^^^^^^^^^
3805
3806Syntax:
3807"""""""
3808
3809::
3810
3811 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3812 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3813
3814Overview:
3815"""""""""
3816
3817The '``ashr``' instruction (arithmetic shift right) returns the first
3818operand shifted to the right a specified number of bits with sign
3819extension.
3820
3821Arguments:
3822""""""""""
3823
3824Both arguments to the '``ashr``' instruction must be the same
3825:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3826'``op2``' is treated as an unsigned value.
3827
3828Semantics:
3829""""""""""
3830
3831This instruction always performs an arithmetic shift right operation,
3832The most significant bits of the result will be filled with the sign bit
3833of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3834than the number of bits in ``op1``, the result is undefined. If the
3835arguments are vectors, each vector element of ``op1`` is shifted by the
3836corresponding shift amount in ``op2``.
3837
3838If the ``exact`` keyword is present, the result value of the ``ashr`` is
3839a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3840non-zero.
3841
3842Example:
3843""""""""
3844
3845.. code-block:: llvm
3846
3847 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3848 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3849 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3850 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3851 <result> = ashr i32 1, 32 ; undefined
3852 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3853
3854'``and``' Instruction
3855^^^^^^^^^^^^^^^^^^^^^
3856
3857Syntax:
3858"""""""
3859
3860::
3861
3862 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3863
3864Overview:
3865"""""""""
3866
3867The '``and``' instruction returns the bitwise logical and of its two
3868operands.
3869
3870Arguments:
3871""""""""""
3872
3873The two arguments to the '``and``' instruction must be
3874:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3875arguments must have identical types.
3876
3877Semantics:
3878""""""""""
3879
3880The truth table used for the '``and``' instruction is:
3881
3882+-----+-----+-----+
3883| In0 | In1 | Out |
3884+-----+-----+-----+
3885| 0 | 0 | 0 |
3886+-----+-----+-----+
3887| 0 | 1 | 0 |
3888+-----+-----+-----+
3889| 1 | 0 | 0 |
3890+-----+-----+-----+
3891| 1 | 1 | 1 |
3892+-----+-----+-----+
3893
3894Example:
3895""""""""
3896
3897.. code-block:: llvm
3898
3899 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3900 <result> = and i32 15, 40 ; yields {i32}:result = 8
3901 <result> = and i32 4, 8 ; yields {i32}:result = 0
3902
3903'``or``' Instruction
3904^^^^^^^^^^^^^^^^^^^^
3905
3906Syntax:
3907"""""""
3908
3909::
3910
3911 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3912
3913Overview:
3914"""""""""
3915
3916The '``or``' instruction returns the bitwise logical inclusive or of its
3917two operands.
3918
3919Arguments:
3920""""""""""
3921
3922The two arguments to the '``or``' instruction must be
3923:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3924arguments must have identical types.
3925
3926Semantics:
3927""""""""""
3928
3929The truth table used for the '``or``' instruction is:
3930
3931+-----+-----+-----+
3932| In0 | In1 | Out |
3933+-----+-----+-----+
3934| 0 | 0 | 0 |
3935+-----+-----+-----+
3936| 0 | 1 | 1 |
3937+-----+-----+-----+
3938| 1 | 0 | 1 |
3939+-----+-----+-----+
3940| 1 | 1 | 1 |
3941+-----+-----+-----+
3942
3943Example:
3944""""""""
3945
3946::
3947
3948 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3949 <result> = or i32 15, 40 ; yields {i32}:result = 47
3950 <result> = or i32 4, 8 ; yields {i32}:result = 12
3951
3952'``xor``' Instruction
3953^^^^^^^^^^^^^^^^^^^^^
3954
3955Syntax:
3956"""""""
3957
3958::
3959
3960 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3961
3962Overview:
3963"""""""""
3964
3965The '``xor``' instruction returns the bitwise logical exclusive or of
3966its two operands. The ``xor`` is used to implement the "one's
3967complement" operation, which is the "~" operator in C.
3968
3969Arguments:
3970""""""""""
3971
3972The two arguments to the '``xor``' instruction must be
3973:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3974arguments must have identical types.
3975
3976Semantics:
3977""""""""""
3978
3979The truth table used for the '``xor``' instruction is:
3980
3981+-----+-----+-----+
3982| In0 | In1 | Out |
3983+-----+-----+-----+
3984| 0 | 0 | 0 |
3985+-----+-----+-----+
3986| 0 | 1 | 1 |
3987+-----+-----+-----+
3988| 1 | 0 | 1 |
3989+-----+-----+-----+
3990| 1 | 1 | 0 |
3991+-----+-----+-----+
3992
3993Example:
3994""""""""
3995
3996.. code-block:: llvm
3997
3998 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
3999 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4000 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4001 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4002
4003Vector Operations
4004-----------------
4005
4006LLVM supports several instructions to represent vector operations in a
4007target-independent manner. These instructions cover the element-access
4008and vector-specific operations needed to process vectors effectively.
4009While LLVM does directly support these vector operations, many
4010sophisticated algorithms will want to use target-specific intrinsics to
4011take full advantage of a specific target.
4012
4013.. _i_extractelement:
4014
4015'``extractelement``' Instruction
4016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4017
4018Syntax:
4019"""""""
4020
4021::
4022
4023 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4024
4025Overview:
4026"""""""""
4027
4028The '``extractelement``' instruction extracts a single scalar element
4029from a vector at a specified index.
4030
4031Arguments:
4032""""""""""
4033
4034The first operand of an '``extractelement``' instruction is a value of
4035:ref:`vector <t_vector>` type. The second operand is an index indicating
4036the position from which to extract the element. The index may be a
4037variable.
4038
4039Semantics:
4040""""""""""
4041
4042The result is a scalar of the same type as the element type of ``val``.
4043Its value is the value at position ``idx`` of ``val``. If ``idx``
4044exceeds the length of ``val``, the results are undefined.
4045
4046Example:
4047""""""""
4048
4049.. code-block:: llvm
4050
4051 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4052
4053.. _i_insertelement:
4054
4055'``insertelement``' Instruction
4056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4057
4058Syntax:
4059"""""""
4060
4061::
4062
4063 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4064
4065Overview:
4066"""""""""
4067
4068The '``insertelement``' instruction inserts a scalar element into a
4069vector at a specified index.
4070
4071Arguments:
4072""""""""""
4073
4074The first operand of an '``insertelement``' instruction is a value of
4075:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4076type must equal the element type of the first operand. The third operand
4077is an index indicating the position at which to insert the value. The
4078index may be a variable.
4079
4080Semantics:
4081""""""""""
4082
4083The result is a vector of the same type as ``val``. Its element values
4084are those of ``val`` except at position ``idx``, where it gets the value
4085``elt``. If ``idx`` exceeds the length of ``val``, the results are
4086undefined.
4087
4088Example:
4089""""""""
4090
4091.. code-block:: llvm
4092
4093 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4094
4095.. _i_shufflevector:
4096
4097'``shufflevector``' Instruction
4098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4099
4100Syntax:
4101"""""""
4102
4103::
4104
4105 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4106
4107Overview:
4108"""""""""
4109
4110The '``shufflevector``' instruction constructs a permutation of elements
4111from two input vectors, returning a vector with the same element type as
4112the input and length that is the same as the shuffle mask.
4113
4114Arguments:
4115""""""""""
4116
4117The first two operands of a '``shufflevector``' instruction are vectors
4118with the same type. The third argument is a shuffle mask whose element
4119type is always 'i32'. The result of the instruction is a vector whose
4120length is the same as the shuffle mask and whose element type is the
4121same as the element type of the first two operands.
4122
4123The shuffle mask operand is required to be a constant vector with either
4124constant integer or undef values.
4125
4126Semantics:
4127""""""""""
4128
4129The elements of the two input vectors are numbered from left to right
4130across both of the vectors. The shuffle mask operand specifies, for each
4131element of the result vector, which element of the two input vectors the
4132result element gets. The element selector may be undef (meaning "don't
4133care") and the second operand may be undef if performing a shuffle from
4134only one vector.
4135
4136Example:
4137""""""""
4138
4139.. code-block:: llvm
4140
4141 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4142 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4143 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4144 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4145 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4146 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4147 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4148 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4149
4150Aggregate Operations
4151--------------------
4152
4153LLVM supports several instructions for working with
4154:ref:`aggregate <t_aggregate>` values.
4155
4156.. _i_extractvalue:
4157
4158'``extractvalue``' Instruction
4159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4160
4161Syntax:
4162"""""""
4163
4164::
4165
4166 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4167
4168Overview:
4169"""""""""
4170
4171The '``extractvalue``' instruction extracts the value of a member field
4172from an :ref:`aggregate <t_aggregate>` value.
4173
4174Arguments:
4175""""""""""
4176
4177The first operand of an '``extractvalue``' instruction is a value of
4178:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4179constant indices to specify which value to extract in a similar manner
4180as indices in a '``getelementptr``' instruction.
4181
4182The major differences to ``getelementptr`` indexing are:
4183
4184- Since the value being indexed is not a pointer, the first index is
4185 omitted and assumed to be zero.
4186- At least one index must be specified.
4187- Not only struct indices but also array indices must be in bounds.
4188
4189Semantics:
4190""""""""""
4191
4192The result is the value at the position in the aggregate specified by
4193the index operands.
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4201
4202.. _i_insertvalue:
4203
4204'``insertvalue``' Instruction
4205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
4212 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4213
4214Overview:
4215"""""""""
4216
4217The '``insertvalue``' instruction inserts a value into a member field in
4218an :ref:`aggregate <t_aggregate>` value.
4219
4220Arguments:
4221""""""""""
4222
4223The first operand of an '``insertvalue``' instruction is a value of
4224:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4225a first-class value to insert. The following operands are constant
4226indices indicating the position at which to insert the value in a
4227similar manner as indices in a '``extractvalue``' instruction. The value
4228to insert must have the same type as the value identified by the
4229indices.
4230
4231Semantics:
4232""""""""""
4233
4234The result is an aggregate of the same type as ``val``. Its value is
4235that of ``val`` except that the value at the position specified by the
4236indices is that of ``elt``.
4237
4238Example:
4239""""""""
4240
4241.. code-block:: llvm
4242
4243 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4244 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4245 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4246
4247.. _memoryops:
4248
4249Memory Access and Addressing Operations
4250---------------------------------------
4251
4252A key design point of an SSA-based representation is how it represents
4253memory. In LLVM, no memory locations are in SSA form, which makes things
4254very simple. This section describes how to read, write, and allocate
4255memory in LLVM.
4256
4257.. _i_alloca:
4258
4259'``alloca``' Instruction
4260^^^^^^^^^^^^^^^^^^^^^^^^
4261
4262Syntax:
4263"""""""
4264
4265::
4266
4267 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4268
4269Overview:
4270"""""""""
4271
4272The '``alloca``' instruction allocates memory on the stack frame of the
4273currently executing function, to be automatically released when this
4274function returns to its caller. The object is always allocated in the
4275generic address space (address space zero).
4276
4277Arguments:
4278""""""""""
4279
4280The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4281bytes of memory on the runtime stack, returning a pointer of the
4282appropriate type to the program. If "NumElements" is specified, it is
4283the number of elements allocated, otherwise "NumElements" is defaulted
4284to be one. If a constant alignment is specified, the value result of the
4285allocation is guaranteed to be aligned to at least that boundary. If not
4286specified, or if zero, the target can choose to align the allocation on
4287any convenient boundary compatible with the type.
4288
4289'``type``' may be any sized type.
4290
4291Semantics:
4292""""""""""
4293
4294Memory is allocated; a pointer is returned. The operation is undefined
4295if there is insufficient stack space for the allocation. '``alloca``'d
4296memory is automatically released when the function returns. The
4297'``alloca``' instruction is commonly used to represent automatic
4298variables that must have an address available. When the function returns
4299(either with the ``ret`` or ``resume`` instructions), the memory is
4300reclaimed. Allocating zero bytes is legal, but the result is undefined.
4301The order in which memory is allocated (ie., which way the stack grows)
4302is not specified.
4303
4304Example:
4305""""""""
4306
4307.. code-block:: llvm
4308
4309 %ptr = alloca i32 ; yields {i32*}:ptr
4310 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4311 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4312 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4313
4314.. _i_load:
4315
4316'``load``' Instruction
4317^^^^^^^^^^^^^^^^^^^^^^
4318
4319Syntax:
4320"""""""
4321
4322::
4323
4324 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4325 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4326 !<index> = !{ i32 1 }
4327
4328Overview:
4329"""""""""
4330
4331The '``load``' instruction is used to read from memory.
4332
4333Arguments:
4334""""""""""
4335
4336The argument to the '``load``' instruction specifies the memory address
4337from which to load. The pointer must point to a :ref:`first
4338class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4339then the optimizer is not allowed to modify the number or order of
4340execution of this ``load`` with other :ref:`volatile
4341operations <volatile>`.
4342
4343If the ``load`` is marked as ``atomic``, it takes an extra
4344:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4345``release`` and ``acq_rel`` orderings are not valid on ``load``
4346instructions. Atomic loads produce :ref:`defined <memmodel>` results
4347when they may see multiple atomic stores. The type of the pointee must
4348be an integer type whose bit width is a power of two greater than or
4349equal to eight and less than or equal to a target-specific size limit.
4350``align`` must be explicitly specified on atomic loads, and the load has
4351undefined behavior if the alignment is not set to a value which is at
4352least the size in bytes of the pointee. ``!nontemporal`` does not have
4353any defined semantics for atomic loads.
4354
4355The optional constant ``align`` argument specifies the alignment of the
4356operation (that is, the alignment of the memory address). A value of 0
4357or an omitted ``align`` argument means that the operation has the abi
4358alignment for the target. It is the responsibility of the code emitter
4359to ensure that the alignment information is correct. Overestimating the
4360alignment results in undefined behavior. Underestimating the alignment
4361may produce less efficient code. An alignment of 1 is always safe.
4362
4363The optional ``!nontemporal`` metadata must reference a single
4364metatadata name <index> corresponding to a metadata node with one
4365``i32`` entry of value 1. The existence of the ``!nontemporal``
4366metatadata on the instruction tells the optimizer and code generator
4367that this load is not expected to be reused in the cache. The code
4368generator may select special instructions to save cache bandwidth, such
4369as the ``MOVNT`` instruction on x86.
4370
4371The optional ``!invariant.load`` metadata must reference a single
4372metatadata name <index> corresponding to a metadata node with no
4373entries. The existence of the ``!invariant.load`` metatadata on the
4374instruction tells the optimizer and code generator that this load
4375address points to memory which does not change value during program
4376execution. The optimizer may then move this load around, for example, by
4377hoisting it out of loops using loop invariant code motion.
4378
4379Semantics:
4380""""""""""
4381
4382The location of memory pointed to is loaded. If the value being loaded
4383is of scalar type then the number of bytes read does not exceed the
4384minimum number of bytes needed to hold all bits of the type. For
4385example, loading an ``i24`` reads at most three bytes. When loading a
4386value of a type like ``i20`` with a size that is not an integral number
4387of bytes, the result is undefined if the value was not originally
4388written using a store of the same type.
4389
4390Examples:
4391"""""""""
4392
4393.. code-block:: llvm
4394
4395 %ptr = alloca i32 ; yields {i32*}:ptr
4396 store i32 3, i32* %ptr ; yields {void}
4397 %val = load i32* %ptr ; yields {i32}:val = i32 3
4398
4399.. _i_store:
4400
4401'``store``' Instruction
4402^^^^^^^^^^^^^^^^^^^^^^^
4403
4404Syntax:
4405"""""""
4406
4407::
4408
4409 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4410 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4411
4412Overview:
4413"""""""""
4414
4415The '``store``' instruction is used to write to memory.
4416
4417Arguments:
4418""""""""""
4419
4420There are two arguments to the '``store``' instruction: a value to store
4421and an address at which to store it. The type of the '``<pointer>``'
4422operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4423the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4424then the optimizer is not allowed to modify the number or order of
4425execution of this ``store`` with other :ref:`volatile
4426operations <volatile>`.
4427
4428If the ``store`` is marked as ``atomic``, it takes an extra
4429:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4430``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4431instructions. Atomic loads produce :ref:`defined <memmodel>` results
4432when they may see multiple atomic stores. The type of the pointee must
4433be an integer type whose bit width is a power of two greater than or
4434equal to eight and less than or equal to a target-specific size limit.
4435``align`` must be explicitly specified on atomic stores, and the store
4436has undefined behavior if the alignment is not set to a value which is
4437at least the size in bytes of the pointee. ``!nontemporal`` does not
4438have any defined semantics for atomic stores.
4439
4440The optional constant "align" argument specifies the alignment of the
4441operation (that is, the alignment of the memory address). A value of 0
4442or an omitted "align" argument means that the operation has the abi
4443alignment for the target. It is the responsibility of the code emitter
4444to ensure that the alignment information is correct. Overestimating the
4445alignment results in an undefined behavior. Underestimating the
4446alignment may produce less efficient code. An alignment of 1 is always
4447safe.
4448
4449The optional !nontemporal metadata must reference a single metatadata
4450name <index> corresponding to a metadata node with one i32 entry of
4451value 1. The existence of the !nontemporal metatadata on the instruction
4452tells the optimizer and code generator that this load is not expected to
4453be reused in the cache. The code generator may select special
4454instructions to save cache bandwidth, such as the MOVNT instruction on
4455x86.
4456
4457Semantics:
4458""""""""""
4459
4460The contents of memory are updated to contain '``<value>``' at the
4461location specified by the '``<pointer>``' operand. If '``<value>``' is
4462of scalar type then the number of bytes written does not exceed the
4463minimum number of bytes needed to hold all bits of the type. For
4464example, storing an ``i24`` writes at most three bytes. When writing a
4465value of a type like ``i20`` with a size that is not an integral number
4466of bytes, it is unspecified what happens to the extra bits that do not
4467belong to the type, but they will typically be overwritten.
4468
4469Example:
4470""""""""
4471
4472.. code-block:: llvm
4473
4474 %ptr = alloca i32 ; yields {i32*}:ptr
4475 store i32 3, i32* %ptr ; yields {void}
4476 %val = load i32* %ptr ; yields {i32}:val = i32 3
4477
4478.. _i_fence:
4479
4480'``fence``' Instruction
4481^^^^^^^^^^^^^^^^^^^^^^^
4482
4483Syntax:
4484"""""""
4485
4486::
4487
4488 fence [singlethread] <ordering> ; yields {void}
4489
4490Overview:
4491"""""""""
4492
4493The '``fence``' instruction is used to introduce happens-before edges
4494between operations.
4495
4496Arguments:
4497""""""""""
4498
4499'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4500defines what *synchronizes-with* edges they add. They can only be given
4501``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4502
4503Semantics:
4504""""""""""
4505
4506A fence A which has (at least) ``release`` ordering semantics
4507*synchronizes with* a fence B with (at least) ``acquire`` ordering
4508semantics if and only if there exist atomic operations X and Y, both
4509operating on some atomic object M, such that A is sequenced before X, X
4510modifies M (either directly or through some side effect of a sequence
4511headed by X), Y is sequenced before B, and Y observes M. This provides a
4512*happens-before* dependency between A and B. Rather than an explicit
4513``fence``, one (but not both) of the atomic operations X or Y might
4514provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4515still *synchronize-with* the explicit ``fence`` and establish the
4516*happens-before* edge.
4517
4518A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4519``acquire`` and ``release`` semantics specified above, participates in
4520the global program order of other ``seq_cst`` operations and/or fences.
4521
4522The optional ":ref:`singlethread <singlethread>`" argument specifies
4523that the fence only synchronizes with other fences in the same thread.
4524(This is useful for interacting with signal handlers.)
4525
4526Example:
4527""""""""
4528
4529.. code-block:: llvm
4530
4531 fence acquire ; yields {void}
4532 fence singlethread seq_cst ; yields {void}
4533
4534.. _i_cmpxchg:
4535
4536'``cmpxchg``' Instruction
4537^^^^^^^^^^^^^^^^^^^^^^^^^
4538
4539Syntax:
4540"""""""
4541
4542::
4543
4544 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4545
4546Overview:
4547"""""""""
4548
4549The '``cmpxchg``' instruction is used to atomically modify memory. It
4550loads a value in memory and compares it to a given value. If they are
4551equal, it stores a new value into the memory.
4552
4553Arguments:
4554""""""""""
4555
4556There are three arguments to the '``cmpxchg``' instruction: an address
4557to operate on, a value to compare to the value currently be at that
4558address, and a new value to place at that address if the compared values
4559are equal. The type of '<cmp>' must be an integer type whose bit width
4560is a power of two greater than or equal to eight and less than or equal
4561to a target-specific size limit. '<cmp>' and '<new>' must have the same
4562type, and the type of '<pointer>' must be a pointer to that type. If the
4563``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4564to modify the number or order of execution of this ``cmpxchg`` with
4565other :ref:`volatile operations <volatile>`.
4566
4567The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4568synchronizes with other atomic operations.
4569
4570The optional "``singlethread``" argument declares that the ``cmpxchg``
4571is only atomic with respect to code (usually signal handlers) running in
4572the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4573respect to all other code in the system.
4574
4575The pointer passed into cmpxchg must have alignment greater than or
4576equal to the size in memory of the operand.
4577
4578Semantics:
4579""""""""""
4580
4581The contents of memory at the location specified by the '``<pointer>``'
4582operand is read and compared to '``<cmp>``'; if the read value is the
4583equal, '``<new>``' is written. The original value at the location is
4584returned.
4585
4586A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4587of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4588atomic load with an ordering parameter determined by dropping any
4589``release`` part of the ``cmpxchg``'s ordering.
4590
4591Example:
4592""""""""
4593
4594.. code-block:: llvm
4595
4596 entry:
4597 %orig = atomic load i32* %ptr unordered ; yields {i32}
4598 br label %loop
4599
4600 loop:
4601 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4602 %squared = mul i32 %cmp, %cmp
4603 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4604 %success = icmp eq i32 %cmp, %old
4605 br i1 %success, label %done, label %loop
4606
4607 done:
4608 ...
4609
4610.. _i_atomicrmw:
4611
4612'``atomicrmw``' Instruction
4613^^^^^^^^^^^^^^^^^^^^^^^^^^^
4614
4615Syntax:
4616"""""""
4617
4618::
4619
4620 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4621
4622Overview:
4623"""""""""
4624
4625The '``atomicrmw``' instruction is used to atomically modify memory.
4626
4627Arguments:
4628""""""""""
4629
4630There are three arguments to the '``atomicrmw``' instruction: an
4631operation to apply, an address whose value to modify, an argument to the
4632operation. The operation must be one of the following keywords:
4633
4634- xchg
4635- add
4636- sub
4637- and
4638- nand
4639- or
4640- xor
4641- max
4642- min
4643- umax
4644- umin
4645
4646The type of '<value>' must be an integer type whose bit width is a power
4647of two greater than or equal to eight and less than or equal to a
4648target-specific size limit. The type of the '``<pointer>``' operand must
4649be a pointer to that type. If the ``atomicrmw`` is marked as
4650``volatile``, then the optimizer is not allowed to modify the number or
4651order of execution of this ``atomicrmw`` with other :ref:`volatile
4652operations <volatile>`.
4653
4654Semantics:
4655""""""""""
4656
4657The contents of memory at the location specified by the '``<pointer>``'
4658operand are atomically read, modified, and written back. The original
4659value at the location is returned. The modification is specified by the
4660operation argument:
4661
4662- xchg: ``*ptr = val``
4663- add: ``*ptr = *ptr + val``
4664- sub: ``*ptr = *ptr - val``
4665- and: ``*ptr = *ptr & val``
4666- nand: ``*ptr = ~(*ptr & val)``
4667- or: ``*ptr = *ptr | val``
4668- xor: ``*ptr = *ptr ^ val``
4669- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4670- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4671- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4672 comparison)
4673- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4674 comparison)
4675
4676Example:
4677""""""""
4678
4679.. code-block:: llvm
4680
4681 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4682
4683.. _i_getelementptr:
4684
4685'``getelementptr``' Instruction
4686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4687
4688Syntax:
4689"""""""
4690
4691::
4692
4693 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4694 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4695 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4696
4697Overview:
4698"""""""""
4699
4700The '``getelementptr``' instruction is used to get the address of a
4701subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4702address calculation only and does not access memory.
4703
4704Arguments:
4705""""""""""
4706
4707The first argument is always a pointer or a vector of pointers, and
4708forms the basis of the calculation. The remaining arguments are indices
4709that indicate which of the elements of the aggregate object are indexed.
4710The interpretation of each index is dependent on the type being indexed
4711into. The first index always indexes the pointer value given as the
4712first argument, the second index indexes a value of the type pointed to
4713(not necessarily the value directly pointed to, since the first index
4714can be non-zero), etc. The first type indexed into must be a pointer
4715value, subsequent types can be arrays, vectors, and structs. Note that
4716subsequent types being indexed into can never be pointers, since that
4717would require loading the pointer before continuing calculation.
4718
4719The type of each index argument depends on the type it is indexing into.
4720When indexing into a (optionally packed) structure, only ``i32`` integer
4721**constants** are allowed (when using a vector of indices they must all
4722be the **same** ``i32`` integer constant). When indexing into an array,
4723pointer or vector, integers of any width are allowed, and they are not
4724required to be constant. These integers are treated as signed values
4725where relevant.
4726
4727For example, let's consider a C code fragment and how it gets compiled
4728to LLVM:
4729
4730.. code-block:: c
4731
4732 struct RT {
4733 char A;
4734 int B[10][20];
4735 char C;
4736 };
4737 struct ST {
4738 int X;
4739 double Y;
4740 struct RT Z;
4741 };
4742
4743 int *foo(struct ST *s) {
4744 return &s[1].Z.B[5][13];
4745 }
4746
4747The LLVM code generated by Clang is:
4748
4749.. code-block:: llvm
4750
4751 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4752 %struct.ST = type { i32, double, %struct.RT }
4753
4754 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4755 entry:
4756 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4757 ret i32* %arrayidx
4758 }
4759
4760Semantics:
4761""""""""""
4762
4763In the example above, the first index is indexing into the
4764'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4765= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4766indexes into the third element of the structure, yielding a
4767'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4768structure. The third index indexes into the second element of the
4769structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4770dimensions of the array are subscripted into, yielding an '``i32``'
4771type. The '``getelementptr``' instruction returns a pointer to this
4772element, thus computing a value of '``i32*``' type.
4773
4774Note that it is perfectly legal to index partially through a structure,
4775returning a pointer to an inner element. Because of this, the LLVM code
4776for the given testcase is equivalent to:
4777
4778.. code-block:: llvm
4779
4780 define i32* @foo(%struct.ST* %s) {
4781 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4782 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4783 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4784 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4785 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4786 ret i32* %t5
4787 }
4788
4789If the ``inbounds`` keyword is present, the result value of the
4790``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4791pointer is not an *in bounds* address of an allocated object, or if any
4792of the addresses that would be formed by successive addition of the
4793offsets implied by the indices to the base address with infinitely
4794precise signed arithmetic are not an *in bounds* address of that
4795allocated object. The *in bounds* addresses for an allocated object are
4796all the addresses that point into the object, plus the address one byte
4797past the end. In cases where the base is a vector of pointers the
4798``inbounds`` keyword applies to each of the computations element-wise.
4799
4800If the ``inbounds`` keyword is not present, the offsets are added to the
4801base address with silently-wrapping two's complement arithmetic. If the
4802offsets have a different width from the pointer, they are sign-extended
4803or truncated to the width of the pointer. The result value of the
4804``getelementptr`` may be outside the object pointed to by the base
4805pointer. The result value may not necessarily be used to access memory
4806though, even if it happens to point into allocated storage. See the
4807:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4808information.
4809
4810The getelementptr instruction is often confusing. For some more insight
4811into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4812
4813Example:
4814""""""""
4815
4816.. code-block:: llvm
4817
4818 ; yields [12 x i8]*:aptr
4819 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4820 ; yields i8*:vptr
4821 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4822 ; yields i8*:eptr
4823 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4824 ; yields i32*:iptr
4825 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4826
4827In cases where the pointer argument is a vector of pointers, each index
4828must be a vector with the same number of elements. For example:
4829
4830.. code-block:: llvm
4831
4832 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4833
4834Conversion Operations
4835---------------------
4836
4837The instructions in this category are the conversion instructions
4838(casting) which all take a single operand and a type. They perform
4839various bit conversions on the operand.
4840
4841'``trunc .. to``' Instruction
4842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4843
4844Syntax:
4845"""""""
4846
4847::
4848
4849 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4850
4851Overview:
4852"""""""""
4853
4854The '``trunc``' instruction truncates its operand to the type ``ty2``.
4855
4856Arguments:
4857""""""""""
4858
4859The '``trunc``' instruction takes a value to trunc, and a type to trunc
4860it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4861of the same number of integers. The bit size of the ``value`` must be
4862larger than the bit size of the destination type, ``ty2``. Equal sized
4863types are not allowed.
4864
4865Semantics:
4866""""""""""
4867
4868The '``trunc``' instruction truncates the high order bits in ``value``
4869and converts the remaining bits to ``ty2``. Since the source size must
4870be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4871It will always truncate bits.
4872
4873Example:
4874""""""""
4875
4876.. code-block:: llvm
4877
4878 %X = trunc i32 257 to i8 ; yields i8:1
4879 %Y = trunc i32 123 to i1 ; yields i1:true
4880 %Z = trunc i32 122 to i1 ; yields i1:false
4881 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4882
4883'``zext .. to``' Instruction
4884^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4885
4886Syntax:
4887"""""""
4888
4889::
4890
4891 <result> = zext <ty> <value> to <ty2> ; yields ty2
4892
4893Overview:
4894"""""""""
4895
4896The '``zext``' instruction zero extends its operand to type ``ty2``.
4897
4898Arguments:
4899""""""""""
4900
4901The '``zext``' instruction takes a value to cast, and a type to cast it
4902to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4903the same number of integers. The bit size of the ``value`` must be
4904smaller than the bit size of the destination type, ``ty2``.
4905
4906Semantics:
4907""""""""""
4908
4909The ``zext`` fills the high order bits of the ``value`` with zero bits
4910until it reaches the size of the destination type, ``ty2``.
4911
4912When zero extending from i1, the result will always be either 0 or 1.
4913
4914Example:
4915""""""""
4916
4917.. code-block:: llvm
4918
4919 %X = zext i32 257 to i64 ; yields i64:257
4920 %Y = zext i1 true to i32 ; yields i32:1
4921 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4922
4923'``sext .. to``' Instruction
4924^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4925
4926Syntax:
4927"""""""
4928
4929::
4930
4931 <result> = sext <ty> <value> to <ty2> ; yields ty2
4932
4933Overview:
4934"""""""""
4935
4936The '``sext``' sign extends ``value`` to the type ``ty2``.
4937
4938Arguments:
4939""""""""""
4940
4941The '``sext``' instruction takes a value to cast, and a type to cast it
4942to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4943the same number of integers. The bit size of the ``value`` must be
4944smaller than the bit size of the destination type, ``ty2``.
4945
4946Semantics:
4947""""""""""
4948
4949The '``sext``' instruction performs a sign extension by copying the sign
4950bit (highest order bit) of the ``value`` until it reaches the bit size
4951of the type ``ty2``.
4952
4953When sign extending from i1, the extension always results in -1 or 0.
4954
4955Example:
4956""""""""
4957
4958.. code-block:: llvm
4959
4960 %X = sext i8 -1 to i16 ; yields i16 :65535
4961 %Y = sext i1 true to i32 ; yields i32:-1
4962 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4963
4964'``fptrunc .. to``' Instruction
4965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4966
4967Syntax:
4968"""""""
4969
4970::
4971
4972 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4973
4974Overview:
4975"""""""""
4976
4977The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4978
4979Arguments:
4980""""""""""
4981
4982The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
4983value to cast and a :ref:`floating point <t_floating>` type to cast it to.
4984The size of ``value`` must be larger than the size of ``ty2``. This
4985implies that ``fptrunc`` cannot be used to make a *no-op cast*.
4986
4987Semantics:
4988""""""""""
4989
4990The '``fptrunc``' instruction truncates a ``value`` from a larger
4991:ref:`floating point <t_floating>` type to a smaller :ref:`floating
4992point <t_floating>` type. If the value cannot fit within the
4993destination type, ``ty2``, then the results are undefined.
4994
4995Example:
4996""""""""
4997
4998.. code-block:: llvm
4999
5000 %X = fptrunc double 123.0 to float ; yields float:123.0
5001 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5002
5003'``fpext .. to``' Instruction
5004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5005
5006Syntax:
5007"""""""
5008
5009::
5010
5011 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5012
5013Overview:
5014"""""""""
5015
5016The '``fpext``' extends a floating point ``value`` to a larger floating
5017point value.
5018
5019Arguments:
5020""""""""""
5021
5022The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5023``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5024to. The source type must be smaller than the destination type.
5025
5026Semantics:
5027""""""""""
5028
5029The '``fpext``' instruction extends the ``value`` from a smaller
5030:ref:`floating point <t_floating>` type to a larger :ref:`floating
5031point <t_floating>` type. The ``fpext`` cannot be used to make a
5032*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5033*no-op cast* for a floating point cast.
5034
5035Example:
5036""""""""
5037
5038.. code-block:: llvm
5039
5040 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5041 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5042
5043'``fptoui .. to``' Instruction
5044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5045
5046Syntax:
5047"""""""
5048
5049::
5050
5051 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5052
5053Overview:
5054"""""""""
5055
5056The '``fptoui``' converts a floating point ``value`` to its unsigned
5057integer equivalent of type ``ty2``.
5058
5059Arguments:
5060""""""""""
5061
5062The '``fptoui``' instruction takes a value to cast, which must be a
5063scalar or vector :ref:`floating point <t_floating>` value, and a type to
5064cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5065``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5066type with the same number of elements as ``ty``
5067
5068Semantics:
5069""""""""""
5070
5071The '``fptoui``' instruction converts its :ref:`floating
5072point <t_floating>` operand into the nearest (rounding towards zero)
5073unsigned integer value. If the value cannot fit in ``ty2``, the results
5074are undefined.
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081 %X = fptoui double 123.0 to i32 ; yields i32:123
5082 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5083 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5084
5085'``fptosi .. to``' Instruction
5086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5087
5088Syntax:
5089"""""""
5090
5091::
5092
5093 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5094
5095Overview:
5096"""""""""
5097
5098The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5099``value`` to type ``ty2``.
5100
5101Arguments:
5102""""""""""
5103
5104The '``fptosi``' instruction takes a value to cast, which must be a
5105scalar or vector :ref:`floating point <t_floating>` value, and a type to
5106cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5107``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5108type with the same number of elements as ``ty``
5109
5110Semantics:
5111""""""""""
5112
5113The '``fptosi``' instruction converts its :ref:`floating
5114point <t_floating>` operand into the nearest (rounding towards zero)
5115signed integer value. If the value cannot fit in ``ty2``, the results
5116are undefined.
5117
5118Example:
5119""""""""
5120
5121.. code-block:: llvm
5122
5123 %X = fptosi double -123.0 to i32 ; yields i32:-123
5124 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5125 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5126
5127'``uitofp .. to``' Instruction
5128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5129
5130Syntax:
5131"""""""
5132
5133::
5134
5135 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5136
5137Overview:
5138"""""""""
5139
5140The '``uitofp``' instruction regards ``value`` as an unsigned integer
5141and converts that value to the ``ty2`` type.
5142
5143Arguments:
5144""""""""""
5145
5146The '``uitofp``' instruction takes a value to cast, which must be a
5147scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5148``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5149``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5150type with the same number of elements as ``ty``
5151
5152Semantics:
5153""""""""""
5154
5155The '``uitofp``' instruction interprets its operand as an unsigned
5156integer quantity and converts it to the corresponding floating point
5157value. If the value cannot fit in the floating point value, the results
5158are undefined.
5159
5160Example:
5161""""""""
5162
5163.. code-block:: llvm
5164
5165 %X = uitofp i32 257 to float ; yields float:257.0
5166 %Y = uitofp i8 -1 to double ; yields double:255.0
5167
5168'``sitofp .. to``' Instruction
5169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5170
5171Syntax:
5172"""""""
5173
5174::
5175
5176 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5177
5178Overview:
5179"""""""""
5180
5181The '``sitofp``' instruction regards ``value`` as a signed integer and
5182converts that value to the ``ty2`` type.
5183
5184Arguments:
5185""""""""""
5186
5187The '``sitofp``' instruction takes a value to cast, which must be a
5188scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5189``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5190``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5191type with the same number of elements as ``ty``
5192
5193Semantics:
5194""""""""""
5195
5196The '``sitofp``' instruction interprets its operand as a signed integer
5197quantity and converts it to the corresponding floating point value. If
5198the value cannot fit in the floating point value, the results are
5199undefined.
5200
5201Example:
5202""""""""
5203
5204.. code-block:: llvm
5205
5206 %X = sitofp i32 257 to float ; yields float:257.0
5207 %Y = sitofp i8 -1 to double ; yields double:-1.0
5208
5209.. _i_ptrtoint:
5210
5211'``ptrtoint .. to``' Instruction
5212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5213
5214Syntax:
5215"""""""
5216
5217::
5218
5219 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5220
5221Overview:
5222"""""""""
5223
5224The '``ptrtoint``' instruction converts the pointer or a vector of
5225pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5226
5227Arguments:
5228""""""""""
5229
5230The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5231a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5232type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5233a vector of integers type.
5234
5235Semantics:
5236""""""""""
5237
5238The '``ptrtoint``' instruction converts ``value`` to integer type
5239``ty2`` by interpreting the pointer value as an integer and either
5240truncating or zero extending that value to the size of the integer type.
5241If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5242``value`` is larger than ``ty2`` then a truncation is done. If they are
5243the same size, then nothing is done (*no-op cast*) other than a type
5244change.
5245
5246Example:
5247""""""""
5248
5249.. code-block:: llvm
5250
5251 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5252 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5253 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5254
5255.. _i_inttoptr:
5256
5257'``inttoptr .. to``' Instruction
5258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5259
5260Syntax:
5261"""""""
5262
5263::
5264
5265 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5266
5267Overview:
5268"""""""""
5269
5270The '``inttoptr``' instruction converts an integer ``value`` to a
5271pointer type, ``ty2``.
5272
5273Arguments:
5274""""""""""
5275
5276The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5277cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5278type.
5279
5280Semantics:
5281""""""""""
5282
5283The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5284applying either a zero extension or a truncation depending on the size
5285of the integer ``value``. If ``value`` is larger than the size of a
5286pointer then a truncation is done. If ``value`` is smaller than the size
5287of a pointer then a zero extension is done. If they are the same size,
5288nothing is done (*no-op cast*).
5289
5290Example:
5291""""""""
5292
5293.. code-block:: llvm
5294
5295 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5296 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5297 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5298 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5299
5300.. _i_bitcast:
5301
5302'``bitcast .. to``' Instruction
5303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5304
5305Syntax:
5306"""""""
5307
5308::
5309
5310 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5311
5312Overview:
5313"""""""""
5314
5315The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5316changing any bits.
5317
5318Arguments:
5319""""""""""
5320
5321The '``bitcast``' instruction takes a value to cast, which must be a
5322non-aggregate first class value, and a type to cast it to, which must
5323also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5324sizes of ``value`` and the destination type, ``ty2``, must be identical.
5325If the source type is a pointer, the destination type must also be a
5326pointer. This instruction supports bitwise conversion of vectors to
5327integers and to vectors of other types (as long as they have the same
5328size).
5329
5330Semantics:
5331""""""""""
5332
5333The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5334always a *no-op cast* because no bits change with this conversion. The
5335conversion is done as if the ``value`` had been stored to memory and
5336read back as type ``ty2``. Pointer (or vector of pointers) types may
5337only be converted to other pointer (or vector of pointers) types with
5338this instruction. To convert pointers to other types, use the
5339:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5340first.
5341
5342Example:
5343""""""""
5344
5345.. code-block:: llvm
5346
5347 %X = bitcast i8 255 to i8 ; yields i8 :-1
5348 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5349 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5350 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5351
5352.. _otherops:
5353
5354Other Operations
5355----------------
5356
5357The instructions in this category are the "miscellaneous" instructions,
5358which defy better classification.
5359
5360.. _i_icmp:
5361
5362'``icmp``' Instruction
5363^^^^^^^^^^^^^^^^^^^^^^
5364
5365Syntax:
5366"""""""
5367
5368::
5369
5370 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5371
5372Overview:
5373"""""""""
5374
5375The '``icmp``' instruction returns a boolean value or a vector of
5376boolean values based on comparison of its two integer, integer vector,
5377pointer, or pointer vector operands.
5378
5379Arguments:
5380""""""""""
5381
5382The '``icmp``' instruction takes three operands. The first operand is
5383the condition code indicating the kind of comparison to perform. It is
5384not a value, just a keyword. The possible condition code are:
5385
5386#. ``eq``: equal
5387#. ``ne``: not equal
5388#. ``ugt``: unsigned greater than
5389#. ``uge``: unsigned greater or equal
5390#. ``ult``: unsigned less than
5391#. ``ule``: unsigned less or equal
5392#. ``sgt``: signed greater than
5393#. ``sge``: signed greater or equal
5394#. ``slt``: signed less than
5395#. ``sle``: signed less or equal
5396
5397The remaining two arguments must be :ref:`integer <t_integer>` or
5398:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5399must also be identical types.
5400
5401Semantics:
5402""""""""""
5403
5404The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5405code given as ``cond``. The comparison performed always yields either an
5406:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5407
5408#. ``eq``: yields ``true`` if the operands are equal, ``false``
5409 otherwise. No sign interpretation is necessary or performed.
5410#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5411 otherwise. No sign interpretation is necessary or performed.
5412#. ``ugt``: interprets the operands as unsigned values and yields
5413 ``true`` if ``op1`` is greater than ``op2``.
5414#. ``uge``: interprets the operands as unsigned values and yields
5415 ``true`` if ``op1`` is greater than or equal to ``op2``.
5416#. ``ult``: interprets the operands as unsigned values and yields
5417 ``true`` if ``op1`` is less than ``op2``.
5418#. ``ule``: interprets the operands as unsigned values and yields
5419 ``true`` if ``op1`` is less than or equal to ``op2``.
5420#. ``sgt``: interprets the operands as signed values and yields ``true``
5421 if ``op1`` is greater than ``op2``.
5422#. ``sge``: interprets the operands as signed values and yields ``true``
5423 if ``op1`` is greater than or equal to ``op2``.
5424#. ``slt``: interprets the operands as signed values and yields ``true``
5425 if ``op1`` is less than ``op2``.
5426#. ``sle``: interprets the operands as signed values and yields ``true``
5427 if ``op1`` is less than or equal to ``op2``.
5428
5429If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5430are compared as if they were integers.
5431
5432If the operands are integer vectors, then they are compared element by
5433element. The result is an ``i1`` vector with the same number of elements
5434as the values being compared. Otherwise, the result is an ``i1``.
5435
5436Example:
5437""""""""
5438
5439.. code-block:: llvm
5440
5441 <result> = icmp eq i32 4, 5 ; yields: result=false
5442 <result> = icmp ne float* %X, %X ; yields: result=false
5443 <result> = icmp ult i16 4, 5 ; yields: result=true
5444 <result> = icmp sgt i16 4, 5 ; yields: result=false
5445 <result> = icmp ule i16 -4, 5 ; yields: result=false
5446 <result> = icmp sge i16 4, 5 ; yields: result=false
5447
5448Note that the code generator does not yet support vector types with the
5449``icmp`` instruction.
5450
5451.. _i_fcmp:
5452
5453'``fcmp``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5462
5463Overview:
5464"""""""""
5465
5466The '``fcmp``' instruction returns a boolean value or vector of boolean
5467values based on comparison of its operands.
5468
5469If the operands are floating point scalars, then the result type is a
5470boolean (:ref:`i1 <t_integer>`).
5471
5472If the operands are floating point vectors, then the result type is a
5473vector of boolean with the same number of elements as the operands being
5474compared.
5475
5476Arguments:
5477""""""""""
5478
5479The '``fcmp``' instruction takes three operands. The first operand is
5480the condition code indicating the kind of comparison to perform. It is
5481not a value, just a keyword. The possible condition code are:
5482
5483#. ``false``: no comparison, always returns false
5484#. ``oeq``: ordered and equal
5485#. ``ogt``: ordered and greater than
5486#. ``oge``: ordered and greater than or equal
5487#. ``olt``: ordered and less than
5488#. ``ole``: ordered and less than or equal
5489#. ``one``: ordered and not equal
5490#. ``ord``: ordered (no nans)
5491#. ``ueq``: unordered or equal
5492#. ``ugt``: unordered or greater than
5493#. ``uge``: unordered or greater than or equal
5494#. ``ult``: unordered or less than
5495#. ``ule``: unordered or less than or equal
5496#. ``une``: unordered or not equal
5497#. ``uno``: unordered (either nans)
5498#. ``true``: no comparison, always returns true
5499
5500*Ordered* means that neither operand is a QNAN while *unordered* means
5501that either operand may be a QNAN.
5502
5503Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5504point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5505type. They must have identical types.
5506
5507Semantics:
5508""""""""""
5509
5510The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5511condition code given as ``cond``. If the operands are vectors, then the
5512vectors are compared element by element. Each comparison performed
5513always yields an :ref:`i1 <t_integer>` result, as follows:
5514
5515#. ``false``: always yields ``false``, regardless of operands.
5516#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5517 is equal to ``op2``.
5518#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5519 is greater than ``op2``.
5520#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5521 is greater than or equal to ``op2``.
5522#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5523 is less than ``op2``.
5524#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5525 is less than or equal to ``op2``.
5526#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5527 is not equal to ``op2``.
5528#. ``ord``: yields ``true`` if both operands are not a QNAN.
5529#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5530 equal to ``op2``.
5531#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5532 greater than ``op2``.
5533#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5534 greater than or equal to ``op2``.
5535#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5536 less than ``op2``.
5537#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5538 less than or equal to ``op2``.
5539#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5540 not equal to ``op2``.
5541#. ``uno``: yields ``true`` if either operand is a QNAN.
5542#. ``true``: always yields ``true``, regardless of operands.
5543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
5549 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5550 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5551 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5552 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5553
5554Note that the code generator does not yet support vector types with the
5555``fcmp`` instruction.
5556
5557.. _i_phi:
5558
5559'``phi``' Instruction
5560^^^^^^^^^^^^^^^^^^^^^
5561
5562Syntax:
5563"""""""
5564
5565::
5566
5567 <result> = phi <ty> [ <val0>, <label0>], ...
5568
5569Overview:
5570"""""""""
5571
5572The '``phi``' instruction is used to implement the φ node in the SSA
5573graph representing the function.
5574
5575Arguments:
5576""""""""""
5577
5578The type of the incoming values is specified with the first type field.
5579After this, the '``phi``' instruction takes a list of pairs as
5580arguments, with one pair for each predecessor basic block of the current
5581block. Only values of :ref:`first class <t_firstclass>` type may be used as
5582the value arguments to the PHI node. Only labels may be used as the
5583label arguments.
5584
5585There must be no non-phi instructions between the start of a basic block
5586and the PHI instructions: i.e. PHI instructions must be first in a basic
5587block.
5588
5589For the purposes of the SSA form, the use of each incoming value is
5590deemed to occur on the edge from the corresponding predecessor block to
5591the current block (but after any definition of an '``invoke``'
5592instruction's return value on the same edge).
5593
5594Semantics:
5595""""""""""
5596
5597At runtime, the '``phi``' instruction logically takes on the value
5598specified by the pair corresponding to the predecessor basic block that
5599executed just prior to the current block.
5600
5601Example:
5602""""""""
5603
5604.. code-block:: llvm
5605
5606 Loop: ; Infinite loop that counts from 0 on up...
5607 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5608 %nextindvar = add i32 %indvar, 1
5609 br label %Loop
5610
5611.. _i_select:
5612
5613'``select``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
5621 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5622
5623 selty is either i1 or {<N x i1>}
5624
5625Overview:
5626"""""""""
5627
5628The '``select``' instruction is used to choose one value based on a
5629condition, without branching.
5630
5631Arguments:
5632""""""""""
5633
5634The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5635values indicating the condition, and two values of the same :ref:`first
5636class <t_firstclass>` type. If the val1/val2 are vectors and the
5637condition is a scalar, then entire vectors are selected, not individual
5638elements.
5639
5640Semantics:
5641""""""""""
5642
5643If the condition is an i1 and it evaluates to 1, the instruction returns
5644the first value argument; otherwise, it returns the second value
5645argument.
5646
5647If the condition is a vector of i1, then the value arguments must be
5648vectors of the same size, and the selection is done element by element.
5649
5650Example:
5651""""""""
5652
5653.. code-block:: llvm
5654
5655 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5656
5657.. _i_call:
5658
5659'``call``' Instruction
5660^^^^^^^^^^^^^^^^^^^^^^
5661
5662Syntax:
5663"""""""
5664
5665::
5666
5667 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5668
5669Overview:
5670"""""""""
5671
5672The '``call``' instruction represents a simple function call.
5673
5674Arguments:
5675""""""""""
5676
5677This instruction requires several arguments:
5678
5679#. The optional "tail" marker indicates that the callee function does
5680 not access any allocas or varargs in the caller. Note that calls may
5681 be marked "tail" even if they do not occur before a
5682 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5683 function call is eligible for tail call optimization, but `might not
5684 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5685 The code generator may optimize calls marked "tail" with either 1)
5686 automatic `sibling call
5687 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5688 callee have matching signatures, or 2) forced tail call optimization
5689 when the following extra requirements are met:
5690
5691 - Caller and callee both have the calling convention ``fastcc``.
5692 - The call is in tail position (ret immediately follows call and ret
5693 uses value of call or is void).
5694 - Option ``-tailcallopt`` is enabled, or
5695 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5696 - `Platform specific constraints are
5697 met. <CodeGenerator.html#tailcallopt>`_
5698
5699#. The optional "cconv" marker indicates which :ref:`calling
5700 convention <callingconv>` the call should use. If none is
5701 specified, the call defaults to using C calling conventions. The
5702 calling convention of the call must match the calling convention of
5703 the target function, or else the behavior is undefined.
5704#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5705 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5706 are valid here.
5707#. '``ty``': the type of the call instruction itself which is also the
5708 type of the return value. Functions that return no value are marked
5709 ``void``.
5710#. '``fnty``': shall be the signature of the pointer to function value
5711 being invoked. The argument types must match the types implied by
5712 this signature. This type can be omitted if the function is not
5713 varargs and if the function type does not return a pointer to a
5714 function.
5715#. '``fnptrval``': An LLVM value containing a pointer to a function to
5716 be invoked. In most cases, this is a direct function invocation, but
5717 indirect ``call``'s are just as possible, calling an arbitrary pointer
5718 to function value.
5719#. '``function args``': argument list whose types match the function
5720 signature argument types and parameter attributes. All arguments must
5721 be of :ref:`first class <t_firstclass>` type. If the function signature
5722 indicates the function accepts a variable number of arguments, the
5723 extra arguments can be specified.
5724#. The optional :ref:`function attributes <fnattrs>` list. Only
5725 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5726 attributes are valid here.
5727
5728Semantics:
5729""""""""""
5730
5731The '``call``' instruction is used to cause control flow to transfer to
5732a specified function, with its incoming arguments bound to the specified
5733values. Upon a '``ret``' instruction in the called function, control
5734flow continues with the instruction after the function call, and the
5735return value of the function is bound to the result argument.
5736
5737Example:
5738""""""""
5739
5740.. code-block:: llvm
5741
5742 %retval = call i32 @test(i32 %argc)
5743 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5744 %X = tail call i32 @foo() ; yields i32
5745 %Y = tail call fastcc i32 @foo() ; yields i32
5746 call void %foo(i8 97 signext)
5747
5748 %struct.A = type { i32, i8 }
5749 %r = call %struct.A @foo() ; yields { 32, i8 }
5750 %gr = extractvalue %struct.A %r, 0 ; yields i32
5751 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5752 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5753 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5754
5755llvm treats calls to some functions with names and arguments that match
5756the standard C99 library as being the C99 library functions, and may
5757perform optimizations or generate code for them under that assumption.
5758This is something we'd like to change in the future to provide better
5759support for freestanding environments and non-C-based languages.
5760
5761.. _i_va_arg:
5762
5763'``va_arg``' Instruction
5764^^^^^^^^^^^^^^^^^^^^^^^^
5765
5766Syntax:
5767"""""""
5768
5769::
5770
5771 <resultval> = va_arg <va_list*> <arglist>, <argty>
5772
5773Overview:
5774"""""""""
5775
5776The '``va_arg``' instruction is used to access arguments passed through
5777the "variable argument" area of a function call. It is used to implement
5778the ``va_arg`` macro in C.
5779
5780Arguments:
5781""""""""""
5782
5783This instruction takes a ``va_list*`` value and the type of the
5784argument. It returns a value of the specified argument type and
5785increments the ``va_list`` to point to the next argument. The actual
5786type of ``va_list`` is target specific.
5787
5788Semantics:
5789""""""""""
5790
5791The '``va_arg``' instruction loads an argument of the specified type
5792from the specified ``va_list`` and causes the ``va_list`` to point to
5793the next argument. For more information, see the variable argument
5794handling :ref:`Intrinsic Functions <int_varargs>`.
5795
5796It is legal for this instruction to be called in a function which does
5797not take a variable number of arguments, for example, the ``vfprintf``
5798function.
5799
5800``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5801function <intrinsics>` because it takes a type as an argument.
5802
5803Example:
5804""""""""
5805
5806See the :ref:`variable argument processing <int_varargs>` section.
5807
5808Note that the code generator does not yet fully support va\_arg on many
5809targets. Also, it does not currently support va\_arg with aggregate
5810types on any target.
5811
5812.. _i_landingpad:
5813
5814'``landingpad``' Instruction
5815^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5816
5817Syntax:
5818"""""""
5819
5820::
5821
5822 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5823 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5824
5825 <clause> := catch <type> <value>
5826 <clause> := filter <array constant type> <array constant>
5827
5828Overview:
5829"""""""""
5830
5831The '``landingpad``' instruction is used by `LLVM's exception handling
5832system <ExceptionHandling.html#overview>`_ to specify that a basic block
5833is a landing pad — one where the exception lands, and corresponds to the
5834code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5835defines values supplied by the personality function (``pers_fn``) upon
5836re-entry to the function. The ``resultval`` has the type ``resultty``.
5837
5838Arguments:
5839""""""""""
5840
5841This instruction takes a ``pers_fn`` value. This is the personality
5842function associated with the unwinding mechanism. The optional
5843``cleanup`` flag indicates that the landing pad block is a cleanup.
5844
5845A ``clause`` begins with the clause type — ``catch`` or ``filter`` — and
5846contains the global variable representing the "type" that may be caught
5847or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5848clause takes an array constant as its argument. Use
5849"``[0 x i8**] undef``" for a filter which cannot throw. The
5850'``landingpad``' instruction must contain *at least* one ``clause`` or
5851the ``cleanup`` flag.
5852
5853Semantics:
5854""""""""""
5855
5856The '``landingpad``' instruction defines the values which are set by the
5857personality function (``pers_fn``) upon re-entry to the function, and
5858therefore the "result type" of the ``landingpad`` instruction. As with
5859calling conventions, how the personality function results are
5860represented in LLVM IR is target specific.
5861
5862The clauses are applied in order from top to bottom. If two
5863``landingpad`` instructions are merged together through inlining, the
5864clauses from the calling function are appended to the list of clauses.
5865When the call stack is being unwound due to an exception being thrown,
5866the exception is compared against each ``clause`` in turn. If it doesn't
5867match any of the clauses, and the ``cleanup`` flag is not set, then
5868unwinding continues further up the call stack.
5869
5870The ``landingpad`` instruction has several restrictions:
5871
5872- A landing pad block is a basic block which is the unwind destination
5873 of an '``invoke``' instruction.
5874- A landing pad block must have a '``landingpad``' instruction as its
5875 first non-PHI instruction.
5876- There can be only one '``landingpad``' instruction within the landing
5877 pad block.
5878- A basic block that is not a landing pad block may not include a
5879 '``landingpad``' instruction.
5880- All '``landingpad``' instructions in a function must have the same
5881 personality function.
5882
5883Example:
5884""""""""
5885
5886.. code-block:: llvm
5887
5888 ;; A landing pad which can catch an integer.
5889 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5890 catch i8** @_ZTIi
5891 ;; A landing pad that is a cleanup.
5892 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5893 cleanup
5894 ;; A landing pad which can catch an integer and can only throw a double.
5895 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5896 catch i8** @_ZTIi
5897 filter [1 x i8**] [@_ZTId]
5898
5899.. _intrinsics:
5900
5901Intrinsic Functions
5902===================
5903
5904LLVM supports the notion of an "intrinsic function". These functions
5905have well known names and semantics and are required to follow certain
5906restrictions. Overall, these intrinsics represent an extension mechanism
5907for the LLVM language that does not require changing all of the
5908transformations in LLVM when adding to the language (or the bitcode
5909reader/writer, the parser, etc...).
5910
5911Intrinsic function names must all start with an "``llvm.``" prefix. This
5912prefix is reserved in LLVM for intrinsic names; thus, function names may
5913not begin with this prefix. Intrinsic functions must always be external
5914functions: you cannot define the body of intrinsic functions. Intrinsic
5915functions may only be used in call or invoke instructions: it is illegal
5916to take the address of an intrinsic function. Additionally, because
5917intrinsic functions are part of the LLVM language, it is required if any
5918are added that they be documented here.
5919
5920Some intrinsic functions can be overloaded, i.e., the intrinsic
5921represents a family of functions that perform the same operation but on
5922different data types. Because LLVM can represent over 8 million
5923different integer types, overloading is used commonly to allow an
5924intrinsic function to operate on any integer type. One or more of the
5925argument types or the result type can be overloaded to accept any
5926integer type. Argument types may also be defined as exactly matching a
5927previous argument's type or the result type. This allows an intrinsic
5928function which accepts multiple arguments, but needs all of them to be
5929of the same type, to only be overloaded with respect to a single
5930argument or the result.
5931
5932Overloaded intrinsics will have the names of its overloaded argument
5933types encoded into its function name, each preceded by a period. Only
5934those types which are overloaded result in a name suffix. Arguments
5935whose type is matched against another type do not. For example, the
5936``llvm.ctpop`` function can take an integer of any width and returns an
5937integer of exactly the same integer width. This leads to a family of
5938functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5939``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5940overloaded, and only one type suffix is required. Because the argument's
5941type is matched against the return type, it does not require its own
5942name suffix.
5943
5944To learn how to add an intrinsic function, please see the `Extending
5945LLVM Guide <ExtendingLLVM.html>`_.
5946
5947.. _int_varargs:
5948
5949Variable Argument Handling Intrinsics
5950-------------------------------------
5951
5952Variable argument support is defined in LLVM with the
5953:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5954functions. These functions are related to the similarly named macros
5955defined in the ``<stdarg.h>`` header file.
5956
5957All of these functions operate on arguments that use a target-specific
5958value type "``va_list``". The LLVM assembly language reference manual
5959does not define what this type is, so all transformations should be
5960prepared to handle these functions regardless of the type used.
5961
5962This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5963variable argument handling intrinsic functions are used.
5964
5965.. code-block:: llvm
5966
5967 define i32 @test(i32 %X, ...) {
5968 ; Initialize variable argument processing
5969 %ap = alloca i8*
5970 %ap2 = bitcast i8** %ap to i8*
5971 call void @llvm.va_start(i8* %ap2)
5972
5973 ; Read a single integer argument
5974 %tmp = va_arg i8** %ap, i32
5975
5976 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5977 %aq = alloca i8*
5978 %aq2 = bitcast i8** %aq to i8*
5979 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5980 call void @llvm.va_end(i8* %aq2)
5981
5982 ; Stop processing of arguments.
5983 call void @llvm.va_end(i8* %ap2)
5984 ret i32 %tmp
5985 }
5986
5987 declare void @llvm.va_start(i8*)
5988 declare void @llvm.va_copy(i8*, i8*)
5989 declare void @llvm.va_end(i8*)
5990
5991.. _int_va_start:
5992
5993'``llvm.va_start``' Intrinsic
5994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5995
5996Syntax:
5997"""""""
5998
5999::
6000
6001 declare void %llvm.va_start(i8* <arglist>)
6002
6003Overview:
6004"""""""""
6005
6006The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6007subsequent use by ``va_arg``.
6008
6009Arguments:
6010""""""""""
6011
6012The argument is a pointer to a ``va_list`` element to initialize.
6013
6014Semantics:
6015""""""""""
6016
6017The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6018available in C. In a target-dependent way, it initializes the
6019``va_list`` element to which the argument points, so that the next call
6020to ``va_arg`` will produce the first variable argument passed to the
6021function. Unlike the C ``va_start`` macro, this intrinsic does not need
6022to know the last argument of the function as the compiler can figure
6023that out.
6024
6025'``llvm.va_end``' Intrinsic
6026^^^^^^^^^^^^^^^^^^^^^^^^^^^
6027
6028Syntax:
6029"""""""
6030
6031::
6032
6033 declare void @llvm.va_end(i8* <arglist>)
6034
6035Overview:
6036"""""""""
6037
6038The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6039initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6040
6041Arguments:
6042""""""""""
6043
6044The argument is a pointer to a ``va_list`` to destroy.
6045
6046Semantics:
6047""""""""""
6048
6049The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6050available in C. In a target-dependent way, it destroys the ``va_list``
6051element to which the argument points. Calls to
6052:ref:`llvm.va_start <int_va_start>` and
6053:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6054``llvm.va_end``.
6055
6056.. _int_va_copy:
6057
6058'``llvm.va_copy``' Intrinsic
6059^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6060
6061Syntax:
6062"""""""
6063
6064::
6065
6066 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6067
6068Overview:
6069"""""""""
6070
6071The '``llvm.va_copy``' intrinsic copies the current argument position
6072from the source argument list to the destination argument list.
6073
6074Arguments:
6075""""""""""
6076
6077The first argument is a pointer to a ``va_list`` element to initialize.
6078The second argument is a pointer to a ``va_list`` element to copy from.
6079
6080Semantics:
6081""""""""""
6082
6083The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6084available in C. In a target-dependent way, it copies the source
6085``va_list`` element into the destination ``va_list`` element. This
6086intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6087arbitrarily complex and require, for example, memory allocation.
6088
6089Accurate Garbage Collection Intrinsics
6090--------------------------------------
6091
6092LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6093(GC) requires the implementation and generation of these intrinsics.
6094These intrinsics allow identification of :ref:`GC roots on the
6095stack <int_gcroot>`, as well as garbage collector implementations that
6096require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6097Front-ends for type-safe garbage collected languages should generate
6098these intrinsics to make use of the LLVM garbage collectors. For more
6099details, see `Accurate Garbage Collection with
6100LLVM <GarbageCollection.html>`_.
6101
6102The garbage collection intrinsics only operate on objects in the generic
6103address space (address space zero).
6104
6105.. _int_gcroot:
6106
6107'``llvm.gcroot``' Intrinsic
6108^^^^^^^^^^^^^^^^^^^^^^^^^^^
6109
6110Syntax:
6111"""""""
6112
6113::
6114
6115 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6116
6117Overview:
6118"""""""""
6119
6120The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6121the code generator, and allows some metadata to be associated with it.
6122
6123Arguments:
6124""""""""""
6125
6126The first argument specifies the address of a stack object that contains
6127the root pointer. The second pointer (which must be either a constant or
6128a global value address) contains the meta-data to be associated with the
6129root.
6130
6131Semantics:
6132""""""""""
6133
6134At runtime, a call to this intrinsic stores a null pointer into the
6135"ptrloc" location. At compile-time, the code generator generates
6136information to allow the runtime to find the pointer at GC safe points.
6137The '``llvm.gcroot``' intrinsic may only be used in a function which
6138:ref:`specifies a GC algorithm <gc>`.
6139
6140.. _int_gcread:
6141
6142'``llvm.gcread``' Intrinsic
6143^^^^^^^^^^^^^^^^^^^^^^^^^^^
6144
6145Syntax:
6146"""""""
6147
6148::
6149
6150 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6151
6152Overview:
6153"""""""""
6154
6155The '``llvm.gcread``' intrinsic identifies reads of references from heap
6156locations, allowing garbage collector implementations that require read
6157barriers.
6158
6159Arguments:
6160""""""""""
6161
6162The second argument is the address to read from, which should be an
6163address allocated from the garbage collector. The first object is a
6164pointer to the start of the referenced object, if needed by the language
6165runtime (otherwise null).
6166
6167Semantics:
6168""""""""""
6169
6170The '``llvm.gcread``' intrinsic has the same semantics as a load
6171instruction, but may be replaced with substantially more complex code by
6172the garbage collector runtime, as needed. The '``llvm.gcread``'
6173intrinsic may only be used in a function which :ref:`specifies a GC
6174algorithm <gc>`.
6175
6176.. _int_gcwrite:
6177
6178'``llvm.gcwrite``' Intrinsic
6179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6180
6181Syntax:
6182"""""""
6183
6184::
6185
6186 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6187
6188Overview:
6189"""""""""
6190
6191The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6192locations, allowing garbage collector implementations that require write
6193barriers (such as generational or reference counting collectors).
6194
6195Arguments:
6196""""""""""
6197
6198The first argument is the reference to store, the second is the start of
6199the object to store it to, and the third is the address of the field of
6200Obj to store to. If the runtime does not require a pointer to the
6201object, Obj may be null.
6202
6203Semantics:
6204""""""""""
6205
6206The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6207instruction, but may be replaced with substantially more complex code by
6208the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6209intrinsic may only be used in a function which :ref:`specifies a GC
6210algorithm <gc>`.
6211
6212Code Generator Intrinsics
6213-------------------------
6214
6215These intrinsics are provided by LLVM to expose special features that
6216may only be implemented with code generator support.
6217
6218'``llvm.returnaddress``' Intrinsic
6219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6220
6221Syntax:
6222"""""""
6223
6224::
6225
6226 declare i8 *@llvm.returnaddress(i32 <level>)
6227
6228Overview:
6229"""""""""
6230
6231The '``llvm.returnaddress``' intrinsic attempts to compute a
6232target-specific value indicating the return address of the current
6233function or one of its callers.
6234
6235Arguments:
6236""""""""""
6237
6238The argument to this intrinsic indicates which function to return the
6239address for. Zero indicates the calling function, one indicates its
6240caller, etc. The argument is **required** to be a constant integer
6241value.
6242
6243Semantics:
6244""""""""""
6245
6246The '``llvm.returnaddress``' intrinsic either returns a pointer
6247indicating the return address of the specified call frame, or zero if it
6248cannot be identified. The value returned by this intrinsic is likely to
6249be incorrect or 0 for arguments other than zero, so it should only be
6250used for debugging purposes.
6251
6252Note that calling this intrinsic does not prevent function inlining or
6253other aggressive transformations, so the value returned may not be that
6254of the obvious source-language caller.
6255
6256'``llvm.frameaddress``' Intrinsic
6257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6258
6259Syntax:
6260"""""""
6261
6262::
6263
6264 declare i8* @llvm.frameaddress(i32 <level>)
6265
6266Overview:
6267"""""""""
6268
6269The '``llvm.frameaddress``' intrinsic attempts to return the
6270target-specific frame pointer value for the specified stack frame.
6271
6272Arguments:
6273""""""""""
6274
6275The argument to this intrinsic indicates which function to return the
6276frame pointer for. Zero indicates the calling function, one indicates
6277its caller, etc. The argument is **required** to be a constant integer
6278value.
6279
6280Semantics:
6281""""""""""
6282
6283The '``llvm.frameaddress``' intrinsic either returns a pointer
6284indicating the frame address of the specified call frame, or zero if it
6285cannot be identified. The value returned by this intrinsic is likely to
6286be incorrect or 0 for arguments other than zero, so it should only be
6287used for debugging purposes.
6288
6289Note that calling this intrinsic does not prevent function inlining or
6290other aggressive transformations, so the value returned may not be that
6291of the obvious source-language caller.
6292
6293.. _int_stacksave:
6294
6295'``llvm.stacksave``' Intrinsic
6296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6297
6298Syntax:
6299"""""""
6300
6301::
6302
6303 declare i8* @llvm.stacksave()
6304
6305Overview:
6306"""""""""
6307
6308The '``llvm.stacksave``' intrinsic is used to remember the current state
6309of the function stack, for use with
6310:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6311implementing language features like scoped automatic variable sized
6312arrays in C99.
6313
6314Semantics:
6315""""""""""
6316
6317This intrinsic returns a opaque pointer value that can be passed to
6318:ref:`llvm.stackrestore <int_stackrestore>`. When an
6319``llvm.stackrestore`` intrinsic is executed with a value saved from
6320``llvm.stacksave``, it effectively restores the state of the stack to
6321the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6322practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6323were allocated after the ``llvm.stacksave`` was executed.
6324
6325.. _int_stackrestore:
6326
6327'``llvm.stackrestore``' Intrinsic
6328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6329
6330Syntax:
6331"""""""
6332
6333::
6334
6335 declare void @llvm.stackrestore(i8* %ptr)
6336
6337Overview:
6338"""""""""
6339
6340The '``llvm.stackrestore``' intrinsic is used to restore the state of
6341the function stack to the state it was in when the corresponding
6342:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6343useful for implementing language features like scoped automatic variable
6344sized arrays in C99.
6345
6346Semantics:
6347""""""""""
6348
6349See the description for :ref:`llvm.stacksave <int_stacksave>`.
6350
6351'``llvm.prefetch``' Intrinsic
6352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6353
6354Syntax:
6355"""""""
6356
6357::
6358
6359 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6360
6361Overview:
6362"""""""""
6363
6364The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6365insert a prefetch instruction if supported; otherwise, it is a noop.
6366Prefetches have no effect on the behavior of the program but can change
6367its performance characteristics.
6368
6369Arguments:
6370""""""""""
6371
6372``address`` is the address to be prefetched, ``rw`` is the specifier
6373determining if the fetch should be for a read (0) or write (1), and
6374``locality`` is a temporal locality specifier ranging from (0) - no
6375locality, to (3) - extremely local keep in cache. The ``cache type``
6376specifies whether the prefetch is performed on the data (1) or
6377instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6378arguments must be constant integers.
6379
6380Semantics:
6381""""""""""
6382
6383This intrinsic does not modify the behavior of the program. In
6384particular, prefetches cannot trap and do not produce a value. On
6385targets that support this intrinsic, the prefetch can provide hints to
6386the processor cache for better performance.
6387
6388'``llvm.pcmarker``' Intrinsic
6389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6390
6391Syntax:
6392"""""""
6393
6394::
6395
6396 declare void @llvm.pcmarker(i32 <id>)
6397
6398Overview:
6399"""""""""
6400
6401The '``llvm.pcmarker``' intrinsic is a method to export a Program
6402Counter (PC) in a region of code to simulators and other tools. The
6403method is target specific, but it is expected that the marker will use
6404exported symbols to transmit the PC of the marker. The marker makes no
6405guarantees that it will remain with any specific instruction after
6406optimizations. It is possible that the presence of a marker will inhibit
6407optimizations. The intended use is to be inserted after optimizations to
6408allow correlations of simulation runs.
6409
6410Arguments:
6411""""""""""
6412
6413``id`` is a numerical id identifying the marker.
6414
6415Semantics:
6416""""""""""
6417
6418This intrinsic does not modify the behavior of the program. Backends
6419that do not support this intrinsic may ignore it.
6420
6421'``llvm.readcyclecounter``' Intrinsic
6422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6423
6424Syntax:
6425"""""""
6426
6427::
6428
6429 declare i64 @llvm.readcyclecounter()
6430
6431Overview:
6432"""""""""
6433
6434The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6435counter register (or similar low latency, high accuracy clocks) on those
6436targets that support it. On X86, it should map to RDTSC. On Alpha, it
6437should map to RPCC. As the backing counters overflow quickly (on the
6438order of 9 seconds on alpha), this should only be used for small
6439timings.
6440
6441Semantics:
6442""""""""""
6443
6444When directly supported, reading the cycle counter should not modify any
6445memory. Implementations are allowed to either return a application
6446specific value or a system wide value. On backends without support, this
6447is lowered to a constant 0.
6448
6449Standard C Library Intrinsics
6450-----------------------------
6451
6452LLVM provides intrinsics for a few important standard C library
6453functions. These intrinsics allow source-language front-ends to pass
6454information about the alignment of the pointer arguments to the code
6455generator, providing opportunity for more efficient code generation.
6456
6457.. _int_memcpy:
6458
6459'``llvm.memcpy``' Intrinsic
6460^^^^^^^^^^^^^^^^^^^^^^^^^^^
6461
6462Syntax:
6463"""""""
6464
6465This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6466integer bit width and for different address spaces. Not all targets
6467support all bit widths however.
6468
6469::
6470
6471 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6472 i32 <len>, i32 <align>, i1 <isvolatile>)
6473 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6474 i64 <len>, i32 <align>, i1 <isvolatile>)
6475
6476Overview:
6477"""""""""
6478
6479The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6480source location to the destination location.
6481
6482Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6483intrinsics do not return a value, takes extra alignment/isvolatile
6484arguments and the pointers can be in specified address spaces.
6485
6486Arguments:
6487""""""""""
6488
6489The first argument is a pointer to the destination, the second is a
6490pointer to the source. The third argument is an integer argument
6491specifying the number of bytes to copy, the fourth argument is the
6492alignment of the source and destination locations, and the fifth is a
6493boolean indicating a volatile access.
6494
6495If the call to this intrinsic has an alignment value that is not 0 or 1,
6496then the caller guarantees that both the source and destination pointers
6497are aligned to that boundary.
6498
6499If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6500a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6501very cleanly specified and it is unwise to depend on it.
6502
6503Semantics:
6504""""""""""
6505
6506The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6507source location to the destination location, which are not allowed to
6508overlap. It copies "len" bytes of memory over. If the argument is known
6509to be aligned to some boundary, this can be specified as the fourth
6510argument, otherwise it should be set to 0 or 1.
6511
6512'``llvm.memmove``' Intrinsic
6513^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6514
6515Syntax:
6516"""""""
6517
6518This is an overloaded intrinsic. You can use llvm.memmove on any integer
6519bit width and for different address space. Not all targets support all
6520bit widths however.
6521
6522::
6523
6524 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6525 i32 <len>, i32 <align>, i1 <isvolatile>)
6526 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6527 i64 <len>, i32 <align>, i1 <isvolatile>)
6528
6529Overview:
6530"""""""""
6531
6532The '``llvm.memmove.*``' intrinsics move a block of memory from the
6533source location to the destination location. It is similar to the
6534'``llvm.memcpy``' intrinsic but allows the two memory locations to
6535overlap.
6536
6537Note that, unlike the standard libc function, the ``llvm.memmove.*``
6538intrinsics do not return a value, takes extra alignment/isvolatile
6539arguments and the pointers can be in specified address spaces.
6540
6541Arguments:
6542""""""""""
6543
6544The first argument is a pointer to the destination, the second is a
6545pointer to the source. The third argument is an integer argument
6546specifying the number of bytes to copy, the fourth argument is the
6547alignment of the source and destination locations, and the fifth is a
6548boolean indicating a volatile access.
6549
6550If the call to this intrinsic has an alignment value that is not 0 or 1,
6551then the caller guarantees that the source and destination pointers are
6552aligned to that boundary.
6553
6554If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6555is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6556not very cleanly specified and it is unwise to depend on it.
6557
6558Semantics:
6559""""""""""
6560
6561The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6562source location to the destination location, which may overlap. It
6563copies "len" bytes of memory over. If the argument is known to be
6564aligned to some boundary, this can be specified as the fourth argument,
6565otherwise it should be set to 0 or 1.
6566
6567'``llvm.memset.*``' Intrinsics
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573This is an overloaded intrinsic. You can use llvm.memset on any integer
6574bit width and for different address spaces. However, not all targets
6575support all bit widths.
6576
6577::
6578
6579 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6580 i32 <len>, i32 <align>, i1 <isvolatile>)
6581 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6582 i64 <len>, i32 <align>, i1 <isvolatile>)
6583
6584Overview:
6585"""""""""
6586
6587The '``llvm.memset.*``' intrinsics fill a block of memory with a
6588particular byte value.
6589
6590Note that, unlike the standard libc function, the ``llvm.memset``
6591intrinsic does not return a value and takes extra alignment/volatile
6592arguments. Also, the destination can be in an arbitrary address space.
6593
6594Arguments:
6595""""""""""
6596
6597The first argument is a pointer to the destination to fill, the second
6598is the byte value with which to fill it, the third argument is an
6599integer argument specifying the number of bytes to fill, and the fourth
6600argument is the known alignment of the destination location.
6601
6602If the call to this intrinsic has an alignment value that is not 0 or 1,
6603then the caller guarantees that the destination pointer is aligned to
6604that boundary.
6605
6606If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6607a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6608very cleanly specified and it is unwise to depend on it.
6609
6610Semantics:
6611""""""""""
6612
6613The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6614at the destination location. If the argument is known to be aligned to
6615some boundary, this can be specified as the fourth argument, otherwise
6616it should be set to 0 or 1.
6617
6618'``llvm.sqrt.*``' Intrinsic
6619^^^^^^^^^^^^^^^^^^^^^^^^^^^
6620
6621Syntax:
6622"""""""
6623
6624This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6625floating point or vector of floating point type. Not all targets support
6626all types however.
6627
6628::
6629
6630 declare float @llvm.sqrt.f32(float %Val)
6631 declare double @llvm.sqrt.f64(double %Val)
6632 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6633 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6634 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6635
6636Overview:
6637"""""""""
6638
6639The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6640returning the same value as the libm '``sqrt``' functions would. Unlike
6641``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6642negative numbers other than -0.0 (which allows for better optimization,
6643because there is no need to worry about errno being set).
6644``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6645
6646Arguments:
6647""""""""""
6648
6649The argument and return value are floating point numbers of the same
6650type.
6651
6652Semantics:
6653""""""""""
6654
6655This function returns the sqrt of the specified operand if it is a
6656nonnegative floating point number.
6657
6658'``llvm.powi.*``' Intrinsic
6659^^^^^^^^^^^^^^^^^^^^^^^^^^^
6660
6661Syntax:
6662"""""""
6663
6664This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6665floating point or vector of floating point type. Not all targets support
6666all types however.
6667
6668::
6669
6670 declare float @llvm.powi.f32(float %Val, i32 %power)
6671 declare double @llvm.powi.f64(double %Val, i32 %power)
6672 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6673 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6674 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6675
6676Overview:
6677"""""""""
6678
6679The '``llvm.powi.*``' intrinsics return the first operand raised to the
6680specified (positive or negative) power. The order of evaluation of
6681multiplications is not defined. When a vector of floating point type is
6682used, the second argument remains a scalar integer value.
6683
6684Arguments:
6685""""""""""
6686
6687The second argument is an integer power, and the first is a value to
6688raise to that power.
6689
6690Semantics:
6691""""""""""
6692
6693This function returns the first value raised to the second power with an
6694unspecified sequence of rounding operations.
6695
6696'``llvm.sin.*``' Intrinsic
6697^^^^^^^^^^^^^^^^^^^^^^^^^^
6698
6699Syntax:
6700"""""""
6701
6702This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6703floating point or vector of floating point type. Not all targets support
6704all types however.
6705
6706::
6707
6708 declare float @llvm.sin.f32(float %Val)
6709 declare double @llvm.sin.f64(double %Val)
6710 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6711 declare fp128 @llvm.sin.f128(fp128 %Val)
6712 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6713
6714Overview:
6715"""""""""
6716
6717The '``llvm.sin.*``' intrinsics return the sine of the operand.
6718
6719Arguments:
6720""""""""""
6721
6722The argument and return value are floating point numbers of the same
6723type.
6724
6725Semantics:
6726""""""""""
6727
6728This function returns the sine of the specified operand, returning the
6729same values as the libm ``sin`` functions would, and handles error
6730conditions in the same way.
6731
6732'``llvm.cos.*``' Intrinsic
6733^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6739floating point or vector of floating point type. Not all targets support
6740all types however.
6741
6742::
6743
6744 declare float @llvm.cos.f32(float %Val)
6745 declare double @llvm.cos.f64(double %Val)
6746 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6747 declare fp128 @llvm.cos.f128(fp128 %Val)
6748 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6749
6750Overview:
6751"""""""""
6752
6753The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6754
6755Arguments:
6756""""""""""
6757
6758The argument and return value are floating point numbers of the same
6759type.
6760
6761Semantics:
6762""""""""""
6763
6764This function returns the cosine of the specified operand, returning the
6765same values as the libm ``cos`` functions would, and handles error
6766conditions in the same way.
6767
6768'``llvm.pow.*``' Intrinsic
6769^^^^^^^^^^^^^^^^^^^^^^^^^^
6770
6771Syntax:
6772"""""""
6773
6774This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6775floating point or vector of floating point type. Not all targets support
6776all types however.
6777
6778::
6779
6780 declare float @llvm.pow.f32(float %Val, float %Power)
6781 declare double @llvm.pow.f64(double %Val, double %Power)
6782 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6783 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6784 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.pow.*``' intrinsics return the first operand raised to the
6790specified (positive or negative) power.
6791
6792Arguments:
6793""""""""""
6794
6795The second argument is a floating point power, and the first is a value
6796to raise to that power.
6797
6798Semantics:
6799""""""""""
6800
6801This function returns the first value raised to the second power,
6802returning the same values as the libm ``pow`` functions would, and
6803handles error conditions in the same way.
6804
6805'``llvm.exp.*``' Intrinsic
6806^^^^^^^^^^^^^^^^^^^^^^^^^^
6807
6808Syntax:
6809"""""""
6810
6811This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6812floating point or vector of floating point type. Not all targets support
6813all types however.
6814
6815::
6816
6817 declare float @llvm.exp.f32(float %Val)
6818 declare double @llvm.exp.f64(double %Val)
6819 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6820 declare fp128 @llvm.exp.f128(fp128 %Val)
6821 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6822
6823Overview:
6824"""""""""
6825
6826The '``llvm.exp.*``' intrinsics perform the exp function.
6827
6828Arguments:
6829""""""""""
6830
6831The argument and return value are floating point numbers of the same
6832type.
6833
6834Semantics:
6835""""""""""
6836
6837This function returns the same values as the libm ``exp`` functions
6838would, and handles error conditions in the same way.
6839
6840'``llvm.exp2.*``' Intrinsic
6841^^^^^^^^^^^^^^^^^^^^^^^^^^^
6842
6843Syntax:
6844"""""""
6845
6846This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6847floating point or vector of floating point type. Not all targets support
6848all types however.
6849
6850::
6851
6852 declare float @llvm.exp2.f32(float %Val)
6853 declare double @llvm.exp2.f64(double %Val)
6854 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6855 declare fp128 @llvm.exp2.f128(fp128 %Val)
6856 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6857
6858Overview:
6859"""""""""
6860
6861The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6862
6863Arguments:
6864""""""""""
6865
6866The argument and return value are floating point numbers of the same
6867type.
6868
6869Semantics:
6870""""""""""
6871
6872This function returns the same values as the libm ``exp2`` functions
6873would, and handles error conditions in the same way.
6874
6875'``llvm.log.*``' Intrinsic
6876^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881This is an overloaded intrinsic. You can use ``llvm.log`` on any
6882floating point or vector of floating point type. Not all targets support
6883all types however.
6884
6885::
6886
6887 declare float @llvm.log.f32(float %Val)
6888 declare double @llvm.log.f64(double %Val)
6889 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6890 declare fp128 @llvm.log.f128(fp128 %Val)
6891 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6892
6893Overview:
6894"""""""""
6895
6896The '``llvm.log.*``' intrinsics perform the log function.
6897
6898Arguments:
6899""""""""""
6900
6901The argument and return value are floating point numbers of the same
6902type.
6903
6904Semantics:
6905""""""""""
6906
6907This function returns the same values as the libm ``log`` functions
6908would, and handles error conditions in the same way.
6909
6910'``llvm.log10.*``' Intrinsic
6911^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6912
6913Syntax:
6914"""""""
6915
6916This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6917floating point or vector of floating point type. Not all targets support
6918all types however.
6919
6920::
6921
6922 declare float @llvm.log10.f32(float %Val)
6923 declare double @llvm.log10.f64(double %Val)
6924 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6925 declare fp128 @llvm.log10.f128(fp128 %Val)
6926 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6927
6928Overview:
6929"""""""""
6930
6931The '``llvm.log10.*``' intrinsics perform the log10 function.
6932
6933Arguments:
6934""""""""""
6935
6936The argument and return value are floating point numbers of the same
6937type.
6938
6939Semantics:
6940""""""""""
6941
6942This function returns the same values as the libm ``log10`` functions
6943would, and handles error conditions in the same way.
6944
6945'``llvm.log2.*``' Intrinsic
6946^^^^^^^^^^^^^^^^^^^^^^^^^^^
6947
6948Syntax:
6949"""""""
6950
6951This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6952floating point or vector of floating point type. Not all targets support
6953all types however.
6954
6955::
6956
6957 declare float @llvm.log2.f32(float %Val)
6958 declare double @llvm.log2.f64(double %Val)
6959 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6960 declare fp128 @llvm.log2.f128(fp128 %Val)
6961 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6962
6963Overview:
6964"""""""""
6965
6966The '``llvm.log2.*``' intrinsics perform the log2 function.
6967
6968Arguments:
6969""""""""""
6970
6971The argument and return value are floating point numbers of the same
6972type.
6973
6974Semantics:
6975""""""""""
6976
6977This function returns the same values as the libm ``log2`` functions
6978would, and handles error conditions in the same way.
6979
6980'``llvm.fma.*``' Intrinsic
6981^^^^^^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986This is an overloaded intrinsic. You can use ``llvm.fma`` on any
6987floating point or vector of floating point type. Not all targets support
6988all types however.
6989
6990::
6991
6992 declare float @llvm.fma.f32(float %a, float %b, float %c)
6993 declare double @llvm.fma.f64(double %a, double %b, double %c)
6994 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6995 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6996 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6997
6998Overview:
6999"""""""""
7000
7001The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7002operation.
7003
7004Arguments:
7005""""""""""
7006
7007The argument and return value are floating point numbers of the same
7008type.
7009
7010Semantics:
7011""""""""""
7012
7013This function returns the same values as the libm ``fma`` functions
7014would.
7015
7016'``llvm.fabs.*``' Intrinsic
7017^^^^^^^^^^^^^^^^^^^^^^^^^^^
7018
7019Syntax:
7020"""""""
7021
7022This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7023floating point or vector of floating point type. Not all targets support
7024all types however.
7025
7026::
7027
7028 declare float @llvm.fabs.f32(float %Val)
7029 declare double @llvm.fabs.f64(double %Val)
7030 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7031 declare fp128 @llvm.fabs.f128(fp128 %Val)
7032 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7033
7034Overview:
7035"""""""""
7036
7037The '``llvm.fabs.*``' intrinsics return the absolute value of the
7038operand.
7039
7040Arguments:
7041""""""""""
7042
7043The argument and return value are floating point numbers of the same
7044type.
7045
7046Semantics:
7047""""""""""
7048
7049This function returns the same values as the libm ``fabs`` functions
7050would, and handles error conditions in the same way.
7051
7052'``llvm.floor.*``' Intrinsic
7053^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7054
7055Syntax:
7056"""""""
7057
7058This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7059floating point or vector of floating point type. Not all targets support
7060all types however.
7061
7062::
7063
7064 declare float @llvm.floor.f32(float %Val)
7065 declare double @llvm.floor.f64(double %Val)
7066 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7067 declare fp128 @llvm.floor.f128(fp128 %Val)
7068 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7069
7070Overview:
7071"""""""""
7072
7073The '``llvm.floor.*``' intrinsics return the floor of the operand.
7074
7075Arguments:
7076""""""""""
7077
7078The argument and return value are floating point numbers of the same
7079type.
7080
7081Semantics:
7082""""""""""
7083
7084This function returns the same values as the libm ``floor`` functions
7085would, and handles error conditions in the same way.
7086
7087'``llvm.ceil.*``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7094floating point or vector of floating point type. Not all targets support
7095all types however.
7096
7097::
7098
7099 declare float @llvm.ceil.f32(float %Val)
7100 declare double @llvm.ceil.f64(double %Val)
7101 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7102 declare fp128 @llvm.ceil.f128(fp128 %Val)
7103 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7109
7110Arguments:
7111""""""""""
7112
7113The argument and return value are floating point numbers of the same
7114type.
7115
7116Semantics:
7117""""""""""
7118
7119This function returns the same values as the libm ``ceil`` functions
7120would, and handles error conditions in the same way.
7121
7122'``llvm.trunc.*``' Intrinsic
7123^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7124
7125Syntax:
7126"""""""
7127
7128This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7129floating point or vector of floating point type. Not all targets support
7130all types however.
7131
7132::
7133
7134 declare float @llvm.trunc.f32(float %Val)
7135 declare double @llvm.trunc.f64(double %Val)
7136 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7137 declare fp128 @llvm.trunc.f128(fp128 %Val)
7138 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7144nearest integer not larger in magnitude than the operand.
7145
7146Arguments:
7147""""""""""
7148
7149The argument and return value are floating point numbers of the same
7150type.
7151
7152Semantics:
7153""""""""""
7154
7155This function returns the same values as the libm ``trunc`` functions
7156would, and handles error conditions in the same way.
7157
7158'``llvm.rint.*``' Intrinsic
7159^^^^^^^^^^^^^^^^^^^^^^^^^^^
7160
7161Syntax:
7162"""""""
7163
7164This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7165floating point or vector of floating point type. Not all targets support
7166all types however.
7167
7168::
7169
7170 declare float @llvm.rint.f32(float %Val)
7171 declare double @llvm.rint.f64(double %Val)
7172 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7173 declare fp128 @llvm.rint.f128(fp128 %Val)
7174 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7175
7176Overview:
7177"""""""""
7178
7179The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7180nearest integer. It may raise an inexact floating-point exception if the
7181operand isn't an integer.
7182
7183Arguments:
7184""""""""""
7185
7186The argument and return value are floating point numbers of the same
7187type.
7188
7189Semantics:
7190""""""""""
7191
7192This function returns the same values as the libm ``rint`` functions
7193would, and handles error conditions in the same way.
7194
7195'``llvm.nearbyint.*``' Intrinsic
7196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7202floating point or vector of floating point type. Not all targets support
7203all types however.
7204
7205::
7206
7207 declare float @llvm.nearbyint.f32(float %Val)
7208 declare double @llvm.nearbyint.f64(double %Val)
7209 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7210 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7211 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7212
7213Overview:
7214"""""""""
7215
7216The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7217nearest integer.
7218
7219Arguments:
7220""""""""""
7221
7222The argument and return value are floating point numbers of the same
7223type.
7224
7225Semantics:
7226""""""""""
7227
7228This function returns the same values as the libm ``nearbyint``
7229functions would, and handles error conditions in the same way.
7230
7231Bit Manipulation Intrinsics
7232---------------------------
7233
7234LLVM provides intrinsics for a few important bit manipulation
7235operations. These allow efficient code generation for some algorithms.
7236
7237'``llvm.bswap.*``' Intrinsics
7238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243This is an overloaded intrinsic function. You can use bswap on any
7244integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7245
7246::
7247
7248 declare i16 @llvm.bswap.i16(i16 <id>)
7249 declare i32 @llvm.bswap.i32(i32 <id>)
7250 declare i64 @llvm.bswap.i64(i64 <id>)
7251
7252Overview:
7253"""""""""
7254
7255The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7256values with an even number of bytes (positive multiple of 16 bits).
7257These are useful for performing operations on data that is not in the
7258target's native byte order.
7259
7260Semantics:
7261""""""""""
7262
7263The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7264and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7265intrinsic returns an i32 value that has the four bytes of the input i32
7266swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7267returned i32 will have its bytes in 3, 2, 1, 0 order. The
7268``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7269concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7270respectively).
7271
7272'``llvm.ctpop.*``' Intrinsic
7273^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7274
7275Syntax:
7276"""""""
7277
7278This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7279bit width, or on any vector with integer elements. Not all targets
7280support all bit widths or vector types, however.
7281
7282::
7283
7284 declare i8 @llvm.ctpop.i8(i8 <src>)
7285 declare i16 @llvm.ctpop.i16(i16 <src>)
7286 declare i32 @llvm.ctpop.i32(i32 <src>)
7287 declare i64 @llvm.ctpop.i64(i64 <src>)
7288 declare i256 @llvm.ctpop.i256(i256 <src>)
7289 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7290
7291Overview:
7292"""""""""
7293
7294The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7295in a value.
7296
7297Arguments:
7298""""""""""
7299
7300The only argument is the value to be counted. The argument may be of any
7301integer type, or a vector with integer elements. The return type must
7302match the argument type.
7303
7304Semantics:
7305""""""""""
7306
7307The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7308each element of a vector.
7309
7310'``llvm.ctlz.*``' Intrinsic
7311^^^^^^^^^^^^^^^^^^^^^^^^^^^
7312
7313Syntax:
7314"""""""
7315
7316This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7317integer bit width, or any vector whose elements are integers. Not all
7318targets support all bit widths or vector types, however.
7319
7320::
7321
7322 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7323 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7324 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7325 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7326 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7327 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7328
7329Overview:
7330"""""""""
7331
7332The '``llvm.ctlz``' family of intrinsic functions counts the number of
7333leading zeros in a variable.
7334
7335Arguments:
7336""""""""""
7337
7338The first argument is the value to be counted. This argument may be of
7339any integer type, or a vectory with integer element type. The return
7340type must match the first argument type.
7341
7342The second argument must be a constant and is a flag to indicate whether
7343the intrinsic should ensure that a zero as the first argument produces a
7344defined result. Historically some architectures did not provide a
7345defined result for zero values as efficiently, and many algorithms are
7346now predicated on avoiding zero-value inputs.
7347
7348Semantics:
7349""""""""""
7350
7351The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7352zeros in a variable, or within each element of the vector. If
7353``src == 0`` then the result is the size in bits of the type of ``src``
7354if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7355``llvm.ctlz(i32 2) = 30``.
7356
7357'``llvm.cttz.*``' Intrinsic
7358^^^^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360Syntax:
7361"""""""
7362
7363This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7364integer bit width, or any vector of integer elements. Not all targets
7365support all bit widths or vector types, however.
7366
7367::
7368
7369 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7370 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7371 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7372 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7373 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7374 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7375
7376Overview:
7377"""""""""
7378
7379The '``llvm.cttz``' family of intrinsic functions counts the number of
7380trailing zeros.
7381
7382Arguments:
7383""""""""""
7384
7385The first argument is the value to be counted. This argument may be of
7386any integer type, or a vectory with integer element type. The return
7387type must match the first argument type.
7388
7389The second argument must be a constant and is a flag to indicate whether
7390the intrinsic should ensure that a zero as the first argument produces a
7391defined result. Historically some architectures did not provide a
7392defined result for zero values as efficiently, and many algorithms are
7393now predicated on avoiding zero-value inputs.
7394
7395Semantics:
7396""""""""""
7397
7398The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7399zeros in a variable, or within each element of a vector. If ``src == 0``
7400then the result is the size in bits of the type of ``src`` if
7401``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7402``llvm.cttz(2) = 1``.
7403
7404Arithmetic with Overflow Intrinsics
7405-----------------------------------
7406
7407LLVM provides intrinsics for some arithmetic with overflow operations.
7408
7409'``llvm.sadd.with.overflow.*``' Intrinsics
7410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7411
7412Syntax:
7413"""""""
7414
7415This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7416on any integer bit width.
7417
7418::
7419
7420 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7421 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7422 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7423
7424Overview:
7425"""""""""
7426
7427The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7428a signed addition of the two arguments, and indicate whether an overflow
7429occurred during the signed summation.
7430
7431Arguments:
7432""""""""""
7433
7434The arguments (%a and %b) and the first element of the result structure
7435may be of integer types of any bit width, but they must have the same
7436bit width. The second element of the result structure must be of type
7437``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7438addition.
7439
7440Semantics:
7441""""""""""
7442
7443The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7444a signed addition of the two variables. They return a structure — the
7445first element of which is the signed summation, and the second element
7446of which is a bit specifying if the signed summation resulted in an
7447overflow.
7448
7449Examples:
7450"""""""""
7451
7452.. code-block:: llvm
7453
7454 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7455 %sum = extractvalue {i32, i1} %res, 0
7456 %obit = extractvalue {i32, i1} %res, 1
7457 br i1 %obit, label %overflow, label %normal
7458
7459'``llvm.uadd.with.overflow.*``' Intrinsics
7460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7461
7462Syntax:
7463"""""""
7464
7465This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7466on any integer bit width.
7467
7468::
7469
7470 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7471 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7472 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7473
7474Overview:
7475"""""""""
7476
7477The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7478an unsigned addition of the two arguments, and indicate whether a carry
7479occurred during the unsigned summation.
7480
7481Arguments:
7482""""""""""
7483
7484The arguments (%a and %b) and the first element of the result structure
7485may be of integer types of any bit width, but they must have the same
7486bit width. The second element of the result structure must be of type
7487``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7488addition.
7489
7490Semantics:
7491""""""""""
7492
7493The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7494an unsigned addition of the two arguments. They return a structure — the
7495first element of which is the sum, and the second element of which is a
7496bit specifying if the unsigned summation resulted in a carry.
7497
7498Examples:
7499"""""""""
7500
7501.. code-block:: llvm
7502
7503 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7504 %sum = extractvalue {i32, i1} %res, 0
7505 %obit = extractvalue {i32, i1} %res, 1
7506 br i1 %obit, label %carry, label %normal
7507
7508'``llvm.ssub.with.overflow.*``' Intrinsics
7509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7510
7511Syntax:
7512"""""""
7513
7514This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7515on any integer bit width.
7516
7517::
7518
7519 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7520 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7521 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7522
7523Overview:
7524"""""""""
7525
7526The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7527a signed subtraction of the two arguments, and indicate whether an
7528overflow occurred during the signed subtraction.
7529
7530Arguments:
7531""""""""""
7532
7533The arguments (%a and %b) and the first element of the result structure
7534may be of integer types of any bit width, but they must have the same
7535bit width. The second element of the result structure must be of type
7536``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7537subtraction.
7538
7539Semantics:
7540""""""""""
7541
7542The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7543a signed subtraction of the two arguments. They return a structure — the
7544first element of which is the subtraction, and the second element of
7545which is a bit specifying if the signed subtraction resulted in an
7546overflow.
7547
7548Examples:
7549"""""""""
7550
7551.. code-block:: llvm
7552
7553 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7554 %sum = extractvalue {i32, i1} %res, 0
7555 %obit = extractvalue {i32, i1} %res, 1
7556 br i1 %obit, label %overflow, label %normal
7557
7558'``llvm.usub.with.overflow.*``' Intrinsics
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7565on any integer bit width.
7566
7567::
7568
7569 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7570 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7571 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7572
7573Overview:
7574"""""""""
7575
7576The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7577an unsigned subtraction of the two arguments, and indicate whether an
7578overflow occurred during the unsigned subtraction.
7579
7580Arguments:
7581""""""""""
7582
7583The arguments (%a and %b) and the first element of the result structure
7584may be of integer types of any bit width, but they must have the same
7585bit width. The second element of the result structure must be of type
7586``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7587subtraction.
7588
7589Semantics:
7590""""""""""
7591
7592The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7593an unsigned subtraction of the two arguments. They return a structure —
7594the first element of which is the subtraction, and the second element of
7595which is a bit specifying if the unsigned subtraction resulted in an
7596overflow.
7597
7598Examples:
7599"""""""""
7600
7601.. code-block:: llvm
7602
7603 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7604 %sum = extractvalue {i32, i1} %res, 0
7605 %obit = extractvalue {i32, i1} %res, 1
7606 br i1 %obit, label %overflow, label %normal
7607
7608'``llvm.smul.with.overflow.*``' Intrinsics
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7615on any integer bit width.
7616
7617::
7618
7619 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7620 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7621 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7622
7623Overview:
7624"""""""""
7625
7626The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7627a signed multiplication of the two arguments, and indicate whether an
7628overflow occurred during the signed multiplication.
7629
7630Arguments:
7631""""""""""
7632
7633The arguments (%a and %b) and the first element of the result structure
7634may be of integer types of any bit width, but they must have the same
7635bit width. The second element of the result structure must be of type
7636``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7637multiplication.
7638
7639Semantics:
7640""""""""""
7641
7642The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7643a signed multiplication of the two arguments. They return a structure —
7644the first element of which is the multiplication, and the second element
7645of which is a bit specifying if the signed multiplication resulted in an
7646overflow.
7647
7648Examples:
7649"""""""""
7650
7651.. code-block:: llvm
7652
7653 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7654 %sum = extractvalue {i32, i1} %res, 0
7655 %obit = extractvalue {i32, i1} %res, 1
7656 br i1 %obit, label %overflow, label %normal
7657
7658'``llvm.umul.with.overflow.*``' Intrinsics
7659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7660
7661Syntax:
7662"""""""
7663
7664This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7665on any integer bit width.
7666
7667::
7668
7669 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7670 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7671 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7672
7673Overview:
7674"""""""""
7675
7676The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7677a unsigned multiplication of the two arguments, and indicate whether an
7678overflow occurred during the unsigned multiplication.
7679
7680Arguments:
7681""""""""""
7682
7683The arguments (%a and %b) and the first element of the result structure
7684may be of integer types of any bit width, but they must have the same
7685bit width. The second element of the result structure must be of type
7686``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7687multiplication.
7688
7689Semantics:
7690""""""""""
7691
7692The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7693an unsigned multiplication of the two arguments. They return a structure
7694— the first element of which is the multiplication, and the second
7695element of which is a bit specifying if the unsigned multiplication
7696resulted in an overflow.
7697
7698Examples:
7699"""""""""
7700
7701.. code-block:: llvm
7702
7703 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7704 %sum = extractvalue {i32, i1} %res, 0
7705 %obit = extractvalue {i32, i1} %res, 1
7706 br i1 %obit, label %overflow, label %normal
7707
7708Specialised Arithmetic Intrinsics
7709---------------------------------
7710
7711'``llvm.fmuladd.*``' Intrinsic
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717::
7718
7719 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7720 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7721
7722Overview:
7723"""""""""
7724
7725The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00007726expressions that can be fused if the code generator determines that (a) the
7727target instruction set has support for a fused operation, and (b) that the
7728fused operation is more efficient than the equivalent, separate pair of mul
7729and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00007730
7731Arguments:
7732""""""""""
7733
7734The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7735multiplicands, a and b, and an addend c.
7736
7737Semantics:
7738""""""""""
7739
7740The expression:
7741
7742::
7743
7744 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7745
7746is equivalent to the expression a \* b + c, except that rounding will
7747not be performed between the multiplication and addition steps if the
7748code generator fuses the operations. Fusion is not guaranteed, even if
7749the target platform supports it. If a fused multiply-add is required the
7750corresponding llvm.fma.\* intrinsic function should be used instead.
7751
7752Examples:
7753"""""""""
7754
7755.. code-block:: llvm
7756
7757 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7758
7759Half Precision Floating Point Intrinsics
7760----------------------------------------
7761
7762For most target platforms, half precision floating point is a
7763storage-only format. This means that it is a dense encoding (in memory)
7764but does not support computation in the format.
7765
7766This means that code must first load the half-precision floating point
7767value as an i16, then convert it to float with
7768:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7769then be performed on the float value (including extending to double
7770etc). To store the value back to memory, it is first converted to float
7771if needed, then converted to i16 with
7772:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7773i16 value.
7774
7775.. _int_convert_to_fp16:
7776
7777'``llvm.convert.to.fp16``' Intrinsic
7778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7779
7780Syntax:
7781"""""""
7782
7783::
7784
7785 declare i16 @llvm.convert.to.fp16(f32 %a)
7786
7787Overview:
7788"""""""""
7789
7790The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7791from single precision floating point format to half precision floating
7792point format.
7793
7794Arguments:
7795""""""""""
7796
7797The intrinsic function contains single argument - the value to be
7798converted.
7799
7800Semantics:
7801""""""""""
7802
7803The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7804from single precision floating point format to half precision floating
7805point format. The return value is an ``i16`` which contains the
7806converted number.
7807
7808Examples:
7809"""""""""
7810
7811.. code-block:: llvm
7812
7813 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7814 store i16 %res, i16* @x, align 2
7815
7816.. _int_convert_from_fp16:
7817
7818'``llvm.convert.from.fp16``' Intrinsic
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824::
7825
7826 declare f32 @llvm.convert.from.fp16(i16 %a)
7827
7828Overview:
7829"""""""""
7830
7831The '``llvm.convert.from.fp16``' intrinsic function performs a
7832conversion from half precision floating point format to single precision
7833floating point format.
7834
7835Arguments:
7836""""""""""
7837
7838The intrinsic function contains single argument - the value to be
7839converted.
7840
7841Semantics:
7842""""""""""
7843
7844The '``llvm.convert.from.fp16``' intrinsic function performs a
7845conversion from half single precision floating point format to single
7846precision floating point format. The input half-float value is
7847represented by an ``i16`` value.
7848
7849Examples:
7850"""""""""
7851
7852.. code-block:: llvm
7853
7854 %a = load i16* @x, align 2
7855 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7856
7857Debugger Intrinsics
7858-------------------
7859
7860The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7861prefix), are described in the `LLVM Source Level
7862Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7863document.
7864
7865Exception Handling Intrinsics
7866-----------------------------
7867
7868The LLVM exception handling intrinsics (which all start with
7869``llvm.eh.`` prefix), are described in the `LLVM Exception
7870Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7871
7872.. _int_trampoline:
7873
7874Trampoline Intrinsics
7875---------------------
7876
7877These intrinsics make it possible to excise one parameter, marked with
7878the :ref:`nest <nest>` attribute, from a function. The result is a
7879callable function pointer lacking the nest parameter - the caller does
7880not need to provide a value for it. Instead, the value to use is stored
7881in advance in a "trampoline", a block of memory usually allocated on the
7882stack, which also contains code to splice the nest value into the
7883argument list. This is used to implement the GCC nested function address
7884extension.
7885
7886For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7887then the resulting function pointer has signature ``i32 (i32, i32)*``.
7888It can be created as follows:
7889
7890.. code-block:: llvm
7891
7892 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7893 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7894 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7895 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7896 %fp = bitcast i8* %p to i32 (i32, i32)*
7897
7898The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7899``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7900
7901.. _int_it:
7902
7903'``llvm.init.trampoline``' Intrinsic
7904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7905
7906Syntax:
7907"""""""
7908
7909::
7910
7911 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7912
7913Overview:
7914"""""""""
7915
7916This fills the memory pointed to by ``tramp`` with executable code,
7917turning it into a trampoline.
7918
7919Arguments:
7920""""""""""
7921
7922The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7923pointers. The ``tramp`` argument must point to a sufficiently large and
7924sufficiently aligned block of memory; this memory is written to by the
7925intrinsic. Note that the size and the alignment are target-specific -
7926LLVM currently provides no portable way of determining them, so a
7927front-end that generates this intrinsic needs to have some
7928target-specific knowledge. The ``func`` argument must hold a function
7929bitcast to an ``i8*``.
7930
7931Semantics:
7932""""""""""
7933
7934The block of memory pointed to by ``tramp`` is filled with target
7935dependent code, turning it into a function. Then ``tramp`` needs to be
7936passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7937be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7938function's signature is the same as that of ``func`` with any arguments
7939marked with the ``nest`` attribute removed. At most one such ``nest``
7940argument is allowed, and it must be of pointer type. Calling the new
7941function is equivalent to calling ``func`` with the same argument list,
7942but with ``nval`` used for the missing ``nest`` argument. If, after
7943calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7944modified, then the effect of any later call to the returned function
7945pointer is undefined.
7946
7947.. _int_at:
7948
7949'``llvm.adjust.trampoline``' Intrinsic
7950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7951
7952Syntax:
7953"""""""
7954
7955::
7956
7957 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7958
7959Overview:
7960"""""""""
7961
7962This performs any required machine-specific adjustment to the address of
7963a trampoline (passed as ``tramp``).
7964
7965Arguments:
7966""""""""""
7967
7968``tramp`` must point to a block of memory which already has trampoline
7969code filled in by a previous call to
7970:ref:`llvm.init.trampoline <int_it>`.
7971
7972Semantics:
7973""""""""""
7974
7975On some architectures the address of the code to be executed needs to be
7976different to the address where the trampoline is actually stored. This
7977intrinsic returns the executable address corresponding to ``tramp``
7978after performing the required machine specific adjustments. The pointer
7979returned can then be :ref:`bitcast and executed <int_trampoline>`.
7980
7981Memory Use Markers
7982------------------
7983
7984This class of intrinsics exists to information about the lifetime of
7985memory objects and ranges where variables are immutable.
7986
7987'``llvm.lifetime.start``' Intrinsic
7988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7989
7990Syntax:
7991"""""""
7992
7993::
7994
7995 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
7996
7997Overview:
7998"""""""""
7999
8000The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8001object's lifetime.
8002
8003Arguments:
8004""""""""""
8005
8006The first argument is a constant integer representing the size of the
8007object, or -1 if it is variable sized. The second argument is a pointer
8008to the object.
8009
8010Semantics:
8011""""""""""
8012
8013This intrinsic indicates that before this point in the code, the value
8014of the memory pointed to by ``ptr`` is dead. This means that it is known
8015to never be used and has an undefined value. A load from the pointer
8016that precedes this intrinsic can be replaced with ``'undef'``.
8017
8018'``llvm.lifetime.end``' Intrinsic
8019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8020
8021Syntax:
8022"""""""
8023
8024::
8025
8026 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8027
8028Overview:
8029"""""""""
8030
8031The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8032object's lifetime.
8033
8034Arguments:
8035""""""""""
8036
8037The first argument is a constant integer representing the size of the
8038object, or -1 if it is variable sized. The second argument is a pointer
8039to the object.
8040
8041Semantics:
8042""""""""""
8043
8044This intrinsic indicates that after this point in the code, the value of
8045the memory pointed to by ``ptr`` is dead. This means that it is known to
8046never be used and has an undefined value. Any stores into the memory
8047object following this intrinsic may be removed as dead.
8048
8049'``llvm.invariant.start``' Intrinsic
8050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8051
8052Syntax:
8053"""""""
8054
8055::
8056
8057 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8058
8059Overview:
8060"""""""""
8061
8062The '``llvm.invariant.start``' intrinsic specifies that the contents of
8063a memory object will not change.
8064
8065Arguments:
8066""""""""""
8067
8068The first argument is a constant integer representing the size of the
8069object, or -1 if it is variable sized. The second argument is a pointer
8070to the object.
8071
8072Semantics:
8073""""""""""
8074
8075This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8076the return value, the referenced memory location is constant and
8077unchanging.
8078
8079'``llvm.invariant.end``' Intrinsic
8080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8081
8082Syntax:
8083"""""""
8084
8085::
8086
8087 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8088
8089Overview:
8090"""""""""
8091
8092The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8093memory object are mutable.
8094
8095Arguments:
8096""""""""""
8097
8098The first argument is the matching ``llvm.invariant.start`` intrinsic.
8099The second argument is a constant integer representing the size of the
8100object, or -1 if it is variable sized and the third argument is a
8101pointer to the object.
8102
8103Semantics:
8104""""""""""
8105
8106This intrinsic indicates that the memory is mutable again.
8107
8108General Intrinsics
8109------------------
8110
8111This class of intrinsics is designed to be generic and has no specific
8112purpose.
8113
8114'``llvm.var.annotation``' Intrinsic
8115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8116
8117Syntax:
8118"""""""
8119
8120::
8121
8122 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8123
8124Overview:
8125"""""""""
8126
8127The '``llvm.var.annotation``' intrinsic.
8128
8129Arguments:
8130""""""""""
8131
8132The first argument is a pointer to a value, the second is a pointer to a
8133global string, the third is a pointer to a global string which is the
8134source file name, and the last argument is the line number.
8135
8136Semantics:
8137""""""""""
8138
8139This intrinsic allows annotation of local variables with arbitrary
8140strings. This can be useful for special purpose optimizations that want
8141to look for these annotations. These have no other defined use; they are
8142ignored by code generation and optimization.
8143
8144'``llvm.annotation.*``' Intrinsic
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8151any integer bit width.
8152
8153::
8154
8155 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8156 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8157 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8158 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8159 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8160
8161Overview:
8162"""""""""
8163
8164The '``llvm.annotation``' intrinsic.
8165
8166Arguments:
8167""""""""""
8168
8169The first argument is an integer value (result of some expression), the
8170second is a pointer to a global string, the third is a pointer to a
8171global string which is the source file name, and the last argument is
8172the line number. It returns the value of the first argument.
8173
8174Semantics:
8175""""""""""
8176
8177This intrinsic allows annotations to be put on arbitrary expressions
8178with arbitrary strings. This can be useful for special purpose
8179optimizations that want to look for these annotations. These have no
8180other defined use; they are ignored by code generation and optimization.
8181
8182'``llvm.trap``' Intrinsic
8183^^^^^^^^^^^^^^^^^^^^^^^^^
8184
8185Syntax:
8186"""""""
8187
8188::
8189
8190 declare void @llvm.trap() noreturn nounwind
8191
8192Overview:
8193"""""""""
8194
8195The '``llvm.trap``' intrinsic.
8196
8197Arguments:
8198""""""""""
8199
8200None.
8201
8202Semantics:
8203""""""""""
8204
8205This intrinsic is lowered to the target dependent trap instruction. If
8206the target does not have a trap instruction, this intrinsic will be
8207lowered to a call of the ``abort()`` function.
8208
8209'``llvm.debugtrap``' Intrinsic
8210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8211
8212Syntax:
8213"""""""
8214
8215::
8216
8217 declare void @llvm.debugtrap() nounwind
8218
8219Overview:
8220"""""""""
8221
8222The '``llvm.debugtrap``' intrinsic.
8223
8224Arguments:
8225""""""""""
8226
8227None.
8228
8229Semantics:
8230""""""""""
8231
8232This intrinsic is lowered to code which is intended to cause an
8233execution trap with the intention of requesting the attention of a
8234debugger.
8235
8236'``llvm.stackprotector``' Intrinsic
8237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8238
8239Syntax:
8240"""""""
8241
8242::
8243
8244 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8245
8246Overview:
8247"""""""""
8248
8249The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8250onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8251is placed on the stack before local variables.
8252
8253Arguments:
8254""""""""""
8255
8256The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8257The first argument is the value loaded from the stack guard
8258``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8259enough space to hold the value of the guard.
8260
8261Semantics:
8262""""""""""
8263
8264This intrinsic causes the prologue/epilogue inserter to force the
8265position of the ``AllocaInst`` stack slot to be before local variables
8266on the stack. This is to ensure that if a local variable on the stack is
8267overwritten, it will destroy the value of the guard. When the function
8268exits, the guard on the stack is checked against the original guard. If
8269they are different, then the program aborts by calling the
8270``__stack_chk_fail()`` function.
8271
8272'``llvm.objectsize``' Intrinsic
8273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8274
8275Syntax:
8276"""""""
8277
8278::
8279
8280 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8281 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8282
8283Overview:
8284"""""""""
8285
8286The ``llvm.objectsize`` intrinsic is designed to provide information to
8287the optimizers to determine at compile time whether a) an operation
8288(like memcpy) will overflow a buffer that corresponds to an object, or
8289b) that a runtime check for overflow isn't necessary. An object in this
8290context means an allocation of a specific class, structure, array, or
8291other object.
8292
8293Arguments:
8294""""""""""
8295
8296The ``llvm.objectsize`` intrinsic takes two arguments. The first
8297argument is a pointer to or into the ``object``. The second argument is
8298a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8299or -1 (if false) when the object size is unknown. The second argument
8300only accepts constants.
8301
8302Semantics:
8303""""""""""
8304
8305The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8306the size of the object concerned. If the size cannot be determined at
8307compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8308on the ``min`` argument).
8309
8310'``llvm.expect``' Intrinsic
8311^^^^^^^^^^^^^^^^^^^^^^^^^^^
8312
8313Syntax:
8314"""""""
8315
8316::
8317
8318 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8319 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8320
8321Overview:
8322"""""""""
8323
8324The ``llvm.expect`` intrinsic provides information about expected (the
8325most probable) value of ``val``, which can be used by optimizers.
8326
8327Arguments:
8328""""""""""
8329
8330The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8331a value. The second argument is an expected value, this needs to be a
8332constant value, variables are not allowed.
8333
8334Semantics:
8335""""""""""
8336
8337This intrinsic is lowered to the ``val``.
8338
8339'``llvm.donothing``' Intrinsic
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345::
8346
8347 declare void @llvm.donothing() nounwind readnone
8348
8349Overview:
8350"""""""""
8351
8352The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8353only intrinsic that can be called with an invoke instruction.
8354
8355Arguments:
8356""""""""""
8357
8358None.
8359
8360Semantics:
8361""""""""""
8362
8363This intrinsic does nothing, and it's removed by optimizers and ignored
8364by codegen.