blob: 106ccbecf8a9ab153ce300ea6f4ceb7d20003795 [file] [log] [blame]
NAKAMURA Takumi84965032015-09-22 11:14:12 +00001//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
James Molloy87405c72015-08-14 11:09:09 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a demanded bits analysis. A demanded bit is one that
11// contributes to a result; bits that are not demanded can be either zero or
12// one without affecting control or data flow. For example in this sequence:
13//
14// %1 = add i32 %x, %y
15// %2 = trunc i32 %1 to i16
16//
17// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18// trunc.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Analysis/DemandedBits.h"
James Molloy87405c72015-08-14 11:09:09 +000023#include "llvm/ADT/DepthFirstIterator.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
James Molloybcd7f0a2015-10-08 12:39:59 +000026#include "llvm/ADT/StringExtras.h"
James Molloy87405c72015-08-14 11:09:09 +000027#include "llvm/Analysis/AssumptionCache.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/InstIterator.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/raw_ostream.h"
41using namespace llvm;
42
43#define DEBUG_TYPE "demanded-bits"
44
Michael Kupersteinde16b442016-04-18 23:55:01 +000045char DemandedBitsWrapperPass::ID = 0;
46INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
47 "Demanded bits analysis", false, false)
James Molloy87405c72015-08-14 11:09:09 +000048INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
49INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Michael Kupersteinde16b442016-04-18 23:55:01 +000050INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
51 "Demanded bits analysis", false, false)
James Molloy87405c72015-08-14 11:09:09 +000052
Michael Kupersteinde16b442016-04-18 23:55:01 +000053DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
54 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
James Molloy87405c72015-08-14 11:09:09 +000055}
56
Michael Kupersteinde16b442016-04-18 23:55:01 +000057void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
James Molloy87405c72015-08-14 11:09:09 +000058 AU.setPreservesCFG();
59 AU.addRequired<AssumptionCacheTracker>();
60 AU.addRequired<DominatorTreeWrapperPass>();
61 AU.setPreservesAll();
62}
63
Michael Kupersteinde16b442016-04-18 23:55:01 +000064void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
65 DB->print(OS);
66}
67
James Molloy87405c72015-08-14 11:09:09 +000068static bool isAlwaysLive(Instruction *I) {
69 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
70 I->isEHPad() || I->mayHaveSideEffects();
71}
72
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +000073void DemandedBits::determineLiveOperandBits(
74 const Instruction *UserI, const Instruction *I, unsigned OperandNo,
75 const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
76 APInt &KnownZero2, APInt &KnownOne2) {
James Molloy87405c72015-08-14 11:09:09 +000077 unsigned BitWidth = AB.getBitWidth();
78
79 // We're called once per operand, but for some instructions, we need to
80 // compute known bits of both operands in order to determine the live bits of
81 // either (when both operands are instructions themselves). We don't,
82 // however, want to do this twice, so we cache the result in APInts that live
83 // in the caller. For the two-relevant-operands case, both operand values are
84 // provided here.
85 auto ComputeKnownBits =
86 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
87 const DataLayout &DL = I->getModule()->getDataLayout();
88 KnownZero = APInt(BitWidth, 0);
89 KnownOne = APInt(BitWidth, 0);
90 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
Michael Kupersteinde16b442016-04-18 23:55:01 +000091 &AC, UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000092
93 if (V2) {
94 KnownZero2 = APInt(BitWidth, 0);
95 KnownOne2 = APInt(BitWidth, 0);
96 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
Michael Kupersteinde16b442016-04-18 23:55:01 +000097 0, &AC, UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000098 }
99 };
100
101 switch (UserI->getOpcode()) {
102 default: break;
103 case Instruction::Call:
104 case Instruction::Invoke:
105 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
106 switch (II->getIntrinsicID()) {
107 default: break;
108 case Intrinsic::bswap:
109 // The alive bits of the input are the swapped alive bits of
110 // the output.
111 AB = AOut.byteSwap();
112 break;
113 case Intrinsic::ctlz:
114 if (OperandNo == 0) {
115 // We need some output bits, so we need all bits of the
116 // input to the left of, and including, the leftmost bit
117 // known to be one.
118 ComputeKnownBits(BitWidth, I, nullptr);
119 AB = APInt::getHighBitsSet(BitWidth,
120 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
121 }
122 break;
123 case Intrinsic::cttz:
124 if (OperandNo == 0) {
125 // We need some output bits, so we need all bits of the
126 // input to the right of, and including, the rightmost bit
127 // known to be one.
128 ComputeKnownBits(BitWidth, I, nullptr);
129 AB = APInt::getLowBitsSet(BitWidth,
130 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
131 }
132 break;
133 }
134 break;
135 case Instruction::Add:
136 case Instruction::Sub:
James Molloybcd7f0a2015-10-08 12:39:59 +0000137 case Instruction::Mul:
James Molloy87405c72015-08-14 11:09:09 +0000138 // Find the highest live output bit. We don't need any more input
139 // bits than that (adds, and thus subtracts, ripple only to the
140 // left).
141 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
142 break;
143 case Instruction::Shl:
144 if (OperandNo == 0)
145 if (ConstantInt *CI =
146 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
147 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
148 AB = AOut.lshr(ShiftAmt);
149
150 // If the shift is nuw/nsw, then the high bits are not dead
151 // (because we've promised that they *must* be zero).
152 const ShlOperator *S = cast<ShlOperator>(UserI);
153 if (S->hasNoSignedWrap())
154 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
155 else if (S->hasNoUnsignedWrap())
156 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
157 }
158 break;
159 case Instruction::LShr:
160 if (OperandNo == 0)
161 if (ConstantInt *CI =
162 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
163 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
164 AB = AOut.shl(ShiftAmt);
165
166 // If the shift is exact, then the low bits are not dead
167 // (they must be zero).
168 if (cast<LShrOperator>(UserI)->isExact())
169 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
170 }
171 break;
172 case Instruction::AShr:
173 if (OperandNo == 0)
174 if (ConstantInt *CI =
175 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
176 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
177 AB = AOut.shl(ShiftAmt);
178 // Because the high input bit is replicated into the
179 // high-order bits of the result, if we need any of those
180 // bits, then we must keep the highest input bit.
181 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
182 .getBoolValue())
183 AB.setBit(BitWidth-1);
184
185 // If the shift is exact, then the low bits are not dead
186 // (they must be zero).
187 if (cast<AShrOperator>(UserI)->isExact())
188 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
189 }
190 break;
191 case Instruction::And:
192 AB = AOut;
193
194 // For bits that are known zero, the corresponding bits in the
195 // other operand are dead (unless they're both zero, in which
196 // case they can't both be dead, so just mark the LHS bits as
197 // dead).
198 if (OperandNo == 0) {
199 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
200 AB &= ~KnownZero2;
201 } else {
202 if (!isa<Instruction>(UserI->getOperand(0)))
203 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
204 AB &= ~(KnownZero & ~KnownZero2);
205 }
206 break;
207 case Instruction::Or:
208 AB = AOut;
209
210 // For bits that are known one, the corresponding bits in the
211 // other operand are dead (unless they're both one, in which
212 // case they can't both be dead, so just mark the LHS bits as
213 // dead).
214 if (OperandNo == 0) {
215 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
216 AB &= ~KnownOne2;
217 } else {
218 if (!isa<Instruction>(UserI->getOperand(0)))
219 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
220 AB &= ~(KnownOne & ~KnownOne2);
221 }
222 break;
223 case Instruction::Xor:
224 case Instruction::PHI:
225 AB = AOut;
226 break;
227 case Instruction::Trunc:
228 AB = AOut.zext(BitWidth);
229 break;
230 case Instruction::ZExt:
231 AB = AOut.trunc(BitWidth);
232 break;
233 case Instruction::SExt:
234 AB = AOut.trunc(BitWidth);
235 // Because the high input bit is replicated into the
236 // high-order bits of the result, if we need any of those
237 // bits, then we must keep the highest input bit.
238 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
239 AOut.getBitWidth() - BitWidth))
240 .getBoolValue())
241 AB.setBit(BitWidth-1);
242 break;
243 case Instruction::Select:
244 if (OperandNo != 0)
245 AB = AOut;
246 break;
247 }
248}
249
Michael Kupersteinde16b442016-04-18 23:55:01 +0000250bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
251 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
252 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
253 DB.emplace(F, AC, DT);
James Molloyab9fdb92015-10-08 12:39:50 +0000254 return false;
255}
James Molloy87405c72015-08-14 11:09:09 +0000256
Michael Kupersteinde16b442016-04-18 23:55:01 +0000257void DemandedBitsWrapperPass::releaseMemory() {
258 DB.reset();
259}
260
James Molloyab9fdb92015-10-08 12:39:50 +0000261void DemandedBits::performAnalysis() {
262 if (Analyzed)
263 // Analysis already completed for this function.
264 return;
265 Analyzed = true;
James Molloyab9fdb92015-10-08 12:39:50 +0000266
James Molloy87405c72015-08-14 11:09:09 +0000267 Visited.clear();
268 AliveBits.clear();
269
270 SmallVector<Instruction*, 128> Worklist;
271
272 // Collect the set of "root" instructions that are known live.
Michael Kupersteinde16b442016-04-18 23:55:01 +0000273 for (Instruction &I : instructions(F)) {
James Molloy87405c72015-08-14 11:09:09 +0000274 if (!isAlwaysLive(&I))
275 continue;
276
277 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
278 // For integer-valued instructions, set up an initial empty set of alive
279 // bits and add the instruction to the work list. For other instructions
280 // add their operands to the work list (for integer values operands, mark
281 // all bits as live).
282 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000283 if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
James Molloy87405c72015-08-14 11:09:09 +0000284 Worklist.push_back(&I);
James Molloy87405c72015-08-14 11:09:09 +0000285
286 continue;
287 }
288
289 // Non-integer-typed instructions...
290 for (Use &OI : I.operands()) {
291 if (Instruction *J = dyn_cast<Instruction>(OI)) {
292 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
293 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
294 Worklist.push_back(J);
295 }
296 }
297 // To save memory, we don't add I to the Visited set here. Instead, we
298 // check isAlwaysLive on every instruction when searching for dead
299 // instructions later (we need to check isAlwaysLive for the
300 // integer-typed instructions anyway).
301 }
302
303 // Propagate liveness backwards to operands.
304 while (!Worklist.empty()) {
305 Instruction *UserI = Worklist.pop_back_val();
306
307 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
308 APInt AOut;
309 if (UserI->getType()->isIntegerTy()) {
310 AOut = AliveBits[UserI];
311 DEBUG(dbgs() << " Alive Out: " << AOut);
312 }
313 DEBUG(dbgs() << "\n");
314
315 if (!UserI->getType()->isIntegerTy())
316 Visited.insert(UserI);
317
318 APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
319 // Compute the set of alive bits for each operand. These are anded into the
320 // existing set, if any, and if that changes the set of alive bits, the
321 // operand is added to the work-list.
322 for (Use &OI : UserI->operands()) {
323 if (Instruction *I = dyn_cast<Instruction>(OI)) {
324 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
325 unsigned BitWidth = IT->getBitWidth();
326 APInt AB = APInt::getAllOnesValue(BitWidth);
327 if (UserI->getType()->isIntegerTy() && !AOut &&
328 !isAlwaysLive(UserI)) {
329 AB = APInt(BitWidth, 0);
330 } else {
NAKAMURA Takumi84965032015-09-22 11:14:12 +0000331 // If all bits of the output are dead, then all bits of the input
James Molloy87405c72015-08-14 11:09:09 +0000332 // Bits of each operand that are used to compute alive bits of the
333 // output are alive, all others are dead.
334 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
335 KnownZero, KnownOne,
336 KnownZero2, KnownOne2);
337 }
338
339 // If we've added to the set of alive bits (or the operand has not
340 // been previously visited), then re-queue the operand to be visited
341 // again.
342 APInt ABPrev(BitWidth, 0);
343 auto ABI = AliveBits.find(I);
344 if (ABI != AliveBits.end())
345 ABPrev = ABI->second;
346
347 APInt ABNew = AB | ABPrev;
348 if (ABNew != ABPrev || ABI == AliveBits.end()) {
349 AliveBits[I] = std::move(ABNew);
350 Worklist.push_back(I);
351 }
352 } else if (!Visited.count(I)) {
353 Worklist.push_back(I);
354 }
355 }
356 }
357 }
James Molloy87405c72015-08-14 11:09:09 +0000358}
359
360APInt DemandedBits::getDemandedBits(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000361 performAnalysis();
362
James Molloy87405c72015-08-14 11:09:09 +0000363 const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000364 auto Found = AliveBits.find(I);
365 if (Found != AliveBits.end())
366 return Found->second;
James Molloy87405c72015-08-14 11:09:09 +0000367 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
368}
369
370bool DemandedBits::isInstructionDead(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000371 performAnalysis();
372
James Molloy87405c72015-08-14 11:09:09 +0000373 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
374 !isAlwaysLive(I);
375}
376
Michael Kupersteinde16b442016-04-18 23:55:01 +0000377void DemandedBits::print(raw_ostream &OS) {
378 performAnalysis();
James Molloybcd7f0a2015-10-08 12:39:59 +0000379 for (auto &KV : AliveBits) {
380 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
381 << *KV.first << "\n";
382 }
383}
384
Michael Kupersteinde16b442016-04-18 23:55:01 +0000385FunctionPass *llvm::createDemandedBitsWrapperPass() {
386 return new DemandedBitsWrapperPass();
387}
388
389char DemandedBitsAnalysis::PassID;
390
391DemandedBits DemandedBitsAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +0000392 FunctionAnalysisManager &AM) {
Michael Kupersteinde16b442016-04-18 23:55:01 +0000393 auto &AC = AM.getResult<AssumptionAnalysis>(F);
394 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
395 return DemandedBits(F, AC, DT);
396}
397
398PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
399 FunctionAnalysisManager &AM) {
400 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
401 return PreservedAnalyses::all();
James Molloy87405c72015-08-14 11:09:09 +0000402}