blob: 7d7f557e433022748f61e074934efdccb85324e7 [file] [log] [blame]
Nate Begeman6cca84e2005-10-16 05:39:50 +00001//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
Chris Lattner43ff01e2005-08-17 19:33:03 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner43ff01e2005-08-17 19:33:03 +00007//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman6cca84e2005-10-16 05:39:50 +000010// This file defines a pattern matching instruction selector for PowerPC,
Chris Lattner43ff01e2005-08-17 19:33:03 +000011// converting from a legalized dag to a PPC dag.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnerbfca1ab2005-10-14 23:51:18 +000015#include "PPC.h"
Evan Cheng11424442011-07-26 00:24:13 +000016#include "MCTargetDesc/PPCPredicates.h"
Hal Finkel3ee2af72014-07-18 23:29:49 +000017#include "PPCMachineFunctionInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000018#include "PPCTargetMachine.h"
Chris Lattner45640392005-08-19 22:38:53 +000019#include "llvm/CodeGen/MachineFunction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattnera10fff52007-12-31 04:13:23 +000021#include "llvm/CodeGen/MachineRegisterInfo.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000022#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SelectionDAGISel.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
Chandler Carruth1fe21fc2013-01-19 08:03:47 +000026#include "llvm/IR/GlobalAlias.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
Justin Hibbitsa88b6052014-11-12 15:16:30 +000030#include "llvm/IR/Module.h"
Hal Finkel940ab932014-02-28 00:27:01 +000031#include "llvm/Support/CommandLine.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000032#include "llvm/Support/Debug.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000033#include "llvm/Support/ErrorHandling.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000034#include "llvm/Support/MathExtras.h"
Torok Edwinfb8d6d52009-07-08 20:53:28 +000035#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000036#include "llvm/Target/TargetOptions.h"
Chris Lattner43ff01e2005-08-17 19:33:03 +000037using namespace llvm;
38
Chandler Carruth84e68b22014-04-22 02:41:26 +000039#define DEBUG_TYPE "ppc-codegen"
40
Hal Finkel940ab932014-02-28 00:27:01 +000041// FIXME: Remove this once the bug has been fixed!
42cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
43cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
44
Hal Finkelc58ce412015-01-01 02:53:29 +000045cl::opt<bool> UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
46 cl::desc("use aggressive ppc isel for bit permutations"), cl::Hidden);
47cl::opt<bool> BPermRewriterNoMasking("ppc-bit-perm-rewriter-stress-rotates",
48 cl::desc("stress rotate selection in aggressive ppc isel for "
49 "bit permutations"), cl::Hidden);
50
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000051namespace llvm {
52 void initializePPCDAGToDAGISelPass(PassRegistry&);
53}
54
Chris Lattner43ff01e2005-08-17 19:33:03 +000055namespace {
Chris Lattner43ff01e2005-08-17 19:33:03 +000056 //===--------------------------------------------------------------------===//
Nate Begeman0b71e002005-10-18 00:28:58 +000057 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
Chris Lattner43ff01e2005-08-17 19:33:03 +000058 /// instructions for SelectionDAG operations.
59 ///
Nick Lewycky02d5f772009-10-25 06:33:48 +000060 class PPCDAGToDAGISel : public SelectionDAGISel {
Dan Gohman21cea8a2010-04-17 15:26:15 +000061 const PPCTargetMachine &TM;
Eric Christopher1b8e7632014-05-22 01:07:24 +000062 const PPCTargetLowering *PPCLowering;
63 const PPCSubtarget *PPCSubTarget;
Chris Lattner45640392005-08-19 22:38:53 +000064 unsigned GlobalBaseReg;
Chris Lattner43ff01e2005-08-17 19:33:03 +000065 public:
Dan Gohman56e3f632008-07-07 18:00:37 +000066 explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
Eric Christopherd9134482014-08-04 21:25:23 +000067 : SelectionDAGISel(tm), TM(tm),
68 PPCLowering(TM.getSubtargetImpl()->getTargetLowering()),
69 PPCSubTarget(TM.getSubtargetImpl()) {
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +000070 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
71 }
Andrew Trickc416ba62010-12-24 04:28:06 +000072
Craig Topper0d3fa922014-04-29 07:57:37 +000073 bool runOnMachineFunction(MachineFunction &MF) override {
Chris Lattner45640392005-08-19 22:38:53 +000074 // Make sure we re-emit a set of the global base reg if necessary
75 GlobalBaseReg = 0;
Eric Christopherd9134482014-08-04 21:25:23 +000076 PPCLowering = TM.getSubtargetImpl()->getTargetLowering();
Eric Christopher1b8e7632014-05-22 01:07:24 +000077 PPCSubTarget = TM.getSubtargetImpl();
Dan Gohman5ea74d52009-07-31 18:16:33 +000078 SelectionDAGISel::runOnMachineFunction(MF);
Andrew Trickc416ba62010-12-24 04:28:06 +000079
Eric Christopher1b8e7632014-05-22 01:07:24 +000080 if (!PPCSubTarget->isSVR4ABI())
Bill Schmidt38d94582012-10-10 20:54:15 +000081 InsertVRSaveCode(MF);
82
Chris Lattner1678a6c2006-03-16 18:25:23 +000083 return true;
Chris Lattner45640392005-08-19 22:38:53 +000084 }
Andrew Trickc416ba62010-12-24 04:28:06 +000085
Hal Finkel4edc66b2015-01-03 01:16:37 +000086 void PreprocessISelDAG() override;
Craig Topper0d3fa922014-04-29 07:57:37 +000087 void PostprocessISelDAG() override;
Bill Schmidtf5b474c2013-02-21 00:38:25 +000088
Chris Lattner43ff01e2005-08-17 19:33:03 +000089 /// getI32Imm - Return a target constant with the specified value, of type
90 /// i32.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000091 inline SDValue getI32Imm(unsigned Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +000092 return CurDAG->getTargetConstant(Imm, MVT::i32);
Chris Lattner43ff01e2005-08-17 19:33:03 +000093 }
Chris Lattner45640392005-08-19 22:38:53 +000094
Chris Lattner97b3da12006-06-27 00:04:13 +000095 /// getI64Imm - Return a target constant with the specified value, of type
96 /// i64.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +000097 inline SDValue getI64Imm(uint64_t Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +000098 return CurDAG->getTargetConstant(Imm, MVT::i64);
Chris Lattner97b3da12006-06-27 00:04:13 +000099 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000100
Chris Lattner97b3da12006-06-27 00:04:13 +0000101 /// getSmallIPtrImm - Return a target constant of pointer type.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000102 inline SDValue getSmallIPtrImm(unsigned Imm) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000103 return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
Chris Lattner97b3da12006-06-27 00:04:13 +0000104 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000105
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000106 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
Nate Begemand31efd12006-09-22 05:01:56 +0000107 /// with any number of 0s on either side. The 1s are allowed to wrap from
108 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
109 /// 0x0F0F0000 is not, since all 1s are not contiguous.
110 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
111
112
113 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
114 /// rotate and mask opcode and mask operation.
Dale Johannesen86dcae12009-11-24 01:09:07 +0000115 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
Nate Begemand31efd12006-09-22 05:01:56 +0000116 unsigned &SH, unsigned &MB, unsigned &ME);
Andrew Trickc416ba62010-12-24 04:28:06 +0000117
Chris Lattner45640392005-08-19 22:38:53 +0000118 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
119 /// base register. Return the virtual register that holds this value.
Evan Cheng61413a32006-08-26 05:34:46 +0000120 SDNode *getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +0000121
Hal Finkelb5e9b042014-12-11 22:51:06 +0000122 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
123
Chris Lattner43ff01e2005-08-17 19:33:03 +0000124 // Select - Convert the specified operand from a target-independent to a
125 // target-specific node if it hasn't already been changed.
Craig Topper0d3fa922014-04-29 07:57:37 +0000126 SDNode *Select(SDNode *N) override;
Andrew Trickc416ba62010-12-24 04:28:06 +0000127
Nate Begeman93c4bc62005-08-19 00:38:14 +0000128 SDNode *SelectBitfieldInsert(SDNode *N);
Hal Finkel8adf2252014-12-16 05:51:41 +0000129 SDNode *SelectBitPermutation(SDNode *N);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000130
Chris Lattner2a1823d2005-08-21 18:50:37 +0000131 /// SelectCC - Select a comparison of the specified values with the
132 /// specified condition code, returning the CR# of the expression.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000133 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
Chris Lattner2a1823d2005-08-21 18:50:37 +0000134
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000135 /// SelectAddrImm - Returns true if the address N can be represented by
136 /// a base register plus a signed 16-bit displacement [r+imm].
Chris Lattner0e023ea2010-09-21 20:31:19 +0000137 bool SelectAddrImm(SDValue N, SDValue &Disp,
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000138 SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000139 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
Chris Lattnera801fced2006-11-08 02:15:41 +0000140 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000141
Chris Lattner6f5840c2006-11-16 00:41:37 +0000142 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000143 /// immediate field. Note that the operand at this point is already the
144 /// result of a prior SelectAddressRegImm call.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000145 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
Ulrich Weigandd1b99d32013-03-22 14:58:17 +0000146 if (N.getOpcode() == ISD::TargetConstant ||
Hal Finkela86b0f22012-06-21 20:10:48 +0000147 N.getOpcode() == ISD::TargetGlobalAddress) {
Hal Finkel1cc27e42012-06-19 02:34:32 +0000148 Out = N;
149 return true;
150 }
151
152 return false;
153 }
154
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000155 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
156 /// represented as an indexed [r+r] operation. Returns false if it can
157 /// be represented by [r+imm], which are preferred.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000158 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000159 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000160 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000161
Nate Begeman8e6a8af2005-12-19 23:25:09 +0000162 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
163 /// represented as an indexed [r+r] operation.
Chris Lattner0e023ea2010-09-21 20:31:19 +0000164 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000165 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
Chris Lattnera801fced2006-11-08 02:15:41 +0000166 }
Chris Lattnerc5292ec2005-08-21 22:31:09 +0000167
Ulrich Weigand9d980cb2013-05-16 17:58:02 +0000168 /// SelectAddrImmX4 - Returns true if the address N can be represented by
169 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
170 /// Suitable for use by STD and friends.
171 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
Eric Christopher1b8e7632014-05-22 01:07:24 +0000172 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
Chris Lattnera801fced2006-11-08 02:15:41 +0000173 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000174
Hal Finkel756810f2013-03-21 21:37:52 +0000175 // Select an address into a single register.
176 bool SelectAddr(SDValue N, SDValue &Base) {
177 Base = N;
178 return true;
179 }
180
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000181 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
Dale Johannesen4a50e682009-08-18 00:18:39 +0000182 /// inline asm expressions. It is always correct to compute the value into
183 /// a register. The case of adding a (possibly relocatable) constant to a
184 /// register can be improved, but it is wrong to substitute Reg+Reg for
185 /// Reg in an asm, because the load or store opcode would have to change.
Hal Finkeld4338382014-12-03 23:40:13 +0000186 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
Craig Topper0d3fa922014-04-29 07:57:37 +0000187 char ConstraintCode,
188 std::vector<SDValue> &OutOps) override {
Hal Finkeld4338382014-12-03 23:40:13 +0000189 // We need to make sure that this one operand does not end up in r0
190 // (because we might end up lowering this as 0(%op)).
191 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
192 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
193 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
194 SDValue NewOp =
195 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
196 SDLoc(Op), Op.getValueType(),
197 Op, RC), 0);
198
199 OutOps.push_back(NewOp);
Chris Lattnera1ec1dd2006-02-24 02:13:12 +0000200 return false;
201 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000202
Dan Gohman5ea74d52009-07-31 18:16:33 +0000203 void InsertVRSaveCode(MachineFunction &MF);
Chris Lattner1678a6c2006-03-16 18:25:23 +0000204
Craig Topper0d3fa922014-04-29 07:57:37 +0000205 const char *getPassName() const override {
Chris Lattner43ff01e2005-08-17 19:33:03 +0000206 return "PowerPC DAG->DAG Pattern Instruction Selection";
Andrew Trickc416ba62010-12-24 04:28:06 +0000207 }
208
Chris Lattner03e08ee2005-09-13 22:03:06 +0000209// Include the pieces autogenerated from the target description.
Chris Lattner0921e3b2005-10-14 23:37:35 +0000210#include "PPCGenDAGISel.inc"
Andrew Trickc416ba62010-12-24 04:28:06 +0000211
Chris Lattner259e6c72005-10-06 18:45:51 +0000212private:
Dan Gohmanea6f91f2010-01-05 01:24:18 +0000213 SDNode *SelectSETCC(SDNode *N);
Hal Finkel940ab932014-02-28 00:27:01 +0000214
215 void PeepholePPC64();
Hal Finkel4c6658f2014-12-12 23:59:36 +0000216 void PeepholePPC64ZExt();
Eric Christopher02e18042014-05-14 00:31:15 +0000217 void PeepholeCROps();
Hal Finkelb9989152014-02-28 06:11:16 +0000218
Hal Finkel4edc66b2015-01-03 01:16:37 +0000219 SDValue combineToCMPB(SDNode *N);
220
Hal Finkelb9989152014-02-28 06:11:16 +0000221 bool AllUsersSelectZero(SDNode *N);
222 void SwapAllSelectUsers(SDNode *N);
Chris Lattner43ff01e2005-08-17 19:33:03 +0000223 };
224}
225
Chris Lattner1678a6c2006-03-16 18:25:23 +0000226/// InsertVRSaveCode - Once the entire function has been instruction selected,
227/// all virtual registers are created and all machine instructions are built,
228/// check to see if we need to save/restore VRSAVE. If so, do it.
Dan Gohman5ea74d52009-07-31 18:16:33 +0000229void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000230 // Check to see if this function uses vector registers, which means we have to
Andrew Trickc416ba62010-12-24 04:28:06 +0000231 // save and restore the VRSAVE register and update it with the regs we use.
Chris Lattner02e2c182006-03-13 21:52:10 +0000232 //
Dan Gohman4a618822010-02-10 16:03:48 +0000233 // In this case, there will be virtual registers of vector type created
Chris Lattner02e2c182006-03-13 21:52:10 +0000234 // by the scheduler. Detect them now.
Chris Lattner02e2c182006-03-13 21:52:10 +0000235 bool HasVectorVReg = false;
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000236 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
237 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
238 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
Chris Lattner02e2c182006-03-13 21:52:10 +0000239 HasVectorVReg = true;
240 break;
241 }
Jakob Stoklund Olesen4a7b48d2011-01-08 23:11:11 +0000242 }
Chris Lattner1678a6c2006-03-16 18:25:23 +0000243 if (!HasVectorVReg) return; // nothing to do.
Andrew Trickc416ba62010-12-24 04:28:06 +0000244
Chris Lattner02e2c182006-03-13 21:52:10 +0000245 // If we have a vector register, we want to emit code into the entry and exit
246 // blocks to save and restore the VRSAVE register. We do this here (instead
247 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
248 //
249 // 1. This (trivially) reduces the load on the register allocator, by not
250 // having to represent the live range of the VRSAVE register.
251 // 2. This (more significantly) allows us to create a temporary virtual
252 // register to hold the saved VRSAVE value, allowing this temporary to be
253 // register allocated, instead of forcing it to be spilled to the stack.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000254
255 // Create two vregs - one to hold the VRSAVE register that is live-in to the
256 // function and one for the value after having bits or'd into it.
Chris Lattnera10fff52007-12-31 04:13:23 +0000257 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
258 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
Andrew Trickc416ba62010-12-24 04:28:06 +0000259
Eric Christopherd9134482014-08-04 21:25:23 +0000260 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
Chris Lattner1678a6c2006-03-16 18:25:23 +0000261 MachineBasicBlock &EntryBB = *Fn.begin();
Chris Lattner6f306d72010-04-02 20:16:16 +0000262 DebugLoc dl;
Chris Lattner1678a6c2006-03-16 18:25:23 +0000263 // Emit the following code into the entry block:
264 // InVRSAVE = MFVRSAVE
265 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
266 // MTVRSAVE UpdatedVRSAVE
267 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
Dale Johannesene9f623e2009-02-13 02:27:39 +0000268 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
269 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
Chris Lattnera98c6792008-01-07 01:56:04 +0000270 UpdatedVRSAVE).addReg(InVRSAVE);
Dale Johannesene9f623e2009-02-13 02:27:39 +0000271 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000272
Chris Lattner1678a6c2006-03-16 18:25:23 +0000273 // Find all return blocks, outputting a restore in each epilog.
Chris Lattner1678a6c2006-03-16 18:25:23 +0000274 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
Evan Cheng7f8e5632011-12-07 07:15:52 +0000275 if (!BB->empty() && BB->back().isReturn()) {
Chris Lattner1678a6c2006-03-16 18:25:23 +0000276 IP = BB->end(); --IP;
Andrew Trickc416ba62010-12-24 04:28:06 +0000277
Chris Lattner1678a6c2006-03-16 18:25:23 +0000278 // Skip over all terminator instructions, which are part of the return
279 // sequence.
280 MachineBasicBlock::iterator I2 = IP;
Evan Cheng7f8e5632011-12-07 07:15:52 +0000281 while (I2 != BB->begin() && (--I2)->isTerminator())
Chris Lattner1678a6c2006-03-16 18:25:23 +0000282 IP = I2;
Andrew Trickc416ba62010-12-24 04:28:06 +0000283
Chris Lattner1678a6c2006-03-16 18:25:23 +0000284 // Emit: MTVRSAVE InVRSave
Dale Johannesene9f623e2009-02-13 02:27:39 +0000285 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
Andrew Trickc416ba62010-12-24 04:28:06 +0000286 }
Chris Lattner02e2c182006-03-13 21:52:10 +0000287 }
Chris Lattner259e6c72005-10-06 18:45:51 +0000288}
Chris Lattner8ae95252005-09-03 01:17:22 +0000289
Chris Lattner1678a6c2006-03-16 18:25:23 +0000290
Chris Lattner45640392005-08-19 22:38:53 +0000291/// getGlobalBaseReg - Output the instructions required to put the
292/// base address to use for accessing globals into a register.
293///
Evan Cheng61413a32006-08-26 05:34:46 +0000294SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
Chris Lattner45640392005-08-19 22:38:53 +0000295 if (!GlobalBaseReg) {
Eric Christopherd9134482014-08-04 21:25:23 +0000296 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
Chris Lattner45640392005-08-19 22:38:53 +0000297 // Insert the set of GlobalBaseReg into the first MBB of the function
Dan Gohmanfca89682009-08-15 02:07:36 +0000298 MachineBasicBlock &FirstMBB = MF->front();
Chris Lattner45640392005-08-19 22:38:53 +0000299 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000300 const Module *M = MF->getFunction()->getParent();
Chris Lattner6f306d72010-04-02 20:16:16 +0000301 DebugLoc dl;
Chris Lattner97b3da12006-06-27 00:04:13 +0000302
Eric Christopher1b8e7632014-05-22 01:07:24 +0000303 if (PPCLowering->getPointerTy() == MVT::i32) {
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000304 if (PPCSubTarget->isTargetELF()) {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000305 GlobalBaseReg = PPC::R30;
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000306 if (M->getPICLevel() == PICLevel::Small) {
307 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
308 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
309 } else {
310 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
311 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
312 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
313 BuildMI(FirstMBB, MBBI, dl,
314 TII.get(PPC::UpdateGBR)).addReg(GlobalBaseReg)
315 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
316 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
317 }
318 } else {
Hal Finkel3ee2af72014-07-18 23:29:49 +0000319 GlobalBaseReg =
320 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
Justin Hibbitsa88b6052014-11-12 15:16:30 +0000321 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
322 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
Hal Finkel3ee2af72014-07-18 23:29:49 +0000323 }
Chris Lattnerb5429252006-11-14 18:43:11 +0000324 } else {
Hal Finkel6daf2aa2014-03-06 01:28:23 +0000325 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
Cameron Zwarichdadd7332011-05-19 02:56:28 +0000326 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
Dale Johannesene9f623e2009-02-13 02:27:39 +0000327 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
Chris Lattnerb5429252006-11-14 18:43:11 +0000328 }
Chris Lattner45640392005-08-19 22:38:53 +0000329 }
Gabor Greif81d6a382008-08-31 15:37:04 +0000330 return CurDAG->getRegister(GlobalBaseReg,
Eric Christopher1b8e7632014-05-22 01:07:24 +0000331 PPCLowering->getPointerTy()).getNode();
Chris Lattner97b3da12006-06-27 00:04:13 +0000332}
333
334/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
335/// or 64-bit immediate, and if the value can be accurately represented as a
336/// sign extension from a 16-bit value. If so, this returns true and the
337/// immediate.
338static bool isIntS16Immediate(SDNode *N, short &Imm) {
339 if (N->getOpcode() != ISD::Constant)
340 return false;
341
Dan Gohmaneffb8942008-09-12 16:56:44 +0000342 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
Owen Anderson9f944592009-08-11 20:47:22 +0000343 if (N->getValueType(0) == MVT::i32)
Dan Gohmaneffb8942008-09-12 16:56:44 +0000344 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000345 else
Dan Gohmaneffb8942008-09-12 16:56:44 +0000346 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000347}
348
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000349static bool isIntS16Immediate(SDValue Op, short &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000350 return isIntS16Immediate(Op.getNode(), Imm);
Chris Lattner45640392005-08-19 22:38:53 +0000351}
352
353
Chris Lattner97b3da12006-06-27 00:04:13 +0000354/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
355/// operand. If so Imm will receive the 32-bit value.
356static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000357 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000358 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Nate Begeman72d6f882005-08-18 05:00:13 +0000359 return true;
360 }
361 return false;
362}
363
Chris Lattner97b3da12006-06-27 00:04:13 +0000364/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
365/// operand. If so Imm will receive the 64-bit value.
366static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
Owen Anderson9f944592009-08-11 20:47:22 +0000367 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
Dan Gohmaneffb8942008-09-12 16:56:44 +0000368 Imm = cast<ConstantSDNode>(N)->getZExtValue();
Chris Lattner97b3da12006-06-27 00:04:13 +0000369 return true;
370 }
371 return false;
372}
373
374// isInt32Immediate - This method tests to see if a constant operand.
375// If so Imm will receive the 32 bit value.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000376static bool isInt32Immediate(SDValue N, unsigned &Imm) {
Gabor Greiff304a7a2008-08-28 21:40:38 +0000377 return isInt32Immediate(N.getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000378}
379
380
381// isOpcWithIntImmediate - This method tests to see if the node is a specific
382// opcode and that it has a immediate integer right operand.
383// If so Imm will receive the 32 bit value.
384static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
Gabor Greif81d6a382008-08-31 15:37:04 +0000385 return N->getOpcode() == Opc
386 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
Chris Lattner97b3da12006-06-27 00:04:13 +0000387}
388
Hal Finkelb5e9b042014-12-11 22:51:06 +0000389SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
390 SDLoc dl(SN);
391 int FI = cast<FrameIndexSDNode>(N)->getIndex();
392 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
393 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
394 if (SN->hasOneUse())
395 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
396 getSmallIPtrImm(Offset));
397 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
398 getSmallIPtrImm(Offset));
399}
400
Nate Begemand31efd12006-09-22 05:01:56 +0000401bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
Hal Finkelff3ea802013-07-11 16:31:51 +0000402 if (!Val)
403 return false;
404
Nate Begemanb3821a32005-08-18 07:30:46 +0000405 if (isShiftedMask_32(Val)) {
406 // look for the first non-zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000407 MB = countLeadingZeros(Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000408 // look for the first zero bit after the run of ones
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000409 ME = countLeadingZeros((Val - 1) ^ Val);
Nate Begemanb3821a32005-08-18 07:30:46 +0000410 return true;
Chris Lattner666512c2005-08-25 04:47:18 +0000411 } else {
412 Val = ~Val; // invert mask
413 if (isShiftedMask_32(Val)) {
414 // effectively look for the first zero bit
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000415 ME = countLeadingZeros(Val) - 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000416 // effectively look for the first one bit after the run of zeros
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000417 MB = countLeadingZeros((Val - 1) ^ Val) + 1;
Chris Lattner666512c2005-08-25 04:47:18 +0000418 return true;
419 }
Nate Begemanb3821a32005-08-18 07:30:46 +0000420 }
421 // no run present
422 return false;
423}
424
Andrew Trickc416ba62010-12-24 04:28:06 +0000425bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
426 bool isShiftMask, unsigned &SH,
Nate Begemand31efd12006-09-22 05:01:56 +0000427 unsigned &MB, unsigned &ME) {
Nate Begeman92e77502005-10-19 00:05:37 +0000428 // Don't even go down this path for i64, since different logic will be
429 // necessary for rldicl/rldicr/rldimi.
Owen Anderson9f944592009-08-11 20:47:22 +0000430 if (N->getValueType(0) != MVT::i32)
Nate Begeman92e77502005-10-19 00:05:37 +0000431 return false;
432
Nate Begemanb3821a32005-08-18 07:30:46 +0000433 unsigned Shift = 32;
434 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
435 unsigned Opcode = N->getOpcode();
Chris Lattnere413b602005-08-30 00:59:16 +0000436 if (N->getNumOperands() != 2 ||
Gabor Greiff304a7a2008-08-28 21:40:38 +0000437 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
Nate Begemanb3821a32005-08-18 07:30:46 +0000438 return false;
Andrew Trickc416ba62010-12-24 04:28:06 +0000439
Nate Begemanb3821a32005-08-18 07:30:46 +0000440 if (Opcode == ISD::SHL) {
441 // apply shift left to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000442 if (isShiftMask) Mask = Mask << Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000443 // determine which bits are made indeterminant by shift
444 Indeterminant = ~(0xFFFFFFFFu << Shift);
Andrew Trickc416ba62010-12-24 04:28:06 +0000445 } else if (Opcode == ISD::SRL) {
Nate Begemanb3821a32005-08-18 07:30:46 +0000446 // apply shift right to mask if it comes first
Dale Johannesen86dcae12009-11-24 01:09:07 +0000447 if (isShiftMask) Mask = Mask >> Shift;
Nate Begemanb3821a32005-08-18 07:30:46 +0000448 // determine which bits are made indeterminant by shift
449 Indeterminant = ~(0xFFFFFFFFu >> Shift);
450 // adjust for the left rotate
451 Shift = 32 - Shift;
Nate Begemand31efd12006-09-22 05:01:56 +0000452 } else if (Opcode == ISD::ROTL) {
453 Indeterminant = 0;
Nate Begemanb3821a32005-08-18 07:30:46 +0000454 } else {
455 return false;
456 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000457
Nate Begemanb3821a32005-08-18 07:30:46 +0000458 // if the mask doesn't intersect any Indeterminant bits
459 if (Mask && !(Mask & Indeterminant)) {
Chris Lattnera2963392006-05-12 16:29:37 +0000460 SH = Shift & 31;
Nate Begemanb3821a32005-08-18 07:30:46 +0000461 // make sure the mask is still a mask (wrap arounds may not be)
462 return isRunOfOnes(Mask, MB, ME);
463 }
464 return false;
465}
466
Nate Begeman93c4bc62005-08-19 00:38:14 +0000467/// SelectBitfieldInsert - turn an or of two masked values into
468/// the rotate left word immediate then mask insert (rlwimi) instruction.
Nate Begeman0b71e002005-10-18 00:28:58 +0000469SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +0000470 SDValue Op0 = N->getOperand(0);
471 SDValue Op1 = N->getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000472 SDLoc dl(N);
Andrew Trickc416ba62010-12-24 04:28:06 +0000473
Dan Gohmanf19609a2008-02-27 01:23:58 +0000474 APInt LKZ, LKO, RKZ, RKO;
Jay Foada0653a32014-05-14 21:14:37 +0000475 CurDAG->computeKnownBits(Op0, LKZ, LKO);
476 CurDAG->computeKnownBits(Op1, RKZ, RKO);
Andrew Trickc416ba62010-12-24 04:28:06 +0000477
Dan Gohmanf19609a2008-02-27 01:23:58 +0000478 unsigned TargetMask = LKZ.getZExtValue();
479 unsigned InsertMask = RKZ.getZExtValue();
Andrew Trickc416ba62010-12-24 04:28:06 +0000480
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000481 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
482 unsigned Op0Opc = Op0.getOpcode();
483 unsigned Op1Opc = Op1.getOpcode();
484 unsigned Value, SH = 0;
485 TargetMask = ~TargetMask;
486 InsertMask = ~InsertMask;
Nate Begeman1333cea2006-05-07 00:23:38 +0000487
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000488 // If the LHS has a foldable shift and the RHS does not, then swap it to the
489 // RHS so that we can fold the shift into the insert.
Nate Begeman1333cea2006-05-07 00:23:38 +0000490 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
491 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
492 Op0.getOperand(0).getOpcode() == ISD::SRL) {
493 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
494 Op1.getOperand(0).getOpcode() != ISD::SRL) {
495 std::swap(Op0, Op1);
496 std::swap(Op0Opc, Op1Opc);
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000497 std::swap(TargetMask, InsertMask);
Nate Begeman1333cea2006-05-07 00:23:38 +0000498 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000499 }
Nate Begeman9b6d4c22006-05-08 17:38:32 +0000500 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
501 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
502 Op1.getOperand(0).getOpcode() != ISD::SRL) {
503 std::swap(Op0, Op1);
504 std::swap(Op0Opc, Op1Opc);
505 std::swap(TargetMask, InsertMask);
506 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000507 }
Andrew Trickc416ba62010-12-24 04:28:06 +0000508
Nate Begeman1333cea2006-05-07 00:23:38 +0000509 unsigned MB, ME;
Hal Finkelff3ea802013-07-11 16:31:51 +0000510 if (isRunOfOnes(InsertMask, MB, ME)) {
Dale Johannesen8495a502009-11-20 22:16:40 +0000511 SDValue Tmp1, Tmp2;
Nate Begeman1333cea2006-05-07 00:23:38 +0000512
513 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000514 isInt32Immediate(Op1.getOperand(1), Value)) {
Nate Begeman1333cea2006-05-07 00:23:38 +0000515 Op1 = Op1.getOperand(0);
516 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
517 }
518 if (Op1Opc == ISD::AND) {
Hal Finkeld9963c72014-04-13 17:10:58 +0000519 // The AND mask might not be a constant, and we need to make sure that
520 // if we're going to fold the masking with the insert, all bits not
521 // know to be zero in the mask are known to be one.
522 APInt MKZ, MKO;
Jay Foada0653a32014-05-14 21:14:37 +0000523 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
Hal Finkeld9963c72014-04-13 17:10:58 +0000524 bool CanFoldMask = InsertMask == MKO.getZExtValue();
525
Nate Begeman1333cea2006-05-07 00:23:38 +0000526 unsigned SHOpc = Op1.getOperand(0).getOpcode();
Hal Finkeld9963c72014-04-13 17:10:58 +0000527 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
Chris Lattner97b3da12006-06-27 00:04:13 +0000528 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
Eric Christopher02e18042014-05-14 00:31:15 +0000529 // Note that Value must be in range here (less than 32) because
530 // otherwise there would not be any bits set in InsertMask.
Nate Begeman1333cea2006-05-07 00:23:38 +0000531 Op1 = Op1.getOperand(0).getOperand(0);
532 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
Nate Begeman1333cea2006-05-07 00:23:38 +0000533 }
534 }
Dale Johannesen8495a502009-11-20 22:16:40 +0000535
Chris Lattnera2963392006-05-12 16:29:37 +0000536 SH &= 31;
Dale Johannesen8495a502009-11-20 22:16:40 +0000537 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
Evan Chengc3acfc02006-08-27 08:14:06 +0000538 getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +0000539 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman93c4bc62005-08-19 00:38:14 +0000540 }
Nate Begeman93c4bc62005-08-19 00:38:14 +0000541 }
Craig Topper062a2ba2014-04-25 05:30:21 +0000542 return nullptr;
Nate Begeman93c4bc62005-08-19 00:38:14 +0000543}
544
Hal Finkelc58ce412015-01-01 02:53:29 +0000545// Predict the number of instructions that would be generated by calling
546// SelectInt64(N).
Hal Finkelca6375f2015-01-04 12:35:03 +0000547static unsigned SelectInt64CountDirect(int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000548 // Assume no remaining bits.
549 unsigned Remainder = 0;
550 // Assume no shift required.
551 unsigned Shift = 0;
552
553 // If it can't be represented as a 32 bit value.
554 if (!isInt<32>(Imm)) {
555 Shift = countTrailingZeros<uint64_t>(Imm);
556 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
557
558 // If the shifted value fits 32 bits.
559 if (isInt<32>(ImmSh)) {
560 // Go with the shifted value.
561 Imm = ImmSh;
562 } else {
563 // Still stuck with a 64 bit value.
564 Remainder = Imm;
565 Shift = 32;
566 Imm >>= 32;
567 }
568 }
569
570 // Intermediate operand.
571 unsigned Result = 0;
572
573 // Handle first 32 bits.
574 unsigned Lo = Imm & 0xFFFF;
575 unsigned Hi = (Imm >> 16) & 0xFFFF;
576
577 // Simple value.
578 if (isInt<16>(Imm)) {
579 // Just the Lo bits.
580 ++Result;
581 } else if (Lo) {
582 // Handle the Hi bits and Lo bits.
583 Result += 2;
584 } else {
585 // Just the Hi bits.
586 ++Result;
587 }
588
589 // If no shift, we're done.
590 if (!Shift) return Result;
591
592 // Shift for next step if the upper 32-bits were not zero.
593 if (Imm)
594 ++Result;
595
596 // Add in the last bits as required.
597 if ((Hi = (Remainder >> 16) & 0xFFFF))
598 ++Result;
599 if ((Lo = Remainder & 0xFFFF))
600 ++Result;
601
602 return Result;
603}
604
Hal Finkel241ba792015-01-04 15:43:55 +0000605static uint64_t Rot64(uint64_t Imm, unsigned R) {
606 return (Imm << R) | (Imm >> (64 - R));
607}
608
Hal Finkelca6375f2015-01-04 12:35:03 +0000609static unsigned SelectInt64Count(int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000610 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000611 if (Count == 1)
612 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000613
Hal Finkel241ba792015-01-04 15:43:55 +0000614 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000615 uint64_t RImm = Rot64(Imm, r);
616 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
617 Count = std::min(Count, RCount);
618
619 // See comments in SelectInt64 for an explanation of the logic below.
620 unsigned LS = findLastSet(RImm);
621 if (LS != r-1)
622 continue;
623
624 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
625 uint64_t RImmWithOnes = RImm | OnesMask;
626
627 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000628 Count = std::min(Count, RCount);
629 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000630
Hal Finkel241ba792015-01-04 15:43:55 +0000631 return Count;
Hal Finkelca6375f2015-01-04 12:35:03 +0000632}
633
Hal Finkelc58ce412015-01-01 02:53:29 +0000634// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
635// (above) needs to be kept in sync with this function.
Hal Finkelca6375f2015-01-04 12:35:03 +0000636static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkelc58ce412015-01-01 02:53:29 +0000637 // Assume no remaining bits.
638 unsigned Remainder = 0;
639 // Assume no shift required.
640 unsigned Shift = 0;
641
642 // If it can't be represented as a 32 bit value.
643 if (!isInt<32>(Imm)) {
644 Shift = countTrailingZeros<uint64_t>(Imm);
645 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
646
647 // If the shifted value fits 32 bits.
648 if (isInt<32>(ImmSh)) {
649 // Go with the shifted value.
650 Imm = ImmSh;
651 } else {
652 // Still stuck with a 64 bit value.
653 Remainder = Imm;
654 Shift = 32;
655 Imm >>= 32;
656 }
657 }
658
659 // Intermediate operand.
660 SDNode *Result;
661
662 // Handle first 32 bits.
663 unsigned Lo = Imm & 0xFFFF;
664 unsigned Hi = (Imm >> 16) & 0xFFFF;
665
666 auto getI32Imm = [CurDAG](unsigned Imm) {
667 return CurDAG->getTargetConstant(Imm, MVT::i32);
668 };
669
670 // Simple value.
671 if (isInt<16>(Imm)) {
672 // Just the Lo bits.
673 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
674 } else if (Lo) {
675 // Handle the Hi bits.
676 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
677 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
678 // And Lo bits.
679 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
680 SDValue(Result, 0), getI32Imm(Lo));
681 } else {
682 // Just the Hi bits.
683 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
684 }
685
686 // If no shift, we're done.
687 if (!Shift) return Result;
688
689 // Shift for next step if the upper 32-bits were not zero.
690 if (Imm) {
691 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
692 SDValue(Result, 0),
693 getI32Imm(Shift),
694 getI32Imm(63 - Shift));
695 }
696
697 // Add in the last bits as required.
698 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
699 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
700 SDValue(Result, 0), getI32Imm(Hi));
701 }
702 if ((Lo = Remainder & 0xFFFF)) {
703 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
704 SDValue(Result, 0), getI32Imm(Lo));
705 }
706
707 return Result;
708}
709
Hal Finkelca6375f2015-01-04 12:35:03 +0000710static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
Hal Finkel241ba792015-01-04 15:43:55 +0000711 unsigned Count = SelectInt64CountDirect(Imm);
Hal Finkel2f618792015-01-05 03:41:38 +0000712 if (Count == 1)
713 return SelectInt64Direct(CurDAG, dl, Imm);
714
Hal Finkel241ba792015-01-04 15:43:55 +0000715 unsigned RMin = 0;
Hal Finkelca6375f2015-01-04 12:35:03 +0000716
Hal Finkel2f618792015-01-05 03:41:38 +0000717 int64_t MatImm;
718 unsigned MaskEnd;
719
Hal Finkel241ba792015-01-04 15:43:55 +0000720 for (unsigned r = 1; r < 63; ++r) {
Hal Finkel2f618792015-01-05 03:41:38 +0000721 uint64_t RImm = Rot64(Imm, r);
722 unsigned RCount = SelectInt64CountDirect(RImm) + 1;
Hal Finkel241ba792015-01-04 15:43:55 +0000723 if (RCount < Count) {
724 Count = RCount;
725 RMin = r;
Hal Finkel2f618792015-01-05 03:41:38 +0000726 MatImm = RImm;
727 MaskEnd = 63;
728 }
729
730 // If the immediate to generate has many trailing zeros, it might be
731 // worthwhile to generate a rotated value with too many leading ones
732 // (because that's free with li/lis's sign-extension semantics), and then
733 // mask them off after rotation.
734
735 unsigned LS = findLastSet(RImm);
736 // We're adding (63-LS) higher-order ones, and we expect to mask them off
737 // after performing the inverse rotation by (64-r). So we need that:
738 // 63-LS == 64-r => LS == r-1
739 if (LS != r-1)
740 continue;
741
742 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
743 uint64_t RImmWithOnes = RImm | OnesMask;
744
745 RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
746 if (RCount < Count) {
747 Count = RCount;
748 RMin = r;
749 MatImm = RImmWithOnes;
750 MaskEnd = LS;
Hal Finkel241ba792015-01-04 15:43:55 +0000751 }
Hal Finkelca6375f2015-01-04 12:35:03 +0000752 }
753
Hal Finkel241ba792015-01-04 15:43:55 +0000754 if (!RMin)
755 return SelectInt64Direct(CurDAG, dl, Imm);
756
757 auto getI32Imm = [CurDAG](unsigned Imm) {
758 return CurDAG->getTargetConstant(Imm, MVT::i32);
759 };
760
Hal Finkel2f618792015-01-05 03:41:38 +0000761 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
762 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
763 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
Hal Finkelca6375f2015-01-04 12:35:03 +0000764}
765
Hal Finkelc58ce412015-01-01 02:53:29 +0000766// Select a 64-bit constant.
767static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
768 SDLoc dl(N);
769
770 // Get 64 bit value.
771 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
772 return SelectInt64(CurDAG, dl, Imm);
773}
774
Hal Finkel8adf2252014-12-16 05:51:41 +0000775namespace {
776class BitPermutationSelector {
777 struct ValueBit {
778 SDValue V;
779
780 // The bit number in the value, using a convention where bit 0 is the
781 // lowest-order bit.
782 unsigned Idx;
783
784 enum Kind {
785 ConstZero,
786 Variable
787 } K;
788
789 ValueBit(SDValue V, unsigned I, Kind K = Variable)
790 : V(V), Idx(I), K(K) {}
791 ValueBit(Kind K = Variable)
792 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
793
794 bool isZero() const {
795 return K == ConstZero;
796 }
797
798 bool hasValue() const {
799 return K == Variable;
800 }
801
802 SDValue getValue() const {
803 assert(hasValue() && "Cannot get the value of a constant bit");
804 return V;
805 }
806
807 unsigned getValueBitIndex() const {
808 assert(hasValue() && "Cannot get the value bit index of a constant bit");
809 return Idx;
810 }
811 };
812
813 // A bit group has the same underlying value and the same rotate factor.
814 struct BitGroup {
815 SDValue V;
816 unsigned RLAmt;
817 unsigned StartIdx, EndIdx;
818
Hal Finkelc58ce412015-01-01 02:53:29 +0000819 // This rotation amount assumes that the lower 32 bits of the quantity are
820 // replicated in the high 32 bits by the rotation operator (which is done
821 // by rlwinm and friends in 64-bit mode).
822 bool Repl32;
823 // Did converting to Repl32 == true change the rotation factor? If it did,
824 // it decreased it by 32.
825 bool Repl32CR;
826 // Was this group coalesced after setting Repl32 to true?
827 bool Repl32Coalesced;
828
Hal Finkel8adf2252014-12-16 05:51:41 +0000829 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
Hal Finkelc58ce412015-01-01 02:53:29 +0000830 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
831 Repl32Coalesced(false) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000832 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
833 " [" << S << ", " << E << "]\n");
834 }
835 };
836
837 // Information on each (Value, RLAmt) pair (like the number of groups
838 // associated with each) used to choose the lowering method.
839 struct ValueRotInfo {
840 SDValue V;
841 unsigned RLAmt;
842 unsigned NumGroups;
843 unsigned FirstGroupStartIdx;
Hal Finkelc58ce412015-01-01 02:53:29 +0000844 bool Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +0000845
846 ValueRotInfo()
Hal Finkelc58ce412015-01-01 02:53:29 +0000847 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
848 Repl32(false) {}
Hal Finkel8adf2252014-12-16 05:51:41 +0000849
850 // For sorting (in reverse order) by NumGroups, and then by
851 // FirstGroupStartIdx.
852 bool operator < (const ValueRotInfo &Other) const {
Hal Finkelc58ce412015-01-01 02:53:29 +0000853 // We need to sort so that the non-Repl32 come first because, when we're
854 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
855 // masking operation.
856 if (Repl32 < Other.Repl32)
857 return true;
858 else if (Repl32 > Other.Repl32)
859 return false;
860 else if (NumGroups > Other.NumGroups)
Hal Finkel8adf2252014-12-16 05:51:41 +0000861 return true;
862 else if (NumGroups < Other.NumGroups)
863 return false;
864 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
865 return true;
866 return false;
867 }
868 };
869
870 // Return true if something interesting was deduced, return false if we're
871 // providing only a generic representation of V (or something else likewise
872 // uninteresting for instruction selection).
873 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
874 switch (V.getOpcode()) {
875 default: break;
876 case ISD::ROTL:
877 if (isa<ConstantSDNode>(V.getOperand(1))) {
878 unsigned RotAmt = V.getConstantOperandVal(1);
879
880 SmallVector<ValueBit, 64> LHSBits(Bits.size());
881 getValueBits(V.getOperand(0), LHSBits);
882
883 for (unsigned i = 0; i < Bits.size(); ++i)
884 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
885
886 return true;
887 }
888 break;
889 case ISD::SHL:
890 if (isa<ConstantSDNode>(V.getOperand(1))) {
891 unsigned ShiftAmt = V.getConstantOperandVal(1);
892
893 SmallVector<ValueBit, 64> LHSBits(Bits.size());
894 getValueBits(V.getOperand(0), LHSBits);
895
896 for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
897 Bits[i] = LHSBits[i - ShiftAmt];
898
899 for (unsigned i = 0; i < ShiftAmt; ++i)
900 Bits[i] = ValueBit(ValueBit::ConstZero);
901
902 return true;
903 }
904 break;
905 case ISD::SRL:
906 if (isa<ConstantSDNode>(V.getOperand(1))) {
907 unsigned ShiftAmt = V.getConstantOperandVal(1);
908
909 SmallVector<ValueBit, 64> LHSBits(Bits.size());
910 getValueBits(V.getOperand(0), LHSBits);
911
912 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
913 Bits[i] = LHSBits[i + ShiftAmt];
914
915 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
916 Bits[i] = ValueBit(ValueBit::ConstZero);
917
918 return true;
919 }
920 break;
921 case ISD::AND:
922 if (isa<ConstantSDNode>(V.getOperand(1))) {
923 uint64_t Mask = V.getConstantOperandVal(1);
924
925 SmallVector<ValueBit, 64> LHSBits(Bits.size());
926 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
927
928 for (unsigned i = 0; i < Bits.size(); ++i)
929 if (((Mask >> i) & 1) == 1)
930 Bits[i] = LHSBits[i];
931 else
932 Bits[i] = ValueBit(ValueBit::ConstZero);
933
934 // Mark this as interesting, only if the LHS was also interesting. This
935 // prevents the overall procedure from matching a single immediate 'and'
936 // (which is non-optimal because such an and might be folded with other
937 // things if we don't select it here).
938 return LHSTrivial;
939 }
940 break;
941 case ISD::OR: {
942 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
943 getValueBits(V.getOperand(0), LHSBits);
944 getValueBits(V.getOperand(1), RHSBits);
945
946 bool AllDisjoint = true;
947 for (unsigned i = 0; i < Bits.size(); ++i)
948 if (LHSBits[i].isZero())
949 Bits[i] = RHSBits[i];
950 else if (RHSBits[i].isZero())
951 Bits[i] = LHSBits[i];
952 else {
953 AllDisjoint = false;
954 break;
955 }
956
957 if (!AllDisjoint)
958 break;
959
960 return true;
961 }
962 }
963
964 for (unsigned i = 0; i < Bits.size(); ++i)
965 Bits[i] = ValueBit(V, i);
966
967 return false;
968 }
969
970 // For each value (except the constant ones), compute the left-rotate amount
971 // to get it from its original to final position.
972 void computeRotationAmounts() {
973 HasZeros = false;
974 RLAmt.resize(Bits.size());
975 for (unsigned i = 0; i < Bits.size(); ++i)
976 if (Bits[i].hasValue()) {
977 unsigned VBI = Bits[i].getValueBitIndex();
978 if (i >= VBI)
979 RLAmt[i] = i - VBI;
980 else
981 RLAmt[i] = Bits.size() - (VBI - i);
982 } else if (Bits[i].isZero()) {
983 HasZeros = true;
984 RLAmt[i] = UINT32_MAX;
985 } else {
986 llvm_unreachable("Unknown value bit type");
987 }
988 }
989
990 // Collect groups of consecutive bits with the same underlying value and
Hal Finkelc58ce412015-01-01 02:53:29 +0000991 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
992 // they break up groups.
993 void collectBitGroups(bool LateMask) {
Hal Finkel8adf2252014-12-16 05:51:41 +0000994 BitGroups.clear();
995
996 unsigned LastRLAmt = RLAmt[0];
997 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
998 unsigned LastGroupStartIdx = 0;
999 for (unsigned i = 1; i < Bits.size(); ++i) {
1000 unsigned ThisRLAmt = RLAmt[i];
1001 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
Hal Finkelc58ce412015-01-01 02:53:29 +00001002 if (LateMask && !ThisValue) {
1003 ThisValue = LastValue;
1004 ThisRLAmt = LastRLAmt;
1005 // If we're doing late masking, then the first bit group always starts
1006 // at zero (even if the first bits were zero).
1007 if (BitGroups.empty())
1008 LastGroupStartIdx = 0;
1009 }
Hal Finkel8adf2252014-12-16 05:51:41 +00001010
1011 // If this bit has the same underlying value and the same rotate factor as
1012 // the last one, then they're part of the same group.
1013 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1014 continue;
1015
1016 if (LastValue.getNode())
1017 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1018 i-1));
1019 LastRLAmt = ThisRLAmt;
1020 LastValue = ThisValue;
1021 LastGroupStartIdx = i;
1022 }
1023 if (LastValue.getNode())
1024 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1025 Bits.size()-1));
1026
1027 if (BitGroups.empty())
1028 return;
1029
1030 // We might be able to combine the first and last groups.
1031 if (BitGroups.size() > 1) {
1032 // If the first and last groups are the same, then remove the first group
1033 // in favor of the last group, making the ending index of the last group
1034 // equal to the ending index of the to-be-removed first group.
1035 if (BitGroups[0].StartIdx == 0 &&
1036 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1037 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1038 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001039 DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
Hal Finkel8adf2252014-12-16 05:51:41 +00001040 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1041 BitGroups.erase(BitGroups.begin());
1042 }
1043 }
1044 }
1045
1046 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1047 // associated with each. If there is a degeneracy, pick the one that occurs
1048 // first (in the final value).
1049 void collectValueRotInfo() {
1050 ValueRots.clear();
1051
1052 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001053 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1054 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
Hal Finkel8adf2252014-12-16 05:51:41 +00001055 VRI.V = BG.V;
1056 VRI.RLAmt = BG.RLAmt;
Hal Finkelc58ce412015-01-01 02:53:29 +00001057 VRI.Repl32 = BG.Repl32;
Hal Finkel8adf2252014-12-16 05:51:41 +00001058 VRI.NumGroups += 1;
1059 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1060 }
1061
1062 // Now that we've collected the various ValueRotInfo instances, we need to
1063 // sort them.
1064 ValueRotsVec.clear();
1065 for (auto &I : ValueRots) {
1066 ValueRotsVec.push_back(I.second);
1067 }
1068 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1069 }
1070
Hal Finkelc58ce412015-01-01 02:53:29 +00001071 // In 64-bit mode, rlwinm and friends have a rotation operator that
1072 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1073 // indices of these instructions can only be in the lower 32 bits, so they
1074 // can only represent some 64-bit bit groups. However, when they can be used,
1075 // the 32-bit replication can be used to represent, as a single bit group,
1076 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1077 // groups when possible. Returns true if any of the bit groups were
1078 // converted.
1079 void assignRepl32BitGroups() {
1080 // If we have bits like this:
1081 //
1082 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1083 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1084 // Groups: | RLAmt = 8 | RLAmt = 40 |
1085 //
1086 // But, making use of a 32-bit operation that replicates the low-order 32
1087 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1088 // of 8.
1089
1090 auto IsAllLow32 = [this](BitGroup & BG) {
1091 if (BG.StartIdx <= BG.EndIdx) {
1092 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1093 if (!Bits[i].hasValue())
1094 continue;
1095 if (Bits[i].getValueBitIndex() >= 32)
1096 return false;
1097 }
1098 } else {
1099 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1100 if (!Bits[i].hasValue())
1101 continue;
1102 if (Bits[i].getValueBitIndex() >= 32)
1103 return false;
1104 }
1105 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1106 if (!Bits[i].hasValue())
1107 continue;
1108 if (Bits[i].getValueBitIndex() >= 32)
1109 return false;
1110 }
1111 }
1112
1113 return true;
1114 };
1115
1116 for (auto &BG : BitGroups) {
1117 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1118 if (IsAllLow32(BG)) {
1119 if (BG.RLAmt >= 32) {
1120 BG.RLAmt -= 32;
1121 BG.Repl32CR = true;
1122 }
1123
1124 BG.Repl32 = true;
1125
1126 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1127 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1128 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1129 }
1130 }
1131 }
1132
1133 // Now walk through the bit groups, consolidating where possible.
1134 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1135 // We might want to remove this bit group by merging it with the previous
1136 // group (which might be the ending group).
1137 auto IP = (I == BitGroups.begin()) ?
1138 std::prev(BitGroups.end()) : std::prev(I);
1139 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1140 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1141
1142 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1143 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1144 " [" << I->StartIdx << ", " << I->EndIdx <<
1145 "] with group with range [" <<
1146 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1147
1148 IP->EndIdx = I->EndIdx;
1149 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1150 IP->Repl32Coalesced = true;
1151 I = BitGroups.erase(I);
1152 continue;
1153 } else {
1154 // There is a special case worth handling: If there is a single group
1155 // covering the entire upper 32 bits, and it can be merged with both
1156 // the next and previous groups (which might be the same group), then
1157 // do so. If it is the same group (so there will be only one group in
1158 // total), then we need to reverse the order of the range so that it
1159 // covers the entire 64 bits.
1160 if (I->StartIdx == 32 && I->EndIdx == 63) {
1161 assert(std::next(I) == BitGroups.end() &&
1162 "bit group ends at index 63 but there is another?");
1163 auto IN = BitGroups.begin();
1164
1165 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1166 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1167 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1168 IsAllLow32(*I)) {
1169
1170 DEBUG(dbgs() << "\tcombining bit group for " <<
1171 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1172 " [" << I->StartIdx << ", " << I->EndIdx <<
1173 "] with 32-bit replicated groups with ranges [" <<
1174 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1175 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1176
1177 if (IP == IN) {
1178 // There is only one other group; change it to cover the whole
1179 // range (backward, so that it can still be Repl32 but cover the
1180 // whole 64-bit range).
1181 IP->StartIdx = 31;
1182 IP->EndIdx = 30;
1183 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1184 IP->Repl32Coalesced = true;
1185 I = BitGroups.erase(I);
1186 } else {
1187 // There are two separate groups, one before this group and one
1188 // after us (at the beginning). We're going to remove this group,
1189 // but also the group at the very beginning.
1190 IP->EndIdx = IN->EndIdx;
1191 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1192 IP->Repl32Coalesced = true;
1193 I = BitGroups.erase(I);
1194 BitGroups.erase(BitGroups.begin());
1195 }
1196
1197 // This must be the last group in the vector (and we might have
1198 // just invalidated the iterator above), so break here.
1199 break;
1200 }
1201 }
1202 }
1203
1204 ++I;
1205 }
1206 }
1207
Hal Finkel8adf2252014-12-16 05:51:41 +00001208 SDValue getI32Imm(unsigned Imm) {
1209 return CurDAG->getTargetConstant(Imm, MVT::i32);
1210 }
1211
Hal Finkelc58ce412015-01-01 02:53:29 +00001212 uint64_t getZerosMask() {
1213 uint64_t Mask = 0;
1214 for (unsigned i = 0; i < Bits.size(); ++i) {
1215 if (Bits[i].hasValue())
1216 continue;
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001217 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001218 }
1219
1220 return ~Mask;
1221 }
1222
Hal Finkel8adf2252014-12-16 05:51:41 +00001223 // Depending on the number of groups for a particular value, it might be
1224 // better to rotate, mask explicitly (using andi/andis), and then or the
1225 // result. Select this part of the result first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001226 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1227 if (BPermRewriterNoMasking)
1228 return;
Hal Finkel8adf2252014-12-16 05:51:41 +00001229
1230 for (ValueRotInfo &VRI : ValueRotsVec) {
1231 unsigned Mask = 0;
1232 for (unsigned i = 0; i < Bits.size(); ++i) {
1233 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1234 continue;
1235 if (RLAmt[i] != VRI.RLAmt)
1236 continue;
1237 Mask |= (1u << i);
1238 }
1239
1240 // Compute the masks for andi/andis that would be necessary.
1241 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1242 assert((ANDIMask != 0 || ANDISMask != 0) &&
1243 "No set bits in mask for value bit groups");
1244 bool NeedsRotate = VRI.RLAmt != 0;
1245
1246 // We're trying to minimize the number of instructions. If we have one
1247 // group, using one of andi/andis can break even. If we have three
1248 // groups, we can use both andi and andis and break even (to use both
1249 // andi and andis we also need to or the results together). We need four
1250 // groups if we also need to rotate. To use andi/andis we need to do more
1251 // than break even because rotate-and-mask instructions tend to be easier
1252 // to schedule.
1253
1254 // FIXME: We've biased here against using andi/andis, which is right for
1255 // POWER cores, but not optimal everywhere. For example, on the A2,
1256 // andi/andis have single-cycle latency whereas the rotate-and-mask
1257 // instructions take two cycles, and it would be better to bias toward
1258 // andi/andis in break-even cases.
1259
1260 unsigned NumAndInsts = (unsigned) NeedsRotate +
1261 (unsigned) (ANDIMask != 0) +
1262 (unsigned) (ANDISMask != 0) +
1263 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1264 (unsigned) (bool) Res;
Hal Finkelc58ce412015-01-01 02:53:29 +00001265
1266 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1267 " RL: " << VRI.RLAmt << ":" <<
1268 "\n\t\t\tisel using masking: " << NumAndInsts <<
1269 " using rotates: " << VRI.NumGroups << "\n");
1270
Hal Finkel8adf2252014-12-16 05:51:41 +00001271 if (NumAndInsts >= VRI.NumGroups)
1272 continue;
1273
Hal Finkelc58ce412015-01-01 02:53:29 +00001274 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1275
1276 if (InstCnt) *InstCnt += NumAndInsts;
1277
Hal Finkel8adf2252014-12-16 05:51:41 +00001278 SDValue VRot;
1279 if (VRI.RLAmt) {
1280 SDValue Ops[] =
1281 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1282 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1283 Ops), 0);
1284 } else {
1285 VRot = VRI.V;
1286 }
1287
1288 SDValue ANDIVal, ANDISVal;
1289 if (ANDIMask != 0)
1290 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1291 VRot, getI32Imm(ANDIMask)), 0);
1292 if (ANDISMask != 0)
1293 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1294 VRot, getI32Imm(ANDISMask)), 0);
1295
1296 SDValue TotalVal;
1297 if (!ANDIVal)
1298 TotalVal = ANDISVal;
1299 else if (!ANDISVal)
1300 TotalVal = ANDIVal;
1301 else
1302 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1303 ANDIVal, ANDISVal), 0);
1304
1305 if (!Res)
1306 Res = TotalVal;
1307 else
1308 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1309 Res, TotalVal), 0);
1310
1311 // Now, remove all groups with this underlying value and rotation
1312 // factor.
1313 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1314 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1315 I = BitGroups.erase(I);
1316 else
1317 ++I;
1318 }
1319 }
1320 }
1321
1322 // Instruction selection for the 32-bit case.
Hal Finkelc58ce412015-01-01 02:53:29 +00001323 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001324 SDLoc dl(N);
1325 SDValue Res;
1326
Hal Finkelc58ce412015-01-01 02:53:29 +00001327 if (InstCnt) *InstCnt = 0;
1328
Hal Finkel8adf2252014-12-16 05:51:41 +00001329 // Take care of cases that should use andi/andis first.
Hal Finkelc58ce412015-01-01 02:53:29 +00001330 SelectAndParts32(dl, Res, InstCnt);
Hal Finkel8adf2252014-12-16 05:51:41 +00001331
1332 // If we've not yet selected a 'starting' instruction, and we have no zeros
1333 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1334 // number of groups), and start with this rotated value.
Hal Finkelc58ce412015-01-01 02:53:29 +00001335 if ((!HasZeros || LateMask) && !Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001336 ValueRotInfo &VRI = ValueRotsVec[0];
1337 if (VRI.RLAmt) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001338 if (InstCnt) *InstCnt += 1;
Hal Finkel8adf2252014-12-16 05:51:41 +00001339 SDValue Ops[] =
1340 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1341 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1342 } else {
1343 Res = VRI.V;
1344 }
1345
1346 // Now, remove all groups with this underlying value and rotation factor.
1347 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1348 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1349 I = BitGroups.erase(I);
1350 else
1351 ++I;
1352 }
1353 }
1354
Hal Finkelc58ce412015-01-01 02:53:29 +00001355 if (InstCnt) *InstCnt += BitGroups.size();
1356
Hal Finkel8adf2252014-12-16 05:51:41 +00001357 // Insert the other groups (one at a time).
1358 for (auto &BG : BitGroups) {
Hal Finkelc58ce412015-01-01 02:53:29 +00001359 if (!Res) {
Hal Finkel8adf2252014-12-16 05:51:41 +00001360 SDValue Ops[] =
1361 { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1362 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1363 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1364 } else {
1365 SDValue Ops[] =
1366 { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1367 getI32Imm(Bits.size() - BG.StartIdx - 1) };
1368 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1369 }
1370 }
1371
Hal Finkelc58ce412015-01-01 02:53:29 +00001372 if (LateMask) {
1373 unsigned Mask = (unsigned) getZerosMask();
1374
1375 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1376 assert((ANDIMask != 0 || ANDISMask != 0) &&
1377 "No set bits in zeros mask?");
1378
1379 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1380 (unsigned) (ANDISMask != 0) +
1381 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1382
1383 SDValue ANDIVal, ANDISVal;
1384 if (ANDIMask != 0)
1385 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1386 Res, getI32Imm(ANDIMask)), 0);
1387 if (ANDISMask != 0)
1388 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1389 Res, getI32Imm(ANDISMask)), 0);
1390
1391 if (!ANDIVal)
1392 Res = ANDISVal;
1393 else if (!ANDISVal)
1394 Res = ANDIVal;
1395 else
1396 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1397 ANDIVal, ANDISVal), 0);
1398 }
1399
Hal Finkel8adf2252014-12-16 05:51:41 +00001400 return Res.getNode();
1401 }
1402
Hal Finkelc58ce412015-01-01 02:53:29 +00001403 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1404 unsigned MaskStart, unsigned MaskEnd,
1405 bool IsIns) {
1406 // In the notation used by the instructions, 'start' and 'end' are reversed
1407 // because bits are counted from high to low order.
1408 unsigned InstMaskStart = 64 - MaskEnd - 1,
1409 InstMaskEnd = 64 - MaskStart - 1;
1410
1411 if (Repl32)
1412 return 1;
1413
1414 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1415 InstMaskEnd == 63 - RLAmt)
1416 return 1;
1417
1418 return 2;
1419 }
1420
1421 // For 64-bit values, not all combinations of rotates and masks are
1422 // available. Produce one if it is available.
1423 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
1424 unsigned MaskStart, unsigned MaskEnd,
1425 unsigned *InstCnt = nullptr) {
1426 // In the notation used by the instructions, 'start' and 'end' are reversed
1427 // because bits are counted from high to low order.
1428 unsigned InstMaskStart = 64 - MaskEnd - 1,
1429 InstMaskEnd = 64 - MaskStart - 1;
1430
1431 if (InstCnt) *InstCnt += 1;
1432
1433 if (Repl32) {
1434 // This rotation amount assumes that the lower 32 bits of the quantity
1435 // are replicated in the high 32 bits by the rotation operator (which is
1436 // done by rlwinm and friends).
1437 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1438 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1439 SDValue Ops[] =
1440 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1441 getI32Imm(InstMaskEnd - 32) };
1442 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1443 Ops), 0);
1444 }
1445
1446 if (InstMaskEnd == 63) {
1447 SDValue Ops[] =
1448 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1449 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1450 }
1451
1452 if (InstMaskStart == 0) {
1453 SDValue Ops[] =
1454 { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
1455 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1456 }
1457
1458 if (InstMaskEnd == 63 - RLAmt) {
1459 SDValue Ops[] =
1460 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1461 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1462 }
1463
1464 // We cannot do this with a single instruction, so we'll use two. The
1465 // problem is that we're not free to choose both a rotation amount and mask
1466 // start and end independently. We can choose an arbitrary mask start and
1467 // end, but then the rotation amount is fixed. Rotation, however, can be
1468 // inverted, and so by applying an "inverse" rotation first, we can get the
1469 // desired result.
1470 if (InstCnt) *InstCnt += 1;
1471
1472 // The rotation mask for the second instruction must be MaskStart.
1473 unsigned RLAmt2 = MaskStart;
1474 // The first instruction must rotate V so that the overall rotation amount
1475 // is RLAmt.
1476 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1477 if (RLAmt1)
1478 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1479 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1480 }
1481
1482 // For 64-bit values, not all combinations of rotates and masks are
1483 // available. Produce a rotate-mask-and-insert if one is available.
1484 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
1485 bool Repl32, unsigned MaskStart,
1486 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1487 // In the notation used by the instructions, 'start' and 'end' are reversed
1488 // because bits are counted from high to low order.
1489 unsigned InstMaskStart = 64 - MaskEnd - 1,
1490 InstMaskEnd = 64 - MaskStart - 1;
1491
1492 if (InstCnt) *InstCnt += 1;
1493
1494 if (Repl32) {
1495 // This rotation amount assumes that the lower 32 bits of the quantity
1496 // are replicated in the high 32 bits by the rotation operator (which is
1497 // done by rlwinm and friends).
1498 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1499 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1500 SDValue Ops[] =
1501 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1502 getI32Imm(InstMaskEnd - 32) };
1503 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1504 Ops), 0);
1505 }
1506
1507 if (InstMaskEnd == 63 - RLAmt) {
1508 SDValue Ops[] =
1509 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1510 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1511 }
1512
1513 // We cannot do this with a single instruction, so we'll use two. The
1514 // problem is that we're not free to choose both a rotation amount and mask
1515 // start and end independently. We can choose an arbitrary mask start and
1516 // end, but then the rotation amount is fixed. Rotation, however, can be
1517 // inverted, and so by applying an "inverse" rotation first, we can get the
1518 // desired result.
1519 if (InstCnt) *InstCnt += 1;
1520
1521 // The rotation mask for the second instruction must be MaskStart.
1522 unsigned RLAmt2 = MaskStart;
1523 // The first instruction must rotate V so that the overall rotation amount
1524 // is RLAmt.
1525 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1526 if (RLAmt1)
1527 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1528 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1529 }
1530
1531 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1532 if (BPermRewriterNoMasking)
1533 return;
1534
1535 // The idea here is the same as in the 32-bit version, but with additional
1536 // complications from the fact that Repl32 might be true. Because we
1537 // aggressively convert bit groups to Repl32 form (which, for small
1538 // rotation factors, involves no other change), and then coalesce, it might
1539 // be the case that a single 64-bit masking operation could handle both
1540 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1541 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1542 // completely capture the new combined bit group.
1543
1544 for (ValueRotInfo &VRI : ValueRotsVec) {
1545 uint64_t Mask = 0;
1546
1547 // We need to add to the mask all bits from the associated bit groups.
1548 // If Repl32 is false, we need to add bits from bit groups that have
1549 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1550 // group is trivially convertable if it overlaps only with the lower 32
1551 // bits, and the group has not been coalesced.
1552 auto MatchingBG = [VRI](BitGroup &BG) {
1553 if (VRI.V != BG.V)
1554 return false;
1555
1556 unsigned EffRLAmt = BG.RLAmt;
1557 if (!VRI.Repl32 && BG.Repl32) {
1558 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1559 !BG.Repl32Coalesced) {
1560 if (BG.Repl32CR)
1561 EffRLAmt += 32;
1562 } else {
1563 return false;
1564 }
1565 } else if (VRI.Repl32 != BG.Repl32) {
1566 return false;
1567 }
1568
1569 if (VRI.RLAmt != EffRLAmt)
1570 return false;
1571
1572 return true;
1573 };
1574
1575 for (auto &BG : BitGroups) {
1576 if (!MatchingBG(BG))
1577 continue;
1578
1579 if (BG.StartIdx <= BG.EndIdx) {
1580 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001581 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001582 } else {
1583 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001584 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001585 for (unsigned i = 0; i <= BG.EndIdx; ++i)
Hal Finkelddf8d7d2015-01-01 19:33:59 +00001586 Mask |= (UINT64_C(1) << i);
Hal Finkelc58ce412015-01-01 02:53:29 +00001587 }
1588 }
1589
1590 // We can use the 32-bit andi/andis technique if the mask does not
1591 // require any higher-order bits. This can save an instruction compared
1592 // to always using the general 64-bit technique.
1593 bool Use32BitInsts = isUInt<32>(Mask);
1594 // Compute the masks for andi/andis that would be necessary.
1595 unsigned ANDIMask = (Mask & UINT16_MAX),
1596 ANDISMask = (Mask >> 16) & UINT16_MAX;
1597
1598 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1599
1600 unsigned NumAndInsts = (unsigned) NeedsRotate +
1601 (unsigned) (bool) Res;
1602 if (Use32BitInsts)
1603 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1604 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1605 else
1606 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
1607
1608 unsigned NumRLInsts = 0;
1609 bool FirstBG = true;
1610 for (auto &BG : BitGroups) {
1611 if (!MatchingBG(BG))
1612 continue;
1613 NumRLInsts +=
1614 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1615 !FirstBG);
1616 FirstBG = false;
1617 }
1618
1619 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1620 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1621 "\n\t\t\tisel using masking: " << NumAndInsts <<
1622 " using rotates: " << NumRLInsts << "\n");
1623
1624 // When we'd use andi/andis, we bias toward using the rotates (andi only
1625 // has a record form, and is cracked on POWER cores). However, when using
1626 // general 64-bit constant formation, bias toward the constant form,
1627 // because that exposes more opportunities for CSE.
1628 if (NumAndInsts > NumRLInsts)
1629 continue;
1630 if (Use32BitInsts && NumAndInsts == NumRLInsts)
1631 continue;
1632
1633 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1634
1635 if (InstCnt) *InstCnt += NumAndInsts;
1636
1637 SDValue VRot;
1638 // We actually need to generate a rotation if we have a non-zero rotation
1639 // factor or, in the Repl32 case, if we care about any of the
1640 // higher-order replicated bits. In the latter case, we generate a mask
1641 // backward so that it actually includes the entire 64 bits.
1642 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1643 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1644 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1645 else
1646 VRot = VRI.V;
1647
1648 SDValue TotalVal;
1649 if (Use32BitInsts) {
1650 assert((ANDIMask != 0 || ANDISMask != 0) &&
1651 "No set bits in mask when using 32-bit ands for 64-bit value");
1652
1653 SDValue ANDIVal, ANDISVal;
1654 if (ANDIMask != 0)
1655 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1656 VRot, getI32Imm(ANDIMask)), 0);
1657 if (ANDISMask != 0)
1658 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1659 VRot, getI32Imm(ANDISMask)), 0);
1660
1661 if (!ANDIVal)
1662 TotalVal = ANDISVal;
1663 else if (!ANDISVal)
1664 TotalVal = ANDIVal;
1665 else
1666 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1667 ANDIVal, ANDISVal), 0);
1668 } else {
1669 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1670 TotalVal =
1671 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1672 VRot, TotalVal), 0);
1673 }
1674
1675 if (!Res)
1676 Res = TotalVal;
1677 else
1678 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1679 Res, TotalVal), 0);
1680
1681 // Now, remove all groups with this underlying value and rotation
1682 // factor.
1683 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1684 if (MatchingBG(*I))
1685 I = BitGroups.erase(I);
1686 else
1687 ++I;
1688 }
1689 }
1690 }
1691
1692 // Instruction selection for the 64-bit case.
1693 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1694 SDLoc dl(N);
1695 SDValue Res;
1696
1697 if (InstCnt) *InstCnt = 0;
1698
1699 // Take care of cases that should use andi/andis first.
1700 SelectAndParts64(dl, Res, InstCnt);
1701
1702 // If we've not yet selected a 'starting' instruction, and we have no zeros
1703 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1704 // number of groups), and start with this rotated value.
1705 if ((!HasZeros || LateMask) && !Res) {
1706 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1707 // groups will come first, and so the VRI representing the largest number
1708 // of groups might not be first (it might be the first Repl32 groups).
1709 unsigned MaxGroupsIdx = 0;
1710 if (!ValueRotsVec[0].Repl32) {
1711 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1712 if (ValueRotsVec[i].Repl32) {
1713 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1714 MaxGroupsIdx = i;
1715 break;
1716 }
1717 }
1718
1719 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1720 bool NeedsRotate = false;
1721 if (VRI.RLAmt) {
1722 NeedsRotate = true;
1723 } else if (VRI.Repl32) {
1724 for (auto &BG : BitGroups) {
1725 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1726 BG.Repl32 != VRI.Repl32)
1727 continue;
1728
1729 // We don't need a rotate if the bit group is confined to the lower
1730 // 32 bits.
1731 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1732 continue;
1733
1734 NeedsRotate = true;
1735 break;
1736 }
1737 }
1738
1739 if (NeedsRotate)
1740 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1741 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1742 InstCnt);
1743 else
1744 Res = VRI.V;
1745
1746 // Now, remove all groups with this underlying value and rotation factor.
1747 if (Res)
1748 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1749 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
1750 I = BitGroups.erase(I);
1751 else
1752 ++I;
1753 }
1754 }
1755
1756 // Because 64-bit rotates are more flexible than inserts, we might have a
1757 // preference regarding which one we do first (to save one instruction).
1758 if (!Res)
1759 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1760 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1761 false) <
1762 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1763 true)) {
1764 if (I != BitGroups.begin()) {
1765 BitGroup BG = *I;
1766 BitGroups.erase(I);
1767 BitGroups.insert(BitGroups.begin(), BG);
1768 }
1769
1770 break;
1771 }
1772 }
1773
1774 // Insert the other groups (one at a time).
1775 for (auto &BG : BitGroups) {
1776 if (!Res)
1777 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1778 BG.EndIdx, InstCnt);
1779 else
1780 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1781 BG.StartIdx, BG.EndIdx, InstCnt);
1782 }
1783
1784 if (LateMask) {
1785 uint64_t Mask = getZerosMask();
1786
1787 // We can use the 32-bit andi/andis technique if the mask does not
1788 // require any higher-order bits. This can save an instruction compared
1789 // to always using the general 64-bit technique.
1790 bool Use32BitInsts = isUInt<32>(Mask);
1791 // Compute the masks for andi/andis that would be necessary.
1792 unsigned ANDIMask = (Mask & UINT16_MAX),
1793 ANDISMask = (Mask >> 16) & UINT16_MAX;
1794
1795 if (Use32BitInsts) {
1796 assert((ANDIMask != 0 || ANDISMask != 0) &&
1797 "No set bits in mask when using 32-bit ands for 64-bit value");
1798
1799 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1800 (unsigned) (ANDISMask != 0) +
1801 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1802
1803 SDValue ANDIVal, ANDISVal;
1804 if (ANDIMask != 0)
1805 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1806 Res, getI32Imm(ANDIMask)), 0);
1807 if (ANDISMask != 0)
1808 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1809 Res, getI32Imm(ANDISMask)), 0);
1810
1811 if (!ANDIVal)
1812 Res = ANDISVal;
1813 else if (!ANDISVal)
1814 Res = ANDIVal;
1815 else
1816 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1817 ANDIVal, ANDISVal), 0);
1818 } else {
1819 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
1820
1821 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1822 Res =
1823 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1824 Res, MaskVal), 0);
1825 }
1826 }
1827
1828 return Res.getNode();
1829 }
1830
1831 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1832 // Fill in BitGroups.
1833 collectBitGroups(LateMask);
1834 if (BitGroups.empty())
1835 return nullptr;
1836
1837 // For 64-bit values, figure out when we can use 32-bit instructions.
1838 if (Bits.size() == 64)
1839 assignRepl32BitGroups();
1840
1841 // Fill in ValueRotsVec.
1842 collectValueRotInfo();
1843
1844 if (Bits.size() == 32) {
1845 return Select32(N, LateMask, InstCnt);
1846 } else {
1847 assert(Bits.size() == 64 && "Not 64 bits here?");
1848 return Select64(N, LateMask, InstCnt);
1849 }
1850
1851 return nullptr;
1852 }
1853
Hal Finkel8adf2252014-12-16 05:51:41 +00001854 SmallVector<ValueBit, 64> Bits;
1855
1856 bool HasZeros;
1857 SmallVector<unsigned, 64> RLAmt;
1858
1859 SmallVector<BitGroup, 16> BitGroups;
1860
1861 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1862 SmallVector<ValueRotInfo, 16> ValueRotsVec;
1863
1864 SelectionDAG *CurDAG;
1865
1866public:
1867 BitPermutationSelector(SelectionDAG *DAG)
1868 : CurDAG(DAG) {}
1869
1870 // Here we try to match complex bit permutations into a set of
1871 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1872 // known to produce optimial code for common cases (like i32 byte swapping).
1873 SDNode *Select(SDNode *N) {
1874 Bits.resize(N->getValueType(0).getSizeInBits());
1875 if (!getValueBits(SDValue(N, 0), Bits))
1876 return nullptr;
1877
1878 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1879 " selection for: ");
1880 DEBUG(N->dump(CurDAG));
1881
1882 // Fill it RLAmt and set HasZeros.
1883 computeRotationAmounts();
1884
Hal Finkelc58ce412015-01-01 02:53:29 +00001885 if (!HasZeros)
1886 return Select(N, false);
Hal Finkel8adf2252014-12-16 05:51:41 +00001887
Hal Finkelc58ce412015-01-01 02:53:29 +00001888 // We currently have two techniques for handling results with zeros: early
1889 // masking (the default) and late masking. Late masking is sometimes more
1890 // efficient, but because the structure of the bit groups is different, it
1891 // is hard to tell without generating both and comparing the results. With
1892 // late masking, we ignore zeros in the resulting value when inserting each
1893 // set of bit groups, and then mask in the zeros at the end. With early
1894 // masking, we only insert the non-zero parts of the result at every step.
Hal Finkel8adf2252014-12-16 05:51:41 +00001895
Hal Finkelc58ce412015-01-01 02:53:29 +00001896 unsigned InstCnt, InstCntLateMask;
1897 DEBUG(dbgs() << "\tEarly masking:\n");
1898 SDNode *RN = Select(N, false, &InstCnt);
1899 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1900
1901 DEBUG(dbgs() << "\tLate masking:\n");
1902 SDNode *RNLM = Select(N, true, &InstCntLateMask);
1903 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1904 " instructions\n");
1905
1906 if (InstCnt <= InstCntLateMask) {
1907 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1908 return RN;
Hal Finkel8adf2252014-12-16 05:51:41 +00001909 }
1910
Hal Finkelc58ce412015-01-01 02:53:29 +00001911 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1912 return RNLM;
Hal Finkel8adf2252014-12-16 05:51:41 +00001913 }
1914};
1915} // anonymous namespace
1916
1917SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
1918 if (N->getValueType(0) != MVT::i32 &&
1919 N->getValueType(0) != MVT::i64)
1920 return nullptr;
1921
Hal Finkelc58ce412015-01-01 02:53:29 +00001922 if (!UseBitPermRewriter)
1923 return nullptr;
1924
Hal Finkel8adf2252014-12-16 05:51:41 +00001925 switch (N->getOpcode()) {
1926 default: break;
1927 case ISD::ROTL:
1928 case ISD::SHL:
1929 case ISD::SRL:
1930 case ISD::AND:
1931 case ISD::OR: {
1932 BitPermutationSelector BPS(CurDAG);
1933 return BPS.Select(N);
1934 }
1935 }
1936
1937 return nullptr;
1938}
1939
Chris Lattner2a1823d2005-08-21 18:50:37 +00001940/// SelectCC - Select a comparison of the specified values with the specified
1941/// condition code, returning the CR# of the expression.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00001942SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001943 ISD::CondCode CC, SDLoc dl) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00001944 // Always select the LHS.
Chris Lattner97b3da12006-06-27 00:04:13 +00001945 unsigned Opc;
Andrew Trickc416ba62010-12-24 04:28:06 +00001946
Owen Anderson9f944592009-08-11 20:47:22 +00001947 if (LHS.getValueType() == MVT::i32) {
Chris Lattner9a40cca2006-06-27 00:10:13 +00001948 unsigned Imm;
Chris Lattneraa3926b2006-09-20 04:25:47 +00001949 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1950 if (isInt32Immediate(RHS, Imm)) {
1951 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001952 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001953 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1954 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001955 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001956 if (isInt<16>((int)Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001957 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1958 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00001959
Chris Lattneraa3926b2006-09-20 04:25:47 +00001960 // For non-equality comparisons, the default code would materialize the
1961 // constant, then compare against it, like this:
1962 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00001963 // ori r2, r2, 22136
Chris Lattneraa3926b2006-09-20 04:25:47 +00001964 // cmpw cr0, r3, r2
1965 // Since we are just comparing for equality, we can emit this instead:
1966 // xoris r0,r3,0x1234
1967 // cmplwi cr0,r0,0x5678
1968 // beq cr0,L6
Dan Gohman32f71d72009-09-25 18:54:59 +00001969 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
1970 getI32Imm(Imm >> 16)), 0);
1971 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
1972 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattneraa3926b2006-09-20 04:25:47 +00001973 }
1974 Opc = PPC::CMPLW;
1975 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00001976 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001977 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1978 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00001979 Opc = PPC::CMPLW;
1980 } else {
1981 short SImm;
1982 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001983 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1984 getI32Imm((int)SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00001985 0);
1986 Opc = PPC::CMPW;
1987 }
Owen Anderson9f944592009-08-11 20:47:22 +00001988 } else if (LHS.getValueType() == MVT::i64) {
Chris Lattner97b3da12006-06-27 00:04:13 +00001989 uint64_t Imm;
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001990 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
Gabor Greiff304a7a2008-08-28 21:40:38 +00001991 if (isInt64Immediate(RHS.getNode(), Imm)) {
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001992 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001993 if (isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001994 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
1995 getI32Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00001996 // If this is a 16-bit signed immediate, fold it.
Benjamin Kramer2788f792010-03-29 21:13:41 +00001997 if (isInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00001998 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
1999 getI32Imm(Imm & 0xFFFF)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002000
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002001 // For non-equality comparisons, the default code would materialize the
2002 // constant, then compare against it, like this:
2003 // lis r2, 4660
Andrew Trickc416ba62010-12-24 04:28:06 +00002004 // ori r2, r2, 22136
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002005 // cmpd cr0, r3, r2
2006 // Since we are just comparing for equality, we can emit this instead:
2007 // xoris r0,r3,0x1234
2008 // cmpldi cr0,r0,0x5678
2009 // beq cr0,L6
Benjamin Kramer2788f792010-03-29 21:13:41 +00002010 if (isUInt<32>(Imm)) {
Dan Gohman32f71d72009-09-25 18:54:59 +00002011 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2012 getI64Imm(Imm >> 16)), 0);
2013 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2014 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattnerda9b1a92006-09-20 04:33:27 +00002015 }
2016 }
2017 Opc = PPC::CMPLD;
2018 } else if (ISD::isUnsignedIntSetCC(CC)) {
Benjamin Kramer2788f792010-03-29 21:13:41 +00002019 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002020 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2021 getI64Imm(Imm & 0xFFFF)), 0);
Chris Lattner97b3da12006-06-27 00:04:13 +00002022 Opc = PPC::CMPLD;
2023 } else {
2024 short SImm;
2025 if (isIntS16Immediate(RHS, SImm))
Dan Gohman32f71d72009-09-25 18:54:59 +00002026 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2027 getI64Imm(SImm & 0xFFFF)),
Chris Lattner97b3da12006-06-27 00:04:13 +00002028 0);
2029 Opc = PPC::CMPD;
2030 }
Owen Anderson9f944592009-08-11 20:47:22 +00002031 } else if (LHS.getValueType() == MVT::f32) {
Chris Lattner97b3da12006-06-27 00:04:13 +00002032 Opc = PPC::FCMPUS;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002033 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002034 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
Eric Christopher1b8e7632014-05-22 01:07:24 +00002035 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002036 }
Dan Gohman32f71d72009-09-25 18:54:59 +00002037 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002038}
2039
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002040static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002041 switch (CC) {
Chris Lattner630bbce2006-05-25 16:54:16 +00002042 case ISD::SETUEQ:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002043 case ISD::SETONE:
2044 case ISD::SETOLE:
2045 case ISD::SETOGE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002046 llvm_unreachable("Should be lowered by legalize!");
2047 default: llvm_unreachable("Unknown condition!");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002048 case ISD::SETOEQ:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002049 case ISD::SETEQ: return PPC::PRED_EQ;
Chris Lattner630bbce2006-05-25 16:54:16 +00002050 case ISD::SETUNE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002051 case ISD::SETNE: return PPC::PRED_NE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002052 case ISD::SETOLT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002053 case ISD::SETLT: return PPC::PRED_LT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002054 case ISD::SETULE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002055 case ISD::SETLE: return PPC::PRED_LE;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002056 case ISD::SETOGT:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002057 case ISD::SETGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002058 case ISD::SETUGE:
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002059 case ISD::SETGE: return PPC::PRED_GE;
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002060 case ISD::SETO: return PPC::PRED_NU;
2061 case ISD::SETUO: return PPC::PRED_UN;
Dale Johannesen160be0f2008-11-07 22:54:33 +00002062 // These two are invalid for floating point. Assume we have int.
2063 case ISD::SETULT: return PPC::PRED_LT;
2064 case ISD::SETUGT: return PPC::PRED_GT;
Chris Lattner2a1823d2005-08-21 18:50:37 +00002065 }
Chris Lattner2a1823d2005-08-21 18:50:37 +00002066}
2067
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002068/// getCRIdxForSetCC - Return the index of the condition register field
2069/// associated with the SetCC condition, and whether or not the field is
2070/// treated as inverted. That is, lt = 0; ge = 0 inverted.
Ulrich Weigand47e93282013-07-03 15:13:30 +00002071static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
Chris Lattner89f36e62008-01-08 06:46:30 +00002072 Invert = false;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002073 switch (CC) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002074 default: llvm_unreachable("Unknown condition!");
Chris Lattner89f36e62008-01-08 06:46:30 +00002075 case ISD::SETOLT:
2076 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2077 case ISD::SETOGT:
2078 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2079 case ISD::SETOEQ:
2080 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2081 case ISD::SETUO: return 3; // Bit #3 = SETUO
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002082 case ISD::SETUGE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002083 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002084 case ISD::SETULE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002085 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
Chris Lattner1fbb0d32006-05-25 18:06:16 +00002086 case ISD::SETUNE:
Chris Lattner89f36e62008-01-08 06:46:30 +00002087 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2088 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
Andrew Trickc416ba62010-12-24 04:28:06 +00002089 case ISD::SETUEQ:
2090 case ISD::SETOGE:
2091 case ISD::SETOLE:
Dale Johannesen160be0f2008-11-07 22:54:33 +00002092 case ISD::SETONE:
Torok Edwinfbcc6632009-07-14 16:55:14 +00002093 llvm_unreachable("Invalid branch code: should be expanded by legalize");
Dale Johannesen160be0f2008-11-07 22:54:33 +00002094 // These are invalid for floating point. Assume integer.
2095 case ISD::SETULT: return 0;
2096 case ISD::SETUGT: return 1;
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002097 }
Chris Lattner3dcd75b2005-08-25 20:08:18 +00002098}
Chris Lattnerc5292ec2005-08-21 22:31:09 +00002099
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002100// getVCmpInst: return the vector compare instruction for the specified
2101// vector type and condition code. Since this is for altivec specific code,
2102// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002103static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2104 bool HasVSX, bool &Swap, bool &Negate) {
2105 Swap = false;
2106 Negate = false;
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002107
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002108 if (VecVT.isFloatingPoint()) {
2109 /* Handle some cases by swapping input operands. */
2110 switch (CC) {
2111 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2112 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2113 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2114 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2115 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2116 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2117 default: break;
2118 }
2119 /* Handle some cases by negating the result. */
2120 switch (CC) {
2121 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2122 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2123 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2124 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2125 default: break;
2126 }
2127 /* We have instructions implementing the remaining cases. */
2128 switch (CC) {
2129 case ISD::SETEQ:
2130 case ISD::SETOEQ:
2131 if (VecVT == MVT::v4f32)
2132 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2133 else if (VecVT == MVT::v2f64)
2134 return PPC::XVCMPEQDP;
2135 break;
2136 case ISD::SETGT:
2137 case ISD::SETOGT:
2138 if (VecVT == MVT::v4f32)
2139 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2140 else if (VecVT == MVT::v2f64)
2141 return PPC::XVCMPGTDP;
2142 break;
2143 case ISD::SETGE:
2144 case ISD::SETOGE:
2145 if (VecVT == MVT::v4f32)
2146 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2147 else if (VecVT == MVT::v2f64)
2148 return PPC::XVCMPGEDP;
2149 break;
2150 default:
2151 break;
2152 }
2153 llvm_unreachable("Invalid floating-point vector compare condition");
2154 } else {
2155 /* Handle some cases by swapping input operands. */
2156 switch (CC) {
2157 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2158 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2159 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2160 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2161 default: break;
2162 }
2163 /* Handle some cases by negating the result. */
2164 switch (CC) {
2165 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2166 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2167 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2168 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2169 default: break;
2170 }
2171 /* We have instructions implementing the remaining cases. */
2172 switch (CC) {
2173 case ISD::SETEQ:
2174 case ISD::SETUEQ:
2175 if (VecVT == MVT::v16i8)
2176 return PPC::VCMPEQUB;
2177 else if (VecVT == MVT::v8i16)
2178 return PPC::VCMPEQUH;
2179 else if (VecVT == MVT::v4i32)
2180 return PPC::VCMPEQUW;
2181 break;
2182 case ISD::SETGT:
2183 if (VecVT == MVT::v16i8)
2184 return PPC::VCMPGTSB;
2185 else if (VecVT == MVT::v8i16)
2186 return PPC::VCMPGTSH;
2187 else if (VecVT == MVT::v4i32)
2188 return PPC::VCMPGTSW;
2189 break;
2190 case ISD::SETUGT:
2191 if (VecVT == MVT::v16i8)
2192 return PPC::VCMPGTUB;
2193 else if (VecVT == MVT::v8i16)
2194 return PPC::VCMPGTUH;
2195 else if (VecVT == MVT::v4i32)
2196 return PPC::VCMPGTUW;
2197 break;
2198 default:
2199 break;
2200 }
2201 llvm_unreachable("Invalid integer vector compare condition");
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002202 }
2203}
2204
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002205SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002206 SDLoc dl(N);
Chris Lattner491b8292005-10-06 19:03:35 +00002207 unsigned Imm;
2208 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002209 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2210 bool isPPC64 = (PtrVT == MVT::i64);
2211
Eric Christopher1b8e7632014-05-22 01:07:24 +00002212 if (!PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002213 isInt32Immediate(N->getOperand(1), Imm)) {
Chris Lattner491b8292005-10-06 19:03:35 +00002214 // We can codegen setcc op, imm very efficiently compared to a brcond.
2215 // Check for those cases here.
2216 // setcc op, 0
2217 if (Imm == 0) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002218 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002219 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002220 default: break;
Evan Chengc3acfc02006-08-27 08:14:06 +00002221 case ISD::SETEQ: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002222 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002223 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002224 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002225 }
Chris Lattnere2969492005-10-21 21:17:10 +00002226 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002227 if (isPPC64) break;
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002228 SDValue AD =
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002229 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002230 Op, getI32Imm(~0U)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002231 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002232 AD.getValue(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002233 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002234 case ISD::SETLT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002235 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002236 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Evan Chengc3acfc02006-08-27 08:14:06 +00002237 }
Chris Lattnere2969492005-10-21 21:17:10 +00002238 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002239 SDValue T =
Dan Gohman32f71d72009-09-25 18:54:59 +00002240 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2241 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002242 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002243 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002244 }
2245 }
Chris Lattner491b8292005-10-06 19:03:35 +00002246 } else if (Imm == ~0U) { // setcc op, -1
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002247 SDValue Op = N->getOperand(0);
Chris Lattner491b8292005-10-06 19:03:35 +00002248 switch (CC) {
Chris Lattnere2969492005-10-21 21:17:10 +00002249 default: break;
2250 case ISD::SETEQ:
Roman Divacky254f8212011-06-20 15:28:39 +00002251 if (isPPC64) break;
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002252 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002253 Op, getI32Imm(1)), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002254 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2255 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
Dan Gohman32f71d72009-09-25 18:54:59 +00002256 MVT::i32,
2257 getI32Imm(0)), 0),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002258 Op.getValue(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002259 case ISD::SETNE: {
Roman Divacky254f8212011-06-20 15:28:39 +00002260 if (isPPC64) break;
Dan Gohman32f71d72009-09-25 18:54:59 +00002261 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
Chris Lattner3e5fbd72010-12-21 02:38:05 +00002262 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
Dan Gohman32f71d72009-09-25 18:54:59 +00002263 Op, getI32Imm(~0U));
Owen Anderson9f944592009-08-11 20:47:22 +00002264 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002265 Op, SDValue(AD, 1));
Chris Lattner491b8292005-10-06 19:03:35 +00002266 }
Chris Lattnere2969492005-10-21 21:17:10 +00002267 case ISD::SETLT: {
Dan Gohman32f71d72009-09-25 18:54:59 +00002268 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2269 getI32Imm(1)), 0);
2270 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2271 Op), 0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002272 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Craig Topper481fb282014-04-27 19:21:11 +00002273 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattnere2969492005-10-21 21:17:10 +00002274 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002275 case ISD::SETGT: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002276 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Michael Liaob53d8962013-04-19 22:22:57 +00002277 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
Dale Johannesenf08a47b2009-02-04 23:02:30 +00002278 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002279 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
Evan Cheng34b70ee2006-08-26 08:00:10 +00002280 getI32Imm(1));
Chris Lattnere2969492005-10-21 21:17:10 +00002281 }
Evan Chengc3acfc02006-08-27 08:14:06 +00002282 }
Chris Lattner491b8292005-10-06 19:03:35 +00002283 }
2284 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002285
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002286 SDValue LHS = N->getOperand(0);
2287 SDValue RHS = N->getOperand(1);
2288
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002289 // Altivec Vector compare instructions do not set any CR register by default and
2290 // vector compare operations return the same type as the operands.
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002291 if (LHS.getValueType().isVector()) {
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002292 EVT VecVT = LHS.getValueType();
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002293 bool Swap, Negate;
2294 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2295 PPCSubTarget->hasVSX(), Swap, Negate);
2296 if (Swap)
2297 std::swap(LHS, RHS);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002298
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002299 if (Negate) {
2300 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
2301 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
2302 PPC::VNOR,
2303 VecVT, VCmp, VCmp);
Adhemerval Zanella56775e02012-10-30 13:50:19 +00002304 }
Ulrich Weigandc4cc7fe2014-08-04 13:13:57 +00002305
2306 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002307 }
2308
Eric Christopher1b8e7632014-05-22 01:07:24 +00002309 if (PPCSubTarget->useCRBits())
Craig Topper062a2ba2014-04-25 05:30:21 +00002310 return nullptr;
Hal Finkel940ab932014-02-28 00:27:01 +00002311
Chris Lattner491b8292005-10-06 19:03:35 +00002312 bool Inv;
Ulrich Weigand47e93282013-07-03 15:13:30 +00002313 unsigned Idx = getCRIdxForSetCC(CC, Inv);
Adhemerval Zanellafe3f7932012-10-08 18:59:53 +00002314 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002315 SDValue IntCR;
Andrew Trickc416ba62010-12-24 04:28:06 +00002316
Chris Lattner491b8292005-10-06 19:03:35 +00002317 // Force the ccreg into CR7.
Owen Anderson9f944592009-08-11 20:47:22 +00002318 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
Andrew Trickc416ba62010-12-24 04:28:06 +00002319
Craig Topper062a2ba2014-04-25 05:30:21 +00002320 SDValue InFlag(nullptr, 0); // Null incoming flag value.
Andrew Trickc416ba62010-12-24 04:28:06 +00002321 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
Chris Lattnerbd099102005-12-01 03:50:19 +00002322 InFlag).getValue(1);
Andrew Trickc416ba62010-12-24 04:28:06 +00002323
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002324 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2325 CCReg), 0);
Andrew Trickc416ba62010-12-24 04:28:06 +00002326
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002327 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
Evan Chengc3acfc02006-08-27 08:14:06 +00002328 getI32Imm(31), getI32Imm(31) };
Ulrich Weigand47e93282013-07-03 15:13:30 +00002329 if (!Inv)
Craig Topper481fb282014-04-27 19:21:11 +00002330 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Chris Lattner89f36e62008-01-08 06:46:30 +00002331
2332 // Get the specified bit.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002333 SDValue Tmp =
Michael Liaob53d8962013-04-19 22:22:57 +00002334 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
Ulrich Weigand47e93282013-07-03 15:13:30 +00002335 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
Chris Lattner491b8292005-10-06 19:03:35 +00002336}
Chris Lattner502a3692005-10-06 18:56:10 +00002337
Chris Lattner318622f2005-10-06 19:07:45 +00002338
Chris Lattner43ff01e2005-08-17 19:33:03 +00002339// Select - Convert the specified operand from a target-independent to a
2340// target-specific node if it hasn't already been changed.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002341SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002342 SDLoc dl(N);
Tim Northover31d093c2013-09-22 08:21:56 +00002343 if (N->isMachineOpcode()) {
2344 N->setNodeId(-1);
Craig Topper062a2ba2014-04-25 05:30:21 +00002345 return nullptr; // Already selected.
Tim Northover31d093c2013-09-22 08:21:56 +00002346 }
Chris Lattner08c319f2005-09-29 00:59:32 +00002347
Hal Finkel51b3fd12014-09-02 06:23:54 +00002348 // In case any misguided DAG-level optimizations form an ADD with a
2349 // TargetConstant operand, crash here instead of miscompiling (by selecting
2350 // an r+r add instead of some kind of r+i add).
2351 if (N->getOpcode() == ISD::ADD &&
2352 N->getOperand(1).getOpcode() == ISD::TargetConstant)
2353 llvm_unreachable("Invalid ADD with TargetConstant operand");
2354
Hal Finkel8adf2252014-12-16 05:51:41 +00002355 // Try matching complex bit permutations before doing anything else.
2356 if (SDNode *NN = SelectBitPermutation(N))
2357 return NN;
2358
Chris Lattner43ff01e2005-08-17 19:33:03 +00002359 switch (N->getOpcode()) {
Chris Lattner498915d2005-09-07 23:45:15 +00002360 default: break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002361
Jim Laskey095e6f32006-12-12 13:23:43 +00002362 case ISD::Constant: {
Hal Finkelc58ce412015-01-01 02:53:29 +00002363 if (N->getValueType(0) == MVT::i64)
2364 return SelectInt64(CurDAG, N);
Jim Laskey095e6f32006-12-12 13:23:43 +00002365 break;
2366 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002367
Hal Finkel940ab932014-02-28 00:27:01 +00002368 case ISD::SETCC: {
2369 SDNode *SN = SelectSETCC(N);
2370 if (SN)
2371 return SN;
2372 break;
2373 }
Evan Cheng6dc90ca2006-02-09 00:37:58 +00002374 case PPCISD::GlobalBaseReg:
Evan Cheng61413a32006-08-26 05:34:46 +00002375 return getGlobalBaseReg();
Andrew Trickc416ba62010-12-24 04:28:06 +00002376
Hal Finkelb5e9b042014-12-11 22:51:06 +00002377 case ISD::FrameIndex:
2378 return getFrameIndex(N, N);
Chris Lattner6961fc72006-03-26 10:06:40 +00002379
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002380 case PPCISD::MFOCRF: {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002381 SDValue InFlag = N->getOperand(1);
Ulrich Weigandd5ebc622013-07-03 17:05:42 +00002382 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2383 N->getOperand(0), InFlag);
Chris Lattner6961fc72006-03-26 10:06:40 +00002384 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002385
Hal Finkelbbdee932014-12-02 22:01:00 +00002386 case PPCISD::READ_TIME_BASE: {
2387 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2388 MVT::Other, N->getOperand(0));
2389 }
2390
Hal Finkel13d104b2014-12-11 18:37:52 +00002391 case PPCISD::SRA_ADDZE: {
2392 SDValue N0 = N->getOperand(0);
2393 SDValue ShiftAmt =
2394 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2395 getConstantIntValue(), N->getValueType(0));
2396 if (N->getValueType(0) == MVT::i64) {
2397 SDNode *Op =
2398 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2399 N0, ShiftAmt);
2400 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
2401 SDValue(Op, 0), SDValue(Op, 1));
2402 } else {
2403 assert(N->getValueType(0) == MVT::i32 &&
2404 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2405 SDNode *Op =
2406 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2407 N0, ShiftAmt);
2408 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2409 SDValue(Op, 0), SDValue(Op, 1));
Chris Lattnerdc664572005-08-25 17:50:06 +00002410 }
Chris Lattner6e184f22005-08-25 22:04:30 +00002411 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002412
Chris Lattnerce645542006-11-10 02:08:47 +00002413 case ISD::LOAD: {
2414 // Handle preincrement loads.
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002415 LoadSDNode *LD = cast<LoadSDNode>(N);
Owen Anderson53aa7a92009-08-10 22:56:29 +00002416 EVT LoadedVT = LD->getMemoryVT();
Andrew Trickc416ba62010-12-24 04:28:06 +00002417
Chris Lattnerce645542006-11-10 02:08:47 +00002418 // Normal loads are handled by code generated from the .td file.
2419 if (LD->getAddressingMode() != ISD::PRE_INC)
2420 break;
Andrew Trickc416ba62010-12-24 04:28:06 +00002421
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002422 SDValue Offset = LD->getOffset();
Ulrich Weigandd1b99d32013-03-22 14:58:17 +00002423 if (Offset.getOpcode() == ISD::TargetConstant ||
Chris Lattnerc5102bf2006-11-11 04:53:30 +00002424 Offset.getOpcode() == ISD::TargetGlobalAddress) {
Andrew Trickc416ba62010-12-24 04:28:06 +00002425
Chris Lattner474b5b72006-11-15 19:55:13 +00002426 unsigned Opcode;
2427 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
Owen Anderson9f944592009-08-11 20:47:22 +00002428 if (LD->getValueType(0) != MVT::i64) {
Chris Lattner474b5b72006-11-15 19:55:13 +00002429 // Handle PPC32 integer and normal FP loads.
Owen Anderson9f944592009-08-11 20:47:22 +00002430 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2431 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002432 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002433 case MVT::f64: Opcode = PPC::LFDU; break;
2434 case MVT::f32: Opcode = PPC::LFSU; break;
2435 case MVT::i32: Opcode = PPC::LWZU; break;
2436 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2437 case MVT::i1:
2438 case MVT::i8: Opcode = PPC::LBZU; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002439 }
2440 } else {
Owen Anderson9f944592009-08-11 20:47:22 +00002441 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2442 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2443 switch (LoadedVT.getSimpleVT().SimpleTy) {
Torok Edwinfbcc6632009-07-14 16:55:14 +00002444 default: llvm_unreachable("Invalid PPC load type!");
Owen Anderson9f944592009-08-11 20:47:22 +00002445 case MVT::i64: Opcode = PPC::LDU; break;
2446 case MVT::i32: Opcode = PPC::LWZU8; break;
2447 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2448 case MVT::i1:
2449 case MVT::i8: Opcode = PPC::LBZU8; break;
Chris Lattner474b5b72006-11-15 19:55:13 +00002450 }
2451 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002452
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002453 SDValue Chain = LD->getChain();
2454 SDValue Base = LD->getBasePtr();
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002455 SDValue Ops[] = { Offset, Base, Chain };
Dan Gohman32f71d72009-09-25 18:54:59 +00002456 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002457 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002458 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002459 } else {
Hal Finkelca542be2012-06-20 15:43:03 +00002460 unsigned Opcode;
2461 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2462 if (LD->getValueType(0) != MVT::i64) {
2463 // Handle PPC32 integer and normal FP loads.
2464 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2465 switch (LoadedVT.getSimpleVT().SimpleTy) {
2466 default: llvm_unreachable("Invalid PPC load type!");
2467 case MVT::f64: Opcode = PPC::LFDUX; break;
2468 case MVT::f32: Opcode = PPC::LFSUX; break;
2469 case MVT::i32: Opcode = PPC::LWZUX; break;
2470 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2471 case MVT::i1:
2472 case MVT::i8: Opcode = PPC::LBZUX; break;
2473 }
2474 } else {
2475 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2476 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2477 "Invalid sext update load");
2478 switch (LoadedVT.getSimpleVT().SimpleTy) {
2479 default: llvm_unreachable("Invalid PPC load type!");
2480 case MVT::i64: Opcode = PPC::LDUX; break;
2481 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
2482 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2483 case MVT::i1:
2484 case MVT::i8: Opcode = PPC::LBZUX8; break;
2485 }
2486 }
2487
2488 SDValue Chain = LD->getChain();
2489 SDValue Base = LD->getBasePtr();
Ulrich Weigande90b0222013-03-22 14:58:48 +00002490 SDValue Ops[] = { Base, Offset, Chain };
Hal Finkelca542be2012-06-20 15:43:03 +00002491 return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
Eric Christopher1b8e7632014-05-22 01:07:24 +00002492 PPCLowering->getPointerTy(),
Michael Liaob53d8962013-04-19 22:22:57 +00002493 MVT::Other, Ops);
Chris Lattnerce645542006-11-10 02:08:47 +00002494 }
2495 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002496
Nate Begemanb3821a32005-08-18 07:30:46 +00002497 case ISD::AND: {
Nate Begemand31efd12006-09-22 05:01:56 +00002498 unsigned Imm, Imm2, SH, MB, ME;
Hal Finkele39526a2012-08-28 02:10:15 +00002499 uint64_t Imm64;
Nate Begemand31efd12006-09-22 05:01:56 +00002500
Nate Begemanb3821a32005-08-18 07:30:46 +00002501 // If this is an and of a value rotated between 0 and 31 bits and then and'd
2502 // with a mask, emit rlwinm
Chris Lattner97b3da12006-06-27 00:04:13 +00002503 if (isInt32Immediate(N->getOperand(1), Imm) &&
Gabor Greiff304a7a2008-08-28 21:40:38 +00002504 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002505 SDValue Val = N->getOperand(0).getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002506 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002507 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemanb3821a32005-08-18 07:30:46 +00002508 }
Nate Begemand31efd12006-09-22 05:01:56 +00002509 // If this is just a masked value where the input is not handled above, and
2510 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2511 if (isInt32Immediate(N->getOperand(1), Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002512 isRunOfOnes(Imm, MB, ME) &&
Nate Begemand31efd12006-09-22 05:01:56 +00002513 N->getOperand(0).getOpcode() != ISD::ROTL) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002514 SDValue Val = N->getOperand(0);
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002515 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002516 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begemand31efd12006-09-22 05:01:56 +00002517 }
Hal Finkele39526a2012-08-28 02:10:15 +00002518 // If this is a 64-bit zero-extension mask, emit rldicl.
2519 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2520 isMask_64(Imm64)) {
2521 SDValue Val = N->getOperand(0);
2522 MB = 64 - CountTrailingOnes_64(Imm64);
Hal Finkel22498fa2013-11-20 01:10:15 +00002523 SH = 0;
2524
2525 // If the operand is a logical right shift, we can fold it into this
2526 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2527 // for n <= mb. The right shift is really a left rotate followed by a
2528 // mask, and this mask is a more-restrictive sub-mask of the mask implied
2529 // by the shift.
2530 if (Val.getOpcode() == ISD::SRL &&
2531 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2532 assert(Imm < 64 && "Illegal shift amount");
2533 Val = Val.getOperand(0);
2534 SH = 64 - Imm;
2535 }
2536
2537 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
Craig Topper481fb282014-04-27 19:21:11 +00002538 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
Hal Finkele39526a2012-08-28 02:10:15 +00002539 }
Nate Begemand31efd12006-09-22 05:01:56 +00002540 // AND X, 0 -> 0, not "rlwinm 32".
2541 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002542 ReplaceUses(SDValue(N, 0), N->getOperand(1));
Craig Topper062a2ba2014-04-25 05:30:21 +00002543 return nullptr;
Nate Begemand31efd12006-09-22 05:01:56 +00002544 }
Nate Begeman9aea6e42005-12-24 01:00:15 +00002545 // ISD::OR doesn't get all the bitfield insertion fun.
2546 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
Andrew Trickc416ba62010-12-24 04:28:06 +00002547 if (isInt32Immediate(N->getOperand(1), Imm) &&
Nate Begeman9aea6e42005-12-24 01:00:15 +00002548 N->getOperand(0).getOpcode() == ISD::OR &&
Chris Lattner97b3da12006-06-27 00:04:13 +00002549 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
Chris Lattner20c88df2006-01-05 18:32:49 +00002550 unsigned MB, ME;
Nate Begeman9aea6e42005-12-24 01:00:15 +00002551 Imm = ~(Imm^Imm2);
2552 if (isRunOfOnes(Imm, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002553 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002554 N->getOperand(0).getOperand(1),
2555 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
Michael Liaob53d8962013-04-19 22:22:57 +00002556 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
Nate Begeman9aea6e42005-12-24 01:00:15 +00002557 }
2558 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002559
Chris Lattner1de57062005-09-29 23:33:31 +00002560 // Other cases are autogenerated.
2561 break;
Nate Begemanb3821a32005-08-18 07:30:46 +00002562 }
Hal Finkelb5e9b042014-12-11 22:51:06 +00002563 case ISD::OR: {
Owen Anderson9f944592009-08-11 20:47:22 +00002564 if (N->getValueType(0) == MVT::i32)
Chris Lattnerbc485fd2006-08-15 23:48:22 +00002565 if (SDNode *I = SelectBitfieldInsert(N))
2566 return I;
Andrew Trickc416ba62010-12-24 04:28:06 +00002567
Hal Finkelb5e9b042014-12-11 22:51:06 +00002568 short Imm;
2569 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2570 isIntS16Immediate(N->getOperand(1), Imm)) {
2571 APInt LHSKnownZero, LHSKnownOne;
2572 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2573
2574 // If this is equivalent to an add, then we can fold it with the
2575 // FrameIndex calculation.
2576 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
2577 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2578 }
2579
Chris Lattner1de57062005-09-29 23:33:31 +00002580 // Other cases are autogenerated.
2581 break;
Hal Finkelb5e9b042014-12-11 22:51:06 +00002582 }
2583 case ISD::ADD: {
2584 short Imm;
2585 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2586 isIntS16Immediate(N->getOperand(1), Imm))
2587 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2588
2589 break;
2590 }
Nate Begeman33acb2c2005-08-18 23:38:00 +00002591 case ISD::SHL: {
2592 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002593 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002594 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002595 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002596 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002597 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002598 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002599
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002600 // Other cases are autogenerated.
2601 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002602 }
2603 case ISD::SRL: {
2604 unsigned Imm, SH, MB, ME;
Gabor Greiff304a7a2008-08-28 21:40:38 +00002605 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
Andrew Trickc416ba62010-12-24 04:28:06 +00002606 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002607 SDValue Ops[] = { N->getOperand(0).getOperand(0),
Evan Chengc3acfc02006-08-27 08:14:06 +00002608 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
Craig Topper481fb282014-04-27 19:21:11 +00002609 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
Nate Begeman9eaa6ba2005-10-19 01:12:32 +00002610 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002611
Nate Begeman9f3c26c2005-10-19 18:42:01 +00002612 // Other cases are autogenerated.
2613 break;
Nate Begeman33acb2c2005-08-18 23:38:00 +00002614 }
Hal Finkel940ab932014-02-28 00:27:01 +00002615 // FIXME: Remove this once the ANDI glue bug is fixed:
2616 case PPCISD::ANDIo_1_EQ_BIT:
2617 case PPCISD::ANDIo_1_GT_BIT: {
2618 if (!ANDIGlueBug)
2619 break;
2620
2621 EVT InVT = N->getOperand(0).getValueType();
2622 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2623 "Invalid input type for ANDIo_1_EQ_BIT");
2624
2625 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2626 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2627 N->getOperand(0),
2628 CurDAG->getTargetConstant(1, InVT)), 0);
2629 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2630 SDValue SRIdxVal =
2631 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2632 PPC::sub_eq : PPC::sub_gt, MVT::i32);
2633
2634 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
2635 CR0Reg, SRIdxVal,
2636 SDValue(AndI.getNode(), 1) /* glue */);
2637 }
Chris Lattnerbec817c2005-08-26 18:46:49 +00002638 case ISD::SELECT_CC: {
2639 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
Roman Divacky254f8212011-06-20 15:28:39 +00002640 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2641 bool isPPC64 = (PtrVT == MVT::i64);
Andrew Trickc416ba62010-12-24 04:28:06 +00002642
Hal Finkel940ab932014-02-28 00:27:01 +00002643 // If this is a select of i1 operands, we'll pattern match it.
Eric Christopher1b8e7632014-05-22 01:07:24 +00002644 if (PPCSubTarget->useCRBits() &&
Hal Finkel940ab932014-02-28 00:27:01 +00002645 N->getOperand(0).getValueType() == MVT::i1)
2646 break;
2647
Chris Lattner97b3da12006-06-27 00:04:13 +00002648 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
Roman Divacky254f8212011-06-20 15:28:39 +00002649 if (!isPPC64)
2650 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2651 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2652 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2653 if (N1C->isNullValue() && N3C->isNullValue() &&
2654 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2655 // FIXME: Implement this optzn for PPC64.
2656 N->getValueType(0) == MVT::i32) {
2657 SDNode *Tmp =
2658 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2659 N->getOperand(0), getI32Imm(~0U));
2660 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
2661 SDValue(Tmp, 0), N->getOperand(0),
2662 SDValue(Tmp, 1));
2663 }
Chris Lattner9b577f12005-08-26 21:23:58 +00002664
Dale Johannesenab8e4422009-02-06 19:16:40 +00002665 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002666
2667 if (N->getValueType(0) == MVT::i1) {
2668 // An i1 select is: (c & t) | (!c & f).
2669 bool Inv;
2670 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2671
2672 unsigned SRI;
2673 switch (Idx) {
2674 default: llvm_unreachable("Invalid CC index");
2675 case 0: SRI = PPC::sub_lt; break;
2676 case 1: SRI = PPC::sub_gt; break;
2677 case 2: SRI = PPC::sub_eq; break;
2678 case 3: SRI = PPC::sub_un; break;
2679 }
2680
2681 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2682
2683 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2684 CCBit, CCBit), 0);
2685 SDValue C = Inv ? NotCCBit : CCBit,
2686 NotC = Inv ? CCBit : NotCCBit;
2687
2688 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2689 C, N->getOperand(2)), 0);
2690 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2691 NotC, N->getOperand(3)), 0);
2692
2693 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2694 }
2695
Chris Lattner8c6a41e2006-11-17 22:10:59 +00002696 unsigned BROpc = getPredicateForSetCC(CC);
Chris Lattner9b577f12005-08-26 21:23:58 +00002697
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002698 unsigned SelectCCOp;
Owen Anderson9f944592009-08-11 20:47:22 +00002699 if (N->getValueType(0) == MVT::i32)
Chris Lattner97b3da12006-06-27 00:04:13 +00002700 SelectCCOp = PPC::SELECT_CC_I4;
Owen Anderson9f944592009-08-11 20:47:22 +00002701 else if (N->getValueType(0) == MVT::i64)
Chris Lattner97b3da12006-06-27 00:04:13 +00002702 SelectCCOp = PPC::SELECT_CC_I8;
Owen Anderson9f944592009-08-11 20:47:22 +00002703 else if (N->getValueType(0) == MVT::f32)
Chris Lattnerd3eee1a2005-10-01 01:35:02 +00002704 SelectCCOp = PPC::SELECT_CC_F4;
Owen Anderson9f944592009-08-11 20:47:22 +00002705 else if (N->getValueType(0) == MVT::f64)
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00002706 if (PPCSubTarget->hasVSX())
2707 SelectCCOp = PPC::SELECT_CC_VSFRC;
2708 else
2709 SelectCCOp = PPC::SELECT_CC_F8;
Bill Schmidt61e65232014-10-22 13:13:40 +00002710 else if (N->getValueType(0) == MVT::v2f64 ||
2711 N->getValueType(0) == MVT::v2i64)
2712 SelectCCOp = PPC::SELECT_CC_VSRC;
Chris Lattner0a3d1bb2006-04-08 22:45:08 +00002713 else
2714 SelectCCOp = PPC::SELECT_CC_VRRC;
2715
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002716 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
Evan Chengc3acfc02006-08-27 08:14:06 +00002717 getI32Imm(BROpc) };
Craig Topper481fb282014-04-27 19:21:11 +00002718 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
Chris Lattnerbec817c2005-08-26 18:46:49 +00002719 }
Hal Finkel732f0f72014-03-26 12:49:28 +00002720 case ISD::VSELECT:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002721 if (PPCSubTarget->hasVSX()) {
Hal Finkel732f0f72014-03-26 12:49:28 +00002722 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002723 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
Hal Finkel732f0f72014-03-26 12:49:28 +00002724 }
2725
2726 break;
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002727 case ISD::VECTOR_SHUFFLE:
Eric Christopher1b8e7632014-05-22 01:07:24 +00002728 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002729 N->getValueType(0) == MVT::v2i64)) {
2730 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2731
2732 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2733 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2734 unsigned DM[2];
2735
2736 for (int i = 0; i < 2; ++i)
2737 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2738 DM[i] = 0;
2739 else
2740 DM[i] = 1;
2741
Bill Schmidt30144352014-12-09 16:52:29 +00002742 // For little endian, we must swap the input operands and adjust
2743 // the mask elements (reverse and invert them).
2744 if (PPCSubTarget->isLittleEndian()) {
2745 std::swap(Op1, Op2);
2746 unsigned tmp = DM[0];
2747 DM[0] = 1 - DM[1];
2748 DM[1] = 1 - tmp;
2749 }
2750
Hal Finkel2583b062014-03-28 20:24:55 +00002751 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002752
2753 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2754 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2755 isa<LoadSDNode>(Op1.getOperand(0))) {
2756 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2757 SDValue Base, Offset;
2758
2759 if (LD->isUnindexed() &&
2760 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2761 SDValue Chain = LD->getChain();
2762 SDValue Ops[] = { Base, Offset, Chain };
2763 return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
Craig Topper481fb282014-04-27 19:21:11 +00002764 N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002765 }
2766 }
2767
2768 SDValue Ops[] = { Op1, Op2, DMV };
Craig Topper481fb282014-04-27 19:21:11 +00002769 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
Hal Finkeldf3e34d2014-03-26 22:58:37 +00002770 }
2771
2772 break;
Hal Finkel25c19922013-05-15 21:37:41 +00002773 case PPCISD::BDNZ:
2774 case PPCISD::BDZ: {
Eric Christopher1b8e7632014-05-22 01:07:24 +00002775 bool IsPPC64 = PPCSubTarget->isPPC64();
Hal Finkel25c19922013-05-15 21:37:41 +00002776 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2777 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
2778 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
2779 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
Craig Topper481fb282014-04-27 19:21:11 +00002780 MVT::Other, Ops);
Hal Finkel25c19922013-05-15 21:37:41 +00002781 }
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002782 case PPCISD::COND_BRANCH: {
Dan Gohman7a638a82008-11-05 17:16:24 +00002783 // Op #0 is the Chain.
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002784 // Op #1 is the PPC::PRED_* number.
2785 // Op #2 is the CR#
2786 // Op #3 is the Dest MBB
Dan Gohmanf14b77e2008-11-05 04:14:16 +00002787 // Op #4 is the Flag.
Evan Cheng58d1eac2007-06-29 01:25:06 +00002788 // Prevent PPC::PRED_* from being selected into LI.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002789 SDValue Pred =
Dan Gohmaneffb8942008-09-12 16:56:44 +00002790 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002791 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002792 N->getOperand(0), N->getOperand(4) };
Craig Topper481fb282014-04-27 19:21:11 +00002793 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattnerbe9377a2006-11-17 22:37:34 +00002794 }
Nate Begemanbb01d4f2006-03-17 01:40:33 +00002795 case ISD::BR_CC: {
Chris Lattner2a1823d2005-08-21 18:50:37 +00002796 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
Hal Finkel940ab932014-02-28 00:27:01 +00002797 unsigned PCC = getPredicateForSetCC(CC);
2798
2799 if (N->getOperand(2).getValueType() == MVT::i1) {
2800 unsigned Opc;
2801 bool Swap;
2802 switch (PCC) {
2803 default: llvm_unreachable("Unexpected Boolean-operand predicate");
2804 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
2805 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
2806 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
2807 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
2808 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2809 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
2810 }
2811
2812 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2813 N->getOperand(Swap ? 3 : 2),
2814 N->getOperand(Swap ? 2 : 3)), 0);
2815 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
2816 BitComp, N->getOperand(4), N->getOperand(0));
2817 }
2818
Dale Johannesenab8e4422009-02-06 19:16:40 +00002819 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
Hal Finkel940ab932014-02-28 00:27:01 +00002820 SDValue Ops[] = { getI32Imm(PCC), CondCode,
Evan Chengc3acfc02006-08-27 08:14:06 +00002821 N->getOperand(4), N->getOperand(0) };
Craig Topper481fb282014-04-27 19:21:11 +00002822 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
Chris Lattner2a1823d2005-08-21 18:50:37 +00002823 }
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002824 case ISD::BRIND: {
Chris Lattnerb055c872006-06-10 01:15:02 +00002825 // FIXME: Should custom lower this.
Dan Gohman2ce6f2a2008-07-27 21:46:04 +00002826 SDValue Chain = N->getOperand(0);
2827 SDValue Target = N->getOperand(1);
Owen Anderson9f944592009-08-11 20:47:22 +00002828 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
Roman Divackya4a59ae2011-06-03 15:47:49 +00002829 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
Hal Finkel528ff4b2011-12-08 04:36:44 +00002830 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
Dan Gohman32f71d72009-09-25 18:54:59 +00002831 Chain), 0);
Roman Divackya4a59ae2011-06-03 15:47:49 +00002832 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
Nate Begeman4ca2ea52006-04-22 18:53:45 +00002833 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002834 case PPCISD::TOC_ENTRY: {
Justin Hibbitsa88b6052014-11-12 15:16:30 +00002835 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2836 "Only supported for 64-bit ABI and 32-bit SVR4");
Hal Finkel3ee2af72014-07-18 23:29:49 +00002837 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2838 SDValue GA = N->getOperand(0);
2839 return CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
2840 N->getOperand(1));
Justin Hibbits3476db42014-08-28 04:40:55 +00002841 }
Bill Schmidt34627e32012-11-27 17:35:46 +00002842
Bill Schmidt27917782013-02-21 17:12:27 +00002843 // For medium and large code model, we generate two instructions as
2844 // described below. Otherwise we allow SelectCodeCommon to handle this,
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002845 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
Bill Schmidt27917782013-02-21 17:12:27 +00002846 CodeModel::Model CModel = TM.getCodeModel();
2847 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002848 break;
2849
Bill Schmidt5d82f092014-06-16 21:36:02 +00002850 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
2851 // If it is an externally defined symbol, a symbol with common linkage,
2852 // a non-local function address, or a jump table address, or if we are
2853 // generating code for large code model, we generate:
Bill Schmidt34627e32012-11-27 17:35:46 +00002854 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
2855 // Otherwise we generate:
2856 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
2857 SDValue GA = N->getOperand(0);
2858 SDValue TOCbase = N->getOperand(1);
2859 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
2860 TOCbase, GA);
2861
Ulrich Weigandc8c2ea22014-10-31 10:33:14 +00002862 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
2863 CModel == CodeModel::Large)
Bill Schmidt34627e32012-11-27 17:35:46 +00002864 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2865 SDValue(Tmp, 0));
2866
2867 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
2868 const GlobalValue *GValue = G->getGlobal();
Bill Schmidt5d82f092014-06-16 21:36:02 +00002869 if ((GValue->getType()->getElementType()->isFunctionTy() &&
2870 (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
Rafael Espindola04902862014-05-29 15:41:38 +00002871 GValue->isDeclaration() || GValue->hasCommonLinkage() ||
2872 GValue->hasAvailableExternallyLinkage())
Bill Schmidt34627e32012-11-27 17:35:46 +00002873 return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
2874 SDValue(Tmp, 0));
2875 }
2876
2877 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
2878 SDValue(Tmp, 0), GA);
2879 }
Hal Finkel7c8ae532014-07-25 17:47:22 +00002880 case PPCISD::PPC32_PICGOT: {
2881 // Generate a PIC-safe GOT reference.
2882 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
2883 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
2884 return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32);
2885 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002886 case PPCISD::VADD_SPLAT: {
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002887 // This expands into one of three sequences, depending on whether
2888 // the first operand is odd or even, positive or negative.
Bill Schmidt51e79512013-02-20 15:50:31 +00002889 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
2890 isa<ConstantSDNode>(N->getOperand(1)) &&
2891 "Invalid operand on VADD_SPLAT!");
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002892
2893 int Elt = N->getConstantOperandVal(0);
Bill Schmidt51e79512013-02-20 15:50:31 +00002894 int EltSize = N->getConstantOperandVal(1);
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002895 unsigned Opc1, Opc2, Opc3;
Bill Schmidt51e79512013-02-20 15:50:31 +00002896 EVT VT;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002897
Bill Schmidt51e79512013-02-20 15:50:31 +00002898 if (EltSize == 1) {
2899 Opc1 = PPC::VSPLTISB;
2900 Opc2 = PPC::VADDUBM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002901 Opc3 = PPC::VSUBUBM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002902 VT = MVT::v16i8;
2903 } else if (EltSize == 2) {
2904 Opc1 = PPC::VSPLTISH;
2905 Opc2 = PPC::VADDUHM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002906 Opc3 = PPC::VSUBUHM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002907 VT = MVT::v8i16;
2908 } else {
2909 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
2910 Opc1 = PPC::VSPLTISW;
2911 Opc2 = PPC::VADDUWM;
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002912 Opc3 = PPC::VSUBUWM;
Bill Schmidt51e79512013-02-20 15:50:31 +00002913 VT = MVT::v4i32;
2914 }
Bill Schmidtc6cbecc2013-02-20 20:41:42 +00002915
2916 if ((Elt & 1) == 0) {
2917 // Elt is even, in the range [-32,-18] + [16,30].
2918 //
2919 // Convert: VADD_SPLAT elt, size
2920 // Into: tmp = VSPLTIS[BHW] elt
2921 // VADDU[BHW]M tmp, tmp
2922 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
2923 SDValue EltVal = getI32Imm(Elt >> 1);
2924 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2925 SDValue TmpVal = SDValue(Tmp, 0);
2926 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
2927
2928 } else if (Elt > 0) {
2929 // Elt is odd and positive, in the range [17,31].
2930 //
2931 // Convert: VADD_SPLAT elt, size
2932 // Into: tmp1 = VSPLTIS[BHW] elt-16
2933 // tmp2 = VSPLTIS[BHW] -16
2934 // VSUBU[BHW]M tmp1, tmp2
2935 SDValue EltVal = getI32Imm(Elt - 16);
2936 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2937 EltVal = getI32Imm(-16);
2938 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2939 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
2940 SDValue(Tmp2, 0));
2941
2942 } else {
2943 // Elt is odd and negative, in the range [-31,-17].
2944 //
2945 // Convert: VADD_SPLAT elt, size
2946 // Into: tmp1 = VSPLTIS[BHW] elt+16
2947 // tmp2 = VSPLTIS[BHW] -16
2948 // VADDU[BHW]M tmp1, tmp2
2949 SDValue EltVal = getI32Imm(Elt + 16);
2950 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2951 EltVal = getI32Imm(-16);
2952 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2953 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
2954 SDValue(Tmp2, 0));
2955 }
Bill Schmidt51e79512013-02-20 15:50:31 +00002956 }
Chris Lattner43ff01e2005-08-17 19:33:03 +00002957 }
Andrew Trickc416ba62010-12-24 04:28:06 +00002958
Dan Gohmanea6f91f2010-01-05 01:24:18 +00002959 return SelectCode(N);
Chris Lattner43ff01e2005-08-17 19:33:03 +00002960}
2961
Hal Finkel4edc66b2015-01-03 01:16:37 +00002962// If the target supports the cmpb instruction, do the idiom recognition here.
2963// We don't do this as a DAG combine because we don't want to do it as nodes
2964// are being combined (because we might miss part of the eventual idiom). We
2965// don't want to do it during instruction selection because we want to reuse
2966// the logic for lowering the masking operations already part of the
2967// instruction selector.
2968SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
2969 SDLoc dl(N);
2970
2971 assert(N->getOpcode() == ISD::OR &&
2972 "Only OR nodes are supported for CMPB");
2973
2974 SDValue Res;
2975 if (!PPCSubTarget->hasCMPB())
2976 return Res;
2977
2978 if (N->getValueType(0) != MVT::i32 &&
2979 N->getValueType(0) != MVT::i64)
2980 return Res;
2981
2982 EVT VT = N->getValueType(0);
2983
2984 SDValue RHS, LHS;
2985 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
2986 uint64_t Mask = 0, Alt = 0;
2987
2988 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
2989 uint64_t &Mask, uint64_t &Alt,
2990 SDValue &LHS, SDValue &RHS) {
2991 if (O.getOpcode() != ISD::SELECT_CC)
2992 return false;
2993 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
2994
2995 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
2996 !isa<ConstantSDNode>(O.getOperand(3)))
2997 return false;
2998
2999 uint64_t PM = O.getConstantOperandVal(2);
3000 uint64_t PAlt = O.getConstantOperandVal(3);
3001 for (b = 0; b < 8; ++b) {
3002 uint64_t Mask = UINT64_C(0xFF) << (8*b);
3003 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3004 break;
3005 }
3006
3007 if (b == 8)
3008 return false;
3009 Mask |= PM;
3010 Alt |= PAlt;
3011
3012 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3013 O.getConstantOperandVal(1) != 0) {
3014 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3015 if (Op0.getOpcode() == ISD::TRUNCATE)
3016 Op0 = Op0.getOperand(0);
3017 if (Op1.getOpcode() == ISD::TRUNCATE)
3018 Op1 = Op1.getOperand(0);
3019
3020 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3021 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3022 isa<ConstantSDNode>(Op0.getOperand(1))) {
3023
3024 unsigned Bits = Op0.getValueType().getSizeInBits();
3025 if (b != Bits/8-1)
3026 return false;
3027 if (Op0.getConstantOperandVal(1) != Bits-8)
3028 return false;
3029
3030 LHS = Op0.getOperand(0);
3031 RHS = Op1.getOperand(0);
3032 return true;
3033 }
3034
3035 // When we have small integers (i16 to be specific), the form present
3036 // post-legalization uses SETULT in the SELECT_CC for the
3037 // higher-order byte, depending on the fact that the
3038 // even-higher-order bytes are known to all be zero, for example:
3039 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3040 // (so when the second byte is the same, because all higher-order
3041 // bits from bytes 3 and 4 are known to be zero, the result of the
3042 // xor can be at most 255)
3043 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3044 isa<ConstantSDNode>(O.getOperand(1))) {
3045
3046 uint64_t ULim = O.getConstantOperandVal(1);
3047 if (ULim != (UINT64_C(1) << b*8))
3048 return false;
3049
3050 // Now we need to make sure that the upper bytes are known to be
3051 // zero.
3052 unsigned Bits = Op0.getValueType().getSizeInBits();
3053 if (!CurDAG->MaskedValueIsZero(Op0,
3054 APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3055 return false;
3056
3057 LHS = Op0.getOperand(0);
3058 RHS = Op0.getOperand(1);
3059 return true;
3060 }
3061
3062 return false;
3063 }
3064
3065 if (CC != ISD::SETEQ)
3066 return false;
3067
3068 SDValue Op = O.getOperand(0);
3069 if (Op.getOpcode() == ISD::AND) {
3070 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3071 return false;
3072 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3073 return false;
3074
3075 SDValue XOR = Op.getOperand(0);
3076 if (XOR.getOpcode() == ISD::TRUNCATE)
3077 XOR = XOR.getOperand(0);
3078 if (XOR.getOpcode() != ISD::XOR)
3079 return false;
3080
3081 LHS = XOR.getOperand(0);
3082 RHS = XOR.getOperand(1);
3083 return true;
3084 } else if (Op.getOpcode() == ISD::SRL) {
3085 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3086 return false;
3087 unsigned Bits = Op.getValueType().getSizeInBits();
3088 if (b != Bits/8-1)
3089 return false;
3090 if (Op.getConstantOperandVal(1) != Bits-8)
3091 return false;
3092
3093 SDValue XOR = Op.getOperand(0);
3094 if (XOR.getOpcode() == ISD::TRUNCATE)
3095 XOR = XOR.getOperand(0);
3096 if (XOR.getOpcode() != ISD::XOR)
3097 return false;
3098
3099 LHS = XOR.getOperand(0);
3100 RHS = XOR.getOperand(1);
3101 return true;
3102 }
3103
3104 return false;
3105 };
3106
3107 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3108 while (!Queue.empty()) {
3109 SDValue V = Queue.pop_back_val();
3110
3111 for (const SDValue &O : V.getNode()->ops()) {
3112 unsigned b;
3113 uint64_t M = 0, A = 0;
3114 SDValue OLHS, ORHS;
3115 if (O.getOpcode() == ISD::OR) {
3116 Queue.push_back(O);
3117 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3118 if (!LHS) {
3119 LHS = OLHS;
3120 RHS = ORHS;
3121 BytesFound[b] = true;
3122 Mask |= M;
3123 Alt |= A;
3124 } else if ((LHS == ORHS && RHS == OLHS) ||
3125 (RHS == ORHS && LHS == OLHS)) {
3126 BytesFound[b] = true;
3127 Mask |= M;
3128 Alt |= A;
3129 } else {
3130 return Res;
3131 }
3132 } else {
3133 return Res;
3134 }
3135 }
3136 }
3137
3138 unsigned LastB = 0, BCnt = 0;
3139 for (unsigned i = 0; i < 8; ++i)
3140 if (BytesFound[LastB]) {
3141 ++BCnt;
3142 LastB = i;
3143 }
3144
3145 if (!LastB || BCnt < 2)
3146 return Res;
3147
3148 // Because we'll be zero-extending the output anyway if don't have a specific
3149 // value for each input byte (via the Mask), we can 'anyext' the inputs.
3150 if (LHS.getValueType() != VT) {
3151 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3152 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3153 }
3154
3155 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3156
3157 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3158 if (NonTrivialMask && !Alt) {
3159 // Res = Mask & CMPB
3160 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
3161 } else if (Alt) {
3162 // Res = (CMPB & Mask) | (~CMPB & Alt)
3163 // Which, as suggested here:
3164 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3165 // can be written as:
3166 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3167 // useful because the (Alt ^ Mask) can be pre-computed.
3168 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3169 CurDAG->getConstant(Mask ^ Alt, VT));
3170 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
3171 }
3172
3173 return Res;
3174}
3175
3176void PPCDAGToDAGISel::PreprocessISelDAG() {
3177 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3178 ++Position;
3179
3180 bool MadeChange = false;
3181 while (Position != CurDAG->allnodes_begin()) {
3182 SDNode *N = --Position;
3183 if (N->use_empty())
3184 continue;
3185
3186 SDValue Res;
3187 switch (N->getOpcode()) {
3188 default: break;
3189 case ISD::OR:
3190 Res = combineToCMPB(N);
3191 break;
3192 }
3193
3194 if (Res) {
3195 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
3196 DEBUG(N->dump(CurDAG));
3197 DEBUG(dbgs() << "\nNew: ");
3198 DEBUG(Res.getNode()->dump(CurDAG));
3199 DEBUG(dbgs() << "\n");
3200
3201 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3202 MadeChange = true;
3203 }
3204 }
3205
3206 if (MadeChange)
3207 CurDAG->RemoveDeadNodes();
3208}
3209
Hal Finkel860fa902014-01-02 22:09:39 +00003210/// PostprocessISelDAG - Perform some late peephole optimizations
Bill Schmidtf5b474c2013-02-21 00:38:25 +00003211/// on the DAG representation.
3212void PPCDAGToDAGISel::PostprocessISelDAG() {
3213
3214 // Skip peepholes at -O0.
3215 if (TM.getOptLevel() == CodeGenOpt::None)
3216 return;
3217
Hal Finkel940ab932014-02-28 00:27:01 +00003218 PeepholePPC64();
Eric Christopher02e18042014-05-14 00:31:15 +00003219 PeepholeCROps();
Hal Finkel4c6658f2014-12-12 23:59:36 +00003220 PeepholePPC64ZExt();
Hal Finkel940ab932014-02-28 00:27:01 +00003221}
3222
Hal Finkelb9989152014-02-28 06:11:16 +00003223// Check if all users of this node will become isel where the second operand
3224// is the constant zero. If this is so, and if we can negate the condition,
3225// then we can flip the true and false operands. This will allow the zero to
3226// be folded with the isel so that we don't need to materialize a register
3227// containing zero.
3228bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3229 // If we're not using isel, then this does not matter.
Eric Christopher1b8e7632014-05-22 01:07:24 +00003230 if (!PPCSubTarget->hasISEL())
Hal Finkelb9989152014-02-28 06:11:16 +00003231 return false;
3232
3233 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3234 UI != UE; ++UI) {
3235 SDNode *User = *UI;
3236 if (!User->isMachineOpcode())
3237 return false;
3238 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3239 User->getMachineOpcode() != PPC::SELECT_I8)
3240 return false;
3241
3242 SDNode *Op2 = User->getOperand(2).getNode();
3243 if (!Op2->isMachineOpcode())
3244 return false;
3245
3246 if (Op2->getMachineOpcode() != PPC::LI &&
3247 Op2->getMachineOpcode() != PPC::LI8)
3248 return false;
3249
3250 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3251 if (!C)
3252 return false;
3253
3254 if (!C->isNullValue())
3255 return false;
3256 }
3257
3258 return true;
3259}
3260
3261void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3262 SmallVector<SDNode *, 4> ToReplace;
3263 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3264 UI != UE; ++UI) {
3265 SDNode *User = *UI;
3266 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3267 User->getMachineOpcode() == PPC::SELECT_I8) &&
3268 "Must have all select users");
3269 ToReplace.push_back(User);
3270 }
3271
3272 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3273 UE = ToReplace.end(); UI != UE; ++UI) {
3274 SDNode *User = *UI;
3275 SDNode *ResNode =
3276 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3277 User->getValueType(0), User->getOperand(0),
3278 User->getOperand(2),
3279 User->getOperand(1));
3280
3281 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3282 DEBUG(User->dump(CurDAG));
3283 DEBUG(dbgs() << "\nNew: ");
3284 DEBUG(ResNode->dump(CurDAG));
3285 DEBUG(dbgs() << "\n");
3286
3287 ReplaceUses(User, ResNode);
3288 }
3289}
3290
Eric Christopher02e18042014-05-14 00:31:15 +00003291void PPCDAGToDAGISel::PeepholeCROps() {
Hal Finkel940ab932014-02-28 00:27:01 +00003292 bool IsModified;
3293 do {
3294 IsModified = false;
3295 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
3296 E = CurDAG->allnodes_end(); I != E; ++I) {
3297 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
3298 if (!MachineNode || MachineNode->use_empty())
3299 continue;
3300 SDNode *ResNode = MachineNode;
3301
3302 bool Op1Set = false, Op1Unset = false,
3303 Op1Not = false,
3304 Op2Set = false, Op2Unset = false,
3305 Op2Not = false;
3306
3307 unsigned Opcode = MachineNode->getMachineOpcode();
3308 switch (Opcode) {
3309 default: break;
3310 case PPC::CRAND:
3311 case PPC::CRNAND:
3312 case PPC::CROR:
3313 case PPC::CRXOR:
3314 case PPC::CRNOR:
3315 case PPC::CREQV:
3316 case PPC::CRANDC:
3317 case PPC::CRORC: {
3318 SDValue Op = MachineNode->getOperand(1);
3319 if (Op.isMachineOpcode()) {
3320 if (Op.getMachineOpcode() == PPC::CRSET)
3321 Op2Set = true;
3322 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3323 Op2Unset = true;
3324 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3325 Op.getOperand(0) == Op.getOperand(1))
3326 Op2Not = true;
3327 }
3328 } // fallthrough
3329 case PPC::BC:
3330 case PPC::BCn:
3331 case PPC::SELECT_I4:
3332 case PPC::SELECT_I8:
3333 case PPC::SELECT_F4:
3334 case PPC::SELECT_F8:
Bill Schmidt61e65232014-10-22 13:13:40 +00003335 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003336 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003337 case PPC::SELECT_VSRC: {
Hal Finkel940ab932014-02-28 00:27:01 +00003338 SDValue Op = MachineNode->getOperand(0);
3339 if (Op.isMachineOpcode()) {
3340 if (Op.getMachineOpcode() == PPC::CRSET)
3341 Op1Set = true;
3342 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3343 Op1Unset = true;
3344 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3345 Op.getOperand(0) == Op.getOperand(1))
3346 Op1Not = true;
3347 }
3348 }
3349 break;
3350 }
3351
Hal Finkelb9989152014-02-28 06:11:16 +00003352 bool SelectSwap = false;
Hal Finkel940ab932014-02-28 00:27:01 +00003353 switch (Opcode) {
3354 default: break;
3355 case PPC::CRAND:
3356 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3357 // x & x = x
3358 ResNode = MachineNode->getOperand(0).getNode();
3359 else if (Op1Set)
3360 // 1 & y = y
3361 ResNode = MachineNode->getOperand(1).getNode();
3362 else if (Op2Set)
3363 // x & 1 = x
3364 ResNode = MachineNode->getOperand(0).getNode();
3365 else if (Op1Unset || Op2Unset)
3366 // x & 0 = 0 & y = 0
3367 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3368 MVT::i1);
3369 else if (Op1Not)
3370 // ~x & y = andc(y, x)
3371 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3372 MVT::i1, MachineNode->getOperand(1),
3373 MachineNode->getOperand(0).
3374 getOperand(0));
3375 else if (Op2Not)
3376 // x & ~y = andc(x, y)
3377 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3378 MVT::i1, MachineNode->getOperand(0),
3379 MachineNode->getOperand(1).
3380 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003381 else if (AllUsersSelectZero(MachineNode))
3382 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3383 MVT::i1, MachineNode->getOperand(0),
3384 MachineNode->getOperand(1)),
3385 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003386 break;
3387 case PPC::CRNAND:
3388 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3389 // nand(x, x) -> nor(x, x)
3390 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3391 MVT::i1, MachineNode->getOperand(0),
3392 MachineNode->getOperand(0));
3393 else if (Op1Set)
3394 // nand(1, y) -> nor(y, y)
3395 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3396 MVT::i1, MachineNode->getOperand(1),
3397 MachineNode->getOperand(1));
3398 else if (Op2Set)
3399 // nand(x, 1) -> nor(x, x)
3400 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3401 MVT::i1, MachineNode->getOperand(0),
3402 MachineNode->getOperand(0));
3403 else if (Op1Unset || Op2Unset)
3404 // nand(x, 0) = nand(0, y) = 1
3405 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3406 MVT::i1);
3407 else if (Op1Not)
3408 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3409 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3410 MVT::i1, MachineNode->getOperand(0).
3411 getOperand(0),
3412 MachineNode->getOperand(1));
3413 else if (Op2Not)
3414 // nand(x, ~y) = ~x | y = orc(y, x)
3415 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3416 MVT::i1, MachineNode->getOperand(1).
3417 getOperand(0),
3418 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003419 else if (AllUsersSelectZero(MachineNode))
3420 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3421 MVT::i1, MachineNode->getOperand(0),
3422 MachineNode->getOperand(1)),
3423 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003424 break;
3425 case PPC::CROR:
3426 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3427 // x | x = x
3428 ResNode = MachineNode->getOperand(0).getNode();
3429 else if (Op1Set || Op2Set)
3430 // x | 1 = 1 | y = 1
3431 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3432 MVT::i1);
3433 else if (Op1Unset)
3434 // 0 | y = y
3435 ResNode = MachineNode->getOperand(1).getNode();
3436 else if (Op2Unset)
3437 // x | 0 = x
3438 ResNode = MachineNode->getOperand(0).getNode();
3439 else if (Op1Not)
3440 // ~x | y = orc(y, x)
3441 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3442 MVT::i1, MachineNode->getOperand(1),
3443 MachineNode->getOperand(0).
3444 getOperand(0));
3445 else if (Op2Not)
3446 // x | ~y = orc(x, y)
3447 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3448 MVT::i1, MachineNode->getOperand(0),
3449 MachineNode->getOperand(1).
3450 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003451 else if (AllUsersSelectZero(MachineNode))
3452 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3453 MVT::i1, MachineNode->getOperand(0),
3454 MachineNode->getOperand(1)),
3455 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003456 break;
3457 case PPC::CRXOR:
3458 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3459 // xor(x, x) = 0
3460 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3461 MVT::i1);
3462 else if (Op1Set)
3463 // xor(1, y) -> nor(y, y)
3464 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3465 MVT::i1, MachineNode->getOperand(1),
3466 MachineNode->getOperand(1));
3467 else if (Op2Set)
3468 // xor(x, 1) -> nor(x, x)
3469 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3470 MVT::i1, MachineNode->getOperand(0),
3471 MachineNode->getOperand(0));
3472 else if (Op1Unset)
3473 // xor(0, y) = y
3474 ResNode = MachineNode->getOperand(1).getNode();
3475 else if (Op2Unset)
3476 // xor(x, 0) = x
3477 ResNode = MachineNode->getOperand(0).getNode();
3478 else if (Op1Not)
3479 // xor(~x, y) = eqv(x, y)
3480 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3481 MVT::i1, MachineNode->getOperand(0).
3482 getOperand(0),
3483 MachineNode->getOperand(1));
3484 else if (Op2Not)
3485 // xor(x, ~y) = eqv(x, y)
3486 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3487 MVT::i1, MachineNode->getOperand(0),
3488 MachineNode->getOperand(1).
3489 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003490 else if (AllUsersSelectZero(MachineNode))
3491 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3492 MVT::i1, MachineNode->getOperand(0),
3493 MachineNode->getOperand(1)),
3494 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003495 break;
3496 case PPC::CRNOR:
3497 if (Op1Set || Op2Set)
3498 // nor(1, y) -> 0
3499 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3500 MVT::i1);
3501 else if (Op1Unset)
3502 // nor(0, y) = ~y -> nor(y, y)
3503 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3504 MVT::i1, MachineNode->getOperand(1),
3505 MachineNode->getOperand(1));
3506 else if (Op2Unset)
3507 // nor(x, 0) = ~x
3508 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3509 MVT::i1, MachineNode->getOperand(0),
3510 MachineNode->getOperand(0));
3511 else if (Op1Not)
3512 // nor(~x, y) = andc(x, y)
3513 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3514 MVT::i1, MachineNode->getOperand(0).
3515 getOperand(0),
3516 MachineNode->getOperand(1));
3517 else if (Op2Not)
3518 // nor(x, ~y) = andc(y, x)
3519 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3520 MVT::i1, MachineNode->getOperand(1).
3521 getOperand(0),
3522 MachineNode->getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003523 else if (AllUsersSelectZero(MachineNode))
3524 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3525 MVT::i1, MachineNode->getOperand(0),
3526 MachineNode->getOperand(1)),
3527 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003528 break;
3529 case PPC::CREQV:
3530 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3531 // eqv(x, x) = 1
3532 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3533 MVT::i1);
3534 else if (Op1Set)
3535 // eqv(1, y) = y
3536 ResNode = MachineNode->getOperand(1).getNode();
3537 else if (Op2Set)
3538 // eqv(x, 1) = x
3539 ResNode = MachineNode->getOperand(0).getNode();
3540 else if (Op1Unset)
3541 // eqv(0, y) = ~y -> nor(y, y)
3542 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3543 MVT::i1, MachineNode->getOperand(1),
3544 MachineNode->getOperand(1));
3545 else if (Op2Unset)
3546 // eqv(x, 0) = ~x
3547 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3548 MVT::i1, MachineNode->getOperand(0),
3549 MachineNode->getOperand(0));
3550 else if (Op1Not)
3551 // eqv(~x, y) = xor(x, y)
3552 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3553 MVT::i1, MachineNode->getOperand(0).
3554 getOperand(0),
3555 MachineNode->getOperand(1));
3556 else if (Op2Not)
3557 // eqv(x, ~y) = xor(x, y)
3558 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3559 MVT::i1, MachineNode->getOperand(0),
3560 MachineNode->getOperand(1).
3561 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003562 else if (AllUsersSelectZero(MachineNode))
3563 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3564 MVT::i1, MachineNode->getOperand(0),
3565 MachineNode->getOperand(1)),
3566 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003567 break;
3568 case PPC::CRANDC:
3569 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3570 // andc(x, x) = 0
3571 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3572 MVT::i1);
3573 else if (Op1Set)
3574 // andc(1, y) = ~y
3575 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3576 MVT::i1, MachineNode->getOperand(1),
3577 MachineNode->getOperand(1));
3578 else if (Op1Unset || Op2Set)
3579 // andc(0, y) = andc(x, 1) = 0
3580 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3581 MVT::i1);
3582 else if (Op2Unset)
3583 // andc(x, 0) = x
3584 ResNode = MachineNode->getOperand(0).getNode();
3585 else if (Op1Not)
3586 // andc(~x, y) = ~(x | y) = nor(x, y)
3587 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3588 MVT::i1, MachineNode->getOperand(0).
3589 getOperand(0),
3590 MachineNode->getOperand(1));
3591 else if (Op2Not)
3592 // andc(x, ~y) = x & y
3593 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3594 MVT::i1, MachineNode->getOperand(0),
3595 MachineNode->getOperand(1).
3596 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003597 else if (AllUsersSelectZero(MachineNode))
3598 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3599 MVT::i1, MachineNode->getOperand(1),
3600 MachineNode->getOperand(0)),
3601 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003602 break;
3603 case PPC::CRORC:
3604 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3605 // orc(x, x) = 1
3606 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3607 MVT::i1);
3608 else if (Op1Set || Op2Unset)
3609 // orc(1, y) = orc(x, 0) = 1
3610 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3611 MVT::i1);
3612 else if (Op2Set)
3613 // orc(x, 1) = x
3614 ResNode = MachineNode->getOperand(0).getNode();
3615 else if (Op1Unset)
3616 // orc(0, y) = ~y
3617 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3618 MVT::i1, MachineNode->getOperand(1),
3619 MachineNode->getOperand(1));
3620 else if (Op1Not)
3621 // orc(~x, y) = ~(x & y) = nand(x, y)
3622 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3623 MVT::i1, MachineNode->getOperand(0).
3624 getOperand(0),
3625 MachineNode->getOperand(1));
3626 else if (Op2Not)
3627 // orc(x, ~y) = x | y
3628 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3629 MVT::i1, MachineNode->getOperand(0),
3630 MachineNode->getOperand(1).
3631 getOperand(0));
Hal Finkelb9989152014-02-28 06:11:16 +00003632 else if (AllUsersSelectZero(MachineNode))
3633 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3634 MVT::i1, MachineNode->getOperand(1),
3635 MachineNode->getOperand(0)),
3636 SelectSwap = true;
Hal Finkel940ab932014-02-28 00:27:01 +00003637 break;
3638 case PPC::SELECT_I4:
3639 case PPC::SELECT_I8:
3640 case PPC::SELECT_F4:
3641 case PPC::SELECT_F8:
3642 case PPC::SELECT_VRRC:
Bill Schmidt9c54bbd2014-10-22 16:58:20 +00003643 case PPC::SELECT_VSFRC:
Bill Schmidt61e65232014-10-22 13:13:40 +00003644 case PPC::SELECT_VSRC:
Hal Finkel940ab932014-02-28 00:27:01 +00003645 if (Op1Set)
3646 ResNode = MachineNode->getOperand(1).getNode();
3647 else if (Op1Unset)
3648 ResNode = MachineNode->getOperand(2).getNode();
3649 else if (Op1Not)
3650 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3651 SDLoc(MachineNode),
3652 MachineNode->getValueType(0),
3653 MachineNode->getOperand(0).
3654 getOperand(0),
3655 MachineNode->getOperand(2),
3656 MachineNode->getOperand(1));
3657 break;
3658 case PPC::BC:
3659 case PPC::BCn:
3660 if (Op1Not)
3661 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3662 PPC::BC,
3663 SDLoc(MachineNode),
3664 MVT::Other,
3665 MachineNode->getOperand(0).
3666 getOperand(0),
3667 MachineNode->getOperand(1),
3668 MachineNode->getOperand(2));
3669 // FIXME: Handle Op1Set, Op1Unset here too.
3670 break;
3671 }
3672
Hal Finkelb9989152014-02-28 06:11:16 +00003673 // If we're inverting this node because it is used only by selects that
3674 // we'd like to swap, then swap the selects before the node replacement.
3675 if (SelectSwap)
3676 SwapAllSelectUsers(MachineNode);
3677
Hal Finkel940ab932014-02-28 00:27:01 +00003678 if (ResNode != MachineNode) {
3679 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3680 DEBUG(MachineNode->dump(CurDAG));
3681 DEBUG(dbgs() << "\nNew: ");
3682 DEBUG(ResNode->dump(CurDAG));
3683 DEBUG(dbgs() << "\n");
3684
3685 ReplaceUses(MachineNode, ResNode);
3686 IsModified = true;
3687 }
3688 }
3689 if (IsModified)
3690 CurDAG->RemoveDeadNodes();
3691 } while (IsModified);
3692}
3693
Hal Finkel4c6658f2014-12-12 23:59:36 +00003694// Gather the set of 32-bit operations that are known to have their
3695// higher-order 32 bits zero, where ToPromote contains all such operations.
3696static bool PeepholePPC64ZExtGather(SDValue Op32,
3697 SmallPtrSetImpl<SDNode *> &ToPromote) {
3698 if (!Op32.isMachineOpcode())
3699 return false;
3700
3701 // First, check for the "frontier" instructions (those that will clear the
3702 // higher-order 32 bits.
3703
3704 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3705 // around. If it does not, then these instructions will clear the
3706 // higher-order bits.
3707 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3708 Op32.getMachineOpcode() == PPC::RLWNM) &&
3709 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3710 ToPromote.insert(Op32.getNode());
3711 return true;
3712 }
3713
3714 // SLW and SRW always clear the higher-order bits.
3715 if (Op32.getMachineOpcode() == PPC::SLW ||
3716 Op32.getMachineOpcode() == PPC::SRW) {
3717 ToPromote.insert(Op32.getNode());
3718 return true;
3719 }
3720
3721 // For LI and LIS, we need the immediate to be positive (so that it is not
3722 // sign extended).
3723 if (Op32.getMachineOpcode() == PPC::LI ||
3724 Op32.getMachineOpcode() == PPC::LIS) {
3725 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3726 return false;
3727
3728 ToPromote.insert(Op32.getNode());
3729 return true;
3730 }
3731
3732 // Next, check for those instructions we can look through.
3733
3734 // Assuming the mask does not wrap around, then the higher-order bits are
3735 // taken directly from the first operand.
3736 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
3737 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
3738 SmallPtrSet<SDNode *, 16> ToPromote1;
3739 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3740 return false;
3741
3742 ToPromote.insert(Op32.getNode());
3743 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3744 return true;
3745 }
3746
3747 // For OR, the higher-order bits are zero if that is true for both operands.
3748 // For SELECT_I4, the same is true (but the relevant operand numbers are
3749 // shifted by 1).
3750 if (Op32.getMachineOpcode() == PPC::OR ||
3751 Op32.getMachineOpcode() == PPC::SELECT_I4) {
3752 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
3753 SmallPtrSet<SDNode *, 16> ToPromote1;
3754 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
3755 return false;
3756 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
3757 return false;
3758
3759 ToPromote.insert(Op32.getNode());
3760 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3761 return true;
3762 }
3763
3764 // For ORI and ORIS, we need the higher-order bits of the first operand to be
3765 // zero, and also for the constant to be positive (so that it is not sign
3766 // extended).
3767 if (Op32.getMachineOpcode() == PPC::ORI ||
3768 Op32.getMachineOpcode() == PPC::ORIS) {
3769 SmallPtrSet<SDNode *, 16> ToPromote1;
3770 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3771 return false;
3772 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
3773 return false;
3774
3775 ToPromote.insert(Op32.getNode());
3776 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3777 return true;
3778 }
3779
3780 // The higher-order bits of AND are zero if that is true for at least one of
3781 // the operands.
3782 if (Op32.getMachineOpcode() == PPC::AND) {
3783 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
3784 bool Op0OK =
3785 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3786 bool Op1OK =
3787 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
3788 if (!Op0OK && !Op1OK)
3789 return false;
3790
3791 ToPromote.insert(Op32.getNode());
3792
3793 if (Op0OK)
3794 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3795
3796 if (Op1OK)
3797 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
3798
3799 return true;
3800 }
3801
3802 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
3803 // of the first operand, or if the second operand is positive (so that it is
3804 // not sign extended).
3805 if (Op32.getMachineOpcode() == PPC::ANDIo ||
3806 Op32.getMachineOpcode() == PPC::ANDISo) {
3807 SmallPtrSet<SDNode *, 16> ToPromote1;
3808 bool Op0OK =
3809 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3810 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
3811 if (!Op0OK && !Op1OK)
3812 return false;
3813
3814 ToPromote.insert(Op32.getNode());
3815
3816 if (Op0OK)
3817 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3818
3819 return true;
3820 }
3821
3822 return false;
3823}
3824
3825void PPCDAGToDAGISel::PeepholePPC64ZExt() {
3826 if (!PPCSubTarget->isPPC64())
3827 return;
3828
3829 // When we zero-extend from i32 to i64, we use a pattern like this:
3830 // def : Pat<(i64 (zext i32:$in)),
3831 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
3832 // 0, 32)>;
3833 // There are several 32-bit shift/rotate instructions, however, that will
3834 // clear the higher-order bits of their output, rendering the RLDICL
3835 // unnecessary. When that happens, we remove it here, and redefine the
3836 // relevant 32-bit operation to be a 64-bit operation.
3837
3838 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3839 ++Position;
3840
3841 bool MadeChange = false;
3842 while (Position != CurDAG->allnodes_begin()) {
3843 SDNode *N = --Position;
3844 // Skip dead nodes and any non-machine opcodes.
3845 if (N->use_empty() || !N->isMachineOpcode())
3846 continue;
3847
3848 if (N->getMachineOpcode() != PPC::RLDICL)
3849 continue;
3850
3851 if (N->getConstantOperandVal(1) != 0 ||
3852 N->getConstantOperandVal(2) != 32)
3853 continue;
3854
3855 SDValue ISR = N->getOperand(0);
3856 if (!ISR.isMachineOpcode() ||
3857 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
3858 continue;
3859
3860 if (!ISR.hasOneUse())
3861 continue;
3862
3863 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
3864 continue;
3865
3866 SDValue IDef = ISR.getOperand(0);
3867 if (!IDef.isMachineOpcode() ||
3868 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
3869 continue;
3870
3871 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
3872 // can get rid of it.
3873
3874 SDValue Op32 = ISR->getOperand(1);
3875 if (!Op32.isMachineOpcode())
3876 continue;
3877
3878 // There are some 32-bit instructions that always clear the high-order 32
3879 // bits, there are also some instructions (like AND) that we can look
3880 // through.
3881 SmallPtrSet<SDNode *, 16> ToPromote;
3882 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
3883 continue;
3884
3885 // If the ToPromote set contains nodes that have uses outside of the set
3886 // (except for the original INSERT_SUBREG), then abort the transformation.
3887 bool OutsideUse = false;
3888 for (SDNode *PN : ToPromote) {
3889 for (SDNode *UN : PN->uses()) {
3890 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
3891 OutsideUse = true;
3892 break;
3893 }
3894 }
3895
3896 if (OutsideUse)
3897 break;
3898 }
3899 if (OutsideUse)
3900 continue;
3901
3902 MadeChange = true;
3903
3904 // We now know that this zero extension can be removed by promoting to
3905 // nodes in ToPromote to 64-bit operations, where for operations in the
3906 // frontier of the set, we need to insert INSERT_SUBREGs for their
3907 // operands.
3908 for (SDNode *PN : ToPromote) {
3909 unsigned NewOpcode;
3910 switch (PN->getMachineOpcode()) {
3911 default:
3912 llvm_unreachable("Don't know the 64-bit variant of this instruction");
3913 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
3914 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
3915 case PPC::SLW: NewOpcode = PPC::SLW8; break;
3916 case PPC::SRW: NewOpcode = PPC::SRW8; break;
3917 case PPC::LI: NewOpcode = PPC::LI8; break;
3918 case PPC::LIS: NewOpcode = PPC::LIS8; break;
3919 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
3920 case PPC::OR: NewOpcode = PPC::OR8; break;
3921 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
3922 case PPC::ORI: NewOpcode = PPC::ORI8; break;
3923 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
3924 case PPC::AND: NewOpcode = PPC::AND8; break;
3925 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
3926 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
3927 }
3928
3929 // Note: During the replacement process, the nodes will be in an
3930 // inconsistent state (some instructions will have operands with values
3931 // of the wrong type). Once done, however, everything should be right
3932 // again.
3933
3934 SmallVector<SDValue, 4> Ops;
3935 for (const SDValue &V : PN->ops()) {
3936 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
3937 !isa<ConstantSDNode>(V)) {
3938 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
3939 SDNode *ReplOp =
3940 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
3941 ISR.getNode()->getVTList(), ReplOpOps);
3942 Ops.push_back(SDValue(ReplOp, 0));
3943 } else {
3944 Ops.push_back(V);
3945 }
3946 }
3947
3948 // Because all to-be-promoted nodes only have users that are other
3949 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
3950 // the i32 result value type with i64.
3951
3952 SmallVector<EVT, 2> NewVTs;
3953 SDVTList VTs = PN->getVTList();
3954 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
3955 if (VTs.VTs[i] == MVT::i32)
3956 NewVTs.push_back(MVT::i64);
3957 else
3958 NewVTs.push_back(VTs.VTs[i]);
3959
3960 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
3961 DEBUG(PN->dump(CurDAG));
3962
3963 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
3964
3965 DEBUG(dbgs() << "\nNew: ");
3966 DEBUG(PN->dump(CurDAG));
3967 DEBUG(dbgs() << "\n");
3968 }
3969
3970 // Now we replace the original zero extend and its associated INSERT_SUBREG
3971 // with the value feeding the INSERT_SUBREG (which has now been promoted to
3972 // return an i64).
3973
3974 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
3975 DEBUG(N->dump(CurDAG));
3976 DEBUG(dbgs() << "\nNew: ");
3977 DEBUG(Op32.getNode()->dump(CurDAG));
3978 DEBUG(dbgs() << "\n");
3979
3980 ReplaceUses(N, Op32.getNode());
3981 }
3982
3983 if (MadeChange)
3984 CurDAG->RemoveDeadNodes();
3985}
3986
Hal Finkel940ab932014-02-28 00:27:01 +00003987void PPCDAGToDAGISel::PeepholePPC64() {
Bill Schmidtf5b474c2013-02-21 00:38:25 +00003988 // These optimizations are currently supported only for 64-bit SVR4.
Eric Christopher1b8e7632014-05-22 01:07:24 +00003989 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
Bill Schmidtf5b474c2013-02-21 00:38:25 +00003990 return;
3991
3992 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3993 ++Position;
3994
3995 while (Position != CurDAG->allnodes_begin()) {
3996 SDNode *N = --Position;
3997 // Skip dead nodes and any non-machine opcodes.
3998 if (N->use_empty() || !N->isMachineOpcode())
3999 continue;
4000
4001 unsigned FirstOp;
4002 unsigned StorageOpcode = N->getMachineOpcode();
4003
4004 switch (StorageOpcode) {
4005 default: continue;
4006
4007 case PPC::LBZ:
4008 case PPC::LBZ8:
4009 case PPC::LD:
4010 case PPC::LFD:
4011 case PPC::LFS:
4012 case PPC::LHA:
4013 case PPC::LHA8:
4014 case PPC::LHZ:
4015 case PPC::LHZ8:
4016 case PPC::LWA:
4017 case PPC::LWZ:
4018 case PPC::LWZ8:
4019 FirstOp = 0;
4020 break;
4021
4022 case PPC::STB:
4023 case PPC::STB8:
4024 case PPC::STD:
4025 case PPC::STFD:
4026 case PPC::STFS:
4027 case PPC::STH:
4028 case PPC::STH8:
4029 case PPC::STW:
4030 case PPC::STW8:
4031 FirstOp = 1;
4032 break;
4033 }
4034
4035 // If this is a load or store with a zero offset, we may be able to
4036 // fold an add-immediate into the memory operation.
4037 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
4038 N->getConstantOperandVal(FirstOp) != 0)
4039 continue;
4040
4041 SDValue Base = N->getOperand(FirstOp + 1);
4042 if (!Base.isMachineOpcode())
4043 continue;
4044
4045 unsigned Flags = 0;
4046 bool ReplaceFlags = true;
4047
4048 // When the feeding operation is an add-immediate of some sort,
4049 // determine whether we need to add relocation information to the
4050 // target flags on the immediate operand when we fold it into the
4051 // load instruction.
4052 //
4053 // For something like ADDItocL, the relocation information is
4054 // inferred from the opcode; when we process it in the AsmPrinter,
4055 // we add the necessary relocation there. A load, though, can receive
4056 // relocation from various flavors of ADDIxxx, so we need to carry
4057 // the relocation information in the target flags.
4058 switch (Base.getMachineOpcode()) {
4059 default: continue;
4060
4061 case PPC::ADDI8:
Ulrich Weigand35f9fdf2013-03-26 10:55:20 +00004062 case PPC::ADDI:
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004063 // In some cases (such as TLS) the relocation information
4064 // is already in place on the operand, so copying the operand
4065 // is sufficient.
4066 ReplaceFlags = false;
4067 // For these cases, the immediate may not be divisible by 4, in
4068 // which case the fold is illegal for DS-form instructions. (The
4069 // other cases provide aligned addresses and are always safe.)
4070 if ((StorageOpcode == PPC::LWA ||
4071 StorageOpcode == PPC::LD ||
4072 StorageOpcode == PPC::STD) &&
4073 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4074 Base.getConstantOperandVal(1) % 4 != 0))
4075 continue;
4076 break;
4077 case PPC::ADDIdtprelL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004078 Flags = PPCII::MO_DTPREL_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004079 break;
4080 case PPC::ADDItlsldL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004081 Flags = PPCII::MO_TLSLD_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004082 break;
4083 case PPC::ADDItocL:
Ulrich Weigandd51c09f2013-06-21 14:42:20 +00004084 Flags = PPCII::MO_TOC_LO;
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004085 break;
4086 }
4087
4088 // We found an opportunity. Reverse the operands from the add
4089 // immediate and substitute them into the load or store. If
4090 // needed, update the target flags for the immediate operand to
4091 // reflect the necessary relocation information.
4092 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
4093 DEBUG(Base->dump(CurDAG));
4094 DEBUG(dbgs() << "\nN: ");
4095 DEBUG(N->dump(CurDAG));
4096 DEBUG(dbgs() << "\n");
4097
4098 SDValue ImmOpnd = Base.getOperand(1);
4099
4100 // If the relocation information isn't already present on the
4101 // immediate operand, add it now.
4102 if (ReplaceFlags) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004103 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00004104 SDLoc dl(GA);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004105 const GlobalValue *GV = GA->getGlobal();
Bill Schmidt48fc20a2013-07-01 20:52:27 +00004106 // We can't perform this optimization for data whose alignment
4107 // is insufficient for the instruction encoding.
4108 if (GV->getAlignment() < 4 &&
4109 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4110 StorageOpcode == PPC::LWA)) {
4111 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4112 continue;
4113 }
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004114 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
Bill Schmidt836c45b2013-02-21 17:26:05 +00004115 } else if (ConstantPoolSDNode *CP =
4116 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
Bill Schmidt49498da2013-02-21 14:35:42 +00004117 const Constant *C = CP->getConstVal();
4118 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4119 CP->getAlignment(),
4120 0, Flags);
Bill Schmidtf5b474c2013-02-21 00:38:25 +00004121 }
4122 }
4123
4124 if (FirstOp == 1) // Store
4125 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4126 Base.getOperand(0), N->getOperand(3));
4127 else // Load
4128 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4129 N->getOperand(2));
4130
4131 // The add-immediate may now be dead, in which case remove it.
4132 if (Base.getNode()->use_empty())
4133 CurDAG->RemoveDeadNode(Base.getNode());
4134 }
4135}
Chris Lattner43ff01e2005-08-17 19:33:03 +00004136
Chris Lattnerb055c872006-06-10 01:15:02 +00004137
Andrew Trickc416ba62010-12-24 04:28:06 +00004138/// createPPCISelDag - This pass converts a legalized DAG into a
Chris Lattner43ff01e2005-08-17 19:33:03 +00004139/// PowerPC-specific DAG, ready for instruction scheduling.
4140///
Evan Cheng2dd2c652006-03-13 23:20:37 +00004141FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
Nate Begeman0b71e002005-10-18 00:28:58 +00004142 return new PPCDAGToDAGISel(TM);
Chris Lattner43ff01e2005-08-17 19:33:03 +00004143}
4144
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004145static void initializePassOnce(PassRegistry &Registry) {
4146 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
Craig Topper062a2ba2014-04-25 05:30:21 +00004147 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
4148 nullptr, false, false);
Krzysztof Parzyszek2680b532013-02-13 17:40:07 +00004149 Registry.registerPass(*PI, true);
4150}
4151
4152void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
4153 CALL_ONCE_INITIALIZATION(initializePassOnce);
4154}
4155