blob: 460ff9067f201afa184370f4de9e7beff5ccf69c [file] [log] [blame]
Renato Golin33f973a2014-04-01 09:51:49 +00001==============================
2TableGen Language Introduction
3==============================
4
5.. contents::
6 :local:
7
8.. warning::
9 This document is extremely rough. If you find something lacking, please
Tanya Lattner0d28f802015-08-05 03:51:17 +000010 fix it, file a documentation bug, or ask about it on llvm-dev.
Renato Golin33f973a2014-04-01 09:51:49 +000011
12Introduction
13============
14
15This document is not meant to be a normative spec about the TableGen language
16in and of itself (i.e. how to understand a given construct in terms of how
17it affects the final set of records represented by the TableGen file). For
18the formal language specification, see :doc:`LangRef`.
19
20TableGen syntax
21===============
22
23TableGen doesn't care about the meaning of data (that is up to the backend to
24define), but it does care about syntax, and it enforces a simple type system.
25This section describes the syntax and the constructs allowed in a TableGen file.
26
27TableGen primitives
28-------------------
29
30TableGen comments
31^^^^^^^^^^^^^^^^^
32
33TableGen supports C++ style "``//``" comments, which run to the end of the
34line, and it also supports **nestable** "``/* */``" comments.
35
36.. _TableGen type:
37
38The TableGen type system
39^^^^^^^^^^^^^^^^^^^^^^^^
40
41TableGen files are strongly typed, in a simple (but complete) type-system.
42These types are used to perform automatic conversions, check for errors, and to
43help interface designers constrain the input that they allow. Every `value
44definition`_ is required to have an associated type.
45
46TableGen supports a mixture of very low-level types (such as ``bit``) and very
47high-level types (such as ``dag``). This flexibility is what allows it to
48describe a wide range of information conveniently and compactly. The TableGen
49types are:
50
51``bit``
52 A 'bit' is a boolean value that can hold either 0 or 1.
53
54``int``
55 The 'int' type represents a simple 32-bit integer value, such as 5.
56
57``string``
58 The 'string' type represents an ordered sequence of characters of arbitrary
59 length.
60
Alex Bradbury5b359bd2017-05-02 13:47:10 +000061``code``
62 The `code` type represents a code fragment, which can be single/multi-line
63 string literal.
64
Renato Golin33f973a2014-04-01 09:51:49 +000065``bits<n>``
66 A 'bits' type is an arbitrary, but fixed, size integer that is broken up
67 into individual bits. This type is useful because it can handle some bits
68 being defined while others are undefined.
69
70``list<ty>``
71 This type represents a list whose elements are some other type. The
72 contained type is arbitrary: it can even be another list type.
73
74Class type
75 Specifying a class name in a type context means that the defined value must
76 be a subclass of the specified class. This is useful in conjunction with
77 the ``list`` type, for example, to constrain the elements of the list to a
78 common base class (e.g., a ``list<Register>`` can only contain definitions
79 derived from the "``Register``" class).
80
81``dag``
82 This type represents a nestable directed graph of elements.
83
84To date, these types have been sufficient for describing things that TableGen
85has been used for, but it is straight-forward to extend this list if needed.
86
87.. _TableGen expressions:
88
89TableGen values and expressions
90^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
91
92TableGen allows for a pretty reasonable number of different expression forms
93when building up values. These forms allow the TableGen file to be written in a
94natural syntax and flavor for the application. The current expression forms
95supported include:
96
97``?``
98 uninitialized field
99
100``0b1001011``
Pete Cooper9b90dc72014-08-07 05:47:13 +0000101 binary integer value.
102 Note that this is sized by the number of bits given and will not be
103 silently extended/truncated.
Renato Golin33f973a2014-04-01 09:51:49 +0000104
Renato Golin33f973a2014-04-01 09:51:49 +0000105``7``
106 decimal integer value
107
108``0x7F``
109 hexadecimal integer value
110
111``"foo"``
Alex Bradbury5b359bd2017-05-02 13:47:10 +0000112 a single-line string value, can be assigned to ``string`` or ``code`` variable.
Renato Golin33f973a2014-04-01 09:51:49 +0000113
114``[{ ... }]``
115 usually called a "code fragment", but is just a multiline string literal
116
117``[ X, Y, Z ]<type>``
118 list value. <type> is the type of the list element and is usually optional.
119 In rare cases, TableGen is unable to deduce the element type in which case
120 the user must specify it explicitly.
121
Pete Cooper9b90dc72014-08-07 05:47:13 +0000122``{ a, b, 0b10 }``
123 initializer for a "bits<4>" value.
124 1-bit from "a", 1-bit from "b", 2-bits from 0b10.
Renato Golin33f973a2014-04-01 09:51:49 +0000125
126``value``
127 value reference
128
129``value{17}``
130 access to one bit of a value
131
132``value{15-17}``
Alex Bradbury5b359bd2017-05-02 13:47:10 +0000133 access to an ordered sequence of bits of a value, in particular ``value{15-17}``
134 produces an order that is the reverse of ``value{17-15}``.
Renato Golin33f973a2014-04-01 09:51:49 +0000135
136``DEF``
137 reference to a record definition
138
139``CLASS<val list>``
140 reference to a new anonymous definition of CLASS with the specified template
141 arguments.
142
143``X.Y``
144 reference to the subfield of a value
145
146``list[4-7,17,2-3]``
147 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
148 Elements may be included multiple times.
149
150``foreach <var> = [ <list> ] in { <body> }``
151
152``foreach <var> = [ <list> ] in <def>``
153 Replicate <body> or <def>, replacing instances of <var> with each value
154 in <list>. <var> is scoped at the level of the ``foreach`` loop and must
155 not conflict with any other object introduced in <body> or <def>. Currently
156 only ``def``\s are expanded within <body>.
157
158``foreach <var> = 0-15 in ...``
159
160``foreach <var> = {0-15,32-47} in ...``
161 Loop over ranges of integers. The braces are required for multiple ranges.
162
163``(DEF a, b)``
164 a dag value. The first element is required to be a record definition, the
165 remaining elements in the list may be arbitrary other values, including
166 nested ```dag``' values.
167
Daniel Sanders314e80e2014-05-07 10:13:19 +0000168``!listconcat(a, b, ...)``
169 A list value that is the result of concatenating the 'a' and 'b' lists.
170 The lists must have the same element type.
171 More than two arguments are accepted with the result being the concatenation
172 of all the lists given.
173
Daniel Sanders6ef0a2f2014-05-02 19:25:52 +0000174``!strconcat(a, b, ...)``
Renato Golin33f973a2014-04-01 09:51:49 +0000175 A string value that is the result of concatenating the 'a' and 'b' strings.
Daniel Sanders6ef0a2f2014-05-02 19:25:52 +0000176 More than two arguments are accepted with the result being the concatenation
177 of all the strings given.
Renato Golin33f973a2014-04-01 09:51:49 +0000178
179``str1#str2``
180 "#" (paste) is a shorthand for !strconcat. It may concatenate things that
181 are not quoted strings, in which case an implicit !cast<string> is done on
182 the operand of the paste.
183
184``!cast<type>(a)``
185 A symbol of type *type* obtained by looking up the string 'a' in the symbol
186 table. If the type of 'a' does not match *type*, TableGen aborts with an
187 error. !cast<string> is a special case in that the argument must be an
188 object defined by a 'def' construct.
189
190``!subst(a, b, c)``
191 If 'a' and 'b' are of string type or are symbol references, substitute 'b'
192 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
193
194``!foreach(a, b, c)``
Craig Topper6d4e8e32015-06-06 00:44:42 +0000195 For each member of dag or list 'b' apply operator 'c.' 'a' is a dummy
Renato Golin33f973a2014-04-01 09:51:49 +0000196 variable that should be declared as a member variable of an instantiated
197 class. This operation is analogous to $(foreach) in GNU make.
198
199``!head(a)``
200 The first element of list 'a.'
201
202``!tail(a)``
203 The 2nd-N elements of list 'a.'
204
205``!empty(a)``
206 An integer {0,1} indicating whether list 'a' is empty.
207
208``!if(a,b,c)``
209 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
210
211``!eq(a,b)``
212 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
213 on string, int and bit objects. Use !cast<string> to compare other types of
214 objects.
215
Joerg Sonnenberger0a537272014-09-03 13:17:03 +0000216``!shl(a,b)`` ``!srl(a,b)`` ``!sra(a,b)`` ``!add(a,b)`` ``!and(a,b)``
217 The usual binary and arithmetic operators.
Adam Nemet017fca02014-07-17 17:04:27 +0000218
Renato Golin33f973a2014-04-01 09:51:49 +0000219Note that all of the values have rules specifying how they convert to values
220for different types. These rules allow you to assign a value like "``7``"
221to a "``bits<4>``" value, for example.
222
223Classes and definitions
224-----------------------
225
226As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
227'records') in TableGen are the main high-level unit of information that TableGen
228collects. Records are defined with a ``def`` or ``class`` keyword, the record
229name, and an optional list of "`template arguments`_". If the record has
230superclasses, they are specified as a comma separated list that starts with a
231colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
232needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
233the record ends with a semicolon.
234
235Here is a simple TableGen file:
236
Renato Golin124f2592016-07-20 12:16:38 +0000237.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000238
239 class C { bit V = 1; }
240 def X : C;
241 def Y : C {
242 string Greeting = "hello";
243 }
244
245This example defines two definitions, ``X`` and ``Y``, both of which derive from
246the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
247definition also gets the Greeting member as well.
248
249In general, classes are useful for collecting together the commonality between a
250group of records and isolating it in a single place. Also, classes permit the
251specification of default values for their subclasses, allowing the subclasses to
252override them as they wish.
253
254.. _value definition:
255.. _value definitions:
256
257Value definitions
258^^^^^^^^^^^^^^^^^
259
260Value definitions define named entries in records. A value must be defined
261before it can be referred to as the operand for another value definition or
262before the value is reset with a `let expression`_. A value is defined by
263specifying a `TableGen type`_ and a name. If an initial value is available, it
264may be specified after the type with an equal sign. Value definitions require
265terminating semicolons.
266
267.. _let expression:
268.. _let expressions:
269.. _"let" expressions within a record:
270
271'let' expressions
272^^^^^^^^^^^^^^^^^
273
274A record-level let expression is used to change the value of a value definition
275in a record. This is primarily useful when a superclass defines a value that a
276derived class or definition wants to override. Let expressions consist of the
277'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
278value. For example, a new class could be added to the example above, redefining
279the ``V`` field for all of its subclasses:
280
Renato Golin124f2592016-07-20 12:16:38 +0000281.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000282
283 class D : C { let V = 0; }
284 def Z : D;
285
286In this case, the ``Z`` definition will have a zero value for its ``V`` value,
287despite the fact that it derives (indirectly) from the ``C`` class, because the
288``D`` class overrode its value.
289
290.. _template arguments:
291
292Class template arguments
293^^^^^^^^^^^^^^^^^^^^^^^^
294
295TableGen permits the definition of parameterized classes as well as normal
296concrete classes. Parameterized TableGen classes specify a list of variable
297bindings (which may optionally have defaults) that are bound when used. Here is
298a simple example:
299
Renato Golin124f2592016-07-20 12:16:38 +0000300.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000301
302 class FPFormat<bits<3> val> {
303 bits<3> Value = val;
304 }
305 def NotFP : FPFormat<0>;
306 def ZeroArgFP : FPFormat<1>;
307 def OneArgFP : FPFormat<2>;
308 def OneArgFPRW : FPFormat<3>;
309 def TwoArgFP : FPFormat<4>;
310 def CompareFP : FPFormat<5>;
311 def CondMovFP : FPFormat<6>;
312 def SpecialFP : FPFormat<7>;
313
314In this case, template arguments are used as a space efficient way to specify a
315list of "enumeration values", each with a "``Value``" field set to the specified
316integer.
317
318The more esoteric forms of `TableGen expressions`_ are useful in conjunction
319with template arguments. As an example:
320
Renato Golin124f2592016-07-20 12:16:38 +0000321.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000322
323 class ModRefVal<bits<2> val> {
324 bits<2> Value = val;
325 }
326
327 def None : ModRefVal<0>;
328 def Mod : ModRefVal<1>;
329 def Ref : ModRefVal<2>;
330 def ModRef : ModRefVal<3>;
331
332 class Value<ModRefVal MR> {
333 // Decode some information into a more convenient format, while providing
334 // a nice interface to the user of the "Value" class.
335 bit isMod = MR.Value{0};
336 bit isRef = MR.Value{1};
337
338 // other stuff...
339 }
340
341 // Example uses
342 def bork : Value<Mod>;
343 def zork : Value<Ref>;
344 def hork : Value<ModRef>;
345
346This is obviously a contrived example, but it shows how template arguments can
347be used to decouple the interface provided to the user of the class from the
348actual internal data representation expected by the class. In this case,
349running ``llvm-tblgen`` on the example prints the following definitions:
350
Renato Golin124f2592016-07-20 12:16:38 +0000351.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000352
353 def bork { // Value
354 bit isMod = 1;
355 bit isRef = 0;
356 }
357 def hork { // Value
358 bit isMod = 1;
359 bit isRef = 1;
360 }
361 def zork { // Value
362 bit isMod = 0;
363 bit isRef = 1;
364 }
365
366This shows that TableGen was able to dig into the argument and extract a piece
367of information that was requested by the designer of the "Value" class. For
368more realistic examples, please see existing users of TableGen, such as the X86
369backend.
370
371Multiclass definitions and instances
372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
373
374While classes with template arguments are a good way to factor commonality
375between two instances of a definition, multiclasses allow a convenient notation
376for defining multiple definitions at once (instances of implicitly constructed
377classes). For example, consider an 3-address instruction set whose instructions
378come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
379(e.g. SPARC). In this case, you'd like to specify in one place that this
380commonality exists, then in a separate place indicate what all the ops are.
381
382Here is an example TableGen fragment that shows this idea:
383
Renato Golin124f2592016-07-20 12:16:38 +0000384.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000385
386 def ops;
387 def GPR;
388 def Imm;
389 class inst<int opc, string asmstr, dag operandlist>;
390
391 multiclass ri_inst<int opc, string asmstr> {
392 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
393 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
394 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
395 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
396 }
397
398 // Instantiations of the ri_inst multiclass.
399 defm ADD : ri_inst<0b111, "add">;
400 defm SUB : ri_inst<0b101, "sub">;
401 defm MUL : ri_inst<0b100, "mul">;
402 ...
403
404The name of the resultant definitions has the multidef fragment names appended
405to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
406inherit from multiple multiclasses, instantiating definitions from each
407multiclass. Using a multiclass this way is exactly equivalent to instantiating
408the classes multiple times yourself, e.g. by writing:
409
Renato Golin124f2592016-07-20 12:16:38 +0000410.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000411
412 def ops;
413 def GPR;
414 def Imm;
415 class inst<int opc, string asmstr, dag operandlist>;
416
417 class rrinst<int opc, string asmstr>
418 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
419 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
420
421 class riinst<int opc, string asmstr>
422 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
423 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
424
425 // Instantiations of the ri_inst multiclass.
426 def ADD_rr : rrinst<0b111, "add">;
427 def ADD_ri : riinst<0b111, "add">;
428 def SUB_rr : rrinst<0b101, "sub">;
429 def SUB_ri : riinst<0b101, "sub">;
430 def MUL_rr : rrinst<0b100, "mul">;
431 def MUL_ri : riinst<0b100, "mul">;
432 ...
433
434A ``defm`` can also be used inside a multiclass providing several levels of
435multiclass instantiations.
436
Renato Golin124f2592016-07-20 12:16:38 +0000437.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000438
439 class Instruction<bits<4> opc, string Name> {
440 bits<4> opcode = opc;
441 string name = Name;
442 }
443
444 multiclass basic_r<bits<4> opc> {
445 def rr : Instruction<opc, "rr">;
446 def rm : Instruction<opc, "rm">;
447 }
448
449 multiclass basic_s<bits<4> opc> {
450 defm SS : basic_r<opc>;
451 defm SD : basic_r<opc>;
452 def X : Instruction<opc, "x">;
453 }
454
455 multiclass basic_p<bits<4> opc> {
456 defm PS : basic_r<opc>;
457 defm PD : basic_r<opc>;
458 def Y : Instruction<opc, "y">;
459 }
460
461 defm ADD : basic_s<0xf>, basic_p<0xf>;
462 ...
463
464 // Results
465 def ADDPDrm { ...
466 def ADDPDrr { ...
467 def ADDPSrm { ...
468 def ADDPSrr { ...
469 def ADDSDrm { ...
470 def ADDSDrr { ...
471 def ADDY { ...
472 def ADDX { ...
473
474``defm`` declarations can inherit from classes too, the rule to follow is that
475the class list must start after the last multiclass, and there must be at least
476one multiclass before them.
477
Renato Golin124f2592016-07-20 12:16:38 +0000478.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000479
480 class XD { bits<4> Prefix = 11; }
481 class XS { bits<4> Prefix = 12; }
482
483 class I<bits<4> op> {
484 bits<4> opcode = op;
485 }
486
487 multiclass R {
488 def rr : I<4>;
489 def rm : I<2>;
490 }
491
492 multiclass Y {
493 defm SS : R, XD;
494 defm SD : R, XS;
495 }
496
497 defm Instr : Y;
498
499 // Results
500 def InstrSDrm {
501 bits<4> opcode = { 0, 0, 1, 0 };
502 bits<4> Prefix = { 1, 1, 0, 0 };
503 }
504 ...
505 def InstrSSrr {
506 bits<4> opcode = { 0, 1, 0, 0 };
507 bits<4> Prefix = { 1, 0, 1, 1 };
508 }
509
510File scope entities
511-------------------
512
513File inclusion
514^^^^^^^^^^^^^^
515
516TableGen supports the '``include``' token, which textually substitutes the
517specified file in place of the include directive. The filename should be
518specified as a double quoted string immediately after the '``include``' keyword.
519Example:
520
Renato Golin124f2592016-07-20 12:16:38 +0000521.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000522
523 include "foo.td"
524
525'let' expressions
526^^^^^^^^^^^^^^^^^
527
528"Let" expressions at file scope are similar to `"let" expressions within a
529record`_, except they can specify a value binding for multiple records at a
530time, and may be useful in certain other cases. File-scope let expressions are
531really just another way that TableGen allows the end-user to factor out
532commonality from the records.
533
534File-scope "let" expressions take a comma-separated list of bindings to apply,
535and one or more records to bind the values in. Here are some examples:
536
Renato Golin124f2592016-07-20 12:16:38 +0000537.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000538
539 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
540 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
541
542 let isCall = 1 in
543 // All calls clobber the non-callee saved registers...
544 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
545 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
546 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
547 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
548 "call\t${dst:call}", []>;
549 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
550 "call\t{*}$dst", [(X86call GR32:$dst)]>;
551 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
552 "call\t{*}$dst", []>;
553 }
554
555File-scope "let" expressions are often useful when a couple of definitions need
556to be added to several records, and the records do not otherwise need to be
557opened, as in the case with the ``CALL*`` instructions above.
558
559It's also possible to use "let" expressions inside multiclasses, providing more
560ways to factor out commonality from the records, specially if using several
561levels of multiclass instantiations. This also avoids the need of using "let"
562expressions within subsequent records inside a multiclass.
563
Renato Golin124f2592016-07-20 12:16:38 +0000564.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000565
566 multiclass basic_r<bits<4> opc> {
567 let Predicates = [HasSSE2] in {
568 def rr : Instruction<opc, "rr">;
569 def rm : Instruction<opc, "rm">;
570 }
571 let Predicates = [HasSSE3] in
572 def rx : Instruction<opc, "rx">;
573 }
574
575 multiclass basic_ss<bits<4> opc> {
576 let IsDouble = 0 in
577 defm SS : basic_r<opc>;
578
579 let IsDouble = 1 in
580 defm SD : basic_r<opc>;
581 }
582
583 defm ADD : basic_ss<0xf>;
584
585Looping
586^^^^^^^
587
588TableGen supports the '``foreach``' block, which textually replicates the loop
589body, substituting iterator values for iterator references in the body.
590Example:
591
Renato Golin124f2592016-07-20 12:16:38 +0000592.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000593
594 foreach i = [0, 1, 2, 3] in {
595 def R#i : Register<...>;
596 def F#i : Register<...>;
597 }
598
599This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
600may be nested. If there is only one item in the body the braces may be
601elided:
602
Renato Golin124f2592016-07-20 12:16:38 +0000603.. code-block:: text
Renato Golin33f973a2014-04-01 09:51:49 +0000604
605 foreach i = [0, 1, 2, 3] in
606 def R#i : Register<...>;
607
608Code Generator backend info
609===========================
610
611Expressions used by code generator to describe instructions and isel patterns:
612
613``(implicit a)``
614 an implicitly defined physical register. This tells the dag instruction
615 selection emitter the input pattern's extra definitions matches implicit
616 physical register definitions.
617