blob: 883e6f52369af0d3a02441a2be9467465310d11d [file] [log] [blame]
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
Ayal Zaks1f58dda2017-08-27 12:55:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Eugene Zelenko6cadde72017-10-17 21:27:42 +00009//
Ayal Zaks1f58dda2017-08-27 12:55:46 +000010/// \file
11/// This file contains the declarations of the Vectorization Plan base classes:
12/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
13/// VPBlockBase, together implementing a Hierarchical CFG;
14/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
15/// treated as proper graphs for generic algorithms;
16/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
17/// within VPBasicBlocks;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +000018/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
19/// instruction;
20/// 5. The VPlan class holding a candidate for vectorization;
21/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000022/// These are documented in docs/VectorizationPlan.rst.
Eugene Zelenko6cadde72017-10-17 21:27:42 +000023//
Ayal Zaks1f58dda2017-08-27 12:55:46 +000024//===----------------------------------------------------------------------===//
25
26#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28
Diego Caballero35871502018-07-31 01:57:29 +000029#include "VPlanLoopInfo.h"
Gil Rapaport8b9d1f32017-11-20 12:01:47 +000030#include "VPlanValue.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000031#include "llvm/ADT/DenseMap.h"
Diego Caballero2a34ac82018-07-30 21:33:31 +000032#include "llvm/ADT/DepthFirstIterator.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000033#include "llvm/ADT/GraphTraits.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000034#include "llvm/ADT/Optional.h"
Florian Hahna1cc8482018-06-12 11:16:56 +000035#include "llvm/ADT/SmallPtrSet.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000036#include "llvm/ADT/SmallSet.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000037#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Twine.h"
Ayal Zaks1f58dda2017-08-27 12:55:46 +000039#include "llvm/ADT/ilist.h"
40#include "llvm/ADT/ilist_node.h"
41#include "llvm/IR/IRBuilder.h"
Eugene Zelenko6cadde72017-10-17 21:27:42 +000042#include <algorithm>
43#include <cassert>
44#include <cstddef>
45#include <map>
46#include <string>
Ayal Zaks1f58dda2017-08-27 12:55:46 +000047
48namespace llvm {
49
Hal Finkel0f1314c2018-01-07 16:02:58 +000050class LoopVectorizationLegality;
51class LoopVectorizationCostModel;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000052class BasicBlock;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000053class DominatorTree;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000054class InnerLoopVectorizer;
Hal Finkel7333aa92017-12-16 01:12:50 +000055class InterleaveGroup;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000056class raw_ostream;
57class Value;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000058class VPBasicBlock;
Eugene Zelenko6cadde72017-10-17 21:27:42 +000059class VPRegionBlock;
Florian Hahn45e5d5b2018-06-08 17:30:45 +000060class VPlan;
61
62/// A range of powers-of-2 vectorization factors with fixed start and
63/// adjustable end. The range includes start and excludes end, e.g.,:
64/// [1, 9) = {1, 2, 4, 8}
65struct VFRange {
66 // A power of 2.
67 const unsigned Start;
68
69 // Need not be a power of 2. If End <= Start range is empty.
70 unsigned End;
71};
72
73using VPlanPtr = std::unique_ptr<VPlan>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000074
75/// In what follows, the term "input IR" refers to code that is fed into the
76/// vectorizer whereas the term "output IR" refers to code that is generated by
77/// the vectorizer.
78
79/// VPIteration represents a single point in the iteration space of the output
80/// (vectorized and/or unrolled) IR loop.
81struct VPIteration {
Eugene Zelenko6cadde72017-10-17 21:27:42 +000082 /// in [0..UF)
83 unsigned Part;
84
85 /// in [0..VF)
86 unsigned Lane;
Ayal Zaks1f58dda2017-08-27 12:55:46 +000087};
88
89/// This is a helper struct for maintaining vectorization state. It's used for
90/// mapping values from the original loop to their corresponding values in
91/// the new loop. Two mappings are maintained: one for vectorized values and
92/// one for scalarized values. Vectorized values are represented with UF
93/// vector values in the new loop, and scalarized values are represented with
94/// UF x VF scalar values in the new loop. UF and VF are the unroll and
95/// vectorization factors, respectively.
96///
97/// Entries can be added to either map with setVectorValue and setScalarValue,
98/// which assert that an entry was not already added before. If an entry is to
99/// replace an existing one, call resetVectorValue and resetScalarValue. This is
100/// currently needed to modify the mapped values during "fix-up" operations that
101/// occur once the first phase of widening is complete. These operations include
102/// type truncation and the second phase of recurrence widening.
103///
104/// Entries from either map can be retrieved using the getVectorValue and
105/// getScalarValue functions, which assert that the desired value exists.
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000106struct VectorizerValueMap {
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000107 friend struct VPTransformState;
108
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000109private:
110 /// The unroll factor. Each entry in the vector map contains UF vector values.
111 unsigned UF;
112
113 /// The vectorization factor. Each entry in the scalar map contains UF x VF
114 /// scalar values.
115 unsigned VF;
116
117 /// The vector and scalar map storage. We use std::map and not DenseMap
118 /// because insertions to DenseMap invalidate its iterators.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000119 using VectorParts = SmallVector<Value *, 2>;
120 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000121 std::map<Value *, VectorParts> VectorMapStorage;
122 std::map<Value *, ScalarParts> ScalarMapStorage;
123
124public:
125 /// Construct an empty map with the given unroll and vectorization factors.
126 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
127
128 /// \return True if the map has any vector entry for \p Key.
129 bool hasAnyVectorValue(Value *Key) const {
130 return VectorMapStorage.count(Key);
131 }
132
133 /// \return True if the map has a vector entry for \p Key and \p Part.
134 bool hasVectorValue(Value *Key, unsigned Part) const {
135 assert(Part < UF && "Queried Vector Part is too large.");
136 if (!hasAnyVectorValue(Key))
137 return false;
138 const VectorParts &Entry = VectorMapStorage.find(Key)->second;
139 assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
140 return Entry[Part] != nullptr;
141 }
142
143 /// \return True if the map has any scalar entry for \p Key.
144 bool hasAnyScalarValue(Value *Key) const {
145 return ScalarMapStorage.count(Key);
146 }
147
148 /// \return True if the map has a scalar entry for \p Key and \p Instance.
149 bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
150 assert(Instance.Part < UF && "Queried Scalar Part is too large.");
151 assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
152 if (!hasAnyScalarValue(Key))
153 return false;
154 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
155 assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
156 assert(Entry[Instance.Part].size() == VF &&
157 "ScalarParts has wrong dimensions.");
158 return Entry[Instance.Part][Instance.Lane] != nullptr;
159 }
160
161 /// Retrieve the existing vector value that corresponds to \p Key and
162 /// \p Part.
163 Value *getVectorValue(Value *Key, unsigned Part) {
164 assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
165 return VectorMapStorage[Key][Part];
166 }
167
168 /// Retrieve the existing scalar value that corresponds to \p Key and
169 /// \p Instance.
170 Value *getScalarValue(Value *Key, const VPIteration &Instance) {
171 assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
172 return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
173 }
174
175 /// Set a vector value associated with \p Key and \p Part. Assumes such a
176 /// value is not already set. If it is, use resetVectorValue() instead.
177 void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
178 assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
179 if (!VectorMapStorage.count(Key)) {
180 VectorParts Entry(UF);
181 VectorMapStorage[Key] = Entry;
182 }
183 VectorMapStorage[Key][Part] = Vector;
184 }
185
186 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
187 /// value is not already set.
188 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
189 assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
190 if (!ScalarMapStorage.count(Key)) {
191 ScalarParts Entry(UF);
192 // TODO: Consider storing uniform values only per-part, as they occupy
193 // lane 0 only, keeping the other VF-1 redundant entries null.
194 for (unsigned Part = 0; Part < UF; ++Part)
195 Entry[Part].resize(VF, nullptr);
196 ScalarMapStorage[Key] = Entry;
197 }
198 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
199 }
200
201 /// Reset the vector value associated with \p Key for the given \p Part.
202 /// This function can be used to update values that have already been
203 /// vectorized. This is the case for "fix-up" operations including type
204 /// truncation and the second phase of recurrence vectorization.
205 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
206 assert(hasVectorValue(Key, Part) && "Vector value not set for part");
207 VectorMapStorage[Key][Part] = Vector;
208 }
209
210 /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
211 /// This function can be used to update values that have already been
212 /// scalarized. This is the case for "fix-up" operations including scalar phi
213 /// nodes for scalarized and predicated instructions.
214 void resetScalarValue(Value *Key, const VPIteration &Instance,
215 Value *Scalar) {
216 assert(hasScalarValue(Key, Instance) &&
217 "Scalar value not set for part and lane");
218 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
219 }
220};
221
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000222/// This class is used to enable the VPlan to invoke a method of ILV. This is
223/// needed until the method is refactored out of ILV and becomes reusable.
224struct VPCallback {
225 virtual ~VPCallback() {}
226 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
227};
228
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000229/// VPTransformState holds information passed down when "executing" a VPlan,
230/// needed for generating the output IR.
231struct VPTransformState {
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000232 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
233 IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000234 InnerLoopVectorizer *ILV, VPCallback &Callback)
235 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
236 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000237
238 /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
239 unsigned VF;
240 unsigned UF;
241
242 /// Hold the indices to generate specific scalar instructions. Null indicates
243 /// that all instances are to be generated, using either scalar or vector
244 /// instructions.
245 Optional<VPIteration> Instance;
246
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000247 struct DataState {
248 /// A type for vectorized values in the new loop. Each value from the
249 /// original loop, when vectorized, is represented by UF vector values in
250 /// the new unrolled loop, where UF is the unroll factor.
251 typedef SmallVector<Value *, 2> PerPartValuesTy;
252
253 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
254 } Data;
255
256 /// Get the generated Value for a given VPValue and a given Part. Note that
257 /// as some Defs are still created by ILV and managed in its ValueMap, this
258 /// method will delegate the call to ILV in such cases in order to provide
259 /// callers a consistent API.
260 /// \see set.
261 Value *get(VPValue *Def, unsigned Part) {
262 // If Values have been set for this Def return the one relevant for \p Part.
263 if (Data.PerPartOutput.count(Def))
264 return Data.PerPartOutput[Def][Part];
265 // Def is managed by ILV: bring the Values from ValueMap.
266 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
267 }
268
269 /// Set the generated Value for a given VPValue and a given Part.
270 void set(VPValue *Def, Value *V, unsigned Part) {
271 if (!Data.PerPartOutput.count(Def)) {
272 DataState::PerPartValuesTy Entry(UF);
273 Data.PerPartOutput[Def] = Entry;
274 }
275 Data.PerPartOutput[Def][Part] = V;
276 }
277
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000278 /// Hold state information used when constructing the CFG of the output IR,
279 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
280 struct CFGState {
281 /// The previous VPBasicBlock visited. Initially set to null.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000282 VPBasicBlock *PrevVPBB = nullptr;
283
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000284 /// The previous IR BasicBlock created or used. Initially set to the new
285 /// header BasicBlock.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000286 BasicBlock *PrevBB = nullptr;
287
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000288 /// The last IR BasicBlock in the output IR. Set to the new latch
289 /// BasicBlock, used for placing the newly created BasicBlocks.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000290 BasicBlock *LastBB = nullptr;
291
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000292 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
293 /// of replication, maps the BasicBlock of the last replica created.
294 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
295
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000296 CFGState() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000297 } CFG;
298
299 /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000300 LoopInfo *LI;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000301
302 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000303 DominatorTree *DT;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000304
305 /// Hold a reference to the IRBuilder used to generate output IR code.
306 IRBuilder<> &Builder;
307
308 /// Hold a reference to the Value state information used when generating the
309 /// Values of the output IR.
310 VectorizerValueMap &ValueMap;
311
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000312 /// Hold a reference to a mapping between VPValues in VPlan and original
313 /// Values they correspond to.
314 VPValue2ValueTy VPValue2Value;
315
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000316 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000317 InnerLoopVectorizer *ILV;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000318
319 VPCallback &Callback;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000320};
321
322/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
323/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
324class VPBlockBase {
Diego Caballero168d04d2018-05-21 18:14:23 +0000325 friend class VPBlockUtils;
326
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000327private:
328 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
329
330 /// An optional name for the block.
331 std::string Name;
332
333 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
334 /// it is a topmost VPBlockBase.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000335 VPRegionBlock *Parent = nullptr;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000336
337 /// List of predecessor blocks.
338 SmallVector<VPBlockBase *, 1> Predecessors;
339
340 /// List of successor blocks.
341 SmallVector<VPBlockBase *, 1> Successors;
342
Diego Caballerod0953012018-07-09 15:57:09 +0000343 /// Successor selector, null for zero or single successor blocks.
344 VPValue *CondBit = nullptr;
345
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000346 /// Add \p Successor as the last successor to this block.
347 void appendSuccessor(VPBlockBase *Successor) {
348 assert(Successor && "Cannot add nullptr successor!");
349 Successors.push_back(Successor);
350 }
351
352 /// Add \p Predecessor as the last predecessor to this block.
353 void appendPredecessor(VPBlockBase *Predecessor) {
354 assert(Predecessor && "Cannot add nullptr predecessor!");
355 Predecessors.push_back(Predecessor);
356 }
357
358 /// Remove \p Predecessor from the predecessors of this block.
359 void removePredecessor(VPBlockBase *Predecessor) {
360 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
361 assert(Pos && "Predecessor does not exist");
362 Predecessors.erase(Pos);
363 }
364
365 /// Remove \p Successor from the successors of this block.
366 void removeSuccessor(VPBlockBase *Successor) {
367 auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
368 assert(Pos && "Successor does not exist");
369 Successors.erase(Pos);
370 }
371
372protected:
373 VPBlockBase(const unsigned char SC, const std::string &N)
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000374 : SubclassID(SC), Name(N) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000375
376public:
377 /// An enumeration for keeping track of the concrete subclass of VPBlockBase
378 /// that are actually instantiated. Values of this enumeration are kept in the
379 /// SubclassID field of the VPBlockBase objects. They are used for concrete
380 /// type identification.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000381 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000382
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000383 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000384
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000385 virtual ~VPBlockBase() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000386
387 const std::string &getName() const { return Name; }
388
389 void setName(const Twine &newName) { Name = newName.str(); }
390
391 /// \return an ID for the concrete type of this object.
392 /// This is used to implement the classof checks. This should not be used
393 /// for any other purpose, as the values may change as LLVM evolves.
394 unsigned getVPBlockID() const { return SubclassID; }
395
Diego Caballero168d04d2018-05-21 18:14:23 +0000396 VPRegionBlock *getParent() { return Parent; }
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000397 const VPRegionBlock *getParent() const { return Parent; }
398
399 void setParent(VPRegionBlock *P) { Parent = P; }
400
401 /// \return the VPBasicBlock that is the entry of this VPBlockBase,
402 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
403 /// VPBlockBase is a VPBasicBlock, it is returned.
404 const VPBasicBlock *getEntryBasicBlock() const;
405 VPBasicBlock *getEntryBasicBlock();
406
407 /// \return the VPBasicBlock that is the exit of this VPBlockBase,
408 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
409 /// VPBlockBase is a VPBasicBlock, it is returned.
410 const VPBasicBlock *getExitBasicBlock() const;
411 VPBasicBlock *getExitBasicBlock();
412
413 const VPBlocksTy &getSuccessors() const { return Successors; }
414 VPBlocksTy &getSuccessors() { return Successors; }
415
416 const VPBlocksTy &getPredecessors() const { return Predecessors; }
417 VPBlocksTy &getPredecessors() { return Predecessors; }
418
419 /// \return the successor of this VPBlockBase if it has a single successor.
420 /// Otherwise return a null pointer.
421 VPBlockBase *getSingleSuccessor() const {
422 return (Successors.size() == 1 ? *Successors.begin() : nullptr);
423 }
424
425 /// \return the predecessor of this VPBlockBase if it has a single
426 /// predecessor. Otherwise return a null pointer.
427 VPBlockBase *getSinglePredecessor() const {
428 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
429 }
430
Diego Caballero168d04d2018-05-21 18:14:23 +0000431 size_t getNumSuccessors() const { return Successors.size(); }
432 size_t getNumPredecessors() const { return Predecessors.size(); }
433
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000434 /// An Enclosing Block of a block B is any block containing B, including B
435 /// itself. \return the closest enclosing block starting from "this", which
436 /// has successors. \return the root enclosing block if all enclosing blocks
437 /// have no successors.
438 VPBlockBase *getEnclosingBlockWithSuccessors();
439
440 /// \return the closest enclosing block starting from "this", which has
441 /// predecessors. \return the root enclosing block if all enclosing blocks
442 /// have no predecessors.
443 VPBlockBase *getEnclosingBlockWithPredecessors();
444
445 /// \return the successors either attached directly to this VPBlockBase or, if
446 /// this VPBlockBase is the exit block of a VPRegionBlock and has no
447 /// successors of its own, search recursively for the first enclosing
448 /// VPRegionBlock that has successors and return them. If no such
449 /// VPRegionBlock exists, return the (empty) successors of the topmost
450 /// VPBlockBase reached.
451 const VPBlocksTy &getHierarchicalSuccessors() {
452 return getEnclosingBlockWithSuccessors()->getSuccessors();
453 }
454
455 /// \return the hierarchical successor of this VPBlockBase if it has a single
456 /// hierarchical successor. Otherwise return a null pointer.
457 VPBlockBase *getSingleHierarchicalSuccessor() {
458 return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
459 }
460
461 /// \return the predecessors either attached directly to this VPBlockBase or,
462 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
463 /// predecessors of its own, search recursively for the first enclosing
464 /// VPRegionBlock that has predecessors and return them. If no such
465 /// VPRegionBlock exists, return the (empty) predecessors of the topmost
466 /// VPBlockBase reached.
467 const VPBlocksTy &getHierarchicalPredecessors() {
468 return getEnclosingBlockWithPredecessors()->getPredecessors();
469 }
470
471 /// \return the hierarchical predecessor of this VPBlockBase if it has a
472 /// single hierarchical predecessor. Otherwise return a null pointer.
473 VPBlockBase *getSingleHierarchicalPredecessor() {
474 return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
475 }
476
Diego Caballerod0953012018-07-09 15:57:09 +0000477 /// \return the condition bit selecting the successor.
478 VPValue *getCondBit() { return CondBit; }
479
480 const VPValue *getCondBit() const { return CondBit; }
481
482 void setCondBit(VPValue *CV) { CondBit = CV; }
483
Diego Caballero168d04d2018-05-21 18:14:23 +0000484 /// Set a given VPBlockBase \p Successor as the single successor of this
485 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
486 /// This VPBlockBase must have no successors.
487 void setOneSuccessor(VPBlockBase *Successor) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000488 assert(Successors.empty() && "Setting one successor when others exist.");
489 appendSuccessor(Successor);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000490 }
491
Diego Caballero168d04d2018-05-21 18:14:23 +0000492 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
Diego Caballerod0953012018-07-09 15:57:09 +0000493 /// successors of this VPBlockBase. \p Condition is set as the successor
494 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
495 /// IfFalse. This VPBlockBase must have no successors.
496 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
497 VPValue *Condition) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000498 assert(Successors.empty() && "Setting two successors when others exist.");
Diego Caballerod0953012018-07-09 15:57:09 +0000499 assert(Condition && "Setting two successors without condition!");
500 CondBit = Condition;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000501 appendSuccessor(IfTrue);
502 appendSuccessor(IfFalse);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000503 }
504
Diego Caballero168d04d2018-05-21 18:14:23 +0000505 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
506 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
507 /// as successor of any VPBasicBlock in \p NewPreds.
508 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
509 assert(Predecessors.empty() && "Block predecessors already set.");
510 for (auto *Pred : NewPreds)
511 appendPredecessor(Pred);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000512 }
513
514 /// The method which generates the output IR that correspond to this
515 /// VPBlockBase, thereby "executing" the VPlan.
516 virtual void execute(struct VPTransformState *State) = 0;
517
518 /// Delete all blocks reachable from a given VPBlockBase, inclusive.
519 static void deleteCFG(VPBlockBase *Entry);
Diego Caballero2a34ac82018-07-30 21:33:31 +0000520
521 void printAsOperand(raw_ostream &OS, bool PrintType) const {
522 OS << getName();
523 }
524
525 void print(raw_ostream &OS) const {
526 // TODO: Only printing VPBB name for now since we only have dot printing
527 // support for VPInstructions/Recipes.
528 printAsOperand(OS, false);
529 }
Diego Caballero35871502018-07-31 01:57:29 +0000530
531 /// Return true if it is legal to hoist instructions into this block.
532 bool isLegalToHoistInto() {
533 // There are currently no constraints that prevent an instruction to be
534 // hoisted into a VPBlockBase.
535 return true;
536 }
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000537};
538
539/// VPRecipeBase is a base class modeling a sequence of one or more output IR
540/// instructions.
541class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
542 friend VPBasicBlock;
543
544private:
545 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
546
547 /// Each VPRecipe belongs to a single VPBasicBlock.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000548 VPBasicBlock *Parent = nullptr;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000549
550public:
551 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
552 /// that is actually instantiated. Values of this enumeration are kept in the
553 /// SubclassID field of the VPRecipeBase objects. They are used for concrete
554 /// type identification.
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000555 using VPRecipeTy = enum {
Gil Rapaport848581c2017-11-14 12:09:30 +0000556 VPBlendSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000557 VPBranchOnMaskSC,
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000558 VPInstructionSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000559 VPInterleaveSC,
560 VPPredInstPHISC,
561 VPReplicateSC,
562 VPWidenIntOrFpInductionSC,
Gil Rapaport848581c2017-11-14 12:09:30 +0000563 VPWidenMemoryInstructionSC,
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000564 VPWidenPHISC,
565 VPWidenSC,
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000566 };
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000567
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000568 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
569 virtual ~VPRecipeBase() = default;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000570
571 /// \return an ID for the concrete type of this object.
572 /// This is used to implement the classof checks. This should not be used
573 /// for any other purpose, as the values may change as LLVM evolves.
574 unsigned getVPRecipeID() const { return SubclassID; }
575
576 /// \return the VPBasicBlock which this VPRecipe belongs to.
577 VPBasicBlock *getParent() { return Parent; }
578 const VPBasicBlock *getParent() const { return Parent; }
579
580 /// The method which generates the output IR instructions that correspond to
581 /// this VPRecipe, thereby "executing" the VPlan.
582 virtual void execute(struct VPTransformState &State) = 0;
583
584 /// Each recipe prints itself.
585 virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
Florian Hahn7591e4e2018-06-18 11:34:17 +0000586
587 /// Insert an unlinked recipe into a basic block immediately before
588 /// the specified recipe.
589 void insertBefore(VPRecipeBase *InsertPos);
Florian Hahn63cbcf92018-06-18 15:18:48 +0000590
591 /// This method unlinks 'this' from the containing basic block and deletes it.
592 ///
593 /// \returns an iterator pointing to the element after the erased one
594 iplist<VPRecipeBase>::iterator eraseFromParent();
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000595};
596
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000597/// This is a concrete Recipe that models a single VPlan-level instruction.
598/// While as any Recipe it may generate a sequence of IR instructions when
599/// executed, these instructions would always form a single-def expression as
600/// the VPInstruction is also a single def-use vertex.
601class VPInstruction : public VPUser, public VPRecipeBase {
Florian Hahn3385caa2018-06-18 18:28:49 +0000602 friend class VPlanHCFGTransforms;
603
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000604public:
605 /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
606 enum { Not = Instruction::OtherOpsEnd + 1 };
607
608private:
609 typedef unsigned char OpcodeTy;
610 OpcodeTy Opcode;
611
612 /// Utility method serving execute(): generates a single instance of the
613 /// modeled instruction.
614 void generateInstruction(VPTransformState &State, unsigned Part);
615
616public:
Diego Caballero168d04d2018-05-21 18:14:23 +0000617 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000618 : VPUser(VPValue::VPInstructionSC, Operands),
619 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
620
Diego Caballero168d04d2018-05-21 18:14:23 +0000621 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
622 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
623
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000624 /// Method to support type inquiry through isa, cast, and dyn_cast.
625 static inline bool classof(const VPValue *V) {
626 return V->getVPValueID() == VPValue::VPInstructionSC;
627 }
628
629 /// Method to support type inquiry through isa, cast, and dyn_cast.
630 static inline bool classof(const VPRecipeBase *R) {
631 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
632 }
633
634 unsigned getOpcode() const { return Opcode; }
635
636 /// Generate the instruction.
637 /// TODO: We currently execute only per-part unless a specific instance is
638 /// provided.
639 void execute(VPTransformState &State) override;
640
641 /// Print the Recipe.
642 void print(raw_ostream &O, const Twine &Indent) const override;
643
644 /// Print the VPInstruction.
645 void print(raw_ostream &O) const;
646};
647
Hal Finkel7333aa92017-12-16 01:12:50 +0000648/// VPWidenRecipe is a recipe for producing a copy of vector type for each
649/// Instruction in its ingredients independently, in order. This recipe covers
650/// most of the traditional vectorization cases where each ingredient transforms
651/// into a vectorized version of itself.
652class VPWidenRecipe : public VPRecipeBase {
653private:
654 /// Hold the ingredients by pointing to their original BasicBlock location.
655 BasicBlock::iterator Begin;
656 BasicBlock::iterator End;
657
658public:
659 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
660 End = I->getIterator();
661 Begin = End++;
662 }
663
664 ~VPWidenRecipe() override = default;
665
666 /// Method to support type inquiry through isa, cast, and dyn_cast.
667 static inline bool classof(const VPRecipeBase *V) {
668 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
669 }
670
671 /// Produce widened copies of all Ingredients.
672 void execute(VPTransformState &State) override;
673
674 /// Augment the recipe to include Instr, if it lies at its End.
675 bool appendInstruction(Instruction *Instr) {
676 if (End != Instr->getIterator())
677 return false;
678 End++;
679 return true;
680 }
681
682 /// Print the recipe.
683 void print(raw_ostream &O, const Twine &Indent) const override;
684};
685
686/// A recipe for handling phi nodes of integer and floating-point inductions,
687/// producing their vector and scalar values.
688class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
689private:
690 PHINode *IV;
691 TruncInst *Trunc;
692
693public:
694 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
695 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
696 ~VPWidenIntOrFpInductionRecipe() override = default;
697
698 /// Method to support type inquiry through isa, cast, and dyn_cast.
699 static inline bool classof(const VPRecipeBase *V) {
700 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
701 }
702
703 /// Generate the vectorized and scalarized versions of the phi node as
704 /// needed by their users.
705 void execute(VPTransformState &State) override;
706
707 /// Print the recipe.
708 void print(raw_ostream &O, const Twine &Indent) const override;
709};
710
711/// A recipe for handling all phi nodes except for integer and FP inductions.
712class VPWidenPHIRecipe : public VPRecipeBase {
713private:
714 PHINode *Phi;
715
716public:
717 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
718 ~VPWidenPHIRecipe() override = default;
719
720 /// Method to support type inquiry through isa, cast, and dyn_cast.
721 static inline bool classof(const VPRecipeBase *V) {
722 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
723 }
724
725 /// Generate the phi/select nodes.
726 void execute(VPTransformState &State) override;
727
728 /// Print the recipe.
729 void print(raw_ostream &O, const Twine &Indent) const override;
730};
731
732/// A recipe for vectorizing a phi-node as a sequence of mask-based select
733/// instructions.
734class VPBlendRecipe : public VPRecipeBase {
735private:
736 PHINode *Phi;
737
738 /// The blend operation is a User of a mask, if not null.
739 std::unique_ptr<VPUser> User;
740
741public:
742 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
743 : VPRecipeBase(VPBlendSC), Phi(Phi) {
744 assert((Phi->getNumIncomingValues() == 1 ||
745 Phi->getNumIncomingValues() == Masks.size()) &&
746 "Expected the same number of incoming values and masks");
747 if (!Masks.empty())
748 User.reset(new VPUser(Masks));
749 }
750
751 /// Method to support type inquiry through isa, cast, and dyn_cast.
752 static inline bool classof(const VPRecipeBase *V) {
753 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
754 }
755
756 /// Generate the phi/select nodes.
757 void execute(VPTransformState &State) override;
758
759 /// Print the recipe.
760 void print(raw_ostream &O, const Twine &Indent) const override;
761};
762
763/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
764/// or stores into one wide load/store and shuffles.
765class VPInterleaveRecipe : public VPRecipeBase {
766private:
767 const InterleaveGroup *IG;
768
769public:
770 VPInterleaveRecipe(const InterleaveGroup *IG)
771 : VPRecipeBase(VPInterleaveSC), IG(IG) {}
772 ~VPInterleaveRecipe() override = default;
773
774 /// Method to support type inquiry through isa, cast, and dyn_cast.
775 static inline bool classof(const VPRecipeBase *V) {
776 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
777 }
778
779 /// Generate the wide load or store, and shuffles.
780 void execute(VPTransformState &State) override;
781
782 /// Print the recipe.
783 void print(raw_ostream &O, const Twine &Indent) const override;
784
785 const InterleaveGroup *getInterleaveGroup() { return IG; }
786};
787
788/// VPReplicateRecipe replicates a given instruction producing multiple scalar
789/// copies of the original scalar type, one per lane, instead of producing a
790/// single copy of widened type for all lanes. If the instruction is known to be
791/// uniform only one copy, per lane zero, will be generated.
792class VPReplicateRecipe : public VPRecipeBase {
793private:
794 /// The instruction being replicated.
795 Instruction *Ingredient;
796
797 /// Indicator if only a single replica per lane is needed.
798 bool IsUniform;
799
800 /// Indicator if the replicas are also predicated.
801 bool IsPredicated;
802
803 /// Indicator if the scalar values should also be packed into a vector.
804 bool AlsoPack;
805
806public:
807 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
808 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
809 IsPredicated(IsPredicated) {
810 // Retain the previous behavior of predicateInstructions(), where an
811 // insert-element of a predicated instruction got hoisted into the
812 // predicated basic block iff it was its only user. This is achieved by
813 // having predicated instructions also pack their values into a vector by
814 // default unless they have a replicated user which uses their scalar value.
815 AlsoPack = IsPredicated && !I->use_empty();
816 }
817
818 ~VPReplicateRecipe() override = default;
819
820 /// Method to support type inquiry through isa, cast, and dyn_cast.
821 static inline bool classof(const VPRecipeBase *V) {
822 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
823 }
824
825 /// Generate replicas of the desired Ingredient. Replicas will be generated
826 /// for all parts and lanes unless a specific part and lane are specified in
827 /// the \p State.
828 void execute(VPTransformState &State) override;
829
830 void setAlsoPack(bool Pack) { AlsoPack = Pack; }
831
832 /// Print the recipe.
833 void print(raw_ostream &O, const Twine &Indent) const override;
834};
835
836/// A recipe for generating conditional branches on the bits of a mask.
837class VPBranchOnMaskRecipe : public VPRecipeBase {
838private:
839 std::unique_ptr<VPUser> User;
840
841public:
842 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
843 if (BlockInMask) // nullptr means all-one mask.
844 User.reset(new VPUser({BlockInMask}));
845 }
846
847 /// Method to support type inquiry through isa, cast, and dyn_cast.
848 static inline bool classof(const VPRecipeBase *V) {
849 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
850 }
851
852 /// Generate the extraction of the appropriate bit from the block mask and the
853 /// conditional branch.
854 void execute(VPTransformState &State) override;
855
856 /// Print the recipe.
857 void print(raw_ostream &O, const Twine &Indent) const override {
858 O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
859 if (User)
860 O << *User->getOperand(0);
861 else
862 O << " All-One";
863 O << "\\l\"";
864 }
865};
866
867/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
868/// control converges back from a Branch-on-Mask. The phi nodes are needed in
869/// order to merge values that are set under such a branch and feed their uses.
870/// The phi nodes can be scalar or vector depending on the users of the value.
871/// This recipe works in concert with VPBranchOnMaskRecipe.
872class VPPredInstPHIRecipe : public VPRecipeBase {
873private:
874 Instruction *PredInst;
875
876public:
877 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
878 /// nodes after merging back from a Branch-on-Mask.
879 VPPredInstPHIRecipe(Instruction *PredInst)
880 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
881 ~VPPredInstPHIRecipe() override = default;
882
883 /// Method to support type inquiry through isa, cast, and dyn_cast.
884 static inline bool classof(const VPRecipeBase *V) {
885 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
886 }
887
888 /// Generates phi nodes for live-outs as needed to retain SSA form.
889 void execute(VPTransformState &State) override;
890
891 /// Print the recipe.
892 void print(raw_ostream &O, const Twine &Indent) const override;
893};
894
895/// A Recipe for widening load/store operations.
896/// TODO: We currently execute only per-part unless a specific instance is
897/// provided.
898class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
899private:
900 Instruction &Instr;
901 std::unique_ptr<VPUser> User;
902
903public:
904 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
905 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
906 if (Mask) // Create a VPInstruction to register as a user of the mask.
907 User.reset(new VPUser({Mask}));
908 }
909
910 /// Method to support type inquiry through isa, cast, and dyn_cast.
911 static inline bool classof(const VPRecipeBase *V) {
912 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
913 }
914
915 /// Generate the wide load/store.
916 void execute(VPTransformState &State) override;
917
918 /// Print the recipe.
919 void print(raw_ostream &O, const Twine &Indent) const override;
920};
921
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000922/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
923/// holds a sequence of zero or more VPRecipe's each representing a sequence of
924/// output IR instructions.
925class VPBasicBlock : public VPBlockBase {
926public:
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000927 using RecipeListTy = iplist<VPRecipeBase>;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000928
929private:
930 /// The VPRecipes held in the order of output instructions to generate.
931 RecipeListTy Recipes;
932
933public:
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000934 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
935 : VPBlockBase(VPBasicBlockSC, Name.str()) {
936 if (Recipe)
937 appendRecipe(Recipe);
938 }
939
940 ~VPBasicBlock() override { Recipes.clear(); }
941
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000942 /// Instruction iterators...
Eugene Zelenko6cadde72017-10-17 21:27:42 +0000943 using iterator = RecipeListTy::iterator;
944 using const_iterator = RecipeListTy::const_iterator;
945 using reverse_iterator = RecipeListTy::reverse_iterator;
946 using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000947
948 //===--------------------------------------------------------------------===//
949 /// Recipe iterator methods
950 ///
951 inline iterator begin() { return Recipes.begin(); }
952 inline const_iterator begin() const { return Recipes.begin(); }
953 inline iterator end() { return Recipes.end(); }
954 inline const_iterator end() const { return Recipes.end(); }
955
956 inline reverse_iterator rbegin() { return Recipes.rbegin(); }
957 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
958 inline reverse_iterator rend() { return Recipes.rend(); }
959 inline const_reverse_iterator rend() const { return Recipes.rend(); }
960
961 inline size_t size() const { return Recipes.size(); }
962 inline bool empty() const { return Recipes.empty(); }
963 inline const VPRecipeBase &front() const { return Recipes.front(); }
964 inline VPRecipeBase &front() { return Recipes.front(); }
965 inline const VPRecipeBase &back() const { return Recipes.back(); }
966 inline VPRecipeBase &back() { return Recipes.back(); }
967
Florian Hahn7591e4e2018-06-18 11:34:17 +0000968 /// Returns a reference to the list of recipes.
969 RecipeListTy &getRecipeList() { return Recipes; }
970
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000971 /// Returns a pointer to a member of the recipe list.
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000972 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
973 return &VPBasicBlock::Recipes;
974 }
975
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000976 /// Method to support type inquiry through isa, cast, and dyn_cast.
977 static inline bool classof(const VPBlockBase *V) {
978 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
979 }
980
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000981 void insert(VPRecipeBase *Recipe, iterator InsertPt) {
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000982 assert(Recipe && "No recipe to append.");
983 assert(!Recipe->Parent && "Recipe already in VPlan");
984 Recipe->Parent = this;
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000985 Recipes.insert(InsertPt, Recipe);
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000986 }
987
Gil Rapaport8b9d1f32017-11-20 12:01:47 +0000988 /// Augment the existing recipes of a VPBasicBlock with an additional
989 /// \p Recipe as the last recipe.
990 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
991
Ayal Zaks1f58dda2017-08-27 12:55:46 +0000992 /// The method which generates the output IR instructions that correspond to
993 /// this VPBasicBlock, thereby "executing" the VPlan.
994 void execute(struct VPTransformState *State) override;
995
996private:
997 /// Create an IR BasicBlock to hold the output instructions generated by this
998 /// VPBasicBlock, and return it. Update the CFGState accordingly.
999 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1000};
1001
1002/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1003/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1004/// A VPRegionBlock may indicate that its contents are to be replicated several
1005/// times. This is designed to support predicated scalarization, in which a
1006/// scalar if-then code structure needs to be generated VF * UF times. Having
1007/// this replication indicator helps to keep a single model for multiple
1008/// candidate VF's. The actual replication takes place only once the desired VF
1009/// and UF have been determined.
1010class VPRegionBlock : public VPBlockBase {
1011private:
1012 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1013 VPBlockBase *Entry;
1014
1015 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1016 VPBlockBase *Exit;
1017
1018 /// An indicator whether this region is to generate multiple replicated
1019 /// instances of output IR corresponding to its VPBlockBases.
1020 bool IsReplicator;
1021
1022public:
1023 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1024 const std::string &Name = "", bool IsReplicator = false)
1025 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1026 IsReplicator(IsReplicator) {
1027 assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1028 assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1029 Entry->setParent(this);
1030 Exit->setParent(this);
1031 }
Diego Caballero168d04d2018-05-21 18:14:23 +00001032 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1033 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1034 IsReplicator(IsReplicator) {}
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001035
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001036 ~VPRegionBlock() override {
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001037 if (Entry)
1038 deleteCFG(Entry);
1039 }
1040
1041 /// Method to support type inquiry through isa, cast, and dyn_cast.
1042 static inline bool classof(const VPBlockBase *V) {
1043 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1044 }
1045
1046 const VPBlockBase *getEntry() const { return Entry; }
1047 VPBlockBase *getEntry() { return Entry; }
1048
Diego Caballero168d04d2018-05-21 18:14:23 +00001049 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1050 /// EntryBlock must have no predecessors.
1051 void setEntry(VPBlockBase *EntryBlock) {
1052 assert(EntryBlock->getPredecessors().empty() &&
1053 "Entry block cannot have predecessors.");
1054 Entry = EntryBlock;
1055 EntryBlock->setParent(this);
1056 }
1057
Diego Caballero2a34ac82018-07-30 21:33:31 +00001058 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1059 // specific interface of llvm::Function, instead of using
1060 // GraphTraints::getEntryNode. We should add a new template parameter to
1061 // DominatorTreeBase representing the Graph type.
1062 VPBlockBase &front() const { return *Entry; }
1063
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001064 const VPBlockBase *getExit() const { return Exit; }
1065 VPBlockBase *getExit() { return Exit; }
1066
Diego Caballero168d04d2018-05-21 18:14:23 +00001067 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1068 /// ExitBlock must have no successors.
1069 void setExit(VPBlockBase *ExitBlock) {
1070 assert(ExitBlock->getSuccessors().empty() &&
1071 "Exit block cannot have successors.");
1072 Exit = ExitBlock;
1073 ExitBlock->setParent(this);
1074 }
1075
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001076 /// An indicator whether this region is to generate multiple replicated
1077 /// instances of output IR corresponding to its VPBlockBases.
1078 bool isReplicator() const { return IsReplicator; }
1079
1080 /// The method which generates the output IR instructions that correspond to
1081 /// this VPRegionBlock, thereby "executing" the VPlan.
1082 void execute(struct VPTransformState *State) override;
1083};
1084
1085/// VPlan models a candidate for vectorization, encoding various decisions take
1086/// to produce efficient output IR, including which branches, basic-blocks and
1087/// output IR instructions to generate, and their cost. VPlan holds a
1088/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1089/// VPBlock.
1090class VPlan {
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001091 friend class VPlanPrinter;
1092
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001093private:
1094 /// Hold the single entry to the Hierarchical CFG of the VPlan.
1095 VPBlockBase *Entry;
1096
1097 /// Holds the VFs applicable to this VPlan.
1098 SmallSet<unsigned, 2> VFs;
1099
1100 /// Holds the name of the VPlan, for printing.
1101 std::string Name;
1102
Diego Caballero168d04d2018-05-21 18:14:23 +00001103 /// Holds all the external definitions created for this VPlan.
1104 // TODO: Introduce a specific representation for external definitions in
1105 // VPlan. External definitions must be immutable and hold a pointer to its
1106 // underlying IR that will be used to implement its structural comparison
1107 // (operators '==' and '<').
Craig Topper61998282018-06-09 05:04:20 +00001108 SmallPtrSet<VPValue *, 16> VPExternalDefs;
Diego Caballero168d04d2018-05-21 18:14:23 +00001109
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001110 /// Holds a mapping between Values and their corresponding VPValue inside
1111 /// VPlan.
1112 Value2VPValueTy Value2VPValue;
1113
Diego Caballero35871502018-07-31 01:57:29 +00001114 /// Holds the VPLoopInfo analysis for this VPlan.
1115 VPLoopInfo VPLInfo;
1116
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001117public:
1118 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1119
1120 ~VPlan() {
1121 if (Entry)
1122 VPBlockBase::deleteCFG(Entry);
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001123 for (auto &MapEntry : Value2VPValue)
1124 delete MapEntry.second;
Diego Caballero168d04d2018-05-21 18:14:23 +00001125 for (VPValue *Def : VPExternalDefs)
1126 delete Def;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001127 }
1128
1129 /// Generate the IR code for this VPlan.
1130 void execute(struct VPTransformState *State);
1131
1132 VPBlockBase *getEntry() { return Entry; }
1133 const VPBlockBase *getEntry() const { return Entry; }
1134
1135 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1136
1137 void addVF(unsigned VF) { VFs.insert(VF); }
1138
1139 bool hasVF(unsigned VF) { return VFs.count(VF); }
1140
1141 const std::string &getName() const { return Name; }
1142
1143 void setName(const Twine &newName) { Name = newName.str(); }
1144
Diego Caballero168d04d2018-05-21 18:14:23 +00001145 /// Add \p VPVal to the pool of external definitions if it's not already
1146 /// in the pool.
1147 void addExternalDef(VPValue *VPVal) {
1148 VPExternalDefs.insert(VPVal);
1149 }
1150
Gil Rapaport8b9d1f32017-11-20 12:01:47 +00001151 void addVPValue(Value *V) {
1152 assert(V && "Trying to add a null Value to VPlan");
1153 assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1154 Value2VPValue[V] = new VPValue();
1155 }
1156
1157 VPValue *getVPValue(Value *V) {
1158 assert(V && "Trying to get the VPValue of a null Value");
1159 assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1160 return Value2VPValue[V];
1161 }
1162
Diego Caballero35871502018-07-31 01:57:29 +00001163 /// Return the VPLoopInfo analysis for this VPlan.
1164 VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1165 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1166
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001167private:
1168 /// Add to the given dominator tree the header block and every new basic block
1169 /// that was created between it and the latch block, inclusive.
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001170 static void updateDominatorTree(DominatorTree *DT,
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001171 BasicBlock *LoopPreHeaderBB,
1172 BasicBlock *LoopLatchBB);
1173};
1174
1175/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1176/// indented and follows the dot format.
1177class VPlanPrinter {
1178 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1179 friend inline raw_ostream &operator<<(raw_ostream &OS,
1180 const struct VPlanIngredient &I);
1181
1182private:
1183 raw_ostream &OS;
1184 VPlan &Plan;
1185 unsigned Depth;
1186 unsigned TabWidth = 2;
1187 std::string Indent;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001188 unsigned BID = 0;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001189 SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1190
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001191 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1192
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001193 /// Handle indentation.
1194 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1195
1196 /// Print a given \p Block of the Plan.
1197 void dumpBlock(const VPBlockBase *Block);
1198
1199 /// Print the information related to the CFG edges going out of a given
1200 /// \p Block, followed by printing the successor blocks themselves.
1201 void dumpEdges(const VPBlockBase *Block);
1202
1203 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1204 /// its successor blocks.
1205 void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1206
1207 /// Print a given \p Region of the Plan.
1208 void dumpRegion(const VPRegionBlock *Region);
1209
1210 unsigned getOrCreateBID(const VPBlockBase *Block) {
1211 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1212 }
1213
1214 const Twine getOrCreateName(const VPBlockBase *Block);
1215
1216 const Twine getUID(const VPBlockBase *Block);
1217
1218 /// Print the information related to a CFG edge between two VPBlockBases.
1219 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1220 const Twine &Label);
1221
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001222 void dump();
1223
1224 static void printAsIngredient(raw_ostream &O, Value *V);
1225};
1226
1227struct VPlanIngredient {
1228 Value *V;
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001229
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001230 VPlanIngredient(Value *V) : V(V) {}
1231};
1232
1233inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1234 VPlanPrinter::printAsIngredient(OS, I.V);
1235 return OS;
1236}
1237
1238inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1239 VPlanPrinter Printer(OS, Plan);
1240 Printer.dump();
1241 return OS;
1242}
1243
Diego Caballero2a34ac82018-07-30 21:33:31 +00001244//===----------------------------------------------------------------------===//
1245// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
1246//===----------------------------------------------------------------------===//
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001247
Diego Caballero2a34ac82018-07-30 21:33:31 +00001248// The following set of template specializations implement GraphTraits to treat
1249// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1250// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1251// VPBlockBase is a VPRegionBlock, this specialization provides access to its
1252// successors/predecessors but not to the blocks inside the region.
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001253
1254template <> struct GraphTraits<VPBlockBase *> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001255 using NodeRef = VPBlockBase *;
1256 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001257
1258 static NodeRef getEntryNode(NodeRef N) { return N; }
1259
1260 static inline ChildIteratorType child_begin(NodeRef N) {
1261 return N->getSuccessors().begin();
1262 }
1263
1264 static inline ChildIteratorType child_end(NodeRef N) {
1265 return N->getSuccessors().end();
1266 }
1267};
1268
1269template <> struct GraphTraits<const VPBlockBase *> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001270 using NodeRef = const VPBlockBase *;
1271 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001272
1273 static NodeRef getEntryNode(NodeRef N) { return N; }
1274
1275 static inline ChildIteratorType child_begin(NodeRef N) {
1276 return N->getSuccessors().begin();
1277 }
1278
1279 static inline ChildIteratorType child_end(NodeRef N) {
1280 return N->getSuccessors().end();
1281 }
1282};
1283
Diego Caballero2a34ac82018-07-30 21:33:31 +00001284// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1285// of successors for the inverse traversal.
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001286template <> struct GraphTraits<Inverse<VPBlockBase *>> {
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001287 using NodeRef = VPBlockBase *;
1288 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001289
Diego Caballero2a34ac82018-07-30 21:33:31 +00001290 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001291
1292 static inline ChildIteratorType child_begin(NodeRef N) {
1293 return N->getPredecessors().begin();
1294 }
1295
1296 static inline ChildIteratorType child_end(NodeRef N) {
1297 return N->getPredecessors().end();
1298 }
1299};
1300
Diego Caballero2a34ac82018-07-30 21:33:31 +00001301// The following set of template specializations implement GraphTraits to
1302// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1303// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1304// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1305// there won't be automatic recursion into other VPBlockBases that turn to be
1306// VPRegionBlocks.
1307
1308template <>
1309struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1310 using GraphRef = VPRegionBlock *;
1311 using nodes_iterator = df_iterator<NodeRef>;
1312
1313 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1314
1315 static nodes_iterator nodes_begin(GraphRef N) {
1316 return nodes_iterator::begin(N->getEntry());
1317 }
1318
1319 static nodes_iterator nodes_end(GraphRef N) {
1320 // df_iterator::end() returns an empty iterator so the node used doesn't
1321 // matter.
1322 return nodes_iterator::end(N);
1323 }
1324};
1325
1326template <>
1327struct GraphTraits<const VPRegionBlock *>
1328 : public GraphTraits<const VPBlockBase *> {
1329 using GraphRef = const VPRegionBlock *;
1330 using nodes_iterator = df_iterator<NodeRef>;
1331
1332 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1333
1334 static nodes_iterator nodes_begin(GraphRef N) {
1335 return nodes_iterator::begin(N->getEntry());
1336 }
1337
1338 static nodes_iterator nodes_end(GraphRef N) {
1339 // df_iterator::end() returns an empty iterator so the node used doesn't
1340 // matter.
1341 return nodes_iterator::end(N);
1342 }
1343};
1344
1345template <>
1346struct GraphTraits<Inverse<VPRegionBlock *>>
1347 : public GraphTraits<Inverse<VPBlockBase *>> {
1348 using GraphRef = VPRegionBlock *;
1349 using nodes_iterator = df_iterator<NodeRef>;
1350
1351 static NodeRef getEntryNode(Inverse<GraphRef> N) {
1352 return N.Graph->getExit();
1353 }
1354
1355 static nodes_iterator nodes_begin(GraphRef N) {
1356 return nodes_iterator::begin(N->getExit());
1357 }
1358
1359 static nodes_iterator nodes_end(GraphRef N) {
1360 // df_iterator::end() returns an empty iterator so the node used doesn't
1361 // matter.
1362 return nodes_iterator::end(N);
1363 }
1364};
1365
Diego Caballero168d04d2018-05-21 18:14:23 +00001366//===----------------------------------------------------------------------===//
1367// VPlan Utilities
1368//===----------------------------------------------------------------------===//
1369
1370/// Class that provides utilities for VPBlockBases in VPlan.
1371class VPBlockUtils {
1372public:
1373 VPBlockUtils() = delete;
1374
1375 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
Diego Caballerod0953012018-07-09 15:57:09 +00001376 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1377 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1378 /// has more than one successor, its conditional bit is propagated to \p
1379 /// NewBlock. \p NewBlock must have neither successors nor predecessors.
Diego Caballero168d04d2018-05-21 18:14:23 +00001380 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1381 assert(NewBlock->getSuccessors().empty() &&
1382 "Can't insert new block with successors.");
1383 // TODO: move successors from BlockPtr to NewBlock when this functionality
1384 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1385 // already has successors.
1386 BlockPtr->setOneSuccessor(NewBlock);
1387 NewBlock->setPredecessors({BlockPtr});
1388 NewBlock->setParent(BlockPtr->getParent());
1389 }
1390
1391 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1392 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1393 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
Diego Caballerod0953012018-07-09 15:57:09 +00001394 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1395 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1396 /// must have neither successors nor predecessors.
Diego Caballero168d04d2018-05-21 18:14:23 +00001397 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
Diego Caballerod0953012018-07-09 15:57:09 +00001398 VPValue *Condition, VPBlockBase *BlockPtr) {
Diego Caballero168d04d2018-05-21 18:14:23 +00001399 assert(IfTrue->getSuccessors().empty() &&
1400 "Can't insert IfTrue with successors.");
1401 assert(IfFalse->getSuccessors().empty() &&
1402 "Can't insert IfFalse with successors.");
Diego Caballerod0953012018-07-09 15:57:09 +00001403 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
Diego Caballero168d04d2018-05-21 18:14:23 +00001404 IfTrue->setPredecessors({BlockPtr});
1405 IfFalse->setPredecessors({BlockPtr});
1406 IfTrue->setParent(BlockPtr->getParent());
1407 IfFalse->setParent(BlockPtr->getParent());
1408 }
1409
1410 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1411 /// the successors of \p From and \p From to the predecessors of \p To. Both
1412 /// VPBlockBases must have the same parent, which can be null. Both
1413 /// VPBlockBases can be already connected to other VPBlockBases.
1414 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1415 assert((From->getParent() == To->getParent()) &&
1416 "Can't connect two block with different parents");
1417 assert(From->getNumSuccessors() < 2 &&
1418 "Blocks can't have more than two successors.");
1419 From->appendSuccessor(To);
1420 To->appendPredecessor(From);
1421 }
1422
1423 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1424 /// from the successors of \p From and \p From from the predecessors of \p To.
1425 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1426 assert(To && "Successor to disconnect is null.");
1427 From->removeSuccessor(To);
1428 To->removePredecessor(From);
1429 }
1430};
Florian Hahn45e5d5b2018-06-08 17:30:45 +00001431
Eugene Zelenko6cadde72017-10-17 21:27:42 +00001432} // end namespace llvm
Ayal Zaks1f58dda2017-08-27 12:55:46 +00001433
1434#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H