blob: 58b70be95d9971d133b59eb8fd907f137a583d73 [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000014#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000015#include "llvm/ADT/ScopeExit.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000016#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000018#include "llvm/Analysis/GlobalsModRef.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000019#include "llvm/Analysis/LoopInfo.h"
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +000020#include "llvm/Analysis/LoopPass.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000021#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000022#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
Elena Demikhovskyc434d092016-05-10 07:33:35 +000023#include "llvm/Analysis/ScalarEvolutionExpander.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000024#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000026#include "llvm/IR/Dominators.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000027#include "llvm/IR/Instructions.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000028#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000029#include "llvm/IR/PatternMatch.h"
30#include "llvm/IR/ValueHandle.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000031#include "llvm/Pass.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000032#include "llvm/Support/Debug.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000033#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000034
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38#define DEBUG_TYPE "loop-utils"
39
Tyler Nowicki0a913102015-06-16 18:07:34 +000040bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
41 SmallPtrSetImpl<Instruction *> &Set) {
Karthik Bhat76aa6622015-04-20 04:38:33 +000042 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
43 if (!Set.count(dyn_cast<Instruction>(*Use)))
44 return false;
45 return true;
46}
47
Chad Rosierc94f8e22015-08-27 14:12:17 +000048bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
49 switch (Kind) {
50 default:
51 break;
52 case RK_IntegerAdd:
53 case RK_IntegerMult:
54 case RK_IntegerOr:
55 case RK_IntegerAnd:
56 case RK_IntegerXor:
57 case RK_IntegerMinMax:
58 return true;
59 }
60 return false;
61}
62
63bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
64 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
65}
66
67bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
68 switch (Kind) {
69 default:
70 break;
71 case RK_IntegerAdd:
72 case RK_IntegerMult:
73 case RK_FloatAdd:
74 case RK_FloatMult:
75 return true;
76 }
77 return false;
78}
79
80Instruction *
81RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
82 SmallPtrSetImpl<Instruction *> &Visited,
83 SmallPtrSetImpl<Instruction *> &CI) {
84 if (!Phi->hasOneUse())
85 return Phi;
86
87 const APInt *M = nullptr;
88 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
89
90 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
91 // with a new integer type of the corresponding bit width.
Craig Topper72ee6942017-06-24 06:24:01 +000092 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000093 int32_t Bits = (*M + 1).exactLogBase2();
94 if (Bits > 0) {
95 RT = IntegerType::get(Phi->getContext(), Bits);
96 Visited.insert(Phi);
97 CI.insert(J);
98 return J;
99 }
100 }
101 return Phi;
102}
103
104bool RecurrenceDescriptor::getSourceExtensionKind(
105 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106 SmallPtrSetImpl<Instruction *> &Visited,
107 SmallPtrSetImpl<Instruction *> &CI) {
108
109 SmallVector<Instruction *, 8> Worklist;
110 bool FoundOneOperand = false;
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000111 unsigned DstSize = RT->getPrimitiveSizeInBits();
Chad Rosierc94f8e22015-08-27 14:12:17 +0000112 Worklist.push_back(Exit);
113
114 // Traverse the instructions in the reduction expression, beginning with the
115 // exit value.
116 while (!Worklist.empty()) {
117 Instruction *I = Worklist.pop_back_val();
118 for (Use &U : I->operands()) {
119
120 // Terminate the traversal if the operand is not an instruction, or we
121 // reach the starting value.
122 Instruction *J = dyn_cast<Instruction>(U.get());
123 if (!J || J == Start)
124 continue;
125
126 // Otherwise, investigate the operation if it is also in the expression.
127 if (Visited.count(J)) {
128 Worklist.push_back(J);
129 continue;
130 }
131
132 // If the operand is not in Visited, it is not a reduction operation, but
133 // it does feed into one. Make sure it is either a single-use sign- or
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000134 // zero-extend instruction.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000135 CastInst *Cast = dyn_cast<CastInst>(J);
136 bool IsSExtInst = isa<SExtInst>(J);
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000137 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
138 return false;
139
140 // Ensure the source type of the extend is no larger than the reduction
141 // type. It is not necessary for the types to be identical.
142 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
143 if (SrcSize > DstSize)
Chad Rosierc94f8e22015-08-27 14:12:17 +0000144 return false;
145
146 // Furthermore, ensure that all such extends are of the same kind.
147 if (FoundOneOperand) {
148 if (IsSigned != IsSExtInst)
149 return false;
150 } else {
151 FoundOneOperand = true;
152 IsSigned = IsSExtInst;
153 }
154
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000155 // Lastly, if the source type of the extend matches the reduction type,
156 // add the extend to CI so that we can avoid accounting for it in the
157 // cost model.
158 if (SrcSize == DstSize)
159 CI.insert(Cast);
Chad Rosierc94f8e22015-08-27 14:12:17 +0000160 }
161 }
162 return true;
163}
164
Tyler Nowicki0a913102015-06-16 18:07:34 +0000165bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
166 Loop *TheLoop, bool HasFunNoNaNAttr,
167 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000168 if (Phi->getNumIncomingValues() != 2)
169 return false;
170
171 // Reduction variables are only found in the loop header block.
172 if (Phi->getParent() != TheLoop->getHeader())
173 return false;
174
175 // Obtain the reduction start value from the value that comes from the loop
176 // preheader.
177 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
178
179 // ExitInstruction is the single value which is used outside the loop.
180 // We only allow for a single reduction value to be used outside the loop.
181 // This includes users of the reduction, variables (which form a cycle
182 // which ends in the phi node).
183 Instruction *ExitInstruction = nullptr;
184 // Indicates that we found a reduction operation in our scan.
185 bool FoundReduxOp = false;
186
187 // We start with the PHI node and scan for all of the users of this
188 // instruction. All users must be instructions that can be used as reduction
189 // variables (such as ADD). We must have a single out-of-block user. The cycle
190 // must include the original PHI.
191 bool FoundStartPHI = false;
192
193 // To recognize min/max patterns formed by a icmp select sequence, we store
194 // the number of instruction we saw from the recognized min/max pattern,
195 // to make sure we only see exactly the two instructions.
196 unsigned NumCmpSelectPatternInst = 0;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000197 InstDesc ReduxDesc(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000198
Chad Rosierc94f8e22015-08-27 14:12:17 +0000199 // Data used for determining if the recurrence has been type-promoted.
200 Type *RecurrenceType = Phi->getType();
201 SmallPtrSet<Instruction *, 4> CastInsts;
202 Instruction *Start = Phi;
203 bool IsSigned = false;
204
Karthik Bhat76aa6622015-04-20 04:38:33 +0000205 SmallPtrSet<Instruction *, 8> VisitedInsts;
206 SmallVector<Instruction *, 8> Worklist;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000207
208 // Return early if the recurrence kind does not match the type of Phi. If the
209 // recurrence kind is arithmetic, we attempt to look through AND operations
210 // resulting from the type promotion performed by InstCombine. Vector
211 // operations are not limited to the legal integer widths, so we may be able
212 // to evaluate the reduction in the narrower width.
213 if (RecurrenceType->isFloatingPointTy()) {
214 if (!isFloatingPointRecurrenceKind(Kind))
215 return false;
216 } else {
217 if (!isIntegerRecurrenceKind(Kind))
218 return false;
219 if (isArithmeticRecurrenceKind(Kind))
220 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221 }
222
223 Worklist.push_back(Start);
224 VisitedInsts.insert(Start);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000225
226 // A value in the reduction can be used:
227 // - By the reduction:
228 // - Reduction operation:
229 // - One use of reduction value (safe).
230 // - Multiple use of reduction value (not safe).
231 // - PHI:
232 // - All uses of the PHI must be the reduction (safe).
233 // - Otherwise, not safe.
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000234 // - By instructions outside of the loop (safe).
235 // * One value may have several outside users, but all outside
236 // uses must be of the same value.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000237 // - By an instruction that is not part of the reduction (not safe).
238 // This is either:
239 // * An instruction type other than PHI or the reduction operation.
240 // * A PHI in the header other than the initial PHI.
241 while (!Worklist.empty()) {
242 Instruction *Cur = Worklist.back();
243 Worklist.pop_back();
244
245 // No Users.
246 // If the instruction has no users then this is a broken chain and can't be
247 // a reduction variable.
248 if (Cur->use_empty())
249 return false;
250
251 bool IsAPhi = isa<PHINode>(Cur);
252
253 // A header PHI use other than the original PHI.
254 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
255 return false;
256
257 // Reductions of instructions such as Div, and Sub is only possible if the
258 // LHS is the reduction variable.
259 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
260 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
261 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
262 return false;
263
Chad Rosierc94f8e22015-08-27 14:12:17 +0000264 // Any reduction instruction must be of one of the allowed kinds. We ignore
265 // the starting value (the Phi or an AND instruction if the Phi has been
266 // type-promoted).
267 if (Cur != Start) {
268 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
269 if (!ReduxDesc.isRecurrence())
270 return false;
271 }
Karthik Bhat76aa6622015-04-20 04:38:33 +0000272
273 // A reduction operation must only have one use of the reduction value.
274 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
275 hasMultipleUsesOf(Cur, VisitedInsts))
276 return false;
277
278 // All inputs to a PHI node must be a reduction value.
279 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
280 return false;
281
282 if (Kind == RK_IntegerMinMax &&
283 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
284 ++NumCmpSelectPatternInst;
285 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
286 ++NumCmpSelectPatternInst;
287
288 // Check whether we found a reduction operator.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000289 FoundReduxOp |= !IsAPhi && Cur != Start;
Karthik Bhat76aa6622015-04-20 04:38:33 +0000290
291 // Process users of current instruction. Push non-PHI nodes after PHI nodes
292 // onto the stack. This way we are going to have seen all inputs to PHI
293 // nodes once we get to them.
294 SmallVector<Instruction *, 8> NonPHIs;
295 SmallVector<Instruction *, 8> PHIs;
296 for (User *U : Cur->users()) {
297 Instruction *UI = cast<Instruction>(U);
298
299 // Check if we found the exit user.
300 BasicBlock *Parent = UI->getParent();
301 if (!TheLoop->contains(Parent)) {
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000302 // If we already know this instruction is used externally, move on to
303 // the next user.
304 if (ExitInstruction == Cur)
305 continue;
306
307 // Exit if you find multiple values used outside or if the header phi
308 // node is being used. In this case the user uses the value of the
309 // previous iteration, in which case we would loose "VF-1" iterations of
310 // the reduction operation if we vectorize.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000311 if (ExitInstruction != nullptr || Cur == Phi)
312 return false;
313
314 // The instruction used by an outside user must be the last instruction
315 // before we feed back to the reduction phi. Otherwise, we loose VF-1
316 // operations on the value.
David Majnemer42531262016-08-12 03:55:06 +0000317 if (!is_contained(Phi->operands(), Cur))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000318 return false;
319
320 ExitInstruction = Cur;
321 continue;
322 }
323
324 // Process instructions only once (termination). Each reduction cycle
325 // value must only be used once, except by phi nodes and min/max
326 // reductions which are represented as a cmp followed by a select.
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000327 InstDesc IgnoredVal(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000328 if (VisitedInsts.insert(UI).second) {
329 if (isa<PHINode>(UI))
330 PHIs.push_back(UI);
331 else
332 NonPHIs.push_back(UI);
333 } else if (!isa<PHINode>(UI) &&
334 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
335 !isa<SelectInst>(UI)) ||
Tyler Nowicki0a913102015-06-16 18:07:34 +0000336 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000337 return false;
338
339 // Remember that we completed the cycle.
340 if (UI == Phi)
341 FoundStartPHI = true;
342 }
343 Worklist.append(PHIs.begin(), PHIs.end());
344 Worklist.append(NonPHIs.begin(), NonPHIs.end());
345 }
346
347 // This means we have seen one but not the other instruction of the
348 // pattern or more than just a select and cmp.
349 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
350 NumCmpSelectPatternInst != 2)
351 return false;
352
353 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
354 return false;
355
Chad Rosierc94f8e22015-08-27 14:12:17 +0000356 // If we think Phi may have been type-promoted, we also need to ensure that
357 // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358 // so, we will be able to evaluate the reduction in the narrower bit width.
359 if (Start != Phi)
360 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361 IsSigned, VisitedInsts, CastInsts))
362 return false;
363
Karthik Bhat76aa6622015-04-20 04:38:33 +0000364 // We found a reduction var if we have reached the original phi node and we
365 // only have a single instruction with out-of-loop users.
366
367 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
Tyler Nowicki0a913102015-06-16 18:07:34 +0000368 // is saved as part of the RecurrenceDescriptor.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000369
370 // Save the description of this reduction variable.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000371 RecurrenceDescriptor RD(
372 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000374 RedDes = RD;
375
376 return true;
377}
378
379/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
380/// pattern corresponding to a min(X, Y) or max(X, Y).
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000381RecurrenceDescriptor::InstDesc
382RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000383
384 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
385 "Expect a select instruction");
386 Instruction *Cmp = nullptr;
387 SelectInst *Select = nullptr;
388
389 // We must handle the select(cmp()) as a single instruction. Advance to the
390 // select.
391 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
392 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000393 return InstDesc(false, I);
394 return InstDesc(Select, Prev.getMinMaxKind());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000395 }
396
397 // Only handle single use cases for now.
398 if (!(Select = dyn_cast<SelectInst>(I)))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000399 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000400 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
401 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000402 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000403 if (!Cmp->hasOneUse())
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000404 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000405
406 Value *CmpLeft;
407 Value *CmpRight;
408
409 // Look for a min/max pattern.
410 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000411 return InstDesc(Select, MRK_UIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000412 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000413 return InstDesc(Select, MRK_UIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000414 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000415 return InstDesc(Select, MRK_SIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000416 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000417 return InstDesc(Select, MRK_SIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000418 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000419 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000420 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000421 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000422 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000423 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000424 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000425 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000426
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000427 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000428}
429
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000430RecurrenceDescriptor::InstDesc
Tyler Nowicki0a913102015-06-16 18:07:34 +0000431RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000432 InstDesc &Prev, bool HasFunNoNaNAttr) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000433 bool FP = I->getType()->isFloatingPointTy();
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000434 Instruction *UAI = Prev.getUnsafeAlgebraInst();
435 if (!UAI && FP && !I->hasUnsafeAlgebra())
436 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437
Karthik Bhat76aa6622015-04-20 04:38:33 +0000438 switch (I->getOpcode()) {
439 default:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000440 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000441 case Instruction::PHI:
Tim Northover10a1e8b2016-05-27 16:40:27 +0000442 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000443 case Instruction::Sub:
444 case Instruction::Add:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000445 return InstDesc(Kind == RK_IntegerAdd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000446 case Instruction::Mul:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000447 return InstDesc(Kind == RK_IntegerMult, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000448 case Instruction::And:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000449 return InstDesc(Kind == RK_IntegerAnd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000450 case Instruction::Or:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000451 return InstDesc(Kind == RK_IntegerOr, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000452 case Instruction::Xor:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000453 return InstDesc(Kind == RK_IntegerXor, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000454 case Instruction::FMul:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000455 return InstDesc(Kind == RK_FloatMult, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000456 case Instruction::FSub:
457 case Instruction::FAdd:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000458 return InstDesc(Kind == RK_FloatAdd, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000459 case Instruction::FCmp:
460 case Instruction::ICmp:
461 case Instruction::Select:
462 if (Kind != RK_IntegerMinMax &&
463 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000464 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000465 return isMinMaxSelectCmpPattern(I, Prev);
466 }
467}
468
Tyler Nowicki0a913102015-06-16 18:07:34 +0000469bool RecurrenceDescriptor::hasMultipleUsesOf(
Karthik Bhat76aa6622015-04-20 04:38:33 +0000470 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
471 unsigned NumUses = 0;
472 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
473 ++Use) {
474 if (Insts.count(dyn_cast<Instruction>(*Use)))
475 ++NumUses;
476 if (NumUses > 1)
477 return true;
478 }
479
480 return false;
481}
Tyler Nowicki0a913102015-06-16 18:07:34 +0000482bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
483 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000484
Karthik Bhat76aa6622015-04-20 04:38:33 +0000485 BasicBlock *Header = TheLoop->getHeader();
486 Function &F = *Header->getParent();
Nirav Dave8dd66e52016-03-30 15:41:12 +0000487 bool HasFunNoNaNAttr =
488 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
Karthik Bhat76aa6622015-04-20 04:38:33 +0000489
490 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
491 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
492 return true;
493 }
494 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
495 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
496 return true;
497 }
498 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
499 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
500 return true;
501 }
502 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
503 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
504 return true;
505 }
506 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
507 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
508 return true;
509 }
510 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
511 RedDes)) {
512 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
513 return true;
514 }
515 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
516 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
517 return true;
518 }
519 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
520 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
521 return true;
522 }
523 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
524 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
525 return true;
526 }
527 // Not a reduction of known type.
528 return false;
529}
530
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000531bool RecurrenceDescriptor::isFirstOrderRecurrence(
532 PHINode *Phi, Loop *TheLoop,
533 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000534
535 // Ensure the phi node is in the loop header and has two incoming values.
536 if (Phi->getParent() != TheLoop->getHeader() ||
537 Phi->getNumIncomingValues() != 2)
538 return false;
539
540 // Ensure the loop has a preheader and a single latch block. The loop
541 // vectorizer will need the latch to set up the next iteration of the loop.
542 auto *Preheader = TheLoop->getLoopPreheader();
543 auto *Latch = TheLoop->getLoopLatch();
544 if (!Preheader || !Latch)
545 return false;
546
547 // Ensure the phi node's incoming blocks are the loop preheader and latch.
548 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
549 Phi->getBasicBlockIndex(Latch) < 0)
550 return false;
551
552 // Get the previous value. The previous value comes from the latch edge while
553 // the initial value comes form the preheader edge.
554 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000555 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
556 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
Matthew Simpson29c997c2016-02-19 17:56:08 +0000557 return false;
558
Anna Thomasdcdb3252017-04-13 18:59:25 +0000559 // Ensure every user of the phi node is dominated by the previous value.
560 // The dominance requirement ensures the loop vectorizer will not need to
561 // vectorize the initial value prior to the first iteration of the loop.
Ayal Zaks2ff59d42017-06-30 21:05:06 +0000562 // TODO: Consider extending this sinking to handle other kinds of instructions
563 // and expressions, beyond sinking a single cast past Previous.
564 if (Phi->hasOneUse()) {
565 auto *I = Phi->user_back();
566 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
567 DT->dominates(Previous, I->user_back())) {
568 SinkAfter[I] = Previous;
569 return true;
570 }
571 }
572
Matthew Simpson29c997c2016-02-19 17:56:08 +0000573 for (User *U : Phi->users())
Anna Thomas00dc1b72017-04-11 21:02:00 +0000574 if (auto *I = dyn_cast<Instruction>(U)) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000575 if (!DT->dominates(Previous, I))
576 return false;
Anna Thomas00dc1b72017-04-11 21:02:00 +0000577 }
Matthew Simpson29c997c2016-02-19 17:56:08 +0000578
579 return true;
580}
581
Karthik Bhat76aa6622015-04-20 04:38:33 +0000582/// This function returns the identity element (or neutral element) for
583/// the operation K.
Tyler Nowicki0a913102015-06-16 18:07:34 +0000584Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
585 Type *Tp) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000586 switch (K) {
587 case RK_IntegerXor:
588 case RK_IntegerAdd:
589 case RK_IntegerOr:
590 // Adding, Xoring, Oring zero to a number does not change it.
591 return ConstantInt::get(Tp, 0);
592 case RK_IntegerMult:
593 // Multiplying a number by 1 does not change it.
594 return ConstantInt::get(Tp, 1);
595 case RK_IntegerAnd:
596 // AND-ing a number with an all-1 value does not change it.
597 return ConstantInt::get(Tp, -1, true);
598 case RK_FloatMult:
599 // Multiplying a number by 1 does not change it.
600 return ConstantFP::get(Tp, 1.0L);
601 case RK_FloatAdd:
602 // Adding zero to a number does not change it.
603 return ConstantFP::get(Tp, 0.0L);
604 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000605 llvm_unreachable("Unknown recurrence kind");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000606 }
607}
608
Tyler Nowicki0a913102015-06-16 18:07:34 +0000609/// This function translates the recurrence kind to an LLVM binary operator.
610unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000611 switch (Kind) {
612 case RK_IntegerAdd:
613 return Instruction::Add;
614 case RK_IntegerMult:
615 return Instruction::Mul;
616 case RK_IntegerOr:
617 return Instruction::Or;
618 case RK_IntegerAnd:
619 return Instruction::And;
620 case RK_IntegerXor:
621 return Instruction::Xor;
622 case RK_FloatMult:
623 return Instruction::FMul;
624 case RK_FloatAdd:
625 return Instruction::FAdd;
626 case RK_IntegerMinMax:
627 return Instruction::ICmp;
628 case RK_FloatMinMax:
629 return Instruction::FCmp;
630 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000631 llvm_unreachable("Unknown recurrence operation");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000632 }
633}
634
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000635Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
636 MinMaxRecurrenceKind RK,
637 Value *Left, Value *Right) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000638 CmpInst::Predicate P = CmpInst::ICMP_NE;
639 switch (RK) {
640 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000641 llvm_unreachable("Unknown min/max recurrence kind");
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000642 case MRK_UIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000643 P = CmpInst::ICMP_ULT;
644 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000645 case MRK_UIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000646 P = CmpInst::ICMP_UGT;
647 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000648 case MRK_SIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000649 P = CmpInst::ICMP_SLT;
650 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000651 case MRK_SIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000652 P = CmpInst::ICMP_SGT;
653 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000654 case MRK_FloatMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000655 P = CmpInst::FCMP_OLT;
656 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000657 case MRK_FloatMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000658 P = CmpInst::FCMP_OGT;
659 break;
660 }
661
James Molloy50a4c272015-09-21 19:41:19 +0000662 // We only match FP sequences with unsafe algebra, so we can unconditionally
663 // set it on any generated instructions.
664 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
665 FastMathFlags FMF;
666 FMF.setUnsafeAlgebra();
Sanjay Patela2528152016-01-12 18:03:37 +0000667 Builder.setFastMathFlags(FMF);
James Molloy50a4c272015-09-21 19:41:19 +0000668
Karthik Bhat76aa6622015-04-20 04:38:33 +0000669 Value *Cmp;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000670 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Karthik Bhat76aa6622015-04-20 04:38:33 +0000671 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
672 else
673 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
674
675 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
676 return Select;
677}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000678
James Molloy1bbf15c2015-08-27 09:53:00 +0000679InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000680 const SCEV *Step, BinaryOperator *BOp)
681 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
James Molloy1bbf15c2015-08-27 09:53:00 +0000682 assert(IK != IK_NoInduction && "Not an induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000683
684 // Start value type should match the induction kind and the value
685 // itself should not be null.
James Molloy1bbf15c2015-08-27 09:53:00 +0000686 assert(StartValue && "StartValue is null");
James Molloy1bbf15c2015-08-27 09:53:00 +0000687 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
688 "StartValue is not a pointer for pointer induction");
689 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
690 "StartValue is not an integer for integer induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000691
692 // Check the Step Value. It should be non-zero integer value.
693 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
694 "Step value is zero");
695
696 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
697 "Step value should be constant for pointer induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000698 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
699 "StepValue is not an integer");
700
701 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
702 "StepValue is not FP for FpInduction");
703 assert((IK != IK_FpInduction || (InductionBinOp &&
704 (InductionBinOp->getOpcode() == Instruction::FAdd ||
705 InductionBinOp->getOpcode() == Instruction::FSub))) &&
706 "Binary opcode should be specified for FP induction");
James Molloy1bbf15c2015-08-27 09:53:00 +0000707}
708
709int InductionDescriptor::getConsecutiveDirection() const {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000710 ConstantInt *ConstStep = getConstIntStepValue();
711 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
712 return ConstStep->getSExtValue();
James Molloy1bbf15c2015-08-27 09:53:00 +0000713 return 0;
714}
715
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000716ConstantInt *InductionDescriptor::getConstIntStepValue() const {
717 if (isa<SCEVConstant>(Step))
718 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
719 return nullptr;
720}
721
722Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
723 ScalarEvolution *SE,
724 const DataLayout& DL) const {
725
726 SCEVExpander Exp(*SE, DL, "induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000727 assert(Index->getType() == Step->getType() &&
728 "Index type does not match StepValue type");
James Molloy1bbf15c2015-08-27 09:53:00 +0000729 switch (IK) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000730 case IK_IntInduction: {
James Molloy1bbf15c2015-08-27 09:53:00 +0000731 assert(Index->getType() == StartValue->getType() &&
732 "Index type does not match StartValue type");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000733
734 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
735 // and calculate (Start + Index * Step) for all cases, without
736 // special handling for "isOne" and "isMinusOne".
737 // But in the real life the result code getting worse. We mix SCEV
738 // expressions and ADD/SUB operations and receive redundant
739 // intermediate values being calculated in different ways and
740 // Instcombine is unable to reduce them all.
741
742 if (getConstIntStepValue() &&
743 getConstIntStepValue()->isMinusOne())
James Molloy1bbf15c2015-08-27 09:53:00 +0000744 return B.CreateSub(StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000745 if (getConstIntStepValue() &&
746 getConstIntStepValue()->isOne())
747 return B.CreateAdd(StartValue, Index);
748 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
749 SE->getMulExpr(Step, SE->getSCEV(Index)));
750 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
751 }
752 case IK_PtrInduction: {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000753 assert(isa<SCEVConstant>(Step) &&
754 "Expected constant step for pointer induction");
755 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
756 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
James Molloy1bbf15c2015-08-27 09:53:00 +0000757 return B.CreateGEP(nullptr, StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000758 }
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000759 case IK_FpInduction: {
760 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
761 assert(InductionBinOp &&
762 (InductionBinOp->getOpcode() == Instruction::FAdd ||
763 InductionBinOp->getOpcode() == Instruction::FSub) &&
764 "Original bin op should be defined for FP induction");
765
766 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
767
768 // Floating point operations had to be 'fast' to enable the induction.
769 FastMathFlags Flags;
770 Flags.setUnsafeAlgebra();
771
772 Value *MulExp = B.CreateFMul(StepValue, Index);
773 if (isa<Instruction>(MulExp))
774 // We have to check, the MulExp may be a constant.
775 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
776
777 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
778 MulExp, "induction");
779 if (isa<Instruction>(BOp))
780 cast<Instruction>(BOp)->setFastMathFlags(Flags);
781
782 return BOp;
783 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000784 case IK_NoInduction:
785 return nullptr;
786 }
787 llvm_unreachable("invalid enum");
788}
789
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000790bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
791 ScalarEvolution *SE,
792 InductionDescriptor &D) {
793
794 // Here we only handle FP induction variables.
795 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
796
797 if (TheLoop->getHeader() != Phi->getParent())
798 return false;
799
800 // The loop may have multiple entrances or multiple exits; we can analyze
801 // this phi if it has a unique entry value and a unique backedge value.
802 if (Phi->getNumIncomingValues() != 2)
803 return false;
804 Value *BEValue = nullptr, *StartValue = nullptr;
805 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
806 BEValue = Phi->getIncomingValue(0);
807 StartValue = Phi->getIncomingValue(1);
808 } else {
809 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
810 "Unexpected Phi node in the loop");
811 BEValue = Phi->getIncomingValue(1);
812 StartValue = Phi->getIncomingValue(0);
813 }
814
815 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
816 if (!BOp)
817 return false;
818
819 Value *Addend = nullptr;
820 if (BOp->getOpcode() == Instruction::FAdd) {
821 if (BOp->getOperand(0) == Phi)
822 Addend = BOp->getOperand(1);
823 else if (BOp->getOperand(1) == Phi)
824 Addend = BOp->getOperand(0);
825 } else if (BOp->getOpcode() == Instruction::FSub)
826 if (BOp->getOperand(0) == Phi)
827 Addend = BOp->getOperand(1);
828
829 if (!Addend)
830 return false;
831
832 // The addend should be loop invariant
833 if (auto *I = dyn_cast<Instruction>(Addend))
834 if (TheLoop->contains(I))
835 return false;
836
837 // FP Step has unknown SCEV
838 const SCEV *Step = SE->getUnknown(Addend);
839 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
840 return true;
841}
842
843bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000844 PredicatedScalarEvolution &PSE,
845 InductionDescriptor &D,
846 bool Assume) {
847 Type *PhiTy = Phi->getType();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000848
849 // Handle integer and pointer inductions variables.
850 // Now we handle also FP induction but not trying to make a
851 // recurrent expression from the PHI node in-place.
852
853 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
854 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
Silviu Barangac05bab82016-05-05 15:20:39 +0000855 return false;
856
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000857 if (PhiTy->isFloatingPointTy())
858 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
859
Silviu Barangac05bab82016-05-05 15:20:39 +0000860 const SCEV *PhiScev = PSE.getSCEV(Phi);
861 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
862
863 // We need this expression to be an AddRecExpr.
864 if (Assume && !AR)
865 AR = PSE.getAsAddRec(Phi);
866
867 if (!AR) {
868 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
869 return false;
870 }
871
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000872 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
Silviu Barangac05bab82016-05-05 15:20:39 +0000873}
874
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000875bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000876 ScalarEvolution *SE,
877 InductionDescriptor &D,
878 const SCEV *Expr) {
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000879 Type *PhiTy = Phi->getType();
880 // We only handle integer and pointer inductions variables.
881 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
882 return false;
883
884 // Check that the PHI is consecutive.
Silviu Barangac05bab82016-05-05 15:20:39 +0000885 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000886 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
Silviu Barangac05bab82016-05-05 15:20:39 +0000887
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000888 if (!AR) {
889 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
890 return false;
891 }
892
Michael Kupersteinee31cbe2017-01-10 19:32:30 +0000893 if (AR->getLoop() != TheLoop) {
894 // FIXME: We should treat this as a uniform. Unfortunately, we
895 // don't currently know how to handled uniform PHIs.
896 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
897 return false;
898 }
899
James Molloy1bbf15c2015-08-27 09:53:00 +0000900 Value *StartValue =
901 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000902 const SCEV *Step = AR->getStepRecurrence(*SE);
903 // Calculate the pointer stride and check if it is consecutive.
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000904 // The stride may be a constant or a loop invariant integer value.
905 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000906 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000907 return false;
908
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000909 if (PhiTy->isIntegerTy()) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000910 D = InductionDescriptor(StartValue, IK_IntInduction, Step);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000911 return true;
912 }
913
914 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000915 // Pointer induction should be a constant.
916 if (!ConstStep)
917 return false;
918
919 ConstantInt *CV = ConstStep->getValue();
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000920 Type *PointerElementType = PhiTy->getPointerElementType();
921 // The pointer stride cannot be determined if the pointer element type is not
922 // sized.
923 if (!PointerElementType->isSized())
924 return false;
925
926 const DataLayout &DL = Phi->getModule()->getDataLayout();
927 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +0000928 if (!Size)
929 return false;
930
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000931 int64_t CVSize = CV->getSExtValue();
932 if (CVSize % Size)
933 return false;
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000934 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
935 true /* signed */);
James Molloy1bbf15c2015-08-27 09:53:00 +0000936 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000937 return true;
938}
Ashutosh Nemac5b7b552015-08-19 05:40:42 +0000939
Chandler Carruth4a000882017-06-25 22:45:31 +0000940bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
941 bool PreserveLCSSA) {
942 bool Changed = false;
943
944 // We re-use a vector for the in-loop predecesosrs.
945 SmallVector<BasicBlock *, 4> InLoopPredecessors;
946
947 auto RewriteExit = [&](BasicBlock *BB) {
948 assert(InLoopPredecessors.empty() &&
949 "Must start with an empty predecessors list!");
950 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
951
952 // See if there are any non-loop predecessors of this exit block and
953 // keep track of the in-loop predecessors.
954 bool IsDedicatedExit = true;
955 for (auto *PredBB : predecessors(BB))
956 if (L->contains(PredBB)) {
957 if (isa<IndirectBrInst>(PredBB->getTerminator()))
958 // We cannot rewrite exiting edges from an indirectbr.
959 return false;
960
961 InLoopPredecessors.push_back(PredBB);
962 } else {
963 IsDedicatedExit = false;
964 }
965
966 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
967
968 // Nothing to do if this is already a dedicated exit.
969 if (IsDedicatedExit)
970 return false;
971
972 auto *NewExitBB = SplitBlockPredecessors(
973 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
974
975 if (!NewExitBB)
976 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
977 << *L << "\n");
978 else
979 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
980 << NewExitBB->getName() << "\n");
981 return true;
982 };
983
984 // Walk the exit blocks directly rather than building up a data structure for
985 // them, but only visit each one once.
986 SmallPtrSet<BasicBlock *, 4> Visited;
987 for (auto *BB : L->blocks())
988 for (auto *SuccBB : successors(BB)) {
989 // We're looking for exit blocks so skip in-loop successors.
990 if (L->contains(SuccBB))
991 continue;
992
993 // Visit each exit block exactly once.
994 if (!Visited.insert(SuccBB).second)
995 continue;
996
997 Changed |= RewriteExit(SuccBB);
998 }
999
1000 return Changed;
1001}
1002
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001003/// \brief Returns the instructions that use values defined in the loop.
1004SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1005 SmallVector<Instruction *, 8> UsedOutside;
1006
1007 for (auto *Block : L->getBlocks())
1008 // FIXME: I believe that this could use copy_if if the Inst reference could
1009 // be adapted into a pointer.
1010 for (auto &Inst : *Block) {
1011 auto Users = Inst.users();
David Majnemer0a16c222016-08-11 21:15:00 +00001012 if (any_of(Users, [&](User *U) {
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001013 auto *Use = cast<Instruction>(U);
1014 return !L->contains(Use->getParent());
1015 }))
1016 UsedOutside.push_back(&Inst);
1017 }
1018
1019 return UsedOutside;
1020}
Chandler Carruth31088a92016-02-19 10:45:18 +00001021
1022void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1023 // By definition, all loop passes need the LoopInfo analysis and the
1024 // Dominator tree it depends on. Because they all participate in the loop
1025 // pass manager, they must also preserve these.
1026 AU.addRequired<DominatorTreeWrapperPass>();
1027 AU.addPreserved<DominatorTreeWrapperPass>();
1028 AU.addRequired<LoopInfoWrapperPass>();
1029 AU.addPreserved<LoopInfoWrapperPass>();
1030
1031 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1032 // here because users shouldn't directly get them from this header.
1033 extern char &LoopSimplifyID;
1034 extern char &LCSSAID;
1035 AU.addRequiredID(LoopSimplifyID);
1036 AU.addPreservedID(LoopSimplifyID);
1037 AU.addRequiredID(LCSSAID);
1038 AU.addPreservedID(LCSSAID);
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +00001039 // This is used in the LPPassManager to perform LCSSA verification on passes
1040 // which preserve lcssa form
1041 AU.addRequired<LCSSAVerificationPass>();
1042 AU.addPreserved<LCSSAVerificationPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +00001043
1044 // Loop passes are designed to run inside of a loop pass manager which means
1045 // that any function analyses they require must be required by the first loop
1046 // pass in the manager (so that it is computed before the loop pass manager
1047 // runs) and preserved by all loop pasess in the manager. To make this
1048 // reasonably robust, the set needed for most loop passes is maintained here.
1049 // If your loop pass requires an analysis not listed here, you will need to
1050 // carefully audit the loop pass manager nesting structure that results.
1051 AU.addRequired<AAResultsWrapperPass>();
1052 AU.addPreserved<AAResultsWrapperPass>();
1053 AU.addPreserved<BasicAAWrapperPass>();
1054 AU.addPreserved<GlobalsAAWrapperPass>();
1055 AU.addPreserved<SCEVAAWrapperPass>();
1056 AU.addRequired<ScalarEvolutionWrapperPass>();
1057 AU.addPreserved<ScalarEvolutionWrapperPass>();
1058}
1059
1060/// Manually defined generic "LoopPass" dependency initialization. This is used
1061/// to initialize the exact set of passes from above in \c
1062/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1063/// with:
1064///
1065/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1066///
1067/// As-if "LoopPass" were a pass.
1068void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1069 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1070 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1071 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Easwaran Ramane12c4872016-06-09 19:44:46 +00001072 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +00001073 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1074 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1075 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1076 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1077 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1078}
Adam Nemet963341c2016-04-21 17:33:17 +00001079
Adam Nemetfe3def72016-04-22 19:10:05 +00001080/// \brief Find string metadata for loop
1081///
1082/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1083/// operand or null otherwise. If the string metadata is not found return
1084/// Optional's not-a-value.
1085Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1086 StringRef Name) {
Adam Nemet963341c2016-04-21 17:33:17 +00001087 MDNode *LoopID = TheLoop->getLoopID();
Adam Nemetfe3def72016-04-22 19:10:05 +00001088 // Return none if LoopID is false.
Adam Nemet963341c2016-04-21 17:33:17 +00001089 if (!LoopID)
Adam Nemetfe3def72016-04-22 19:10:05 +00001090 return None;
Adam Nemet293be662016-04-21 17:33:20 +00001091
1092 // First operand should refer to the loop id itself.
1093 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1094 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1095
Adam Nemet963341c2016-04-21 17:33:17 +00001096 // Iterate over LoopID operands and look for MDString Metadata
1097 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1098 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1099 if (!MD)
1100 continue;
1101 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1102 if (!S)
1103 continue;
1104 // Return true if MDString holds expected MetaData.
1105 if (Name.equals(S->getString()))
Adam Nemetfe3def72016-04-22 19:10:05 +00001106 switch (MD->getNumOperands()) {
1107 case 1:
1108 return nullptr;
1109 case 2:
1110 return &MD->getOperand(1);
1111 default:
1112 llvm_unreachable("loop metadata has 0 or 1 operand");
1113 }
Adam Nemet963341c2016-04-21 17:33:17 +00001114 }
Adam Nemetfe3def72016-04-22 19:10:05 +00001115 return None;
Adam Nemet963341c2016-04-21 17:33:17 +00001116}
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001117
1118/// Returns true if the instruction in a loop is guaranteed to execute at least
1119/// once.
1120bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1121 const DominatorTree *DT, const Loop *CurLoop,
1122 const LoopSafetyInfo *SafetyInfo) {
1123 // We have to check to make sure that the instruction dominates all
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001124 // of the exit blocks. If it doesn't, then there is a path out of the loop
1125 // which does not execute this instruction, so we can't hoist it.
1126
1127 // If the instruction is in the header block for the loop (which is very
1128 // common), it is always guaranteed to dominate the exit blocks. Since this
1129 // is a common case, and can save some work, check it now.
1130 if (Inst.getParent() == CurLoop->getHeader())
1131 // If there's a throw in the header block, we can't guarantee we'll reach
1132 // Inst.
1133 return !SafetyInfo->HeaderMayThrow;
1134
1135 // Somewhere in this loop there is an instruction which may throw and make us
1136 // exit the loop.
1137 if (SafetyInfo->MayThrow)
1138 return false;
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001139
1140 // Get the exit blocks for the current loop.
1141 SmallVector<BasicBlock *, 8> ExitBlocks;
1142 CurLoop->getExitBlocks(ExitBlocks);
1143
1144 // Verify that the block dominates each of the exit blocks of the loop.
1145 for (BasicBlock *ExitBlock : ExitBlocks)
1146 if (!DT->dominates(Inst.getParent(), ExitBlock))
1147 return false;
1148
1149 // As a degenerate case, if the loop is statically infinite then we haven't
1150 // proven anything since there are no exit blocks.
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001151 if (ExitBlocks.empty())
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001152 return false;
1153
Eli Friedmanf1da33e2016-06-11 21:48:25 +00001154 // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1155 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
1156 // just a special case of this.)
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001157 return true;
1158}
Dehao Chen41d72a82016-11-17 01:17:02 +00001159
1160Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1161 // Only support loops with a unique exiting block, and a latch.
1162 if (!L->getExitingBlock())
1163 return None;
1164
1165 // Get the branch weights for the the loop's backedge.
1166 BranchInst *LatchBR =
1167 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1168 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1169 return None;
1170
1171 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1172 LatchBR->getSuccessor(1) == L->getHeader()) &&
1173 "At least one edge out of the latch must go to the header");
1174
1175 // To estimate the number of times the loop body was executed, we want to
1176 // know the number of times the backedge was taken, vs. the number of times
1177 // we exited the loop.
Dehao Chen41d72a82016-11-17 01:17:02 +00001178 uint64_t TrueVal, FalseVal;
Michael Kupersteinb151a642016-11-30 21:13:57 +00001179 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
Dehao Chen41d72a82016-11-17 01:17:02 +00001180 return None;
1181
Michael Kupersteinb151a642016-11-30 21:13:57 +00001182 if (!TrueVal || !FalseVal)
1183 return 0;
Dehao Chen41d72a82016-11-17 01:17:02 +00001184
Michael Kupersteinb151a642016-11-30 21:13:57 +00001185 // Divide the count of the backedge by the count of the edge exiting the loop,
1186 // rounding to nearest.
Dehao Chen41d72a82016-11-17 01:17:02 +00001187 if (LatchBR->getSuccessor(0) == L->getHeader())
Michael Kupersteinb151a642016-11-30 21:13:57 +00001188 return (TrueVal + (FalseVal / 2)) / FalseVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001189 else
Michael Kupersteinb151a642016-11-30 21:13:57 +00001190 return (FalseVal + (TrueVal / 2)) / TrueVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001191}
Amara Emersoncf9daa32017-05-09 10:43:25 +00001192
1193/// \brief Adds a 'fast' flag to floating point operations.
1194static Value *addFastMathFlag(Value *V) {
1195 if (isa<FPMathOperator>(V)) {
1196 FastMathFlags Flags;
1197 Flags.setUnsafeAlgebra();
1198 cast<Instruction>(V)->setFastMathFlags(Flags);
1199 }
1200 return V;
1201}
1202
1203// Helper to generate a log2 shuffle reduction.
Amara Emerson836b0f42017-05-10 09:42:49 +00001204Value *
1205llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1206 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1207 ArrayRef<Value *> RedOps) {
Amara Emersoncf9daa32017-05-09 10:43:25 +00001208 unsigned VF = Src->getType()->getVectorNumElements();
1209 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1210 // and vector ops, reducing the set of values being computed by half each
1211 // round.
1212 assert(isPowerOf2_32(VF) &&
1213 "Reduction emission only supported for pow2 vectors!");
1214 Value *TmpVec = Src;
1215 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1216 for (unsigned i = VF; i != 1; i >>= 1) {
1217 // Move the upper half of the vector to the lower half.
1218 for (unsigned j = 0; j != i / 2; ++j)
1219 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1220
1221 // Fill the rest of the mask with undef.
1222 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1223 UndefValue::get(Builder.getInt32Ty()));
1224
1225 Value *Shuf = Builder.CreateShuffleVector(
1226 TmpVec, UndefValue::get(TmpVec->getType()),
1227 ConstantVector::get(ShuffleMask), "rdx.shuf");
1228
1229 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1230 // Floating point operations had to be 'fast' to enable the reduction.
1231 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1232 TmpVec, Shuf, "bin.rdx"));
1233 } else {
1234 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1235 "Invalid min/max");
1236 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1237 Shuf);
1238 }
1239 if (!RedOps.empty())
1240 propagateIRFlags(TmpVec, RedOps);
1241 }
1242 // The result is in the first element of the vector.
1243 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1244}
1245
1246/// Create a simple vector reduction specified by an opcode and some
1247/// flags (if generating min/max reductions).
1248Value *llvm::createSimpleTargetReduction(
1249 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1250 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1251 ArrayRef<Value *> RedOps) {
1252 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1253
1254 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1255 std::function<Value*()> BuildFunc;
1256 using RD = RecurrenceDescriptor;
1257 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1258 // TODO: Support creating ordered reductions.
1259 FastMathFlags FMFUnsafe;
1260 FMFUnsafe.setUnsafeAlgebra();
1261
1262 switch (Opcode) {
1263 case Instruction::Add:
1264 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1265 break;
1266 case Instruction::Mul:
1267 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1268 break;
1269 case Instruction::And:
1270 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1271 break;
1272 case Instruction::Or:
1273 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1274 break;
1275 case Instruction::Xor:
1276 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1277 break;
1278 case Instruction::FAdd:
1279 BuildFunc = [&]() {
1280 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1281 cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1282 return Rdx;
1283 };
1284 break;
1285 case Instruction::FMul:
1286 BuildFunc = [&]() {
1287 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1288 cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1289 return Rdx;
1290 };
1291 break;
1292 case Instruction::ICmp:
1293 if (Flags.IsMaxOp) {
1294 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1295 BuildFunc = [&]() {
1296 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1297 };
1298 } else {
1299 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1300 BuildFunc = [&]() {
1301 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1302 };
1303 }
1304 break;
1305 case Instruction::FCmp:
1306 if (Flags.IsMaxOp) {
1307 MinMaxKind = RD::MRK_FloatMax;
1308 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1309 } else {
1310 MinMaxKind = RD::MRK_FloatMin;
1311 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1312 }
1313 break;
1314 default:
1315 llvm_unreachable("Unhandled opcode");
1316 break;
1317 }
1318 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1319 return BuildFunc();
1320 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1321}
1322
1323/// Create a vector reduction using a given recurrence descriptor.
1324Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1325 const TargetTransformInfo *TTI,
1326 RecurrenceDescriptor &Desc, Value *Src,
1327 bool NoNaN) {
1328 // TODO: Support in-order reductions based on the recurrence descriptor.
1329 RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1330 TargetTransformInfo::ReductionFlags Flags;
1331 Flags.NoNaN = NoNaN;
1332 auto getSimpleRdx = [&](unsigned Opc) {
1333 return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1334 };
1335 switch (RecKind) {
1336 case RecurrenceDescriptor::RK_FloatAdd:
1337 return getSimpleRdx(Instruction::FAdd);
1338 case RecurrenceDescriptor::RK_FloatMult:
1339 return getSimpleRdx(Instruction::FMul);
1340 case RecurrenceDescriptor::RK_IntegerAdd:
1341 return getSimpleRdx(Instruction::Add);
1342 case RecurrenceDescriptor::RK_IntegerMult:
1343 return getSimpleRdx(Instruction::Mul);
1344 case RecurrenceDescriptor::RK_IntegerAnd:
1345 return getSimpleRdx(Instruction::And);
1346 case RecurrenceDescriptor::RK_IntegerOr:
1347 return getSimpleRdx(Instruction::Or);
1348 case RecurrenceDescriptor::RK_IntegerXor:
1349 return getSimpleRdx(Instruction::Xor);
1350 case RecurrenceDescriptor::RK_IntegerMinMax: {
1351 switch (Desc.getMinMaxRecurrenceKind()) {
1352 case RecurrenceDescriptor::MRK_SIntMax:
1353 Flags.IsSigned = true;
1354 Flags.IsMaxOp = true;
1355 break;
1356 case RecurrenceDescriptor::MRK_UIntMax:
1357 Flags.IsMaxOp = true;
1358 break;
1359 case RecurrenceDescriptor::MRK_SIntMin:
1360 Flags.IsSigned = true;
1361 break;
1362 case RecurrenceDescriptor::MRK_UIntMin:
1363 break;
1364 default:
1365 llvm_unreachable("Unhandled MRK");
1366 }
1367 return getSimpleRdx(Instruction::ICmp);
1368 }
1369 case RecurrenceDescriptor::RK_FloatMinMax: {
1370 Flags.IsMaxOp =
1371 Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1372 return getSimpleRdx(Instruction::FCmp);
1373 }
1374 default:
1375 llvm_unreachable("Unhandled RecKind");
1376 }
1377}
1378
1379void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
1380 if (auto *VecOp = dyn_cast<Instruction>(I)) {
1381 if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
1382 // VecOVp is initialized to the 0th scalar, so start counting from index
1383 // '1'.
1384 VecOp->copyIRFlags(I0);
1385 for (int i = 1, e = VL.size(); i < e; ++i) {
1386 if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
1387 VecOp->andIRFlags(Scalar);
1388 }
1389 }
1390 }
1391}