Daniel Dunbar | fd08999 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 1 | //===-- divdc3_test.c - Test __divdc3 -------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Howard Hinnant | 5b791f6 | 2010-11-16 22:13:33 +0000 | [diff] [blame] | 5 | // This file is dual licensed under the MIT and the University of Illinois Open |
| 6 | // Source Licenses. See LICENSE.TXT for details. |
Daniel Dunbar | fd08999 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file tests __divdc3 for the compiler_rt library. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "int_lib.h" |
| 15 | #include <math.h> |
| 16 | #include <complex.h> |
| 17 | #include <stdio.h> |
| 18 | |
| 19 | // Returns: the quotient of (a + ib) / (c + id) |
| 20 | |
Derek Schuff | eb0ebc3 | 2015-04-24 15:45:57 +0000 | [diff] [blame] | 21 | COMPILER_RT_ABI double _Complex |
| 22 | __divdc3(double __a, double __b, double __c, double __d); |
Daniel Dunbar | fd08999 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 23 | |
| 24 | enum {zero, non_zero, inf, NaN, non_zero_nan}; |
| 25 | |
| 26 | int |
| 27 | classify(double _Complex x) |
| 28 | { |
| 29 | if (x == 0) |
| 30 | return zero; |
| 31 | if (isinf(creal(x)) || isinf(cimag(x))) |
| 32 | return inf; |
| 33 | if (isnan(creal(x)) && isnan(cimag(x))) |
| 34 | return NaN; |
| 35 | if (isnan(creal(x))) |
| 36 | { |
| 37 | if (cimag(x) == 0) |
| 38 | return NaN; |
| 39 | return non_zero_nan; |
| 40 | } |
| 41 | if (isnan(cimag(x))) |
| 42 | { |
| 43 | if (creal(x) == 0) |
| 44 | return NaN; |
| 45 | return non_zero_nan; |
| 46 | } |
| 47 | return non_zero; |
| 48 | } |
| 49 | |
| 50 | int test__divdc3(double a, double b, double c, double d) |
| 51 | { |
| 52 | double _Complex r = __divdc3(a, b, c, d); |
| 53 | // printf("test__divdc3(%f, %f, %f, %f) = %f + I%f\n", |
| 54 | // a, b, c, d, creal(r), cimag(r)); |
| 55 | double _Complex dividend; |
| 56 | double _Complex divisor; |
| 57 | |
| 58 | __real__ dividend = a; |
| 59 | __imag__ dividend = b; |
| 60 | __real__ divisor = c; |
| 61 | __imag__ divisor = d; |
| 62 | |
| 63 | switch (classify(dividend)) |
| 64 | { |
| 65 | case zero: |
| 66 | switch (classify(divisor)) |
| 67 | { |
| 68 | case zero: |
| 69 | if (classify(r) != NaN) |
| 70 | return 1; |
| 71 | break; |
| 72 | case non_zero: |
| 73 | if (classify(r) != zero) |
| 74 | return 1; |
| 75 | break; |
| 76 | case inf: |
| 77 | if (classify(r) != zero) |
| 78 | return 1; |
| 79 | break; |
| 80 | case NaN: |
| 81 | if (classify(r) != NaN) |
| 82 | return 1; |
| 83 | break; |
| 84 | case non_zero_nan: |
| 85 | if (classify(r) != NaN) |
| 86 | return 1; |
| 87 | break; |
| 88 | } |
| 89 | break; |
| 90 | case non_zero: |
| 91 | switch (classify(divisor)) |
| 92 | { |
| 93 | case zero: |
| 94 | if (classify(r) != inf) |
| 95 | return 1; |
| 96 | break; |
| 97 | case non_zero: |
| 98 | if (classify(r) != non_zero) |
| 99 | return 1; |
| 100 | { |
| 101 | double _Complex z = (a * c + b * d) / (c * c + d * d) |
| 102 | + (b * c - a * d) / (c * c + d * d) * _Complex_I; |
| 103 | if (cabs((r-z)/r) > 1.e-6) |
| 104 | return 1; |
| 105 | } |
| 106 | break; |
| 107 | case inf: |
| 108 | if (classify(r) != zero) |
| 109 | return 1; |
| 110 | break; |
| 111 | case NaN: |
| 112 | if (classify(r) != NaN) |
| 113 | return 1; |
| 114 | break; |
| 115 | case non_zero_nan: |
| 116 | if (classify(r) != NaN) |
| 117 | return 1; |
| 118 | break; |
| 119 | } |
| 120 | break; |
| 121 | case inf: |
| 122 | switch (classify(divisor)) |
| 123 | { |
| 124 | case zero: |
| 125 | if (classify(r) != inf) |
| 126 | return 1; |
| 127 | break; |
| 128 | case non_zero: |
| 129 | if (classify(r) != inf) |
| 130 | return 1; |
| 131 | break; |
| 132 | case inf: |
| 133 | if (classify(r) != NaN) |
| 134 | return 1; |
| 135 | break; |
| 136 | case NaN: |
| 137 | if (classify(r) != NaN) |
| 138 | return 1; |
| 139 | break; |
| 140 | case non_zero_nan: |
| 141 | if (classify(r) != NaN) |
| 142 | return 1; |
| 143 | break; |
| 144 | } |
| 145 | break; |
| 146 | case NaN: |
| 147 | switch (classify(divisor)) |
| 148 | { |
| 149 | case zero: |
| 150 | if (classify(r) != NaN) |
| 151 | return 1; |
| 152 | break; |
| 153 | case non_zero: |
| 154 | if (classify(r) != NaN) |
| 155 | return 1; |
| 156 | break; |
| 157 | case inf: |
| 158 | if (classify(r) != NaN) |
| 159 | return 1; |
| 160 | break; |
| 161 | case NaN: |
| 162 | if (classify(r) != NaN) |
| 163 | return 1; |
| 164 | break; |
| 165 | case non_zero_nan: |
| 166 | if (classify(r) != NaN) |
| 167 | return 1; |
| 168 | break; |
| 169 | } |
| 170 | break; |
| 171 | case non_zero_nan: |
| 172 | switch (classify(divisor)) |
| 173 | { |
| 174 | case zero: |
| 175 | if (classify(r) != inf) |
| 176 | return 1; |
| 177 | break; |
| 178 | case non_zero: |
| 179 | if (classify(r) != NaN) |
| 180 | return 1; |
| 181 | break; |
| 182 | case inf: |
| 183 | if (classify(r) != NaN) |
| 184 | return 1; |
| 185 | break; |
| 186 | case NaN: |
| 187 | if (classify(r) != NaN) |
| 188 | return 1; |
| 189 | break; |
| 190 | case non_zero_nan: |
| 191 | if (classify(r) != NaN) |
| 192 | return 1; |
| 193 | break; |
| 194 | } |
| 195 | break; |
| 196 | } |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | double x[][2] = |
| 202 | { |
| 203 | { 1.e-6, 1.e-6}, |
| 204 | {-1.e-6, 1.e-6}, |
| 205 | {-1.e-6, -1.e-6}, |
| 206 | { 1.e-6, -1.e-6}, |
| 207 | |
| 208 | { 1.e+6, 1.e-6}, |
| 209 | {-1.e+6, 1.e-6}, |
| 210 | {-1.e+6, -1.e-6}, |
| 211 | { 1.e+6, -1.e-6}, |
| 212 | |
| 213 | { 1.e-6, 1.e+6}, |
| 214 | {-1.e-6, 1.e+6}, |
| 215 | {-1.e-6, -1.e+6}, |
| 216 | { 1.e-6, -1.e+6}, |
| 217 | |
| 218 | { 1.e+6, 1.e+6}, |
| 219 | {-1.e+6, 1.e+6}, |
| 220 | {-1.e+6, -1.e+6}, |
| 221 | { 1.e+6, -1.e+6}, |
| 222 | |
| 223 | {NAN, NAN}, |
| 224 | {-INFINITY, NAN}, |
| 225 | {-2, NAN}, |
| 226 | {-1, NAN}, |
| 227 | {-0.5, NAN}, |
| 228 | {-0., NAN}, |
| 229 | {+0., NAN}, |
| 230 | {0.5, NAN}, |
| 231 | {1, NAN}, |
| 232 | {2, NAN}, |
| 233 | {INFINITY, NAN}, |
| 234 | |
| 235 | {NAN, -INFINITY}, |
| 236 | {-INFINITY, -INFINITY}, |
| 237 | {-2, -INFINITY}, |
| 238 | {-1, -INFINITY}, |
| 239 | {-0.5, -INFINITY}, |
| 240 | {-0., -INFINITY}, |
| 241 | {+0., -INFINITY}, |
| 242 | {0.5, -INFINITY}, |
| 243 | {1, -INFINITY}, |
| 244 | {2, -INFINITY}, |
| 245 | {INFINITY, -INFINITY}, |
| 246 | |
| 247 | {NAN, -2}, |
| 248 | {-INFINITY, -2}, |
| 249 | {-2, -2}, |
| 250 | {-1, -2}, |
| 251 | {-0.5, -2}, |
| 252 | {-0., -2}, |
| 253 | {+0., -2}, |
| 254 | {0.5, -2}, |
| 255 | {1, -2}, |
| 256 | {2, -2}, |
| 257 | {INFINITY, -2}, |
| 258 | |
| 259 | {NAN, -1}, |
| 260 | {-INFINITY, -1}, |
| 261 | {-2, -1}, |
| 262 | {-1, -1}, |
| 263 | {-0.5, -1}, |
| 264 | {-0., -1}, |
| 265 | {+0., -1}, |
| 266 | {0.5, -1}, |
| 267 | {1, -1}, |
| 268 | {2, -1}, |
| 269 | {INFINITY, -1}, |
| 270 | |
| 271 | {NAN, -0.5}, |
| 272 | {-INFINITY, -0.5}, |
| 273 | {-2, -0.5}, |
| 274 | {-1, -0.5}, |
| 275 | {-0.5, -0.5}, |
| 276 | {-0., -0.5}, |
| 277 | {+0., -0.5}, |
| 278 | {0.5, -0.5}, |
| 279 | {1, -0.5}, |
| 280 | {2, -0.5}, |
| 281 | {INFINITY, -0.5}, |
| 282 | |
| 283 | {NAN, -0.}, |
| 284 | {-INFINITY, -0.}, |
| 285 | {-2, -0.}, |
| 286 | {-1, -0.}, |
| 287 | {-0.5, -0.}, |
| 288 | {-0., -0.}, |
| 289 | {+0., -0.}, |
| 290 | {0.5, -0.}, |
| 291 | {1, -0.}, |
| 292 | {2, -0.}, |
| 293 | {INFINITY, -0.}, |
| 294 | |
| 295 | {NAN, 0.}, |
| 296 | {-INFINITY, 0.}, |
| 297 | {-2, 0.}, |
| 298 | {-1, 0.}, |
| 299 | {-0.5, 0.}, |
| 300 | {-0., 0.}, |
| 301 | {+0., 0.}, |
| 302 | {0.5, 0.}, |
| 303 | {1, 0.}, |
| 304 | {2, 0.}, |
| 305 | {INFINITY, 0.}, |
| 306 | |
| 307 | {NAN, 0.5}, |
| 308 | {-INFINITY, 0.5}, |
| 309 | {-2, 0.5}, |
| 310 | {-1, 0.5}, |
| 311 | {-0.5, 0.5}, |
| 312 | {-0., 0.5}, |
| 313 | {+0., 0.5}, |
| 314 | {0.5, 0.5}, |
| 315 | {1, 0.5}, |
| 316 | {2, 0.5}, |
| 317 | {INFINITY, 0.5}, |
| 318 | |
| 319 | {NAN, 1}, |
| 320 | {-INFINITY, 1}, |
| 321 | {-2, 1}, |
| 322 | {-1, 1}, |
| 323 | {-0.5, 1}, |
| 324 | {-0., 1}, |
| 325 | {+0., 1}, |
| 326 | {0.5, 1}, |
| 327 | {1, 1}, |
| 328 | {2, 1}, |
| 329 | {INFINITY, 1}, |
| 330 | |
| 331 | {NAN, 2}, |
| 332 | {-INFINITY, 2}, |
| 333 | {-2, 2}, |
| 334 | {-1, 2}, |
| 335 | {-0.5, 2}, |
| 336 | {-0., 2}, |
| 337 | {+0., 2}, |
| 338 | {0.5, 2}, |
| 339 | {1, 2}, |
| 340 | {2, 2}, |
| 341 | {INFINITY, 2}, |
| 342 | |
| 343 | {NAN, INFINITY}, |
| 344 | {-INFINITY, INFINITY}, |
| 345 | {-2, INFINITY}, |
| 346 | {-1, INFINITY}, |
| 347 | {-0.5, INFINITY}, |
| 348 | {-0., INFINITY}, |
| 349 | {+0., INFINITY}, |
| 350 | {0.5, INFINITY}, |
| 351 | {1, INFINITY}, |
| 352 | {2, INFINITY}, |
| 353 | {INFINITY, INFINITY} |
| 354 | |
| 355 | }; |
| 356 | |
| 357 | int main() |
| 358 | { |
| 359 | const unsigned N = sizeof(x) / sizeof(x[0]); |
| 360 | unsigned i, j; |
| 361 | for (i = 0; i < N; ++i) |
| 362 | { |
| 363 | for (j = 0; j < N; ++j) |
| 364 | { |
| 365 | if (test__divdc3(x[i][0], x[i][1], x[j][0], x[j][1])) |
| 366 | return 1; |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | return 0; |
| 371 | } |