blob: 3722d4e3ed2f8bc285133c1021beb78aa3c83a5b [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Rui Ueyama244a4352016-12-03 21:24:51 +000079#include "Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000080#include "llvm/ADT/Hashing.h"
81#include "llvm/Object/ELF.h"
82#include "llvm/Support/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000083#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000084#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000085
86using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000087using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000088using namespace llvm;
89using namespace llvm::ELF;
90using namespace llvm::object;
91
Rui Ueyamabd1f0632016-11-20 02:39:59 +000092namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000093template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000094public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000095 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000096
97private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000098 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +000099
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000100 template <class RelTy>
101 bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000102
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000103 template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000104 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
105 const InputSection *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000106
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000107 bool equalsConstant(const InputSection *A, const InputSection *B);
108 bool equalsVariable(const InputSection *A, const InputSection *B);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000109
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000110 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000111
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000112 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000113 std::function<void(size_t, size_t)> Fn);
114
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000115 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000116
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000117 std::vector<InputSection *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000118
119 // We repeat the main loop while `Repeat` is true.
120 std::atomic<bool> Repeat;
121
122 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000123 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000124
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000125 // We have two locations for equivalence classes. On the first iteration
126 // of the main loop, Class[0] has a valid value, and Class[1] contains
127 // garbage. We read equivalence classes from slot 0 and write to slot 1.
128 // So, Class[0] represents the current class, and Class[1] represents
129 // the next class. On each iteration, we switch their roles and use them
130 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000131 //
132 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000133 // other equivalence classes in parallel. They may read sections that we
134 // are updating. We cannot update equivalence classes in place because
135 // it breaks the invariance that all possibly-identical sections must be
136 // in the same equivalence class at any moment. In other words, the for
137 // loop to update equivalence classes is not atomic, and that is
138 // observable from other threads. By writing new classes to other
139 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000140 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000141 // Below, `Current` has the index of the current class, and `Next` has
142 // the index of the next class. If threading is enabled, they are either
143 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000144 //
145 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000146 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000147 // conditions. Using the same location makes this algorithm converge
148 // faster because it uses results of the same iteration earlier.
149 int Current = 0;
150 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000151};
152}
Rui Ueyama0b289522016-02-25 18:43:51 +0000153
Rui Ueyama0b289522016-02-25 18:43:51 +0000154// Returns a hash value for S. Note that the information about
155// relocation targets is not included in the hash value.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000156template <class ELFT> static uint32_t getHash(InputSection *S) {
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000157 return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
Rui Ueyama0b289522016-02-25 18:43:51 +0000158}
159
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000160// Returns true if section S is subject of ICF.
Rui Ueyama536a2672017-02-27 02:32:08 +0000161static bool isEligible(InputSection *S) {
Rui Ueyama0b289522016-02-25 18:43:51 +0000162 // .init and .fini contains instructions that must be executed to
163 // initialize and finalize the process. They cannot and should not
164 // be merged.
Rui Ueyama13ed0b62017-02-28 22:42:49 +0000165 return S->Live && (S->Flags & SHF_ALLOC) && (S->Flags & SHF_EXECINSTR) &&
166 !(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000167}
168
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000169// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000170template <class ELFT>
171void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
172 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000173 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000174 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000175 //
176 // The algorithm is quadratic in the worst case, but that is not an
177 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000178 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000179
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000180 while (Begin < End) {
181 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000182 // second group.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000183 auto Bound =
184 std::stable_partition(Sections.begin() + Begin + 1,
185 Sections.begin() + End, [&](InputSection *S) {
186 if (Constant)
187 return equalsConstant(Sections[Begin], S);
188 return equalsVariable(Sections[Begin], S);
189 });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000190 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000191
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000192 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000193 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000194 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000195 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000196 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000197
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000198 // If we created a group, we need to iterate the main loop again.
199 if (Mid != End)
200 Repeat = true;
201
202 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000203 }
204}
205
206// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000207template <class ELFT>
208template <class RelTy>
209bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000210 auto Eq = [](const RelTy &A, const RelTy &B) {
211 return A.r_offset == B.r_offset &&
Rui Ueyamad57e74b72017-03-17 23:29:01 +0000212 A.getType(Config->IsMips64EL) == B.getType(Config->IsMips64EL) &&
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000213 getAddend<ELFT>(A) == getAddend<ELFT>(B);
214 };
215
216 return RelsA.size() == RelsB.size() &&
217 std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
Rui Ueyama0b289522016-02-25 18:43:51 +0000218}
219
220// Compare "non-moving" part of two InputSections, namely everything
221// except relocation targets.
222template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000223bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000224 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
Rafael Espindola76b6bd32017-03-08 15:44:30 +0000225 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000226 return false;
227
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000228 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000229 return constantEq(A->template relas<ELFT>(), B->template relas<ELFT>());
230 return constantEq(A->template rels<ELFT>(), B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000231}
232
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000233// Compare two lists of relocations. Returns true if all pairs of
234// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000235template <class ELFT>
236template <class RelTy>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000237bool ICF<ELFT>::variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
238 const InputSection *B, ArrayRef<RelTy> RelsB) {
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000239 auto Eq = [&](const RelTy &RA, const RelTy &RB) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000240 // The two sections must be identical.
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000241 SymbolBody &SA = A->template getFile<ELFT>()->getRelocTargetSym(RA);
242 SymbolBody &SB = B->template getFile<ELFT>()->getRelocTargetSym(RB);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000243 if (&SA == &SB)
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000244 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000245
Rui Ueyama80474a22017-02-28 19:29:55 +0000246 auto *DA = dyn_cast<DefinedRegular>(&SA);
247 auto *DB = dyn_cast<DefinedRegular>(&SB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000248 if (!DA || !DB)
249 return false;
Rafael Espindolaccfe3cb2016-04-04 14:04:16 +0000250 if (DA->Value != DB->Value)
Rui Ueyama0b289522016-02-25 18:43:51 +0000251 return false;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000252
Peter Collingbournedbd8d9b2017-01-20 04:58:12 +0000253 // Either both symbols must be absolute...
254 if (!DA->Section || !DB->Section)
255 return !DA->Section && !DB->Section;
256
257 // Or the two sections must be in the same equivalence class.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000258 auto *X = dyn_cast<InputSection>(DA->Section);
259 auto *Y = dyn_cast<InputSection>(DB->Section);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000260 if (!X || !Y)
261 return false;
Rui Ueyamac1835312016-12-01 17:09:04 +0000262
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000263 // Ineligible sections are in the special equivalence class 0.
264 // They can never be the same in terms of the equivalence class.
265 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000266 return false;
Rui Ueyamaa6cd5fe2016-12-01 21:41:06 +0000267
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000268 return X->Class[Current] == Y->Class[Current];
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000269 };
270
271 return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
Rui Ueyama0b289522016-02-25 18:43:51 +0000272}
273
274// Compare "moving" part of two InputSections, namely relocation targets.
275template <class ELFT>
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000276bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000277 if (A->AreRelocsRela)
Rafael Espindolab4c9b812017-02-23 02:28:28 +0000278 return variableEq(A, A->template relas<ELFT>(), B,
279 B->template relas<ELFT>());
280 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
Rui Ueyama0b289522016-02-25 18:43:51 +0000281}
282
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000283template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000284 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000285 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000286 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000287 return I;
288 return End;
289}
290
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000291// Sections in the same equivalence class are contiguous in Sections
292// vector. Therefore, Sections vector can be considered as contiguous
293// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000294//
295// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000296// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000297// have to end before End.
298template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000299void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000300 std::function<void(size_t, size_t)> Fn) {
301 if (Begin > 0)
302 Begin = findBoundary(Begin - 1, End);
303
304 while (Begin < End) {
305 size_t Mid = findBoundary(Begin, Sections.size());
306 Fn(Begin, Mid);
307 Begin = Mid;
308 }
309}
310
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000311// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000312template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000313void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000314 // If threading is disabled or the number of sections are
315 // too small to use threading, call Fn sequentially.
316 if (!Config->Threads || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000317 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000318 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000319 return;
320 }
321
Rui Ueyama045d8282016-12-04 16:33:13 +0000322 Current = Cnt % 2;
323 Next = (Cnt + 1) % 2;
324
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000325 // Split sections into 256 shards and call Fn in parallel.
326 size_t NumShards = 256;
327 size_t Step = Sections.size() / NumShards;
Rui Ueyama33d903d2017-05-10 20:02:19 +0000328 parallelForEachN(0, NumShards, [&](size_t I) {
Rui Ueyama4995afd2017-03-22 23:03:35 +0000329 forEachClassRange(I * Step, (I + 1) * Step, Fn);
330 });
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000331 forEachClassRange(Step * NumShards, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000332 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000333}
334
Rui Ueyama0b289522016-02-25 18:43:51 +0000335// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000336template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000337 // Collect sections to merge.
Rui Ueyama536a2672017-02-27 02:32:08 +0000338 for (InputSectionBase *Sec : InputSections)
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000339 if (auto *S = dyn_cast<InputSection>(Sec))
Rui Ueyama536a2672017-02-27 02:32:08 +0000340 if (isEligible(S))
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000341 Sections.push_back(S);
342
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000343 // Initially, we use hash values to partition sections.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000344 for (InputSection *S : Sections)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000345 // Set MSB to 1 to avoid collisions with non-hash IDs.
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000346 S->Class[0] = getHash<ELFT>(S) | (1 << 31);
Rui Ueyama0b289522016-02-25 18:43:51 +0000347
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000348 // From now on, sections in Sections vector are ordered so that sections
349 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000350 std::stable_sort(Sections.begin(), Sections.end(),
Rafael Espindola774ea7d2017-02-23 16:49:07 +0000351 [](InputSection *A, InputSection *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000352 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000353 });
354
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000355 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000356 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000357
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000358 // Split groups by comparing relocations until convergence is obtained.
359 do {
360 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000361 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000362 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000363 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000364
365 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000366
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000367 // Merge sections by the equivalence class.
368 forEachClass([&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000369 if (End - Begin == 1)
370 return;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000371
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000372 log("selected " + Sections[Begin]->Name);
373 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000374 log(" removed " + Sections[I]->Name);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000375 Sections[Begin]->replace(Sections[I]);
Rui Ueyama0b289522016-02-25 18:43:51 +0000376 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000377 });
Peter Smithcec1e262017-04-13 08:52:58 +0000378
379 // Mark ARM Exception Index table sections that refer to folded code
380 // sections as not live. These sections have an implict dependency
381 // via the link order dependency.
382 if (Config->EMachine == EM_ARM)
383 for (InputSectionBase *Sec : InputSections)
384 if (auto *S = dyn_cast<InputSection>(Sec))
385 if (S->Flags & SHF_LINK_ORDER)
386 S->Live = S->getLinkOrderDep()->Live;
Rui Ueyama0b289522016-02-25 18:43:51 +0000387}
388
389// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000390template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000391
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000392template void elf::doIcf<ELF32LE>();
393template void elf::doIcf<ELF32BE>();
394template void elf::doIcf<ELF64LE>();
395template void elf::doIcf<ELF64BE>();