blob: 2058dd06b21862d1c831c3890e16f36e5d89f67d [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// AArch64 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#include "AArch64.h"
18#include "AArch64TargetMachine.h"
19#include "MCTargetDesc/AArch64AddressingModes.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/CostTable.h"
23#include "llvm/Target/TargetLowering.h"
24#include <algorithm>
25using namespace llvm;
26
27#define DEBUG_TYPE "aarch64tti"
28
29// Declare the pass initialization routine locally as target-specific passes
30// don't have a target-wide initialization entry point, and so we rely on the
31// pass constructor initialization.
32namespace llvm {
33void initializeAArch64TTIPass(PassRegistry &);
34}
35
36namespace {
37
38class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
39 const AArch64TargetMachine *TM;
40 const AArch64Subtarget *ST;
41 const AArch64TargetLowering *TLI;
42
43 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
44 /// are set if the result needs to be inserted and/or extracted from vectors.
45 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
46
47public:
48 AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
49 llvm_unreachable("This pass cannot be directly constructed");
50 }
51
52 AArch64TTI(const AArch64TargetMachine *TM)
53 : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
Eric Christopherd9134482014-08-04 21:25:23 +000054 TLI(TM->getSubtargetImpl()->getTargetLowering()) {
Tim Northover3b0846e2014-05-24 12:50:23 +000055 initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
56 }
57
58 void initializePass() override { pushTTIStack(this); }
59
60 void getAnalysisUsage(AnalysisUsage &AU) const override {
61 TargetTransformInfo::getAnalysisUsage(AU);
62 }
63
64 /// Pass identification.
65 static char ID;
66
67 /// Provide necessary pointer adjustments for the two base classes.
68 void *getAdjustedAnalysisPointer(const void *ID) override {
69 if (ID == &TargetTransformInfo::ID)
70 return (TargetTransformInfo *)this;
71 return this;
72 }
73
74 /// \name Scalar TTI Implementations
75 /// @{
76 unsigned getIntImmCost(int64_t Val) const;
77 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
78 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
79 Type *Ty) const override;
80 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
81 Type *Ty) const override;
82 PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
83
84 /// @}
85
86 /// \name Vector TTI Implementations
87 /// @{
88
89 unsigned getNumberOfRegisters(bool Vector) const override {
90 if (Vector) {
91 if (ST->hasNEON())
92 return 32;
93 return 0;
94 }
95 return 31;
96 }
97
98 unsigned getRegisterBitWidth(bool Vector) const override {
99 if (Vector) {
100 if (ST->hasNEON())
101 return 128;
102 return 0;
103 }
104 return 64;
105 }
106
107 unsigned getMaximumUnrollFactor() const override { return 2; }
108
109 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
110 override;
111
112 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
113 override;
114
115 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
116 OperandValueKind Opd1Info = OK_AnyValue,
117 OperandValueKind Opd2Info = OK_AnyValue) const
118 override;
119
120 unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
121
122 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
123 override;
124
125 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
126 unsigned AddressSpace) const override;
James Molloy2b8933c2014-08-05 12:30:34 +0000127
128 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
129
Tim Northover3b0846e2014-05-24 12:50:23 +0000130 /// @}
131};
132
133} // end anonymous namespace
134
135INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
136 "AArch64 Target Transform Info", true, true, false)
137char AArch64TTI::ID = 0;
138
139ImmutablePass *
140llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
141 return new AArch64TTI(TM);
142}
143
144/// \brief Calculate the cost of materializing a 64-bit value. This helper
145/// method might only calculate a fraction of a larger immediate. Therefore it
146/// is valid to return a cost of ZERO.
147unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
148 // Check if the immediate can be encoded within an instruction.
149 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
150 return 0;
151
152 if (Val < 0)
153 Val = ~Val;
154
155 // Calculate how many moves we will need to materialize this constant.
156 unsigned LZ = countLeadingZeros((uint64_t)Val);
157 return (64 - LZ + 15) / 16;
158}
159
160/// \brief Calculate the cost of materializing the given constant.
161unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
162 assert(Ty->isIntegerTy());
163
164 unsigned BitSize = Ty->getPrimitiveSizeInBits();
165 if (BitSize == 0)
166 return ~0U;
167
168 // Sign-extend all constants to a multiple of 64-bit.
169 APInt ImmVal = Imm;
170 if (BitSize & 0x3f)
171 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
172
173 // Split the constant into 64-bit chunks and calculate the cost for each
174 // chunk.
175 unsigned Cost = 0;
176 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
177 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
178 int64_t Val = Tmp.getSExtValue();
179 Cost += getIntImmCost(Val);
180 }
181 // We need at least one instruction to materialze the constant.
182 return std::max(1U, Cost);
183}
184
185unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
186 const APInt &Imm, Type *Ty) const {
187 assert(Ty->isIntegerTy());
188
189 unsigned BitSize = Ty->getPrimitiveSizeInBits();
190 // There is no cost model for constants with a bit size of 0. Return TCC_Free
191 // here, so that constant hoisting will ignore this constant.
192 if (BitSize == 0)
193 return TCC_Free;
194
195 unsigned ImmIdx = ~0U;
196 switch (Opcode) {
197 default:
198 return TCC_Free;
199 case Instruction::GetElementPtr:
200 // Always hoist the base address of a GetElementPtr.
201 if (Idx == 0)
202 return 2 * TCC_Basic;
203 return TCC_Free;
204 case Instruction::Store:
205 ImmIdx = 0;
206 break;
207 case Instruction::Add:
208 case Instruction::Sub:
209 case Instruction::Mul:
210 case Instruction::UDiv:
211 case Instruction::SDiv:
212 case Instruction::URem:
213 case Instruction::SRem:
214 case Instruction::And:
215 case Instruction::Or:
216 case Instruction::Xor:
217 case Instruction::ICmp:
218 ImmIdx = 1;
219 break;
220 // Always return TCC_Free for the shift value of a shift instruction.
221 case Instruction::Shl:
222 case Instruction::LShr:
223 case Instruction::AShr:
224 if (Idx == 1)
225 return TCC_Free;
226 break;
227 case Instruction::Trunc:
228 case Instruction::ZExt:
229 case Instruction::SExt:
230 case Instruction::IntToPtr:
231 case Instruction::PtrToInt:
232 case Instruction::BitCast:
233 case Instruction::PHI:
234 case Instruction::Call:
235 case Instruction::Select:
236 case Instruction::Ret:
237 case Instruction::Load:
238 break;
239 }
240
241 if (Idx == ImmIdx) {
242 unsigned NumConstants = (BitSize + 63) / 64;
243 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
244 return (Cost <= NumConstants * TCC_Basic)
245 ? static_cast<unsigned>(TCC_Free) : Cost;
246 }
247 return AArch64TTI::getIntImmCost(Imm, Ty);
248}
249
250unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
251 const APInt &Imm, Type *Ty) const {
252 assert(Ty->isIntegerTy());
253
254 unsigned BitSize = Ty->getPrimitiveSizeInBits();
255 // There is no cost model for constants with a bit size of 0. Return TCC_Free
256 // here, so that constant hoisting will ignore this constant.
257 if (BitSize == 0)
258 return TCC_Free;
259
260 switch (IID) {
261 default:
262 return TCC_Free;
263 case Intrinsic::sadd_with_overflow:
264 case Intrinsic::uadd_with_overflow:
265 case Intrinsic::ssub_with_overflow:
266 case Intrinsic::usub_with_overflow:
267 case Intrinsic::smul_with_overflow:
268 case Intrinsic::umul_with_overflow:
269 if (Idx == 1) {
270 unsigned NumConstants = (BitSize + 63) / 64;
271 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
272 return (Cost <= NumConstants * TCC_Basic)
273 ? static_cast<unsigned>(TCC_Free) : Cost;
274 }
275 break;
276 case Intrinsic::experimental_stackmap:
277 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
278 return TCC_Free;
279 break;
280 case Intrinsic::experimental_patchpoint_void:
281 case Intrinsic::experimental_patchpoint_i64:
282 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
283 return TCC_Free;
284 break;
285 }
286 return AArch64TTI::getIntImmCost(Imm, Ty);
287}
288
289AArch64TTI::PopcntSupportKind
290AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
291 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
292 if (TyWidth == 32 || TyWidth == 64)
293 return PSK_FastHardware;
294 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
295 return PSK_Software;
296}
297
298unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
299 Type *Src) const {
300 int ISD = TLI->InstructionOpcodeToISD(Opcode);
301 assert(ISD && "Invalid opcode");
302
303 EVT SrcTy = TLI->getValueType(Src);
304 EVT DstTy = TLI->getValueType(Dst);
305
306 if (!SrcTy.isSimple() || !DstTy.isSimple())
307 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
308
309 static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
310 // LowerVectorINT_TO_FP:
311 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000312 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000313 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
314 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000315 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000316 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000317
318 // Complex: to v2f32
319 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
320 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000321 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000322 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
323 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000324 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000325
326 // Complex: to v4f32
327 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
328 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
329 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
330 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
331
332 // Complex: to v2f64
333 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
334 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
335 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
336 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
337 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
338 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
339
340
Tim Northover3b0846e2014-05-24 12:50:23 +0000341 // LowerVectorFP_TO_INT
Tim Northoveref0d7602014-06-15 09:27:06 +0000342 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000343 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
344 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000345 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000346 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
347 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000348
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000349 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
Tim Northoveref0d7602014-06-15 09:27:06 +0000350 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000351 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
352 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000353 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000354 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
355 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
356
357 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
358 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
359 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
Tim Northoveref0d7602014-06-15 09:27:06 +0000360 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
Tim Northoverdbecc3b2014-06-15 09:27:15 +0000361 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
362
363 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
364 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
365 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
366 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
367 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
368 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
369 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
Tim Northover3b0846e2014-05-24 12:50:23 +0000370 };
371
372 int Idx = ConvertCostTableLookup<MVT>(
373 ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
374 SrcTy.getSimpleVT());
375 if (Idx != -1)
376 return ConversionTbl[Idx].Cost;
377
378 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
379}
380
381unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
382 unsigned Index) const {
383 assert(Val->isVectorTy() && "This must be a vector type");
384
385 if (Index != -1U) {
386 // Legalize the type.
387 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
388
389 // This type is legalized to a scalar type.
390 if (!LT.second.isVector())
391 return 0;
392
393 // The type may be split. Normalize the index to the new type.
394 unsigned Width = LT.second.getVectorNumElements();
395 Index = Index % Width;
396
397 // The element at index zero is already inside the vector.
398 if (Index == 0)
399 return 0;
400 }
401
402 // All other insert/extracts cost this much.
403 return 2;
404}
405
406unsigned AArch64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
407 OperandValueKind Opd1Info,
408 OperandValueKind Opd2Info) const {
409 // Legalize the type.
410 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
411
412 int ISD = TLI->InstructionOpcodeToISD(Opcode);
413
414 switch (ISD) {
415 default:
416 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
417 Opd2Info);
418 case ISD::ADD:
419 case ISD::MUL:
420 case ISD::XOR:
421 case ISD::OR:
422 case ISD::AND:
423 // These nodes are marked as 'custom' for combining purposes only.
424 // We know that they are legal. See LowerAdd in ISelLowering.
425 return 1 * LT.first;
426 }
427}
428
429unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
430 // Address computations in vectorized code with non-consecutive addresses will
431 // likely result in more instructions compared to scalar code where the
432 // computation can more often be merged into the index mode. The resulting
433 // extra micro-ops can significantly decrease throughput.
434 unsigned NumVectorInstToHideOverhead = 10;
435
436 if (Ty->isVectorTy() && IsComplex)
437 return NumVectorInstToHideOverhead;
438
439 // In many cases the address computation is not merged into the instruction
440 // addressing mode.
441 return 1;
442}
443
444unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
445 Type *CondTy) const {
446
447 int ISD = TLI->InstructionOpcodeToISD(Opcode);
448 // We don't lower vector selects well that are wider than the register width.
449 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
450 // We would need this many instructions to hide the scalarization happening.
451 unsigned AmortizationCost = 20;
452 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
453 VectorSelectTbl[] = {
454 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
455 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
456 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
457 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
458 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
459 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
460 };
461
462 EVT SelCondTy = TLI->getValueType(CondTy);
463 EVT SelValTy = TLI->getValueType(ValTy);
464 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
465 int Idx =
466 ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
467 SelValTy.getSimpleVT());
468 if (Idx != -1)
469 return VectorSelectTbl[Idx].Cost;
470 }
471 }
472 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
473}
474
475unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
476 unsigned Alignment,
477 unsigned AddressSpace) const {
478 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
479
480 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
481 Src->getVectorElementType()->isIntegerTy(64)) {
482 // Unaligned stores are extremely inefficient. We don't split
483 // unaligned v2i64 stores because the negative impact that has shown in
484 // practice on inlined memcpy code.
485 // We make v2i64 stores expensive so that we will only vectorize if there
486 // are 6 other instructions getting vectorized.
487 unsigned AmortizationCost = 6;
488
489 return LT.first * 2 * AmortizationCost;
490 }
491
492 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
493 Src->getVectorNumElements() < 8) {
494 // We scalarize the loads/stores because there is not v.4b register and we
495 // have to promote the elements to v.4h.
496 unsigned NumVecElts = Src->getVectorNumElements();
497 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
498 // We generate 2 instructions per vector element.
499 return NumVectorizableInstsToAmortize * NumVecElts * 2;
500 }
501
502 return LT.first;
503}
James Molloy2b8933c2014-08-05 12:30:34 +0000504
505unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
506 unsigned Cost = 0;
507 for (auto *I : Tys) {
508 if (!I->isVectorTy())
509 continue;
510 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
511 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
512 getMemoryOpCost(Instruction::Load, I, 128, 0);
513 }
514 return Cost;
515}