blob: 6ed9d551352ce09a64cea19524431c81d12eb567 [file] [log] [blame]
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple VLIW packetizer using DFA. The packetizer works on
11// machine basic blocks. For each instruction I in BB, the packetizer consults
12// the DFA to see if machine resources are available to execute I. If so, the
13// packetizer checks if I depends on any instruction J in the current packet.
14// If no dependency is found, I is added to current packet and machine resource
15// is marked as taken. If any dependency is found, a target API call is made to
16// prune the dependence.
17//
18//===----------------------------------------------------------------------===//
19#define DEBUG_TYPE "packets"
Chandler Carruthed0881b2012-12-03 16:50:05 +000020#include "llvm/CodeGen/DFAPacketizer.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000021#include "llvm/CodeGen/Passes.h"
Jyotsna Verma84256432013-03-01 17:37:13 +000022#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineLoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/CodeGen/ScheduleDAG.h"
26#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Jyotsna Verma84256432013-03-01 17:37:13 +000027#include "llvm/CodeGen/LatencyPriorityQueue.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/CodeGen/SchedulerRegistry.h"
Jyotsna Verma84256432013-03-01 17:37:13 +000029#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/MachineFunctionAnalysis.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000034#include "llvm/Target/TargetMachine.h"
Jyotsna Verma84256432013-03-01 17:37:13 +000035#include "llvm/Target/TargetInstrInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000036#include "llvm/Target/TargetRegisterInfo.h"
Jyotsna Verma84256432013-03-01 17:37:13 +000037#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/MC/MCInstrItineraries.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "Hexagon.h"
45#include "HexagonTargetMachine.h"
46#include "HexagonRegisterInfo.h"
47#include "HexagonSubtarget.h"
48#include "HexagonMachineFunctionInfo.h"
49
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000050#include <map>
Jyotsna Verma1d297502013-05-02 15:39:30 +000051#include <vector>
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000052
53using namespace llvm;
54
Jyotsna Verma1d297502013-05-02 15:39:30 +000055static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56 cl::ZeroOrMore, cl::Hidden, cl::init(true),
57 cl::desc("Allow non-solo packetization of volatile memory references"));
58
Jyotsna Verma1d297502013-05-02 15:39:30 +000059namespace llvm {
60 void initializeHexagonPacketizerPass(PassRegistry&);
61}
62
63
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000064namespace {
65 class HexagonPacketizer : public MachineFunctionPass {
66
67 public:
68 static char ID;
Jyotsna Verma1d297502013-05-02 15:39:30 +000069 HexagonPacketizer() : MachineFunctionPass(ID) {
70 initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71 }
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000072
73 void getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesCFG();
75 AU.addRequired<MachineDominatorTree>();
Jyotsna Verma1d297502013-05-02 15:39:30 +000076 AU.addRequired<MachineBranchProbabilityInfo>();
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000077 AU.addPreserved<MachineDominatorTree>();
78 AU.addRequired<MachineLoopInfo>();
79 AU.addPreserved<MachineLoopInfo>();
80 MachineFunctionPass::getAnalysisUsage(AU);
81 }
82
83 const char *getPassName() const {
84 return "Hexagon Packetizer";
85 }
86
87 bool runOnMachineFunction(MachineFunction &Fn);
88 };
89 char HexagonPacketizer::ID = 0;
90
91 class HexagonPacketizerList : public VLIWPacketizerList {
92
93 private:
94
95 // Has the instruction been promoted to a dot-new instruction.
96 bool PromotedToDotNew;
97
98 // Has the instruction been glued to allocframe.
99 bool GlueAllocframeStore;
100
101 // Has the feeder instruction been glued to new value jump.
102 bool GlueToNewValueJump;
103
104 // Check if there is a dependence between some instruction already in this
105 // packet and this instruction.
106 bool Dependence;
107
108 // Only check for dependence if there are resources available to
109 // schedule this instruction.
110 bool FoundSequentialDependence;
111
Jyotsna Verma1d297502013-05-02 15:39:30 +0000112 /// \brief A handle to the branch probability pass.
113 const MachineBranchProbabilityInfo *MBPI;
114
115 // Track MIs with ignored dependece.
116 std::vector<MachineInstr*> IgnoreDepMIs;
117
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000118 public:
119 // Ctor.
120 HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
Jyotsna Verma1d297502013-05-02 15:39:30 +0000121 MachineDominatorTree &MDT,
122 const MachineBranchProbabilityInfo *MBPI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000123
124 // initPacketizerState - initialize some internal flags.
125 void initPacketizerState();
126
127 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
128 bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB);
129
130 // isSoloInstruction - return true if instruction MI can not be packetized
131 // with any other instruction, which means that MI itself is a packet.
132 bool isSoloInstruction(MachineInstr *MI);
133
134 // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
135 // together.
136 bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ);
137
138 // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
139 // and SUJ.
140 bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ);
141
142 MachineBasicBlock::iterator addToPacket(MachineInstr *MI);
143 private:
144 bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
145 bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
Jyotsna Verma1d297502013-05-02 15:39:30 +0000146 MachineBasicBlock::iterator &MII,
147 const TargetRegisterClass* RC);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000148 bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
Jyotsna Verma1d297502013-05-02 15:39:30 +0000149 unsigned DepReg,
150 std::map <MachineInstr*, SUnit*> MIToSUnit,
151 MachineBasicBlock::iterator &MII,
152 const TargetRegisterClass* RC);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000153 bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
Jyotsna Verma1d297502013-05-02 15:39:30 +0000154 unsigned DepReg,
155 std::map <MachineInstr*, SUnit*> MIToSUnit,
156 MachineBasicBlock::iterator &MII);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000157 bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
Jyotsna Verma1d297502013-05-02 15:39:30 +0000158 unsigned DepReg,
159 std::map <MachineInstr*, SUnit*> MIToSUnit);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000160 bool DemoteToDotOld(MachineInstr* MI);
161 bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
162 std::map <MachineInstr*, SUnit*> MIToSUnit);
163 bool RestrictingDepExistInPacket(MachineInstr*,
164 unsigned, std::map <MachineInstr*, SUnit*>);
165 bool isNewifiable(MachineInstr* MI);
166 bool isCondInst(MachineInstr* MI);
167 bool IsNewifyStore (MachineInstr* MI);
168 bool tryAllocateResourcesForConstExt(MachineInstr* MI);
169 bool canReserveResourcesForConstExt(MachineInstr *MI);
170 void reserveResourcesForConstExt(MachineInstr* MI);
171 bool isNewValueInst(MachineInstr* MI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000172 };
173}
174
Jyotsna Verma1d297502013-05-02 15:39:30 +0000175INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
176 false, false)
177INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
178INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
179INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
Krzysztof Parzyszek18ee1192013-05-06 21:58:00 +0000180INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
Jyotsna Verma1d297502013-05-02 15:39:30 +0000181INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
182 false, false)
183
184
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000185// HexagonPacketizerList Ctor.
186HexagonPacketizerList::HexagonPacketizerList(
Jyotsna Verma1d297502013-05-02 15:39:30 +0000187 MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
188 const MachineBranchProbabilityInfo *MBPI)
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000189 : VLIWPacketizerList(MF, MLI, MDT, true){
Jyotsna Verma1d297502013-05-02 15:39:30 +0000190 this->MBPI = MBPI;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000191}
192
193bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
194 const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
195 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
196 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
Jyotsna Verma1d297502013-05-02 15:39:30 +0000197 const MachineBranchProbabilityInfo *MBPI =
198 &getAnalysis<MachineBranchProbabilityInfo>();
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000199 // Instantiate the packetizer.
Jyotsna Verma1d297502013-05-02 15:39:30 +0000200 HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000201
202 // DFA state table should not be empty.
203 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
204
205 //
206 // Loop over all basic blocks and remove KILL pseudo-instructions
207 // These instructions confuse the dependence analysis. Consider:
208 // D0 = ... (Insn 0)
209 // R0 = KILL R0, D0 (Insn 1)
210 // R0 = ... (Insn 2)
211 // Here, Insn 1 will result in the dependence graph not emitting an output
212 // dependence between Insn 0 and Insn 2. This can lead to incorrect
213 // packetization
214 //
215 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
216 MBB != MBBe; ++MBB) {
217 MachineBasicBlock::iterator End = MBB->end();
218 MachineBasicBlock::iterator MI = MBB->begin();
219 while (MI != End) {
220 if (MI->isKill()) {
221 MachineBasicBlock::iterator DeleteMI = MI;
222 ++MI;
223 MBB->erase(DeleteMI);
224 End = MBB->end();
225 continue;
226 }
227 ++MI;
228 }
229 }
230
231 // Loop over all of the basic blocks.
232 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
233 MBB != MBBe; ++MBB) {
234 // Find scheduling regions and schedule / packetize each region.
235 unsigned RemainingCount = MBB->size();
236 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
237 RegionEnd != MBB->begin();) {
238 // The next region starts above the previous region. Look backward in the
239 // instruction stream until we find the nearest boundary.
240 MachineBasicBlock::iterator I = RegionEnd;
241 for(;I != MBB->begin(); --I, --RemainingCount) {
242 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, Fn))
243 break;
244 }
245 I = MBB->begin();
246
247 // Skip empty scheduling regions.
248 if (I == RegionEnd) {
249 RegionEnd = llvm::prior(RegionEnd);
250 --RemainingCount;
251 continue;
252 }
253 // Skip regions with one instruction.
254 if (I == llvm::prior(RegionEnd)) {
255 RegionEnd = llvm::prior(RegionEnd);
256 continue;
257 }
258
259 Packetizer.PacketizeMIs(MBB, I, RegionEnd);
260 RegionEnd = I;
261 }
262 }
263
264 return true;
265}
266
267
268static bool IsIndirectCall(MachineInstr* MI) {
269 return ((MI->getOpcode() == Hexagon::CALLR) ||
270 (MI->getOpcode() == Hexagon::CALLRv3));
271}
272
273// Reserve resources for constant extender. Trigure an assertion if
274// reservation fail.
275void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
276 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
Jyotsna Vermabf75aaf2012-12-20 06:45:39 +0000277 MachineFunction *MF = MI->getParent()->getParent();
278 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
279 MI->getDebugLoc());
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000280
281 if (ResourceTracker->canReserveResources(PseudoMI)) {
282 ResourceTracker->reserveResources(PseudoMI);
283 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
284 } else {
285 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
286 llvm_unreachable("can not reserve resources for constant extender.");
287 }
288 return;
289}
290
291bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
292 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
Jyotsna Verma84256432013-03-01 17:37:13 +0000293 assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000294 "Should only be called for constant extended instructions");
295 MachineFunction *MF = MI->getParent()->getParent();
Jyotsna Vermabf75aaf2012-12-20 06:45:39 +0000296 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000297 MI->getDebugLoc());
298 bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
299 MF->DeleteMachineInstr(PseudoMI);
300 return CanReserve;
301}
302
303// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
304// true, otherwise, return false.
305bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
306 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
Jyotsna Vermabf75aaf2012-12-20 06:45:39 +0000307 MachineFunction *MF = MI->getParent()->getParent();
308 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
309 MI->getDebugLoc());
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000310
311 if (ResourceTracker->canReserveResources(PseudoMI)) {
312 ResourceTracker->reserveResources(PseudoMI);
313 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
314 return true;
315 } else {
316 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
317 return false;
318 }
319}
320
321
322bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
323 SDep::Kind DepType,
324 unsigned DepReg) {
325
326 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
327 const HexagonRegisterInfo* QRI =
328 (const HexagonRegisterInfo *) TM.getRegisterInfo();
329
330 // Check for lr dependence
331 if (DepReg == QRI->getRARegister()) {
332 return true;
333 }
334
335 if (QII->isDeallocRet(MI)) {
336 if (DepReg == QRI->getFrameRegister() ||
337 DepReg == QRI->getStackRegister())
338 return true;
339 }
340
341 // Check if this is a predicate dependence
342 const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
343 if (RC == &Hexagon::PredRegsRegClass) {
344 return true;
345 }
346
347 //
348 // Lastly check for an operand used in an indirect call
349 // If we had an attribute for checking if an instruction is an indirect call,
350 // then we could have avoided this relatively brittle implementation of
351 // IsIndirectCall()
352 //
353 // Assumes that the first operand of the CALLr is the function address
354 //
355 if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
356 MachineOperand MO = MI->getOperand(0);
357 if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
358 return true;
359 }
360 }
361
362 return false;
363}
364
365static bool IsRegDependence(const SDep::Kind DepType) {
366 return (DepType == SDep::Data || DepType == SDep::Anti ||
367 DepType == SDep::Output);
368}
369
370static bool IsDirectJump(MachineInstr* MI) {
371 return (MI->getOpcode() == Hexagon::JMP);
372}
373
374static bool IsSchedBarrier(MachineInstr* MI) {
375 switch (MI->getOpcode()) {
376 case Hexagon::BARRIER:
377 return true;
378 }
379 return false;
380}
381
382static bool IsControlFlow(MachineInstr* MI) {
383 return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
384}
385
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000386// Function returns true if an instruction can be promoted to the new-value
387// store. It will always return false for v2 and v3.
388// It lists all the conditional and unconditional stores that can be promoted
389// to the new-value stores.
390
391bool HexagonPacketizerList::IsNewifyStore (MachineInstr* MI) {
392 const HexagonRegisterInfo* QRI =
393 (const HexagonRegisterInfo *) TM.getRegisterInfo();
394 switch (MI->getOpcode())
395 {
396 // store byte
397 case Hexagon::STrib:
398 case Hexagon::STrib_indexed:
399 case Hexagon::STrib_indexed_shl_V4:
400 case Hexagon::STrib_shl_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000401 case Hexagon::STb_GP_V4:
402 case Hexagon::POST_STbri:
403 case Hexagon::STrib_cPt:
404 case Hexagon::STrib_cdnPt_V4:
405 case Hexagon::STrib_cNotPt:
406 case Hexagon::STrib_cdnNotPt_V4:
407 case Hexagon::STrib_indexed_cPt:
408 case Hexagon::STrib_indexed_cdnPt_V4:
409 case Hexagon::STrib_indexed_cNotPt:
410 case Hexagon::STrib_indexed_cdnNotPt_V4:
411 case Hexagon::STrib_indexed_shl_cPt_V4:
412 case Hexagon::STrib_indexed_shl_cdnPt_V4:
413 case Hexagon::STrib_indexed_shl_cNotPt_V4:
414 case Hexagon::STrib_indexed_shl_cdnNotPt_V4:
415 case Hexagon::POST_STbri_cPt:
416 case Hexagon::POST_STbri_cdnPt_V4:
417 case Hexagon::POST_STbri_cNotPt:
418 case Hexagon::POST_STbri_cdnNotPt_V4:
419 case Hexagon::STb_GP_cPt_V4:
420 case Hexagon::STb_GP_cNotPt_V4:
421 case Hexagon::STb_GP_cdnPt_V4:
422 case Hexagon::STb_GP_cdnNotPt_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000423
424 // store halfword
425 case Hexagon::STrih:
426 case Hexagon::STrih_indexed:
427 case Hexagon::STrih_indexed_shl_V4:
428 case Hexagon::STrih_shl_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000429 case Hexagon::STh_GP_V4:
430 case Hexagon::POST_SThri:
431 case Hexagon::STrih_cPt:
432 case Hexagon::STrih_cdnPt_V4:
433 case Hexagon::STrih_cNotPt:
434 case Hexagon::STrih_cdnNotPt_V4:
435 case Hexagon::STrih_indexed_cPt:
436 case Hexagon::STrih_indexed_cdnPt_V4:
437 case Hexagon::STrih_indexed_cNotPt:
438 case Hexagon::STrih_indexed_cdnNotPt_V4:
439 case Hexagon::STrih_indexed_shl_cPt_V4:
440 case Hexagon::STrih_indexed_shl_cdnPt_V4:
441 case Hexagon::STrih_indexed_shl_cNotPt_V4:
442 case Hexagon::STrih_indexed_shl_cdnNotPt_V4:
443 case Hexagon::POST_SThri_cPt:
444 case Hexagon::POST_SThri_cdnPt_V4:
445 case Hexagon::POST_SThri_cNotPt:
446 case Hexagon::POST_SThri_cdnNotPt_V4:
447 case Hexagon::STh_GP_cPt_V4:
448 case Hexagon::STh_GP_cNotPt_V4:
449 case Hexagon::STh_GP_cdnPt_V4:
450 case Hexagon::STh_GP_cdnNotPt_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000451
452 // store word
453 case Hexagon::STriw:
454 case Hexagon::STriw_indexed:
455 case Hexagon::STriw_indexed_shl_V4:
456 case Hexagon::STriw_shl_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000457 case Hexagon::STw_GP_V4:
458 case Hexagon::POST_STwri:
459 case Hexagon::STriw_cPt:
460 case Hexagon::STriw_cdnPt_V4:
461 case Hexagon::STriw_cNotPt:
462 case Hexagon::STriw_cdnNotPt_V4:
463 case Hexagon::STriw_indexed_cPt:
464 case Hexagon::STriw_indexed_cdnPt_V4:
465 case Hexagon::STriw_indexed_cNotPt:
466 case Hexagon::STriw_indexed_cdnNotPt_V4:
467 case Hexagon::STriw_indexed_shl_cPt_V4:
468 case Hexagon::STriw_indexed_shl_cdnPt_V4:
469 case Hexagon::STriw_indexed_shl_cNotPt_V4:
470 case Hexagon::STriw_indexed_shl_cdnNotPt_V4:
471 case Hexagon::POST_STwri_cPt:
472 case Hexagon::POST_STwri_cdnPt_V4:
473 case Hexagon::POST_STwri_cNotPt:
474 case Hexagon::POST_STwri_cdnNotPt_V4:
475 case Hexagon::STw_GP_cPt_V4:
476 case Hexagon::STw_GP_cNotPt_V4:
477 case Hexagon::STw_GP_cdnPt_V4:
478 case Hexagon::STw_GP_cdnNotPt_V4:
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000479 return QRI->Subtarget.hasV4TOps();
480 }
481 return false;
482}
483
484static bool IsLoopN(MachineInstr *MI) {
485 return (MI->getOpcode() == Hexagon::LOOP0_i ||
486 MI->getOpcode() == Hexagon::LOOP0_r);
487}
488
489/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
490/// callee-saved register.
491static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
492 const TargetRegisterInfo *TRI) {
493 for (const uint16_t *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
494 unsigned CalleeSavedReg = *CSR;
495 if (MI->modifiesRegister(CalleeSavedReg, TRI))
496 return true;
497 }
498 return false;
499}
500
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000501// Returns true if an instruction can be promoted to .new predicate
502// or new-value store.
503bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
504 if ( isCondInst(MI) || IsNewifyStore(MI))
505 return true;
506 else
507 return false;
508}
509
510bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
511 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
512 const MCInstrDesc& TID = MI->getDesc();
513 // bug 5670: until that is fixed,
514 // this portion is disabled.
515 if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) ||
516 || QII->isConditionalTransfer(MI)
517 || QII->isConditionalALU32(MI)
518 || QII->isConditionalLoad(MI)
519 || QII->isConditionalStore(MI)) {
520 return true;
521 }
522 return false;
523}
524
Brendon Cahoonf6b687e2012-05-14 19:35:42 +0000525
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000526// Promote an instructiont to its .new form.
527// At this time, we have already made a call to CanPromoteToDotNew
528// and made sure that it can *indeed* be promoted.
529bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
530 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
531 const TargetRegisterClass* RC) {
532
533 assert (DepType == SDep::Data);
534 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
535
536 int NewOpcode;
537 if (RC == &Hexagon::PredRegsRegClass)
Jyotsna Verma00681dc2013-05-09 19:16:07 +0000538 NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000539 else
Jyotsna Verma300f0b92013-05-10 20:27:34 +0000540 NewOpcode = QII->GetDotNewOp(MI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000541 MI->setDesc(QII->get(NewOpcode));
542
543 return true;
544}
545
546// Returns the most basic instruction for the .new predicated instructions and
547// new-value stores.
548// For example, all of the following instructions will be converted back to the
549// same instruction:
550// 1) if (p0.new) memw(R0+#0) = R1.new --->
551// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
552// 3) if (p0.new) memw(R0+#0) = R1 --->
553//
554// To understand the translation of instruction 1 to its original form, consider
555// a packet with 3 instructions.
556// { p0 = cmp.eq(R0,R1)
557// if (p0.new) R2 = add(R3, R4)
558// R5 = add (R3, R1)
559// }
560// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
561//
562// This instruction can be part of the previous packet only if both p0 and R2
563// are promoted to .new values. This promotion happens in steps, first
564// predicate register is promoted to .new and in the next iteration R2 is
565// promoted. Therefore, in case of dependence check failure (due to R5) during
566// next iteration, it should be converted back to its most basic form.
567
568static int GetDotOldOp(const int opc) {
569 switch (opc) {
570 default: llvm_unreachable("Unknown .old type");
571 case Hexagon::TFR_cdnPt:
572 return Hexagon::TFR_cPt;
573
574 case Hexagon::TFR_cdnNotPt:
575 return Hexagon::TFR_cNotPt;
576
577 case Hexagon::TFRI_cdnPt:
578 return Hexagon::TFRI_cPt;
579
580 case Hexagon::TFRI_cdnNotPt:
581 return Hexagon::TFRI_cNotPt;
582
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000583 case Hexagon::JMP_tnew_t:
584 return Hexagon::JMP_t;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000585
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000586 case Hexagon::JMP_fnew_t:
587 return Hexagon::JMP_f;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000588
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000589 case Hexagon::JMPR_tnew_tV3:
590 return Hexagon::JMPR_t;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000591
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000592 case Hexagon::JMPR_fnew_tV3:
593 return Hexagon::JMPR_f;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000594
595 // Load double word
596
597 case Hexagon::LDrid_cdnPt :
598 return Hexagon::LDrid_cPt;
599
600 case Hexagon::LDrid_cdnNotPt :
601 return Hexagon::LDrid_cNotPt;
602
603 case Hexagon::LDrid_indexed_cdnPt :
604 return Hexagon::LDrid_indexed_cPt;
605
606 case Hexagon::LDrid_indexed_cdnNotPt :
607 return Hexagon::LDrid_indexed_cNotPt;
608
609 case Hexagon::POST_LDrid_cdnPt_V4 :
610 return Hexagon::POST_LDrid_cPt;
611
612 case Hexagon::POST_LDrid_cdnNotPt_V4 :
613 return Hexagon::POST_LDrid_cNotPt;
614
615 // Load word
616
617 case Hexagon::LDriw_cdnPt :
618 return Hexagon::LDriw_cPt;
619
620 case Hexagon::LDriw_cdnNotPt :
621 return Hexagon::LDriw_cNotPt;
622
623 case Hexagon::LDriw_indexed_cdnPt :
624 return Hexagon::LDriw_indexed_cPt;
625
626 case Hexagon::LDriw_indexed_cdnNotPt :
627 return Hexagon::LDriw_indexed_cNotPt;
628
629 case Hexagon::POST_LDriw_cdnPt_V4 :
630 return Hexagon::POST_LDriw_cPt;
631
632 case Hexagon::POST_LDriw_cdnNotPt_V4 :
633 return Hexagon::POST_LDriw_cNotPt;
634
635 // Load half
636
637 case Hexagon::LDrih_cdnPt :
638 return Hexagon::LDrih_cPt;
639
640 case Hexagon::LDrih_cdnNotPt :
641 return Hexagon::LDrih_cNotPt;
642
643 case Hexagon::LDrih_indexed_cdnPt :
644 return Hexagon::LDrih_indexed_cPt;
645
646 case Hexagon::LDrih_indexed_cdnNotPt :
647 return Hexagon::LDrih_indexed_cNotPt;
648
649 case Hexagon::POST_LDrih_cdnPt_V4 :
650 return Hexagon::POST_LDrih_cPt;
651
652 case Hexagon::POST_LDrih_cdnNotPt_V4 :
653 return Hexagon::POST_LDrih_cNotPt;
654
655 // Load byte
656
657 case Hexagon::LDrib_cdnPt :
658 return Hexagon::LDrib_cPt;
659
660 case Hexagon::LDrib_cdnNotPt :
661 return Hexagon::LDrib_cNotPt;
662
663 case Hexagon::LDrib_indexed_cdnPt :
664 return Hexagon::LDrib_indexed_cPt;
665
666 case Hexagon::LDrib_indexed_cdnNotPt :
667 return Hexagon::LDrib_indexed_cNotPt;
668
669 case Hexagon::POST_LDrib_cdnPt_V4 :
670 return Hexagon::POST_LDrib_cPt;
671
672 case Hexagon::POST_LDrib_cdnNotPt_V4 :
673 return Hexagon::POST_LDrib_cNotPt;
674
675 // Load unsigned half
676
677 case Hexagon::LDriuh_cdnPt :
678 return Hexagon::LDriuh_cPt;
679
680 case Hexagon::LDriuh_cdnNotPt :
681 return Hexagon::LDriuh_cNotPt;
682
683 case Hexagon::LDriuh_indexed_cdnPt :
684 return Hexagon::LDriuh_indexed_cPt;
685
686 case Hexagon::LDriuh_indexed_cdnNotPt :
687 return Hexagon::LDriuh_indexed_cNotPt;
688
689 case Hexagon::POST_LDriuh_cdnPt_V4 :
690 return Hexagon::POST_LDriuh_cPt;
691
692 case Hexagon::POST_LDriuh_cdnNotPt_V4 :
693 return Hexagon::POST_LDriuh_cNotPt;
694
695 // Load unsigned byte
696 case Hexagon::LDriub_cdnPt :
697 return Hexagon::LDriub_cPt;
698
699 case Hexagon::LDriub_cdnNotPt :
700 return Hexagon::LDriub_cNotPt;
701
702 case Hexagon::LDriub_indexed_cdnPt :
703 return Hexagon::LDriub_indexed_cPt;
704
705 case Hexagon::LDriub_indexed_cdnNotPt :
706 return Hexagon::LDriub_indexed_cNotPt;
707
708 case Hexagon::POST_LDriub_cdnPt_V4 :
709 return Hexagon::POST_LDriub_cPt;
710
711 case Hexagon::POST_LDriub_cdnNotPt_V4 :
712 return Hexagon::POST_LDriub_cNotPt;
713
714 // V4 indexed+scaled Load
715
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000716 case Hexagon::LDrid_indexed_shl_cdnPt_V4 :
717 return Hexagon::LDrid_indexed_shl_cPt_V4;
718
719 case Hexagon::LDrid_indexed_shl_cdnNotPt_V4 :
720 return Hexagon::LDrid_indexed_shl_cNotPt_V4;
721
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000722 case Hexagon::LDrib_indexed_shl_cdnPt_V4 :
723 return Hexagon::LDrib_indexed_shl_cPt_V4;
724
725 case Hexagon::LDrib_indexed_shl_cdnNotPt_V4 :
726 return Hexagon::LDrib_indexed_shl_cNotPt_V4;
727
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000728 case Hexagon::LDriub_indexed_shl_cdnPt_V4 :
729 return Hexagon::LDriub_indexed_shl_cPt_V4;
730
731 case Hexagon::LDriub_indexed_shl_cdnNotPt_V4 :
732 return Hexagon::LDriub_indexed_shl_cNotPt_V4;
733
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000734 case Hexagon::LDrih_indexed_shl_cdnPt_V4 :
735 return Hexagon::LDrih_indexed_shl_cPt_V4;
736
737 case Hexagon::LDrih_indexed_shl_cdnNotPt_V4 :
738 return Hexagon::LDrih_indexed_shl_cNotPt_V4;
739
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000740 case Hexagon::LDriuh_indexed_shl_cdnPt_V4 :
741 return Hexagon::LDriuh_indexed_shl_cPt_V4;
742
743 case Hexagon::LDriuh_indexed_shl_cdnNotPt_V4 :
744 return Hexagon::LDriuh_indexed_shl_cNotPt_V4;
745
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000746 case Hexagon::LDriw_indexed_shl_cdnPt_V4 :
747 return Hexagon::LDriw_indexed_shl_cPt_V4;
748
749 case Hexagon::LDriw_indexed_shl_cdnNotPt_V4 :
750 return Hexagon::LDriw_indexed_shl_cNotPt_V4;
751
752 // V4 global address load
753
754 case Hexagon::LDd_GP_cdnPt_V4:
755 return Hexagon::LDd_GP_cPt_V4;
756
757 case Hexagon::LDd_GP_cdnNotPt_V4:
758 return Hexagon::LDd_GP_cNotPt_V4;
759
760 case Hexagon::LDb_GP_cdnPt_V4:
761 return Hexagon::LDb_GP_cPt_V4;
762
763 case Hexagon::LDb_GP_cdnNotPt_V4:
764 return Hexagon::LDb_GP_cNotPt_V4;
765
766 case Hexagon::LDub_GP_cdnPt_V4:
767 return Hexagon::LDub_GP_cPt_V4;
768
769 case Hexagon::LDub_GP_cdnNotPt_V4:
770 return Hexagon::LDub_GP_cNotPt_V4;
771
772 case Hexagon::LDh_GP_cdnPt_V4:
773 return Hexagon::LDh_GP_cPt_V4;
774
775 case Hexagon::LDh_GP_cdnNotPt_V4:
776 return Hexagon::LDh_GP_cNotPt_V4;
777
778 case Hexagon::LDuh_GP_cdnPt_V4:
779 return Hexagon::LDuh_GP_cPt_V4;
780
781 case Hexagon::LDuh_GP_cdnNotPt_V4:
782 return Hexagon::LDuh_GP_cNotPt_V4;
783
784 case Hexagon::LDw_GP_cdnPt_V4:
785 return Hexagon::LDw_GP_cPt_V4;
786
787 case Hexagon::LDw_GP_cdnNotPt_V4:
788 return Hexagon::LDw_GP_cNotPt_V4;
789
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000790 // Conditional add
791
792 case Hexagon::ADD_ri_cdnPt :
793 return Hexagon::ADD_ri_cPt;
794 case Hexagon::ADD_ri_cdnNotPt :
795 return Hexagon::ADD_ri_cNotPt;
796
797 case Hexagon::ADD_rr_cdnPt :
798 return Hexagon::ADD_rr_cPt;
799 case Hexagon::ADD_rr_cdnNotPt:
800 return Hexagon::ADD_rr_cNotPt;
801
802 // Conditional logical Operations
803
804 case Hexagon::XOR_rr_cdnPt :
805 return Hexagon::XOR_rr_cPt;
806 case Hexagon::XOR_rr_cdnNotPt :
807 return Hexagon::XOR_rr_cNotPt;
808
809 case Hexagon::AND_rr_cdnPt :
810 return Hexagon::AND_rr_cPt;
811 case Hexagon::AND_rr_cdnNotPt :
812 return Hexagon::AND_rr_cNotPt;
813
814 case Hexagon::OR_rr_cdnPt :
815 return Hexagon::OR_rr_cPt;
816 case Hexagon::OR_rr_cdnNotPt :
817 return Hexagon::OR_rr_cNotPt;
818
819 // Conditional Subtract
820
821 case Hexagon::SUB_rr_cdnPt :
822 return Hexagon::SUB_rr_cPt;
823 case Hexagon::SUB_rr_cdnNotPt :
824 return Hexagon::SUB_rr_cNotPt;
825
826 // Conditional combine
827
828 case Hexagon::COMBINE_rr_cdnPt :
829 return Hexagon::COMBINE_rr_cPt;
830 case Hexagon::COMBINE_rr_cdnNotPt :
831 return Hexagon::COMBINE_rr_cNotPt;
832
833// Conditional shift operations
834
835 case Hexagon::ASLH_cdnPt_V4 :
836 return Hexagon::ASLH_cPt_V4;
837 case Hexagon::ASLH_cdnNotPt_V4 :
838 return Hexagon::ASLH_cNotPt_V4;
839
840 case Hexagon::ASRH_cdnPt_V4 :
841 return Hexagon::ASRH_cPt_V4;
842 case Hexagon::ASRH_cdnNotPt_V4 :
843 return Hexagon::ASRH_cNotPt_V4;
844
845 case Hexagon::SXTB_cdnPt_V4 :
846 return Hexagon::SXTB_cPt_V4;
847 case Hexagon::SXTB_cdnNotPt_V4 :
848 return Hexagon::SXTB_cNotPt_V4;
849
850 case Hexagon::SXTH_cdnPt_V4 :
851 return Hexagon::SXTH_cPt_V4;
852 case Hexagon::SXTH_cdnNotPt_V4 :
853 return Hexagon::SXTH_cNotPt_V4;
854
855 case Hexagon::ZXTB_cdnPt_V4 :
856 return Hexagon::ZXTB_cPt_V4;
857 case Hexagon::ZXTB_cdnNotPt_V4 :
858 return Hexagon::ZXTB_cNotPt_V4;
859
860 case Hexagon::ZXTH_cdnPt_V4 :
861 return Hexagon::ZXTH_cPt_V4;
862 case Hexagon::ZXTH_cdnNotPt_V4 :
863 return Hexagon::ZXTH_cNotPt_V4;
864
865 // Store byte
866
867 case Hexagon::STrib_imm_cdnPt_V4 :
868 return Hexagon::STrib_imm_cPt_V4;
869
870 case Hexagon::STrib_imm_cdnNotPt_V4 :
871 return Hexagon::STrib_imm_cNotPt_V4;
872
873 case Hexagon::STrib_cdnPt_nv_V4 :
874 case Hexagon::STrib_cPt_nv_V4 :
875 case Hexagon::STrib_cdnPt_V4 :
876 return Hexagon::STrib_cPt;
877
878 case Hexagon::STrib_cdnNotPt_nv_V4 :
879 case Hexagon::STrib_cNotPt_nv_V4 :
880 case Hexagon::STrib_cdnNotPt_V4 :
881 return Hexagon::STrib_cNotPt;
882
883 case Hexagon::STrib_indexed_cdnPt_V4 :
884 case Hexagon::STrib_indexed_cPt_nv_V4 :
885 case Hexagon::STrib_indexed_cdnPt_nv_V4 :
886 return Hexagon::STrib_indexed_cPt;
887
888 case Hexagon::STrib_indexed_cdnNotPt_V4 :
889 case Hexagon::STrib_indexed_cNotPt_nv_V4 :
890 case Hexagon::STrib_indexed_cdnNotPt_nv_V4 :
891 return Hexagon::STrib_indexed_cNotPt;
892
893 case Hexagon::STrib_indexed_shl_cdnPt_nv_V4:
894 case Hexagon::STrib_indexed_shl_cPt_nv_V4 :
895 case Hexagon::STrib_indexed_shl_cdnPt_V4 :
896 return Hexagon::STrib_indexed_shl_cPt_V4;
897
898 case Hexagon::STrib_indexed_shl_cdnNotPt_nv_V4:
899 case Hexagon::STrib_indexed_shl_cNotPt_nv_V4 :
900 case Hexagon::STrib_indexed_shl_cdnNotPt_V4 :
901 return Hexagon::STrib_indexed_shl_cNotPt_V4;
902
903 case Hexagon::POST_STbri_cdnPt_nv_V4 :
904 case Hexagon::POST_STbri_cPt_nv_V4 :
905 case Hexagon::POST_STbri_cdnPt_V4 :
906 return Hexagon::POST_STbri_cPt;
907
908 case Hexagon::POST_STbri_cdnNotPt_nv_V4 :
909 case Hexagon::POST_STbri_cNotPt_nv_V4:
910 case Hexagon::POST_STbri_cdnNotPt_V4 :
911 return Hexagon::POST_STbri_cNotPt;
912
913 case Hexagon::STb_GP_cdnPt_nv_V4:
914 case Hexagon::STb_GP_cdnPt_V4:
915 case Hexagon::STb_GP_cPt_nv_V4:
916 return Hexagon::STb_GP_cPt_V4;
917
918 case Hexagon::STb_GP_cdnNotPt_nv_V4:
919 case Hexagon::STb_GP_cdnNotPt_V4:
920 case Hexagon::STb_GP_cNotPt_nv_V4:
921 return Hexagon::STb_GP_cNotPt_V4;
922
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000923 // Store new-value byte - unconditional
924 case Hexagon::STrib_nv_V4:
925 return Hexagon::STrib;
926
927 case Hexagon::STrib_indexed_nv_V4:
928 return Hexagon::STrib_indexed;
929
930 case Hexagon::STrib_indexed_shl_nv_V4:
931 return Hexagon::STrib_indexed_shl_V4;
932
933 case Hexagon::STrib_shl_nv_V4:
934 return Hexagon::STrib_shl_V4;
935
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000936 case Hexagon::STb_GP_nv_V4:
937 return Hexagon::STb_GP_V4;
938
939 case Hexagon::POST_STbri_nv_V4:
940 return Hexagon::POST_STbri;
941
942 // Store halfword
943 case Hexagon::STrih_imm_cdnPt_V4 :
944 return Hexagon::STrih_imm_cPt_V4;
945
946 case Hexagon::STrih_imm_cdnNotPt_V4 :
947 return Hexagon::STrih_imm_cNotPt_V4;
948
949 case Hexagon::STrih_cdnPt_nv_V4 :
950 case Hexagon::STrih_cPt_nv_V4 :
951 case Hexagon::STrih_cdnPt_V4 :
952 return Hexagon::STrih_cPt;
953
954 case Hexagon::STrih_cdnNotPt_nv_V4 :
955 case Hexagon::STrih_cNotPt_nv_V4 :
956 case Hexagon::STrih_cdnNotPt_V4 :
957 return Hexagon::STrih_cNotPt;
958
959 case Hexagon::STrih_indexed_cdnPt_nv_V4:
960 case Hexagon::STrih_indexed_cPt_nv_V4 :
961 case Hexagon::STrih_indexed_cdnPt_V4 :
962 return Hexagon::STrih_indexed_cPt;
963
964 case Hexagon::STrih_indexed_cdnNotPt_nv_V4:
965 case Hexagon::STrih_indexed_cNotPt_nv_V4 :
966 case Hexagon::STrih_indexed_cdnNotPt_V4 :
967 return Hexagon::STrih_indexed_cNotPt;
968
969 case Hexagon::STrih_indexed_shl_cdnPt_nv_V4 :
970 case Hexagon::STrih_indexed_shl_cPt_nv_V4 :
971 case Hexagon::STrih_indexed_shl_cdnPt_V4 :
972 return Hexagon::STrih_indexed_shl_cPt_V4;
973
974 case Hexagon::STrih_indexed_shl_cdnNotPt_nv_V4 :
975 case Hexagon::STrih_indexed_shl_cNotPt_nv_V4 :
976 case Hexagon::STrih_indexed_shl_cdnNotPt_V4 :
977 return Hexagon::STrih_indexed_shl_cNotPt_V4;
978
979 case Hexagon::POST_SThri_cdnPt_nv_V4 :
980 case Hexagon::POST_SThri_cPt_nv_V4 :
981 case Hexagon::POST_SThri_cdnPt_V4 :
982 return Hexagon::POST_SThri_cPt;
983
984 case Hexagon::POST_SThri_cdnNotPt_nv_V4 :
985 case Hexagon::POST_SThri_cNotPt_nv_V4 :
986 case Hexagon::POST_SThri_cdnNotPt_V4 :
987 return Hexagon::POST_SThri_cNotPt;
988
989 case Hexagon::STh_GP_cdnPt_nv_V4:
990 case Hexagon::STh_GP_cdnPt_V4:
991 case Hexagon::STh_GP_cPt_nv_V4:
992 return Hexagon::STh_GP_cPt_V4;
993
994 case Hexagon::STh_GP_cdnNotPt_nv_V4:
995 case Hexagon::STh_GP_cdnNotPt_V4:
996 case Hexagon::STh_GP_cNotPt_nv_V4:
997 return Hexagon::STh_GP_cNotPt_V4;
998
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000999 // Store new-value halfword - unconditional
1000
1001 case Hexagon::STrih_nv_V4:
1002 return Hexagon::STrih;
1003
1004 case Hexagon::STrih_indexed_nv_V4:
1005 return Hexagon::STrih_indexed;
1006
1007 case Hexagon::STrih_indexed_shl_nv_V4:
1008 return Hexagon::STrih_indexed_shl_V4;
1009
1010 case Hexagon::STrih_shl_nv_V4:
1011 return Hexagon::STrih_shl_V4;
1012
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001013 case Hexagon::STh_GP_nv_V4:
1014 return Hexagon::STh_GP_V4;
1015
1016 case Hexagon::POST_SThri_nv_V4:
1017 return Hexagon::POST_SThri;
1018
1019 // Store word
1020
1021 case Hexagon::STriw_imm_cdnPt_V4 :
1022 return Hexagon::STriw_imm_cPt_V4;
1023
1024 case Hexagon::STriw_imm_cdnNotPt_V4 :
1025 return Hexagon::STriw_imm_cNotPt_V4;
1026
1027 case Hexagon::STriw_cdnPt_nv_V4 :
1028 case Hexagon::STriw_cPt_nv_V4 :
1029 case Hexagon::STriw_cdnPt_V4 :
1030 return Hexagon::STriw_cPt;
1031
1032 case Hexagon::STriw_cdnNotPt_nv_V4 :
1033 case Hexagon::STriw_cNotPt_nv_V4 :
1034 case Hexagon::STriw_cdnNotPt_V4 :
1035 return Hexagon::STriw_cNotPt;
1036
1037 case Hexagon::STriw_indexed_cdnPt_nv_V4 :
1038 case Hexagon::STriw_indexed_cPt_nv_V4 :
1039 case Hexagon::STriw_indexed_cdnPt_V4 :
1040 return Hexagon::STriw_indexed_cPt;
1041
1042 case Hexagon::STriw_indexed_cdnNotPt_nv_V4 :
1043 case Hexagon::STriw_indexed_cNotPt_nv_V4 :
1044 case Hexagon::STriw_indexed_cdnNotPt_V4 :
1045 return Hexagon::STriw_indexed_cNotPt;
1046
1047 case Hexagon::STriw_indexed_shl_cdnPt_nv_V4 :
1048 case Hexagon::STriw_indexed_shl_cPt_nv_V4 :
1049 case Hexagon::STriw_indexed_shl_cdnPt_V4 :
1050 return Hexagon::STriw_indexed_shl_cPt_V4;
1051
1052 case Hexagon::STriw_indexed_shl_cdnNotPt_nv_V4 :
1053 case Hexagon::STriw_indexed_shl_cNotPt_nv_V4 :
1054 case Hexagon::STriw_indexed_shl_cdnNotPt_V4 :
1055 return Hexagon::STriw_indexed_shl_cNotPt_V4;
1056
1057 case Hexagon::POST_STwri_cdnPt_nv_V4 :
1058 case Hexagon::POST_STwri_cPt_nv_V4 :
1059 case Hexagon::POST_STwri_cdnPt_V4 :
1060 return Hexagon::POST_STwri_cPt;
1061
1062 case Hexagon::POST_STwri_cdnNotPt_nv_V4 :
1063 case Hexagon::POST_STwri_cNotPt_nv_V4 :
1064 case Hexagon::POST_STwri_cdnNotPt_V4 :
1065 return Hexagon::POST_STwri_cNotPt;
1066
1067 case Hexagon::STw_GP_cdnPt_nv_V4:
1068 case Hexagon::STw_GP_cdnPt_V4:
1069 case Hexagon::STw_GP_cPt_nv_V4:
1070 return Hexagon::STw_GP_cPt_V4;
1071
1072 case Hexagon::STw_GP_cdnNotPt_nv_V4:
1073 case Hexagon::STw_GP_cdnNotPt_V4:
1074 case Hexagon::STw_GP_cNotPt_nv_V4:
1075 return Hexagon::STw_GP_cNotPt_V4;
1076
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001077 // Store new-value word - unconditional
1078
1079 case Hexagon::STriw_nv_V4:
1080 return Hexagon::STriw;
1081
1082 case Hexagon::STriw_indexed_nv_V4:
1083 return Hexagon::STriw_indexed;
1084
1085 case Hexagon::STriw_indexed_shl_nv_V4:
1086 return Hexagon::STriw_indexed_shl_V4;
1087
1088 case Hexagon::STriw_shl_nv_V4:
1089 return Hexagon::STriw_shl_V4;
1090
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001091 case Hexagon::STw_GP_nv_V4:
1092 return Hexagon::STw_GP_V4;
1093
1094 case Hexagon::POST_STwri_nv_V4:
1095 return Hexagon::POST_STwri;
1096
1097 // Store doubleword
1098
1099 case Hexagon::STrid_cdnPt_V4 :
1100 return Hexagon::STrid_cPt;
1101
1102 case Hexagon::STrid_cdnNotPt_V4 :
1103 return Hexagon::STrid_cNotPt;
1104
1105 case Hexagon::STrid_indexed_cdnPt_V4 :
1106 return Hexagon::STrid_indexed_cPt;
1107
1108 case Hexagon::STrid_indexed_cdnNotPt_V4 :
1109 return Hexagon::STrid_indexed_cNotPt;
1110
1111 case Hexagon::STrid_indexed_shl_cdnPt_V4 :
1112 return Hexagon::STrid_indexed_shl_cPt_V4;
1113
1114 case Hexagon::STrid_indexed_shl_cdnNotPt_V4 :
1115 return Hexagon::STrid_indexed_shl_cNotPt_V4;
1116
1117 case Hexagon::POST_STdri_cdnPt_V4 :
1118 return Hexagon::POST_STdri_cPt;
1119
1120 case Hexagon::POST_STdri_cdnNotPt_V4 :
1121 return Hexagon::POST_STdri_cNotPt;
1122
1123 case Hexagon::STd_GP_cdnPt_V4 :
1124 return Hexagon::STd_GP_cPt_V4;
1125
1126 case Hexagon::STd_GP_cdnNotPt_V4 :
1127 return Hexagon::STd_GP_cNotPt_V4;
1128
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001129 }
1130}
1131
1132bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
1133 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1134 int NewOpcode = GetDotOldOp(MI->getOpcode());
1135 MI->setDesc(QII->get(NewOpcode));
1136 return true;
1137}
1138
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001139enum PredicateKind {
1140 PK_False,
1141 PK_True,
1142 PK_Unknown
1143};
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001144
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001145/// Returns true if an instruction is predicated on p0 and false if it's
1146/// predicated on !p0.
1147static PredicateKind getPredicateSense(MachineInstr* MI,
1148 const HexagonInstrInfo *QII) {
1149 if (!QII->isPredicated(MI))
1150 return PK_Unknown;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001151
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001152 if (QII->isPredicatedTrue(MI))
1153 return PK_True;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001154
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001155 return PK_False;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001156}
1157
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001158static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
1159 const HexagonInstrInfo *QII) {
1160 assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
1161#ifndef NDEBUG
1162 // Post Increment means duplicates. Use dense map to find duplicates in the
1163 // list. Caution: Densemap initializes with the minimum of 64 buckets,
1164 // whereas there are at most 5 operands in the post increment.
1165 DenseMap<unsigned, unsigned> DefRegsSet;
1166 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
1167 if (MI->getOperand(opNum).isReg() &&
1168 MI->getOperand(opNum).isDef()) {
1169 DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
1170 }
1171
1172 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
1173 if (MI->getOperand(opNum).isReg() &&
1174 MI->getOperand(opNum).isUse()) {
1175 if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
1176 return MI->getOperand(opNum);
1177 }
1178 }
1179#else
1180 if (MI->getDesc().mayLoad()) {
1181 // The 2nd operand is always the post increment operand in load.
1182 assert(MI->getOperand(1).isReg() &&
1183 "Post increment operand has be to a register.");
1184 return (MI->getOperand(1));
1185 }
1186 if (MI->getDesc().mayStore()) {
1187 // The 1st operand is always the post increment operand in store.
1188 assert(MI->getOperand(0).isReg() &&
1189 "Post increment operand has be to a register.");
1190 return (MI->getOperand(0));
1191 }
1192#endif
1193 // we should never come here.
1194 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
1195}
1196
1197// get the value being stored
1198static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
1199 // value being stored is always the last operand.
1200 return (MI->getOperand(MI->getNumOperands()-1));
1201}
1202
1203// can be new value store?
1204// Following restrictions are to be respected in convert a store into
1205// a new value store.
1206// 1. If an instruction uses auto-increment, its address register cannot
1207// be a new-value register. Arch Spec 5.4.2.1
1208// 2. If an instruction uses absolute-set addressing mode,
1209// its address register cannot be a new-value register.
1210// Arch Spec 5.4.2.1.TODO: This is not enabled as
1211// as absolute-set address mode patters are not implemented.
1212// 3. If an instruction produces a 64-bit result, its registers cannot be used
1213// as new-value registers. Arch Spec 5.4.2.2.
1214// 4. If the instruction that sets a new-value register is conditional, then
1215// the instruction that uses the new-value register must also be conditional,
1216// and both must always have their predicates evaluate identically.
1217// Arch Spec 5.4.2.3.
1218// 5. There is an implied restriction of a packet can not have another store,
1219// if there is a new value store in the packet. Corollary, if there is
1220// already a store in a packet, there can not be a new value store.
1221// Arch Spec: 3.4.4.2
1222bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
1223 MachineInstr *PacketMI, unsigned DepReg,
1224 std::map <MachineInstr*, SUnit*> MIToSUnit)
1225{
1226 // Make sure we are looking at the store
1227 if (!IsNewifyStore(MI))
1228 return false;
1229
1230 // Make sure there is dependency and can be new value'ed
1231 if (GetStoreValueOperand(MI).isReg() &&
1232 GetStoreValueOperand(MI).getReg() != DepReg)
1233 return false;
1234
1235 const HexagonRegisterInfo* QRI =
1236 (const HexagonRegisterInfo *) TM.getRegisterInfo();
1237 const MCInstrDesc& MCID = PacketMI->getDesc();
1238 // first operand is always the result
1239
1240 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
Jakob Stoklund Olesen3c52f022012-05-07 22:10:26 +00001241 const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001242
1243 // if there is already an store in the packet, no can do new value store
1244 // Arch Spec 3.4.4.2.
1245 for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
1246 VE = CurrentPacketMIs.end();
1247 (VI != VE); ++VI) {
1248 SUnit* PacketSU = MIToSUnit[*VI];
1249 if (PacketSU->getInstr()->getDesc().mayStore() ||
1250 // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
1251 // then we don't need this
1252 PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1253 PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
1254 return false;
1255 }
1256
1257 if (PacketRC == &Hexagon::DoubleRegsRegClass) {
1258 // new value store constraint: double regs can not feed into new value store
1259 // arch spec section: 5.4.2.2
1260 return false;
1261 }
1262
1263 // Make sure it's NOT the post increment register that we are going to
1264 // new value.
1265 if (QII->isPostIncrement(MI) &&
1266 MI->getDesc().mayStore() &&
1267 GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
1268 return false;
1269 }
1270
1271 if (QII->isPostIncrement(PacketMI) &&
1272 PacketMI->getDesc().mayLoad() &&
1273 GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
1274 // if source is post_inc, or absolute-set addressing,
1275 // it can not feed into new value store
1276 // r3 = memw(r2++#4)
1277 // memw(r30 + #-1404) = r2.new -> can not be new value store
1278 // arch spec section: 5.4.2.1
1279 return false;
1280 }
1281
1282 // If the source that feeds the store is predicated, new value store must
1283 // also be also predicated.
1284 if (QII->isPredicated(PacketMI)) {
1285 if (!QII->isPredicated(MI))
1286 return false;
1287
1288 // Check to make sure that they both will have their predicates
1289 // evaluate identically
Sirish Pande95d01172012-05-11 20:00:34 +00001290 unsigned predRegNumSrc = 0;
1291 unsigned predRegNumDst = 0;
1292 const TargetRegisterClass* predRegClass = NULL;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001293
1294 // Get predicate register used in the source instruction
1295 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
1296 if ( PacketMI->getOperand(opNum).isReg())
1297 predRegNumSrc = PacketMI->getOperand(opNum).getReg();
1298 predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
1299 if (predRegClass == &Hexagon::PredRegsRegClass) {
1300 break;
1301 }
1302 }
1303 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
1304 ("predicate register not found in a predicated PacketMI instruction"));
1305
1306 // Get predicate register used in new-value store instruction
1307 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
1308 if ( MI->getOperand(opNum).isReg())
1309 predRegNumDst = MI->getOperand(opNum).getReg();
1310 predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
1311 if (predRegClass == &Hexagon::PredRegsRegClass) {
1312 break;
1313 }
1314 }
1315 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
1316 ("predicate register not found in a predicated MI instruction"));
1317
1318 // New-value register producer and user (store) need to satisfy these
1319 // constraints:
1320 // 1) Both instructions should be predicated on the same register.
1321 // 2) If producer of the new-value register is .new predicated then store
1322 // should also be .new predicated and if producer is not .new predicated
1323 // then store should not be .new predicated.
1324 // 3) Both new-value register producer and user should have same predicate
1325 // sense, i.e, either both should be negated or both should be none negated.
1326
1327 if (( predRegNumDst != predRegNumSrc) ||
Jyotsna Vermaa46059b2013-03-28 19:44:04 +00001328 QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) ||
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001329 getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001330 return false;
1331 }
1332 }
1333
1334 // Make sure that other than the new-value register no other store instruction
1335 // register has been modified in the same packet. Predicate registers can be
1336 // modified by they should not be modified between the producer and the store
1337 // instruction as it will make them both conditional on different values.
1338 // We already know this to be true for all the instructions before and
1339 // including PacketMI. Howerver, we need to perform the check for the
1340 // remaining instructions in the packet.
1341
1342 std::vector<MachineInstr*>::iterator VI;
1343 std::vector<MachineInstr*>::iterator VE;
1344 unsigned StartCheck = 0;
1345
1346 for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
1347 (VI != VE); ++VI) {
1348 SUnit* TempSU = MIToSUnit[*VI];
1349 MachineInstr* TempMI = TempSU->getInstr();
1350
1351 // Following condition is true for all the instructions until PacketMI is
1352 // reached (StartCheck is set to 0 before the for loop).
1353 // StartCheck flag is 1 for all the instructions after PacketMI.
1354 if (TempMI != PacketMI && !StartCheck) // start processing only after
1355 continue; // encountering PacketMI
1356
1357 StartCheck = 1;
1358 if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
1359 continue;
1360
1361 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
1362 if (MI->getOperand(opNum).isReg() &&
1363 TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
1364 QRI))
1365 return false;
1366 }
1367 }
1368
1369 // Make sure that for non POST_INC stores:
1370 // 1. The only use of reg is DepReg and no other registers.
1371 // This handles V4 base+index registers.
1372 // The following store can not be dot new.
1373 // Eg. r0 = add(r0, #3)a
1374 // memw(r1+r0<<#2) = r0
1375 if (!QII->isPostIncrement(MI) &&
1376 GetStoreValueOperand(MI).isReg() &&
1377 GetStoreValueOperand(MI).getReg() == DepReg) {
1378 for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
1379 if (MI->getOperand(opNum).isReg() &&
1380 MI->getOperand(opNum).getReg() == DepReg) {
1381 return false;
1382 }
1383 }
1384 // 2. If data definition is because of implicit definition of the register,
1385 // do not newify the store. Eg.
1386 // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
1387 // STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
1388 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
1389 if (PacketMI->getOperand(opNum).isReg() &&
1390 PacketMI->getOperand(opNum).getReg() == DepReg &&
1391 PacketMI->getOperand(opNum).isDef() &&
1392 PacketMI->getOperand(opNum).isImplicit()) {
1393 return false;
1394 }
1395 }
1396 }
1397
1398 // Can be dot new store.
1399 return true;
1400}
1401
1402// can this MI to promoted to either
1403// new value store or new value jump
1404bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
1405 SUnit *PacketSU, unsigned DepReg,
1406 std::map <MachineInstr*, SUnit*> MIToSUnit,
1407 MachineBasicBlock::iterator &MII)
1408{
1409
1410 const HexagonRegisterInfo* QRI =
1411 (const HexagonRegisterInfo *) TM.getRegisterInfo();
1412 if (!QRI->Subtarget.hasV4TOps() ||
1413 !IsNewifyStore(MI))
1414 return false;
1415
1416 MachineInstr *PacketMI = PacketSU->getInstr();
1417
1418 // Check to see the store can be new value'ed.
1419 if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
1420 return true;
1421
1422 // Check to see the compare/jump can be new value'ed.
1423 // This is done as a pass on its own. Don't need to check it here.
1424 return false;
1425}
1426
1427// Check to see if an instruction can be dot new
1428// There are three kinds.
1429// 1. dot new on predicate - V2/V3/V4
1430// 2. dot new on stores NV/ST - V4
1431// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
1432bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
1433 SUnit *PacketSU, unsigned DepReg,
1434 std::map <MachineInstr*, SUnit*> MIToSUnit,
1435 MachineBasicBlock::iterator &MII,
1436 const TargetRegisterClass* RC )
1437{
Jyotsna Vermaa46059b2013-03-28 19:44:04 +00001438 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1439 // Already a dot new instruction.
1440 if (QII->isDotNewInst(MI) && !IsNewifyStore(MI))
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001441 return false;
1442
1443 if (!isNewifiable(MI))
1444 return false;
1445
1446 // predicate .new
1447 if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
1448 return true;
1449 else if (RC != &Hexagon::PredRegsRegClass &&
1450 !IsNewifyStore(MI)) // MI is not a new-value store
1451 return false;
1452 else {
1453 // Create a dot new machine instruction to see if resources can be
1454 // allocated. If not, bail out now.
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001455 int NewOpcode = QII->GetDotNewOp(MI);
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001456 const MCInstrDesc &desc = QII->get(NewOpcode);
1457 DebugLoc dl;
1458 MachineInstr *NewMI =
1459 MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
1460 bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
1461 MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
1462
1463 if (!ResourcesAvailable)
1464 return false;
1465
1466 // new value store only
1467 // new new value jump generated as a passes
1468 if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
1469 return false;
1470 }
1471 }
1472 return true;
1473}
1474
1475// Go through the packet instructions and search for anti dependency
1476// between them and DepReg from MI
1477// Consider this case:
1478// Trying to add
1479// a) %R1<def> = TFRI_cdNotPt %P3, 2
1480// to this packet:
1481// {
1482// b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
1483// c) %P3<def> = TFR_PdRs %R23
1484// d) %R1<def> = TFRI_cdnPt %P3, 4
1485// }
1486// The P3 from a) and d) will be complements after
1487// a)'s P3 is converted to .new form
1488// Anti Dep between c) and b) is irrelevant for this case
1489bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
1490 unsigned DepReg,
1491 std::map <MachineInstr*, SUnit*> MIToSUnit) {
1492
1493 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1494 SUnit* PacketSUDep = MIToSUnit[MI];
1495
1496 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
1497 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
1498
1499 // We only care for dependencies to predicated instructions
1500 if(!QII->isPredicated(*VIN)) continue;
1501
1502 // Scheduling Unit for current insn in the packet
1503 SUnit* PacketSU = MIToSUnit[*VIN];
1504
1505 // Look at dependencies between current members of the packet
1506 // and predicate defining instruction MI.
1507 // Make sure that dependency is on the exact register
1508 // we care about.
1509 if (PacketSU->isSucc(PacketSUDep)) {
1510 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
1511 if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
1512 (PacketSU->Succs[i].getKind() == SDep::Anti) &&
1513 (PacketSU->Succs[i].getReg() == DepReg)) {
1514 return true;
1515 }
1516 }
1517 }
1518 }
1519
1520 return false;
1521}
1522
1523
1524// Given two predicated instructions, this function detects whether
1525// the predicates are complements
1526bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
1527 MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
1528
1529 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1530 // Currently can only reason about conditional transfers
1531 if (!QII->isConditionalTransfer(MI1) || !QII->isConditionalTransfer(MI2)) {
1532 return false;
1533 }
1534
1535 // Scheduling unit for candidate
1536 SUnit* SU = MIToSUnit[MI1];
1537
1538 // One corner case deals with the following scenario:
1539 // Trying to add
1540 // a) %R24<def> = TFR_cPt %P0, %R25
1541 // to this packet:
1542 //
1543 // {
1544 // b) %R25<def> = TFR_cNotPt %P0, %R24
1545 // c) %P0<def> = CMPEQri %R26, 1
1546 // }
1547 //
1548 // On general check a) and b) are complements, but
1549 // presence of c) will convert a) to .new form, and
1550 // then it is not a complement
1551 // We attempt to detect it by analyzing existing
1552 // dependencies in the packet
1553
1554 // Analyze relationships between all existing members of the packet.
1555 // Look for Anti dependecy on the same predicate reg
1556 // as used in the candidate
1557 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
1558 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
1559
1560 // Scheduling Unit for current insn in the packet
1561 SUnit* PacketSU = MIToSUnit[*VIN];
1562
1563 // If this instruction in the packet is succeeded by the candidate...
1564 if (PacketSU->isSucc(SU)) {
1565 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
1566 // The corner case exist when there is true data
1567 // dependency between candidate and one of current
1568 // packet members, this dep is on predicate reg, and
1569 // there already exist anti dep on the same pred in
1570 // the packet.
1571 if (PacketSU->Succs[i].getSUnit() == SU &&
1572 Hexagon::PredRegsRegClass.contains(
1573 PacketSU->Succs[i].getReg()) &&
1574 PacketSU->Succs[i].getKind() == SDep::Data &&
1575 // Here I know that *VIN is predicate setting instruction
1576 // with true data dep to candidate on the register
1577 // we care about - c) in the above example.
1578 // Now I need to see if there is an anti dependency
1579 // from c) to any other instruction in the
1580 // same packet on the pred reg of interest
1581 RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
1582 MIToSUnit)) {
1583 return false;
1584 }
1585 }
1586 }
1587 }
1588
1589 // If the above case does not apply, check regular
1590 // complement condition.
1591 // Check that the predicate register is the same and
1592 // that the predicate sense is different
1593 // We also need to differentiate .old vs. .new:
1594 // !p0 is not complimentary to p0.new
1595 return ((MI1->getOperand(1).getReg() == MI2->getOperand(1).getReg()) &&
Jyotsna Verma300f0b92013-05-10 20:27:34 +00001596 (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
Jyotsna Vermaa46059b2013-03-28 19:44:04 +00001597 (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001598}
1599
1600// initPacketizerState - Initialize packetizer flags
1601void HexagonPacketizerList::initPacketizerState() {
1602
1603 Dependence = false;
1604 PromotedToDotNew = false;
1605 GlueToNewValueJump = false;
1606 GlueAllocframeStore = false;
1607 FoundSequentialDependence = false;
1608
1609 return;
1610}
1611
1612// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
1613bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
1614 MachineBasicBlock *MBB) {
1615 if (MI->isDebugValue())
1616 return true;
1617
1618 // We must print out inline assembly
1619 if (MI->isInlineAsm())
1620 return false;
1621
1622 // We check if MI has any functional units mapped to it.
1623 // If it doesn't, we ignore the instruction.
1624 const MCInstrDesc& TID = MI->getDesc();
1625 unsigned SchedClass = TID.getSchedClass();
1626 const InstrStage* IS =
1627 ResourceTracker->getInstrItins()->beginStage(SchedClass);
Hal Finkel8db55472012-06-22 20:27:13 +00001628 unsigned FuncUnits = IS->getUnits();
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001629 return !FuncUnits;
1630}
1631
1632// isSoloInstruction: - Returns true for instructions that must be
1633// scheduled in their own packet.
1634bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
1635
1636 if (MI->isInlineAsm())
1637 return true;
1638
1639 if (MI->isEHLabel())
1640 return true;
1641
1642 // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
1643 // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
1644 // They must not be grouped with other instructions in a packet.
1645 if (IsSchedBarrier(MI))
1646 return true;
1647
1648 return false;
1649}
1650
1651// isLegalToPacketizeTogether:
1652// SUI is the current instruction that is out side of the current packet.
1653// SUJ is the current instruction inside the current packet against which that
1654// SUI will be packetized.
1655bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1656 MachineInstr *I = SUI->getInstr();
1657 MachineInstr *J = SUJ->getInstr();
1658 assert(I && J && "Unable to packetize null instruction!");
1659
1660 const MCInstrDesc &MCIDI = I->getDesc();
1661 const MCInstrDesc &MCIDJ = J->getDesc();
1662
1663 MachineBasicBlock::iterator II = I;
1664
1665 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1666 const HexagonRegisterInfo* QRI =
1667 (const HexagonRegisterInfo *) TM.getRegisterInfo();
1668 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1669
1670 // Inline asm cannot go in the packet.
1671 if (I->getOpcode() == Hexagon::INLINEASM)
1672 llvm_unreachable("Should not meet inline asm here!");
1673
1674 if (isSoloInstruction(I))
1675 llvm_unreachable("Should not meet solo instr here!");
1676
1677 // A save callee-save register function call can only be in a packet
1678 // with instructions that don't write to the callee-save registers.
1679 if ((QII->isSaveCalleeSavedRegsCall(I) &&
1680 DoesModifyCalleeSavedReg(J, QRI)) ||
1681 (QII->isSaveCalleeSavedRegsCall(J) &&
1682 DoesModifyCalleeSavedReg(I, QRI))) {
1683 Dependence = true;
1684 return false;
1685 }
1686
1687 // Two control flow instructions cannot go in the same packet.
1688 if (IsControlFlow(I) && IsControlFlow(J)) {
1689 Dependence = true;
1690 return false;
1691 }
1692
1693 // A LoopN instruction cannot appear in the same packet as a jump or call.
1694 if (IsLoopN(I) && ( IsDirectJump(J)
1695 || MCIDJ.isCall()
1696 || QII->isDeallocRet(J))) {
1697 Dependence = true;
1698 return false;
1699 }
1700 if (IsLoopN(J) && ( IsDirectJump(I)
1701 || MCIDI.isCall()
1702 || QII->isDeallocRet(I))) {
1703 Dependence = true;
1704 return false;
1705 }
1706
1707 // dealloc_return cannot appear in the same packet as a conditional or
1708 // unconditional jump.
1709 if (QII->isDeallocRet(I) && ( MCIDJ.isBranch()
1710 || MCIDJ.isCall()
1711 || MCIDJ.isBarrier())) {
1712 Dependence = true;
1713 return false;
1714 }
1715
1716
1717 // V4 allows dual store. But does not allow second store, if the
1718 // first store is not in SLOT0. New value store, new value jump,
1719 // dealloc_return and memop always take SLOT0.
1720 // Arch spec 3.4.4.2
1721 if (QRI->Subtarget.hasV4TOps()) {
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001722 if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1723 (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001724 Dependence = true;
1725 return false;
1726 }
1727
Jyotsna Vermaf1214a82013-03-05 18:51:42 +00001728 if ((QII->isMemOp(J) && MCIDI.mayStore())
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001729 || (MCIDJ.mayStore() && QII->isMemOp(I))
1730 || (QII->isMemOp(J) && QII->isMemOp(I))) {
1731 Dependence = true;
1732 return false;
1733 }
1734
1735 //if dealloc_return
1736 if (MCIDJ.mayStore() && QII->isDeallocRet(I)){
1737 Dependence = true;
1738 return false;
1739 }
1740
1741 // If an instruction feeds new value jump, glue it.
1742 MachineBasicBlock::iterator NextMII = I;
1743 ++NextMII;
Jyotsna Verma84c47102013-05-06 18:49:23 +00001744 if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1745 MachineInstr *NextMI = NextMII;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001746
1747 bool secondRegMatch = false;
1748 bool maintainNewValueJump = false;
1749
1750 if (NextMI->getOperand(1).isReg() &&
1751 I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1752 secondRegMatch = true;
1753 maintainNewValueJump = true;
1754 }
1755
1756 if (!secondRegMatch &&
1757 I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1758 maintainNewValueJump = true;
1759 }
1760
1761 for (std::vector<MachineInstr*>::iterator
1762 VI = CurrentPacketMIs.begin(),
1763 VE = CurrentPacketMIs.end();
1764 (VI != VE && maintainNewValueJump); ++VI) {
1765 SUnit* PacketSU = MIToSUnit[*VI];
1766
1767 // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1768 if (PacketSU->getInstr()->getDesc().isCall()) {
1769 Dependence = true;
1770 break;
1771 }
1772 // Validate
1773 // 1. Packet does not have a store in it.
1774 // 2. If the first operand of the nvj is newified, and the second
1775 // operand is also a reg, it (second reg) is not defined in
1776 // the same packet.
1777 // 3. If the second operand of the nvj is newified, (which means
1778 // first operand is also a reg), first reg is not defined in
1779 // the same packet.
1780 if (PacketSU->getInstr()->getDesc().mayStore() ||
1781 PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1782 // Check #2.
1783 (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1784 PacketSU->getInstr()->modifiesRegister(
1785 NextMI->getOperand(1).getReg(), QRI)) ||
1786 // Check #3.
1787 (secondRegMatch &&
1788 PacketSU->getInstr()->modifiesRegister(
1789 NextMI->getOperand(0).getReg(), QRI))) {
1790 Dependence = true;
1791 break;
1792 }
1793 }
1794 if (!Dependence)
1795 GlueToNewValueJump = true;
1796 else
1797 return false;
1798 }
1799 }
1800
1801 if (SUJ->isSucc(SUI)) {
1802 for (unsigned i = 0;
1803 (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1804 ++i) {
1805
1806 if (SUJ->Succs[i].getSUnit() != SUI) {
1807 continue;
1808 }
1809
1810 SDep::Kind DepType = SUJ->Succs[i].getKind();
1811
1812 // For direct calls:
1813 // Ignore register dependences for call instructions for
1814 // packetization purposes except for those due to r31 and
1815 // predicate registers.
1816 //
1817 // For indirect calls:
1818 // Same as direct calls + check for true dependences to the register
1819 // used in the indirect call.
1820 //
1821 // We completely ignore Order dependences for call instructions
1822 //
1823 // For returns:
1824 // Ignore register dependences for return instructions like jumpr,
1825 // dealloc return unless we have dependencies on the explicit uses
1826 // of the registers used by jumpr (like r31) or dealloc return
1827 // (like r29 or r30).
1828 //
1829 // TODO: Currently, jumpr is handling only return of r31. So, the
1830 // following logic (specificaly IsCallDependent) is working fine.
1831 // We need to enable jumpr for register other than r31 and then,
1832 // we need to rework the last part, where it handles indirect call
1833 // of that (IsCallDependent) function. Bug 6216 is opened for this.
1834 //
1835 unsigned DepReg = 0;
1836 const TargetRegisterClass* RC = NULL;
1837 if (DepType == SDep::Data) {
1838 DepReg = SUJ->Succs[i].getReg();
1839 RC = QRI->getMinimalPhysRegClass(DepReg);
1840 }
1841 if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1842 (!IsRegDependence(DepType) ||
1843 !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1844 /* do nothing */
1845 }
1846
1847 // For instructions that can be promoted to dot-new, try to promote.
1848 else if ((DepType == SDep::Data) &&
1849 CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1850 PromoteToDotNew(I, DepType, II, RC)) {
1851 PromotedToDotNew = true;
1852 /* do nothing */
1853 }
1854
1855 else if ((DepType == SDep::Data) &&
1856 (QII->isNewValueJump(I))) {
1857 /* do nothing */
1858 }
1859
1860 // For predicated instructions, if the predicates are complements
1861 // then there can be no dependence.
1862 else if (QII->isPredicated(I) &&
1863 QII->isPredicated(J) &&
1864 ArePredicatesComplements(I, J, MIToSUnit)) {
1865 /* do nothing */
1866
1867 }
1868 else if (IsDirectJump(I) &&
1869 !MCIDJ.isBranch() &&
1870 !MCIDJ.isCall() &&
1871 (DepType == SDep::Order)) {
1872 // Ignore Order dependences between unconditional direct branches
1873 // and non-control-flow instructions
1874 /* do nothing */
1875 }
1876 else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1877 (DepType != SDep::Output)) {
1878 // Ignore all dependences for jumps except for true and output
1879 // dependences
1880 /* do nothing */
1881 }
1882
1883 // Ignore output dependences due to superregs. We can
1884 // write to two different subregisters of R1:0 for instance
1885 // in the same cycle
1886 //
1887
1888 //
1889 // Let the
1890 // If neither I nor J defines DepReg, then this is a
1891 // superfluous output dependence. The dependence must be of the
1892 // form:
1893 // R0 = ...
1894 // R1 = ...
1895 // and there is an output dependence between the two instructions
1896 // with
1897 // DepReg = D0
1898 // We want to ignore these dependences.
1899 // Ideally, the dependence constructor should annotate such
1900 // dependences. We can then avoid this relatively expensive check.
1901 //
1902 else if (DepType == SDep::Output) {
1903 // DepReg is the register that's responsible for the dependence.
1904 unsigned DepReg = SUJ->Succs[i].getReg();
1905
1906 // Check if I and J really defines DepReg.
1907 if (I->definesRegister(DepReg) ||
1908 J->definesRegister(DepReg)) {
1909 FoundSequentialDependence = true;
1910 break;
1911 }
1912 }
1913
1914 // We ignore Order dependences for
1915 // 1. Two loads unless they are volatile.
1916 // 2. Two stores in V4 unless they are volatile.
1917 else if ((DepType == SDep::Order) &&
Jakob Stoklund Olesencea3e772012-08-29 21:19:21 +00001918 !I->hasOrderedMemoryRef() &&
1919 !J->hasOrderedMemoryRef()) {
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00001920 if (QRI->Subtarget.hasV4TOps() &&
1921 // hexagonv4 allows dual store.
1922 MCIDI.mayStore() && MCIDJ.mayStore()) {
1923 /* do nothing */
1924 }
1925 // store followed by store-- not OK on V2
1926 // store followed by load -- not OK on all (OK if addresses
1927 // are not aliased)
1928 // load followed by store -- OK on all
1929 // load followed by load -- OK on all
1930 else if ( !MCIDJ.mayStore()) {
1931 /* do nothing */
1932 }
1933 else {
1934 FoundSequentialDependence = true;
1935 break;
1936 }
1937 }
1938
1939 // For V4, special case ALLOCFRAME. Even though there is dependency
1940 // between ALLOCAFRAME and subsequent store, allow it to be
1941 // packetized in a same packet. This implies that the store is using
1942 // caller's SP. Hense, offset needs to be updated accordingly.
1943 else if (DepType == SDep::Data
1944 && QRI->Subtarget.hasV4TOps()
1945 && J->getOpcode() == Hexagon::ALLOCFRAME
1946 && (I->getOpcode() == Hexagon::STrid
1947 || I->getOpcode() == Hexagon::STriw
1948 || I->getOpcode() == Hexagon::STrib)
1949 && I->getOperand(0).getReg() == QRI->getStackRegister()
1950 && QII->isValidOffset(I->getOpcode(),
1951 I->getOperand(1).getImm() -
1952 (FrameSize + HEXAGON_LRFP_SIZE)))
1953 {
1954 GlueAllocframeStore = true;
1955 // Since this store is to be glued with allocframe in the same
1956 // packet, it will use SP of the previous stack frame, i.e
1957 // caller's SP. Therefore, we need to recalculate offset according
1958 // to this change.
1959 I->getOperand(1).setImm(I->getOperand(1).getImm() -
1960 (FrameSize + HEXAGON_LRFP_SIZE));
1961 }
1962
1963 //
1964 // Skip over anti-dependences. Two instructions that are
1965 // anti-dependent can share a packet
1966 //
1967 else if (DepType != SDep::Anti) {
1968 FoundSequentialDependence = true;
1969 break;
1970 }
1971 }
1972
1973 if (FoundSequentialDependence) {
1974 Dependence = true;
1975 return false;
1976 }
1977 }
1978
1979 return true;
1980}
1981
1982// isLegalToPruneDependencies
1983bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1984 MachineInstr *I = SUI->getInstr();
1985 assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1986
1987 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1988
1989 if (Dependence) {
1990
1991 // Check if the instruction was promoted to a dot-new. If so, demote it
1992 // back into a dot-old.
1993 if (PromotedToDotNew) {
1994 DemoteToDotOld(I);
1995 }
1996
1997 // Check if the instruction (must be a store) was glued with an Allocframe
1998 // instruction. If so, restore its offset to its original value, i.e. use
1999 // curent SP instead of caller's SP.
2000 if (GlueAllocframeStore) {
2001 I->getOperand(1).setImm(I->getOperand(1).getImm() +
2002 FrameSize + HEXAGON_LRFP_SIZE);
2003 }
2004
2005 return false;
2006 }
2007 return true;
2008}
2009
2010MachineBasicBlock::iterator
2011HexagonPacketizerList::addToPacket(MachineInstr *MI) {
2012
2013 MachineBasicBlock::iterator MII = MI;
2014 MachineBasicBlock *MBB = MI->getParent();
2015
2016 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
2017
2018 if (GlueToNewValueJump) {
2019
2020 ++MII;
2021 MachineInstr *nvjMI = MII;
2022 assert(ResourceTracker->canReserveResources(MI));
2023 ResourceTracker->reserveResources(MI);
Jyotsna Verma84256432013-03-01 17:37:13 +00002024 if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00002025 !tryAllocateResourcesForConstExt(MI)) {
2026 endPacket(MBB, MI);
2027 ResourceTracker->reserveResources(MI);
2028 assert(canReserveResourcesForConstExt(MI) &&
2029 "Ensure that there is a slot");
2030 reserveResourcesForConstExt(MI);
2031 // Reserve resources for new value jump constant extender.
2032 assert(canReserveResourcesForConstExt(MI) &&
2033 "Ensure that there is a slot");
2034 reserveResourcesForConstExt(nvjMI);
2035 assert(ResourceTracker->canReserveResources(nvjMI) &&
2036 "Ensure that there is a slot");
2037
2038 } else if ( // Extended instruction takes two slots in the packet.
2039 // Try reserve and allocate 4-byte in the current packet first.
2040 (QII->isExtended(nvjMI)
2041 && (!tryAllocateResourcesForConstExt(nvjMI)
2042 || !ResourceTracker->canReserveResources(nvjMI)))
2043 || // For non-extended instruction, no need to allocate extra 4 bytes.
Jyotsna Verma84256432013-03-01 17:37:13 +00002044 (!QII->isExtended(nvjMI) &&
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00002045 !ResourceTracker->canReserveResources(nvjMI)))
2046 {
2047 endPacket(MBB, MI);
2048 // A new and empty packet starts.
2049 // We are sure that the resources requirements can be satisfied.
2050 // Therefore, do not need to call "canReserveResources" anymore.
2051 ResourceTracker->reserveResources(MI);
2052 if (QII->isExtended(nvjMI))
2053 reserveResourcesForConstExt(nvjMI);
2054 }
2055 // Here, we are sure that "reserveResources" would succeed.
2056 ResourceTracker->reserveResources(nvjMI);
2057 CurrentPacketMIs.push_back(MI);
2058 CurrentPacketMIs.push_back(nvjMI);
2059 } else {
Jyotsna Verma84256432013-03-01 17:37:13 +00002060 if ( (QII->isExtended(MI) || QII->isConstExtended(MI))
Sirish Pandef8e5e3c2012-05-03 21:52:53 +00002061 && ( !tryAllocateResourcesForConstExt(MI)
2062 || !ResourceTracker->canReserveResources(MI)))
2063 {
2064 endPacket(MBB, MI);
2065 // Check if the instruction was promoted to a dot-new. If so, demote it
2066 // back into a dot-old
2067 if (PromotedToDotNew) {
2068 DemoteToDotOld(MI);
2069 }
2070 reserveResourcesForConstExt(MI);
2071 }
2072 // In case that "MI" is not an extended insn,
2073 // the resource availability has already been checked.
2074 ResourceTracker->reserveResources(MI);
2075 CurrentPacketMIs.push_back(MI);
2076 }
2077 return MII;
2078}
2079
2080//===----------------------------------------------------------------------===//
2081// Public Constructor Functions
2082//===----------------------------------------------------------------------===//
2083
2084FunctionPass *llvm::createHexagonPacketizer() {
2085 return new HexagonPacketizer();
2086}
2087