Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1 | //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the AArch64TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AArch64ISelLowering.h" |
| 15 | #include "AArch64PerfectShuffle.h" |
| 16 | #include "AArch64Subtarget.h" |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 17 | #include "AArch64MachineFunctionInfo.h" |
| 18 | #include "AArch64TargetMachine.h" |
| 19 | #include "AArch64TargetObjectFile.h" |
| 20 | #include "MCTargetDesc/AArch64AddressingModes.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/CodeGen/CallingConvLower.h" |
| 23 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/Intrinsics.h" |
| 28 | #include "llvm/IR/Type.h" |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/ErrorHandling.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | #include "llvm/Target/TargetOptions.h" |
| 34 | using namespace llvm; |
| 35 | |
| 36 | #define DEBUG_TYPE "aarch64-lower" |
| 37 | |
| 38 | STATISTIC(NumTailCalls, "Number of tail calls"); |
| 39 | STATISTIC(NumShiftInserts, "Number of vector shift inserts"); |
| 40 | |
| 41 | enum AlignMode { |
| 42 | StrictAlign, |
| 43 | NoStrictAlign |
| 44 | }; |
| 45 | |
| 46 | static cl::opt<AlignMode> |
| 47 | Align(cl::desc("Load/store alignment support"), |
| 48 | cl::Hidden, cl::init(NoStrictAlign), |
| 49 | cl::values( |
| 50 | clEnumValN(StrictAlign, "aarch64-strict-align", |
| 51 | "Disallow all unaligned memory accesses"), |
| 52 | clEnumValN(NoStrictAlign, "aarch64-no-strict-align", |
| 53 | "Allow unaligned memory accesses"), |
| 54 | clEnumValEnd)); |
| 55 | |
| 56 | // Place holder until extr generation is tested fully. |
| 57 | static cl::opt<bool> |
| 58 | EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden, |
| 59 | cl::desc("Allow AArch64 (or (shift)(shift))->extract"), |
| 60 | cl::init(true)); |
| 61 | |
| 62 | static cl::opt<bool> |
| 63 | EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, |
| 64 | cl::desc("Allow AArch64 SLI/SRI formation"), |
| 65 | cl::init(false)); |
| 66 | |
| 67 | //===----------------------------------------------------------------------===// |
| 68 | // AArch64 Lowering public interface. |
| 69 | //===----------------------------------------------------------------------===// |
Eric Christopher | 8995833 | 2014-05-31 00:07:32 +0000 | [diff] [blame] | 70 | static TargetLoweringObjectFile *createTLOF(const Triple &TT) { |
| 71 | if (TT.isOSBinFormatMachO()) |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 72 | return new AArch64_MachoTargetObjectFile(); |
| 73 | |
| 74 | return new AArch64_ELFTargetObjectFile(); |
| 75 | } |
| 76 | |
Eric Christopher | 841da85 | 2014-06-10 23:26:45 +0000 | [diff] [blame] | 77 | AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM) |
Eric Christopher | 8995833 | 2014-05-31 00:07:32 +0000 | [diff] [blame] | 78 | : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 79 | Subtarget = &TM.getSubtarget<AArch64Subtarget>(); |
| 80 | |
| 81 | // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so |
| 82 | // we have to make something up. Arbitrarily, choose ZeroOrOne. |
| 83 | setBooleanContents(ZeroOrOneBooleanContent); |
| 84 | // When comparing vectors the result sets the different elements in the |
| 85 | // vector to all-one or all-zero. |
| 86 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| 87 | |
| 88 | // Set up the register classes. |
| 89 | addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); |
| 90 | addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); |
| 91 | |
| 92 | if (Subtarget->hasFPARMv8()) { |
| 93 | addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); |
| 94 | addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); |
| 95 | addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); |
| 96 | addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); |
| 97 | } |
| 98 | |
| 99 | if (Subtarget->hasNEON()) { |
| 100 | addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); |
| 101 | addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); |
| 102 | // Someone set us up the NEON. |
| 103 | addDRTypeForNEON(MVT::v2f32); |
| 104 | addDRTypeForNEON(MVT::v8i8); |
| 105 | addDRTypeForNEON(MVT::v4i16); |
| 106 | addDRTypeForNEON(MVT::v2i32); |
| 107 | addDRTypeForNEON(MVT::v1i64); |
| 108 | addDRTypeForNEON(MVT::v1f64); |
| 109 | |
| 110 | addQRTypeForNEON(MVT::v4f32); |
| 111 | addQRTypeForNEON(MVT::v2f64); |
| 112 | addQRTypeForNEON(MVT::v16i8); |
| 113 | addQRTypeForNEON(MVT::v8i16); |
| 114 | addQRTypeForNEON(MVT::v4i32); |
| 115 | addQRTypeForNEON(MVT::v2i64); |
| 116 | } |
| 117 | |
| 118 | // Compute derived properties from the register classes |
| 119 | computeRegisterProperties(); |
| 120 | |
| 121 | // Provide all sorts of operation actions |
| 122 | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| 123 | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| 124 | setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| 125 | setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| 126 | setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| 127 | setOperationAction(ISD::SETCC, MVT::f64, Custom); |
| 128 | setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| 129 | setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| 130 | setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| 131 | setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| 132 | setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| 133 | setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| 134 | setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| 135 | setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| 136 | setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| 137 | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| 138 | setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| 139 | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| 140 | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| 141 | setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| 142 | setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| 143 | |
| 144 | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); |
| 145 | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); |
| 146 | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); |
| 147 | |
| 148 | setOperationAction(ISD::FREM, MVT::f32, Expand); |
| 149 | setOperationAction(ISD::FREM, MVT::f64, Expand); |
| 150 | setOperationAction(ISD::FREM, MVT::f80, Expand); |
| 151 | |
| 152 | // Custom lowering hooks are needed for XOR |
| 153 | // to fold it into CSINC/CSINV. |
| 154 | setOperationAction(ISD::XOR, MVT::i32, Custom); |
| 155 | setOperationAction(ISD::XOR, MVT::i64, Custom); |
| 156 | |
| 157 | // Virtually no operation on f128 is legal, but LLVM can't expand them when |
| 158 | // there's a valid register class, so we need custom operations in most cases. |
| 159 | setOperationAction(ISD::FABS, MVT::f128, Expand); |
| 160 | setOperationAction(ISD::FADD, MVT::f128, Custom); |
| 161 | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| 162 | setOperationAction(ISD::FCOS, MVT::f128, Expand); |
| 163 | setOperationAction(ISD::FDIV, MVT::f128, Custom); |
| 164 | setOperationAction(ISD::FMA, MVT::f128, Expand); |
| 165 | setOperationAction(ISD::FMUL, MVT::f128, Custom); |
| 166 | setOperationAction(ISD::FNEG, MVT::f128, Expand); |
| 167 | setOperationAction(ISD::FPOW, MVT::f128, Expand); |
| 168 | setOperationAction(ISD::FREM, MVT::f128, Expand); |
| 169 | setOperationAction(ISD::FRINT, MVT::f128, Expand); |
| 170 | setOperationAction(ISD::FSIN, MVT::f128, Expand); |
| 171 | setOperationAction(ISD::FSINCOS, MVT::f128, Expand); |
| 172 | setOperationAction(ISD::FSQRT, MVT::f128, Expand); |
| 173 | setOperationAction(ISD::FSUB, MVT::f128, Custom); |
| 174 | setOperationAction(ISD::FTRUNC, MVT::f128, Expand); |
| 175 | setOperationAction(ISD::SETCC, MVT::f128, Custom); |
| 176 | setOperationAction(ISD::BR_CC, MVT::f128, Custom); |
| 177 | setOperationAction(ISD::SELECT, MVT::f128, Custom); |
| 178 | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| 179 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); |
| 180 | |
| 181 | // Lowering for many of the conversions is actually specified by the non-f128 |
| 182 | // type. The LowerXXX function will be trivial when f128 isn't involved. |
| 183 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| 184 | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| 185 | setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); |
| 186 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| 187 | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| 188 | setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); |
| 189 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| 190 | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| 191 | setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); |
| 192 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| 193 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| 194 | setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); |
| 195 | setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| 196 | setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); |
| 197 | |
| 198 | // Variable arguments. |
| 199 | setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| 200 | setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| 201 | setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| 202 | setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| 203 | |
| 204 | // Variable-sized objects. |
| 205 | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| 206 | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| 207 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| 208 | |
| 209 | // Exception handling. |
| 210 | // FIXME: These are guesses. Has this been defined yet? |
| 211 | setExceptionPointerRegister(AArch64::X0); |
| 212 | setExceptionSelectorRegister(AArch64::X1); |
| 213 | |
| 214 | // Constant pool entries |
| 215 | setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| 216 | |
| 217 | // BlockAddress |
| 218 | setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| 219 | |
| 220 | // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. |
| 221 | setOperationAction(ISD::ADDC, MVT::i32, Custom); |
| 222 | setOperationAction(ISD::ADDE, MVT::i32, Custom); |
| 223 | setOperationAction(ISD::SUBC, MVT::i32, Custom); |
| 224 | setOperationAction(ISD::SUBE, MVT::i32, Custom); |
| 225 | setOperationAction(ISD::ADDC, MVT::i64, Custom); |
| 226 | setOperationAction(ISD::ADDE, MVT::i64, Custom); |
| 227 | setOperationAction(ISD::SUBC, MVT::i64, Custom); |
| 228 | setOperationAction(ISD::SUBE, MVT::i64, Custom); |
| 229 | |
| 230 | // AArch64 lacks both left-rotate and popcount instructions. |
| 231 | setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| 232 | setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| 233 | |
| 234 | // AArch64 doesn't have {U|S}MUL_LOHI. |
| 235 | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| 236 | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| 237 | |
| 238 | |
| 239 | // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero |
| 240 | // counterparts, which AArch64 supports directly. |
| 241 | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); |
| 242 | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); |
| 243 | setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); |
| 244 | setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); |
| 245 | |
| 246 | setOperationAction(ISD::CTPOP, MVT::i32, Custom); |
| 247 | setOperationAction(ISD::CTPOP, MVT::i64, Custom); |
| 248 | |
| 249 | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| 250 | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| 251 | setOperationAction(ISD::SREM, MVT::i32, Expand); |
| 252 | setOperationAction(ISD::SREM, MVT::i64, Expand); |
| 253 | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| 254 | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| 255 | setOperationAction(ISD::UREM, MVT::i32, Expand); |
| 256 | setOperationAction(ISD::UREM, MVT::i64, Expand); |
| 257 | |
| 258 | // Custom lower Add/Sub/Mul with overflow. |
| 259 | setOperationAction(ISD::SADDO, MVT::i32, Custom); |
| 260 | setOperationAction(ISD::SADDO, MVT::i64, Custom); |
| 261 | setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| 262 | setOperationAction(ISD::UADDO, MVT::i64, Custom); |
| 263 | setOperationAction(ISD::SSUBO, MVT::i32, Custom); |
| 264 | setOperationAction(ISD::SSUBO, MVT::i64, Custom); |
| 265 | setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| 266 | setOperationAction(ISD::USUBO, MVT::i64, Custom); |
| 267 | setOperationAction(ISD::SMULO, MVT::i32, Custom); |
| 268 | setOperationAction(ISD::SMULO, MVT::i64, Custom); |
| 269 | setOperationAction(ISD::UMULO, MVT::i32, Custom); |
| 270 | setOperationAction(ISD::UMULO, MVT::i64, Custom); |
| 271 | |
| 272 | setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| 273 | setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| 274 | setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| 275 | setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| 276 | setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| 277 | setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| 278 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| 279 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| 280 | |
| 281 | // AArch64 has implementations of a lot of rounding-like FP operations. |
| 282 | static MVT RoundingTypes[] = { MVT::f32, MVT::f64}; |
| 283 | for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) { |
| 284 | MVT Ty = RoundingTypes[I]; |
| 285 | setOperationAction(ISD::FFLOOR, Ty, Legal); |
| 286 | setOperationAction(ISD::FNEARBYINT, Ty, Legal); |
| 287 | setOperationAction(ISD::FCEIL, Ty, Legal); |
| 288 | setOperationAction(ISD::FRINT, Ty, Legal); |
| 289 | setOperationAction(ISD::FTRUNC, Ty, Legal); |
| 290 | setOperationAction(ISD::FROUND, Ty, Legal); |
| 291 | } |
| 292 | |
| 293 | setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| 294 | |
| 295 | if (Subtarget->isTargetMachO()) { |
| 296 | // For iOS, we don't want to the normal expansion of a libcall to |
| 297 | // sincos. We want to issue a libcall to __sincos_stret to avoid memory |
| 298 | // traffic. |
| 299 | setOperationAction(ISD::FSINCOS, MVT::f64, Custom); |
| 300 | setOperationAction(ISD::FSINCOS, MVT::f32, Custom); |
| 301 | } else { |
| 302 | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| 303 | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| 304 | } |
| 305 | |
| 306 | // AArch64 does not have floating-point extending loads, i1 sign-extending |
| 307 | // load, floating-point truncating stores, or v2i32->v2i16 truncating store. |
| 308 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| 309 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); |
| 310 | setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); |
| 311 | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| 312 | setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| 313 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| 314 | setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| 315 | setTruncStoreAction(MVT::f128, MVT::f80, Expand); |
| 316 | setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| 317 | setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| 318 | setTruncStoreAction(MVT::f128, MVT::f16, Expand); |
| 319 | // Indexed loads and stores are supported. |
| 320 | for (unsigned im = (unsigned)ISD::PRE_INC; |
| 321 | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| 322 | setIndexedLoadAction(im, MVT::i8, Legal); |
| 323 | setIndexedLoadAction(im, MVT::i16, Legal); |
| 324 | setIndexedLoadAction(im, MVT::i32, Legal); |
| 325 | setIndexedLoadAction(im, MVT::i64, Legal); |
| 326 | setIndexedLoadAction(im, MVT::f64, Legal); |
| 327 | setIndexedLoadAction(im, MVT::f32, Legal); |
| 328 | setIndexedStoreAction(im, MVT::i8, Legal); |
| 329 | setIndexedStoreAction(im, MVT::i16, Legal); |
| 330 | setIndexedStoreAction(im, MVT::i32, Legal); |
| 331 | setIndexedStoreAction(im, MVT::i64, Legal); |
| 332 | setIndexedStoreAction(im, MVT::f64, Legal); |
| 333 | setIndexedStoreAction(im, MVT::f32, Legal); |
| 334 | } |
| 335 | |
| 336 | // Trap. |
| 337 | setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| 338 | |
| 339 | // We combine OR nodes for bitfield operations. |
| 340 | setTargetDAGCombine(ISD::OR); |
| 341 | |
| 342 | // Vector add and sub nodes may conceal a high-half opportunity. |
| 343 | // Also, try to fold ADD into CSINC/CSINV.. |
| 344 | setTargetDAGCombine(ISD::ADD); |
| 345 | setTargetDAGCombine(ISD::SUB); |
| 346 | |
| 347 | setTargetDAGCombine(ISD::XOR); |
| 348 | setTargetDAGCombine(ISD::SINT_TO_FP); |
| 349 | setTargetDAGCombine(ISD::UINT_TO_FP); |
| 350 | |
| 351 | setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| 352 | |
| 353 | setTargetDAGCombine(ISD::ANY_EXTEND); |
| 354 | setTargetDAGCombine(ISD::ZERO_EXTEND); |
| 355 | setTargetDAGCombine(ISD::SIGN_EXTEND); |
| 356 | setTargetDAGCombine(ISD::BITCAST); |
| 357 | setTargetDAGCombine(ISD::CONCAT_VECTORS); |
| 358 | setTargetDAGCombine(ISD::STORE); |
| 359 | |
| 360 | setTargetDAGCombine(ISD::MUL); |
| 361 | |
| 362 | setTargetDAGCombine(ISD::SELECT); |
| 363 | setTargetDAGCombine(ISD::VSELECT); |
| 364 | |
| 365 | setTargetDAGCombine(ISD::INTRINSIC_VOID); |
| 366 | setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); |
| 367 | setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| 368 | |
| 369 | MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; |
| 370 | MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; |
| 371 | MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; |
| 372 | |
| 373 | setStackPointerRegisterToSaveRestore(AArch64::SP); |
| 374 | |
| 375 | setSchedulingPreference(Sched::Hybrid); |
| 376 | |
| 377 | // Enable TBZ/TBNZ |
| 378 | MaskAndBranchFoldingIsLegal = true; |
| 379 | |
| 380 | setMinFunctionAlignment(2); |
| 381 | |
| 382 | RequireStrictAlign = (Align == StrictAlign); |
| 383 | |
| 384 | setHasExtractBitsInsn(true); |
| 385 | |
| 386 | if (Subtarget->hasNEON()) { |
| 387 | // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to |
| 388 | // silliness like this: |
| 389 | setOperationAction(ISD::FABS, MVT::v1f64, Expand); |
| 390 | setOperationAction(ISD::FADD, MVT::v1f64, Expand); |
| 391 | setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); |
| 392 | setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); |
| 393 | setOperationAction(ISD::FCOS, MVT::v1f64, Expand); |
| 394 | setOperationAction(ISD::FDIV, MVT::v1f64, Expand); |
| 395 | setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); |
| 396 | setOperationAction(ISD::FMA, MVT::v1f64, Expand); |
| 397 | setOperationAction(ISD::FMUL, MVT::v1f64, Expand); |
| 398 | setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); |
| 399 | setOperationAction(ISD::FNEG, MVT::v1f64, Expand); |
| 400 | setOperationAction(ISD::FPOW, MVT::v1f64, Expand); |
| 401 | setOperationAction(ISD::FREM, MVT::v1f64, Expand); |
| 402 | setOperationAction(ISD::FROUND, MVT::v1f64, Expand); |
| 403 | setOperationAction(ISD::FRINT, MVT::v1f64, Expand); |
| 404 | setOperationAction(ISD::FSIN, MVT::v1f64, Expand); |
| 405 | setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); |
| 406 | setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); |
| 407 | setOperationAction(ISD::FSUB, MVT::v1f64, Expand); |
| 408 | setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); |
| 409 | setOperationAction(ISD::SETCC, MVT::v1f64, Expand); |
| 410 | setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); |
| 411 | setOperationAction(ISD::SELECT, MVT::v1f64, Expand); |
| 412 | setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); |
| 413 | setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); |
| 414 | |
| 415 | setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); |
| 416 | setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); |
| 417 | setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); |
| 418 | setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); |
| 419 | setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); |
| 420 | |
| 421 | setOperationAction(ISD::MUL, MVT::v1i64, Expand); |
| 422 | |
| 423 | // AArch64 doesn't have a direct vector ->f32 conversion instructions for |
| 424 | // elements smaller than i32, so promote the input to i32 first. |
| 425 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); |
| 426 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); |
| 427 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); |
| 428 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); |
| 429 | // Similarly, there is no direct i32 -> f64 vector conversion instruction. |
| 430 | setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); |
| 431 | setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); |
| 432 | setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); |
| 433 | setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); |
| 434 | |
| 435 | // AArch64 doesn't have MUL.2d: |
| 436 | setOperationAction(ISD::MUL, MVT::v2i64, Expand); |
| 437 | setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); |
| 438 | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); |
| 439 | // Likewise, narrowing and extending vector loads/stores aren't handled |
| 440 | // directly. |
| 441 | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| 442 | VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| 443 | |
| 444 | setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, |
| 445 | Expand); |
| 446 | |
| 447 | setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand); |
| 448 | setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); |
| 449 | setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand); |
| 450 | setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); |
| 451 | |
| 452 | setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); |
| 453 | |
| 454 | for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| 455 | InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) |
| 456 | setTruncStoreAction((MVT::SimpleValueType)VT, |
| 457 | (MVT::SimpleValueType)InnerVT, Expand); |
| 458 | setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| 459 | setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| 460 | setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| 461 | } |
| 462 | |
| 463 | // AArch64 has implementations of a lot of rounding-like FP operations. |
| 464 | static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 }; |
| 465 | for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) { |
| 466 | MVT Ty = RoundingVecTypes[I]; |
| 467 | setOperationAction(ISD::FFLOOR, Ty, Legal); |
| 468 | setOperationAction(ISD::FNEARBYINT, Ty, Legal); |
| 469 | setOperationAction(ISD::FCEIL, Ty, Legal); |
| 470 | setOperationAction(ISD::FRINT, Ty, Legal); |
| 471 | setOperationAction(ISD::FTRUNC, Ty, Legal); |
| 472 | setOperationAction(ISD::FROUND, Ty, Legal); |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) { |
| 478 | if (VT == MVT::v2f32) { |
| 479 | setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); |
| 480 | AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32); |
| 481 | |
| 482 | setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); |
| 483 | AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32); |
| 484 | } else if (VT == MVT::v2f64 || VT == MVT::v4f32) { |
| 485 | setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); |
| 486 | AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64); |
| 487 | |
| 488 | setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); |
| 489 | AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64); |
| 490 | } |
| 491 | |
| 492 | // Mark vector float intrinsics as expand. |
| 493 | if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { |
| 494 | setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand); |
| 495 | setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand); |
| 496 | setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand); |
| 497 | setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand); |
| 498 | setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand); |
| 499 | setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand); |
| 500 | setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand); |
| 501 | setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand); |
| 502 | setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand); |
| 503 | } |
| 504 | |
| 505 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); |
| 506 | setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom); |
| 507 | setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); |
| 508 | setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); |
| 509 | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom); |
| 510 | setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); |
| 511 | setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); |
| 512 | setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); |
| 513 | setOperationAction(ISD::AND, VT.getSimpleVT(), Custom); |
| 514 | setOperationAction(ISD::OR, VT.getSimpleVT(), Custom); |
| 515 | setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom); |
| 516 | setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); |
| 517 | |
| 518 | setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); |
| 519 | setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); |
| 520 | setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand); |
| 521 | setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand); |
| 522 | |
| 523 | // CNT supports only B element sizes. |
| 524 | if (VT != MVT::v8i8 && VT != MVT::v16i8) |
| 525 | setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand); |
| 526 | |
| 527 | setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); |
| 528 | setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); |
| 529 | setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); |
| 530 | setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); |
| 531 | setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); |
| 532 | |
| 533 | setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom); |
| 534 | setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom); |
| 535 | |
| 536 | if (Subtarget->isLittleEndian()) { |
| 537 | for (unsigned im = (unsigned)ISD::PRE_INC; |
| 538 | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| 539 | setIndexedLoadAction(im, VT.getSimpleVT(), Legal); |
| 540 | setIndexedStoreAction(im, VT.getSimpleVT(), Legal); |
| 541 | } |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { |
| 546 | addRegisterClass(VT, &AArch64::FPR64RegClass); |
| 547 | addTypeForNEON(VT, MVT::v2i32); |
| 548 | } |
| 549 | |
| 550 | void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { |
| 551 | addRegisterClass(VT, &AArch64::FPR128RegClass); |
| 552 | addTypeForNEON(VT, MVT::v4i32); |
| 553 | } |
| 554 | |
| 555 | EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { |
| 556 | if (!VT.isVector()) |
| 557 | return MVT::i32; |
| 558 | return VT.changeVectorElementTypeToInteger(); |
| 559 | } |
| 560 | |
| 561 | /// computeKnownBitsForTargetNode - Determine which of the bits specified in |
| 562 | /// Mask are known to be either zero or one and return them in the |
| 563 | /// KnownZero/KnownOne bitsets. |
| 564 | void AArch64TargetLowering::computeKnownBitsForTargetNode( |
| 565 | const SDValue Op, APInt &KnownZero, APInt &KnownOne, |
| 566 | const SelectionDAG &DAG, unsigned Depth) const { |
| 567 | switch (Op.getOpcode()) { |
| 568 | default: |
| 569 | break; |
| 570 | case AArch64ISD::CSEL: { |
| 571 | APInt KnownZero2, KnownOne2; |
| 572 | DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); |
| 573 | DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); |
| 574 | KnownZero &= KnownZero2; |
| 575 | KnownOne &= KnownOne2; |
| 576 | break; |
| 577 | } |
| 578 | case ISD::INTRINSIC_W_CHAIN: { |
| 579 | ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); |
| 580 | Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); |
| 581 | switch (IntID) { |
| 582 | default: return; |
| 583 | case Intrinsic::aarch64_ldaxr: |
| 584 | case Intrinsic::aarch64_ldxr: { |
| 585 | unsigned BitWidth = KnownOne.getBitWidth(); |
| 586 | EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); |
| 587 | unsigned MemBits = VT.getScalarType().getSizeInBits(); |
| 588 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); |
| 589 | return; |
| 590 | } |
| 591 | } |
| 592 | break; |
| 593 | } |
| 594 | case ISD::INTRINSIC_WO_CHAIN: |
| 595 | case ISD::INTRINSIC_VOID: { |
| 596 | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| 597 | switch (IntNo) { |
| 598 | default: |
| 599 | break; |
| 600 | case Intrinsic::aarch64_neon_umaxv: |
| 601 | case Intrinsic::aarch64_neon_uminv: { |
| 602 | // Figure out the datatype of the vector operand. The UMINV instruction |
| 603 | // will zero extend the result, so we can mark as known zero all the |
| 604 | // bits larger than the element datatype. 32-bit or larget doesn't need |
| 605 | // this as those are legal types and will be handled by isel directly. |
| 606 | MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); |
| 607 | unsigned BitWidth = KnownZero.getBitWidth(); |
| 608 | if (VT == MVT::v8i8 || VT == MVT::v16i8) { |
| 609 | assert(BitWidth >= 8 && "Unexpected width!"); |
| 610 | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); |
| 611 | KnownZero |= Mask; |
| 612 | } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { |
| 613 | assert(BitWidth >= 16 && "Unexpected width!"); |
| 614 | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); |
| 615 | KnownZero |= Mask; |
| 616 | } |
| 617 | break; |
| 618 | } break; |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const { |
| 625 | return MVT::i64; |
| 626 | } |
| 627 | |
| 628 | unsigned AArch64TargetLowering::getMaximalGlobalOffset() const { |
| 629 | // FIXME: On AArch64, this depends on the type. |
| 630 | // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes(). |
| 631 | // and the offset has to be a multiple of the related size in bytes. |
| 632 | return 4095; |
| 633 | } |
| 634 | |
| 635 | FastISel * |
| 636 | AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| 637 | const TargetLibraryInfo *libInfo) const { |
| 638 | return AArch64::createFastISel(funcInfo, libInfo); |
| 639 | } |
| 640 | |
| 641 | const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 642 | switch (Opcode) { |
| 643 | default: |
| 644 | return nullptr; |
| 645 | case AArch64ISD::CALL: return "AArch64ISD::CALL"; |
| 646 | case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; |
| 647 | case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; |
| 648 | case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; |
| 649 | case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; |
| 650 | case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; |
| 651 | case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; |
| 652 | case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; |
| 653 | case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; |
| 654 | case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; |
| 655 | case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; |
| 656 | case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; |
| 657 | case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL"; |
| 658 | case AArch64ISD::ADC: return "AArch64ISD::ADC"; |
| 659 | case AArch64ISD::SBC: return "AArch64ISD::SBC"; |
| 660 | case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; |
| 661 | case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; |
| 662 | case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; |
| 663 | case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; |
| 664 | case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; |
| 665 | case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; |
| 666 | case AArch64ISD::FMIN: return "AArch64ISD::FMIN"; |
| 667 | case AArch64ISD::FMAX: return "AArch64ISD::FMAX"; |
| 668 | case AArch64ISD::DUP: return "AArch64ISD::DUP"; |
| 669 | case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; |
| 670 | case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; |
| 671 | case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; |
| 672 | case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; |
| 673 | case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; |
| 674 | case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; |
| 675 | case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; |
| 676 | case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; |
| 677 | case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; |
| 678 | case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; |
| 679 | case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; |
| 680 | case AArch64ISD::BICi: return "AArch64ISD::BICi"; |
| 681 | case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; |
| 682 | case AArch64ISD::BSL: return "AArch64ISD::BSL"; |
| 683 | case AArch64ISD::NEG: return "AArch64ISD::NEG"; |
| 684 | case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; |
| 685 | case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; |
| 686 | case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; |
| 687 | case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; |
| 688 | case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; |
| 689 | case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; |
| 690 | case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; |
| 691 | case AArch64ISD::REV16: return "AArch64ISD::REV16"; |
| 692 | case AArch64ISD::REV32: return "AArch64ISD::REV32"; |
| 693 | case AArch64ISD::REV64: return "AArch64ISD::REV64"; |
| 694 | case AArch64ISD::EXT: return "AArch64ISD::EXT"; |
| 695 | case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; |
| 696 | case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; |
| 697 | case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; |
| 698 | case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; |
| 699 | case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; |
| 700 | case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; |
| 701 | case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; |
| 702 | case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; |
| 703 | case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; |
| 704 | case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; |
| 705 | case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; |
| 706 | case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; |
| 707 | case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; |
| 708 | case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; |
| 709 | case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; |
| 710 | case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; |
| 711 | case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; |
| 712 | case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; |
| 713 | case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; |
| 714 | case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; |
| 715 | case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; |
| 716 | case AArch64ISD::NOT: return "AArch64ISD::NOT"; |
| 717 | case AArch64ISD::BIT: return "AArch64ISD::BIT"; |
| 718 | case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; |
| 719 | case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; |
| 720 | case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; |
| 721 | case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; |
| 722 | case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; |
| 723 | case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; |
| 724 | case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; |
| 725 | case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; |
| 726 | case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; |
| 727 | case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; |
| 728 | case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; |
| 729 | case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; |
| 730 | case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; |
| 731 | case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; |
| 732 | case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; |
| 733 | case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; |
| 734 | case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; |
| 735 | case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; |
| 736 | case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; |
| 737 | case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; |
| 738 | case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; |
| 739 | case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; |
| 740 | case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; |
| 741 | case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; |
| 742 | case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; |
| 743 | case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; |
| 744 | case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; |
| 745 | case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; |
| 746 | case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; |
| 747 | case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; |
| 748 | case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; |
| 749 | case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; |
| 750 | case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; |
| 751 | case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; |
| 752 | case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; |
| 753 | case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | MachineBasicBlock * |
| 758 | AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, |
| 759 | MachineBasicBlock *MBB) const { |
| 760 | // We materialise the F128CSEL pseudo-instruction as some control flow and a |
| 761 | // phi node: |
| 762 | |
| 763 | // OrigBB: |
| 764 | // [... previous instrs leading to comparison ...] |
| 765 | // b.ne TrueBB |
| 766 | // b EndBB |
| 767 | // TrueBB: |
| 768 | // ; Fallthrough |
| 769 | // EndBB: |
| 770 | // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] |
| 771 | |
| 772 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 773 | MachineFunction *MF = MBB->getParent(); |
| 774 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| 775 | DebugLoc DL = MI->getDebugLoc(); |
| 776 | MachineFunction::iterator It = MBB; |
| 777 | ++It; |
| 778 | |
| 779 | unsigned DestReg = MI->getOperand(0).getReg(); |
| 780 | unsigned IfTrueReg = MI->getOperand(1).getReg(); |
| 781 | unsigned IfFalseReg = MI->getOperand(2).getReg(); |
| 782 | unsigned CondCode = MI->getOperand(3).getImm(); |
| 783 | bool NZCVKilled = MI->getOperand(4).isKill(); |
| 784 | |
| 785 | MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 786 | MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| 787 | MF->insert(It, TrueBB); |
| 788 | MF->insert(It, EndBB); |
| 789 | |
| 790 | // Transfer rest of current basic-block to EndBB |
| 791 | EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), |
| 792 | MBB->end()); |
| 793 | EndBB->transferSuccessorsAndUpdatePHIs(MBB); |
| 794 | |
| 795 | BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); |
| 796 | BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); |
| 797 | MBB->addSuccessor(TrueBB); |
| 798 | MBB->addSuccessor(EndBB); |
| 799 | |
| 800 | // TrueBB falls through to the end. |
| 801 | TrueBB->addSuccessor(EndBB); |
| 802 | |
| 803 | if (!NZCVKilled) { |
| 804 | TrueBB->addLiveIn(AArch64::NZCV); |
| 805 | EndBB->addLiveIn(AArch64::NZCV); |
| 806 | } |
| 807 | |
| 808 | BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) |
| 809 | .addReg(IfTrueReg) |
| 810 | .addMBB(TrueBB) |
| 811 | .addReg(IfFalseReg) |
| 812 | .addMBB(MBB); |
| 813 | |
| 814 | MI->eraseFromParent(); |
| 815 | return EndBB; |
| 816 | } |
| 817 | |
| 818 | MachineBasicBlock * |
| 819 | AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| 820 | MachineBasicBlock *BB) const { |
| 821 | switch (MI->getOpcode()) { |
| 822 | default: |
| 823 | #ifndef NDEBUG |
| 824 | MI->dump(); |
| 825 | #endif |
Craig Topper | 35b2f75 | 2014-06-19 06:10:58 +0000 | [diff] [blame^] | 826 | llvm_unreachable("Unexpected instruction for custom inserter!"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 827 | |
| 828 | case AArch64::F128CSEL: |
| 829 | return EmitF128CSEL(MI, BB); |
| 830 | |
| 831 | case TargetOpcode::STACKMAP: |
| 832 | case TargetOpcode::PATCHPOINT: |
| 833 | return emitPatchPoint(MI, BB); |
| 834 | } |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 835 | } |
| 836 | |
| 837 | //===----------------------------------------------------------------------===// |
| 838 | // AArch64 Lowering private implementation. |
| 839 | //===----------------------------------------------------------------------===// |
| 840 | |
| 841 | //===----------------------------------------------------------------------===// |
| 842 | // Lowering Code |
| 843 | //===----------------------------------------------------------------------===// |
| 844 | |
| 845 | /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 |
| 846 | /// CC |
| 847 | static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { |
| 848 | switch (CC) { |
| 849 | default: |
| 850 | llvm_unreachable("Unknown condition code!"); |
| 851 | case ISD::SETNE: |
| 852 | return AArch64CC::NE; |
| 853 | case ISD::SETEQ: |
| 854 | return AArch64CC::EQ; |
| 855 | case ISD::SETGT: |
| 856 | return AArch64CC::GT; |
| 857 | case ISD::SETGE: |
| 858 | return AArch64CC::GE; |
| 859 | case ISD::SETLT: |
| 860 | return AArch64CC::LT; |
| 861 | case ISD::SETLE: |
| 862 | return AArch64CC::LE; |
| 863 | case ISD::SETUGT: |
| 864 | return AArch64CC::HI; |
| 865 | case ISD::SETUGE: |
| 866 | return AArch64CC::HS; |
| 867 | case ISD::SETULT: |
| 868 | return AArch64CC::LO; |
| 869 | case ISD::SETULE: |
| 870 | return AArch64CC::LS; |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. |
| 875 | static void changeFPCCToAArch64CC(ISD::CondCode CC, |
| 876 | AArch64CC::CondCode &CondCode, |
| 877 | AArch64CC::CondCode &CondCode2) { |
| 878 | CondCode2 = AArch64CC::AL; |
| 879 | switch (CC) { |
| 880 | default: |
| 881 | llvm_unreachable("Unknown FP condition!"); |
| 882 | case ISD::SETEQ: |
| 883 | case ISD::SETOEQ: |
| 884 | CondCode = AArch64CC::EQ; |
| 885 | break; |
| 886 | case ISD::SETGT: |
| 887 | case ISD::SETOGT: |
| 888 | CondCode = AArch64CC::GT; |
| 889 | break; |
| 890 | case ISD::SETGE: |
| 891 | case ISD::SETOGE: |
| 892 | CondCode = AArch64CC::GE; |
| 893 | break; |
| 894 | case ISD::SETOLT: |
| 895 | CondCode = AArch64CC::MI; |
| 896 | break; |
| 897 | case ISD::SETOLE: |
| 898 | CondCode = AArch64CC::LS; |
| 899 | break; |
| 900 | case ISD::SETONE: |
| 901 | CondCode = AArch64CC::MI; |
| 902 | CondCode2 = AArch64CC::GT; |
| 903 | break; |
| 904 | case ISD::SETO: |
| 905 | CondCode = AArch64CC::VC; |
| 906 | break; |
| 907 | case ISD::SETUO: |
| 908 | CondCode = AArch64CC::VS; |
| 909 | break; |
| 910 | case ISD::SETUEQ: |
| 911 | CondCode = AArch64CC::EQ; |
| 912 | CondCode2 = AArch64CC::VS; |
| 913 | break; |
| 914 | case ISD::SETUGT: |
| 915 | CondCode = AArch64CC::HI; |
| 916 | break; |
| 917 | case ISD::SETUGE: |
| 918 | CondCode = AArch64CC::PL; |
| 919 | break; |
| 920 | case ISD::SETLT: |
| 921 | case ISD::SETULT: |
| 922 | CondCode = AArch64CC::LT; |
| 923 | break; |
| 924 | case ISD::SETLE: |
| 925 | case ISD::SETULE: |
| 926 | CondCode = AArch64CC::LE; |
| 927 | break; |
| 928 | case ISD::SETNE: |
| 929 | case ISD::SETUNE: |
| 930 | CondCode = AArch64CC::NE; |
| 931 | break; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 |
| 936 | /// CC usable with the vector instructions. Fewer operations are available |
| 937 | /// without a real NZCV register, so we have to use less efficient combinations |
| 938 | /// to get the same effect. |
| 939 | static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, |
| 940 | AArch64CC::CondCode &CondCode, |
| 941 | AArch64CC::CondCode &CondCode2, |
| 942 | bool &Invert) { |
| 943 | Invert = false; |
| 944 | switch (CC) { |
| 945 | default: |
| 946 | // Mostly the scalar mappings work fine. |
| 947 | changeFPCCToAArch64CC(CC, CondCode, CondCode2); |
| 948 | break; |
| 949 | case ISD::SETUO: |
| 950 | Invert = true; // Fallthrough |
| 951 | case ISD::SETO: |
| 952 | CondCode = AArch64CC::MI; |
| 953 | CondCode2 = AArch64CC::GE; |
| 954 | break; |
| 955 | case ISD::SETUEQ: |
| 956 | case ISD::SETULT: |
| 957 | case ISD::SETULE: |
| 958 | case ISD::SETUGT: |
| 959 | case ISD::SETUGE: |
| 960 | // All of the compare-mask comparisons are ordered, but we can switch |
| 961 | // between the two by a double inversion. E.g. ULE == !OGT. |
| 962 | Invert = true; |
| 963 | changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); |
| 964 | break; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | static bool isLegalArithImmed(uint64_t C) { |
| 969 | // Matches AArch64DAGToDAGISel::SelectArithImmed(). |
| 970 | return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); |
| 971 | } |
| 972 | |
| 973 | static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 974 | SDLoc dl, SelectionDAG &DAG) { |
| 975 | EVT VT = LHS.getValueType(); |
| 976 | |
| 977 | if (VT.isFloatingPoint()) |
| 978 | return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); |
| 979 | |
| 980 | // The CMP instruction is just an alias for SUBS, and representing it as |
| 981 | // SUBS means that it's possible to get CSE with subtract operations. |
| 982 | // A later phase can perform the optimization of setting the destination |
| 983 | // register to WZR/XZR if it ends up being unused. |
| 984 | unsigned Opcode = AArch64ISD::SUBS; |
| 985 | |
| 986 | if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) && |
| 987 | cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 && |
| 988 | (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| 989 | // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on |
| 990 | // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags |
| 991 | // can be set differently by this operation. It comes down to whether |
| 992 | // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then |
| 993 | // everything is fine. If not then the optimization is wrong. Thus general |
| 994 | // comparisons are only valid if op2 != 0. |
| 995 | |
| 996 | // So, finally, the only LLVM-native comparisons that don't mention C and V |
| 997 | // are SETEQ and SETNE. They're the only ones we can safely use CMN for in |
| 998 | // the absence of information about op2. |
| 999 | Opcode = AArch64ISD::ADDS; |
| 1000 | RHS = RHS.getOperand(1); |
| 1001 | } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) && |
| 1002 | cast<ConstantSDNode>(RHS)->getZExtValue() == 0 && |
| 1003 | !isUnsignedIntSetCC(CC)) { |
| 1004 | // Similarly, (CMP (and X, Y), 0) can be implemented with a TST |
| 1005 | // (a.k.a. ANDS) except that the flags are only guaranteed to work for one |
| 1006 | // of the signed comparisons. |
| 1007 | Opcode = AArch64ISD::ANDS; |
| 1008 | RHS = LHS.getOperand(1); |
| 1009 | LHS = LHS.getOperand(0); |
| 1010 | } |
| 1011 | |
| 1012 | return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS) |
| 1013 | .getValue(1); |
| 1014 | } |
| 1015 | |
| 1016 | static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| 1017 | SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) { |
| 1018 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| 1019 | EVT VT = RHS.getValueType(); |
| 1020 | uint64_t C = RHSC->getZExtValue(); |
| 1021 | if (!isLegalArithImmed(C)) { |
| 1022 | // Constant does not fit, try adjusting it by one? |
| 1023 | switch (CC) { |
| 1024 | default: |
| 1025 | break; |
| 1026 | case ISD::SETLT: |
| 1027 | case ISD::SETGE: |
| 1028 | if ((VT == MVT::i32 && C != 0x80000000 && |
| 1029 | isLegalArithImmed((uint32_t)(C - 1))) || |
| 1030 | (VT == MVT::i64 && C != 0x80000000ULL && |
| 1031 | isLegalArithImmed(C - 1ULL))) { |
| 1032 | CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| 1033 | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; |
| 1034 | RHS = DAG.getConstant(C, VT); |
| 1035 | } |
| 1036 | break; |
| 1037 | case ISD::SETULT: |
| 1038 | case ISD::SETUGE: |
| 1039 | if ((VT == MVT::i32 && C != 0 && |
| 1040 | isLegalArithImmed((uint32_t)(C - 1))) || |
| 1041 | (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { |
| 1042 | CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| 1043 | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; |
| 1044 | RHS = DAG.getConstant(C, VT); |
| 1045 | } |
| 1046 | break; |
| 1047 | case ISD::SETLE: |
| 1048 | case ISD::SETGT: |
| 1049 | if ((VT == MVT::i32 && C != 0x7fffffff && |
| 1050 | isLegalArithImmed((uint32_t)(C + 1))) || |
| 1051 | (VT == MVT::i64 && C != 0x7ffffffffffffffULL && |
| 1052 | isLegalArithImmed(C + 1ULL))) { |
| 1053 | CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| 1054 | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; |
| 1055 | RHS = DAG.getConstant(C, VT); |
| 1056 | } |
| 1057 | break; |
| 1058 | case ISD::SETULE: |
| 1059 | case ISD::SETUGT: |
| 1060 | if ((VT == MVT::i32 && C != 0xffffffff && |
| 1061 | isLegalArithImmed((uint32_t)(C + 1))) || |
| 1062 | (VT == MVT::i64 && C != 0xfffffffffffffffULL && |
| 1063 | isLegalArithImmed(C + 1ULL))) { |
| 1064 | CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| 1065 | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; |
| 1066 | RHS = DAG.getConstant(C, VT); |
| 1067 | } |
| 1068 | break; |
| 1069 | } |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| 1074 | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); |
| 1075 | AArch64cc = DAG.getConstant(AArch64CC, MVT::i32); |
| 1076 | return Cmp; |
| 1077 | } |
| 1078 | |
| 1079 | static std::pair<SDValue, SDValue> |
| 1080 | getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { |
| 1081 | assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && |
| 1082 | "Unsupported value type"); |
| 1083 | SDValue Value, Overflow; |
| 1084 | SDLoc DL(Op); |
| 1085 | SDValue LHS = Op.getOperand(0); |
| 1086 | SDValue RHS = Op.getOperand(1); |
| 1087 | unsigned Opc = 0; |
| 1088 | switch (Op.getOpcode()) { |
| 1089 | default: |
| 1090 | llvm_unreachable("Unknown overflow instruction!"); |
| 1091 | case ISD::SADDO: |
| 1092 | Opc = AArch64ISD::ADDS; |
| 1093 | CC = AArch64CC::VS; |
| 1094 | break; |
| 1095 | case ISD::UADDO: |
| 1096 | Opc = AArch64ISD::ADDS; |
| 1097 | CC = AArch64CC::HS; |
| 1098 | break; |
| 1099 | case ISD::SSUBO: |
| 1100 | Opc = AArch64ISD::SUBS; |
| 1101 | CC = AArch64CC::VS; |
| 1102 | break; |
| 1103 | case ISD::USUBO: |
| 1104 | Opc = AArch64ISD::SUBS; |
| 1105 | CC = AArch64CC::LO; |
| 1106 | break; |
| 1107 | // Multiply needs a little bit extra work. |
| 1108 | case ISD::SMULO: |
| 1109 | case ISD::UMULO: { |
| 1110 | CC = AArch64CC::NE; |
| 1111 | bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false; |
| 1112 | if (Op.getValueType() == MVT::i32) { |
| 1113 | unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 1114 | // For a 32 bit multiply with overflow check we want the instruction |
| 1115 | // selector to generate a widening multiply (SMADDL/UMADDL). For that we |
| 1116 | // need to generate the following pattern: |
| 1117 | // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) |
| 1118 | LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); |
| 1119 | RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); |
| 1120 | SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); |
| 1121 | SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, |
| 1122 | DAG.getConstant(0, MVT::i64)); |
| 1123 | // On AArch64 the upper 32 bits are always zero extended for a 32 bit |
| 1124 | // operation. We need to clear out the upper 32 bits, because we used a |
| 1125 | // widening multiply that wrote all 64 bits. In the end this should be a |
| 1126 | // noop. |
| 1127 | Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); |
| 1128 | if (IsSigned) { |
| 1129 | // The signed overflow check requires more than just a simple check for |
| 1130 | // any bit set in the upper 32 bits of the result. These bits could be |
| 1131 | // just the sign bits of a negative number. To perform the overflow |
| 1132 | // check we have to arithmetic shift right the 32nd bit of the result by |
| 1133 | // 31 bits. Then we compare the result to the upper 32 bits. |
| 1134 | SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, |
| 1135 | DAG.getConstant(32, MVT::i64)); |
| 1136 | UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); |
| 1137 | SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, |
| 1138 | DAG.getConstant(31, MVT::i64)); |
| 1139 | // It is important that LowerBits is last, otherwise the arithmetic |
| 1140 | // shift will not be folded into the compare (SUBS). |
| 1141 | SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); |
| 1142 | Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) |
| 1143 | .getValue(1); |
| 1144 | } else { |
| 1145 | // The overflow check for unsigned multiply is easy. We only need to |
| 1146 | // check if any of the upper 32 bits are set. This can be done with a |
| 1147 | // CMP (shifted register). For that we need to generate the following |
| 1148 | // pattern: |
| 1149 | // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) |
| 1150 | SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, |
| 1151 | DAG.getConstant(32, MVT::i64)); |
| 1152 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| 1153 | Overflow = |
| 1154 | DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), |
| 1155 | UpperBits).getValue(1); |
| 1156 | } |
| 1157 | break; |
| 1158 | } |
| 1159 | assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); |
| 1160 | // For the 64 bit multiply |
| 1161 | Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); |
| 1162 | if (IsSigned) { |
| 1163 | SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); |
| 1164 | SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, |
| 1165 | DAG.getConstant(63, MVT::i64)); |
| 1166 | // It is important that LowerBits is last, otherwise the arithmetic |
| 1167 | // shift will not be folded into the compare (SUBS). |
| 1168 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| 1169 | Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) |
| 1170 | .getValue(1); |
| 1171 | } else { |
| 1172 | SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); |
| 1173 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| 1174 | Overflow = |
| 1175 | DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), |
| 1176 | UpperBits).getValue(1); |
| 1177 | } |
| 1178 | break; |
| 1179 | } |
| 1180 | } // switch (...) |
| 1181 | |
| 1182 | if (Opc) { |
| 1183 | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); |
| 1184 | |
| 1185 | // Emit the AArch64 operation with overflow check. |
| 1186 | Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); |
| 1187 | Overflow = Value.getValue(1); |
| 1188 | } |
| 1189 | return std::make_pair(Value, Overflow); |
| 1190 | } |
| 1191 | |
| 1192 | SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, |
| 1193 | RTLIB::Libcall Call) const { |
| 1194 | SmallVector<SDValue, 2> Ops; |
| 1195 | for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) |
| 1196 | Ops.push_back(Op.getOperand(i)); |
| 1197 | |
| 1198 | return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false, |
| 1199 | SDLoc(Op)).first; |
| 1200 | } |
| 1201 | |
| 1202 | static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { |
| 1203 | SDValue Sel = Op.getOperand(0); |
| 1204 | SDValue Other = Op.getOperand(1); |
| 1205 | |
| 1206 | // If neither operand is a SELECT_CC, give up. |
| 1207 | if (Sel.getOpcode() != ISD::SELECT_CC) |
| 1208 | std::swap(Sel, Other); |
| 1209 | if (Sel.getOpcode() != ISD::SELECT_CC) |
| 1210 | return Op; |
| 1211 | |
| 1212 | // The folding we want to perform is: |
| 1213 | // (xor x, (select_cc a, b, cc, 0, -1) ) |
| 1214 | // --> |
| 1215 | // (csel x, (xor x, -1), cc ...) |
| 1216 | // |
| 1217 | // The latter will get matched to a CSINV instruction. |
| 1218 | |
| 1219 | ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); |
| 1220 | SDValue LHS = Sel.getOperand(0); |
| 1221 | SDValue RHS = Sel.getOperand(1); |
| 1222 | SDValue TVal = Sel.getOperand(2); |
| 1223 | SDValue FVal = Sel.getOperand(3); |
| 1224 | SDLoc dl(Sel); |
| 1225 | |
| 1226 | // FIXME: This could be generalized to non-integer comparisons. |
| 1227 | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) |
| 1228 | return Op; |
| 1229 | |
| 1230 | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); |
| 1231 | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); |
| 1232 | |
| 1233 | // The the values aren't constants, this isn't the pattern we're looking for. |
| 1234 | if (!CFVal || !CTVal) |
| 1235 | return Op; |
| 1236 | |
| 1237 | // We can commute the SELECT_CC by inverting the condition. This |
| 1238 | // might be needed to make this fit into a CSINV pattern. |
| 1239 | if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { |
| 1240 | std::swap(TVal, FVal); |
| 1241 | std::swap(CTVal, CFVal); |
| 1242 | CC = ISD::getSetCCInverse(CC, true); |
| 1243 | } |
| 1244 | |
| 1245 | // If the constants line up, perform the transform! |
| 1246 | if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { |
| 1247 | SDValue CCVal; |
| 1248 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| 1249 | |
| 1250 | FVal = Other; |
| 1251 | TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, |
| 1252 | DAG.getConstant(-1ULL, Other.getValueType())); |
| 1253 | |
| 1254 | return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, |
| 1255 | CCVal, Cmp); |
| 1256 | } |
| 1257 | |
| 1258 | return Op; |
| 1259 | } |
| 1260 | |
| 1261 | static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { |
| 1262 | EVT VT = Op.getValueType(); |
| 1263 | |
| 1264 | // Let legalize expand this if it isn't a legal type yet. |
| 1265 | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| 1266 | return SDValue(); |
| 1267 | |
| 1268 | SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| 1269 | |
| 1270 | unsigned Opc; |
| 1271 | bool ExtraOp = false; |
| 1272 | switch (Op.getOpcode()) { |
| 1273 | default: |
Craig Topper | 2a30d78 | 2014-06-18 05:05:13 +0000 | [diff] [blame] | 1274 | llvm_unreachable("Invalid code"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1275 | case ISD::ADDC: |
| 1276 | Opc = AArch64ISD::ADDS; |
| 1277 | break; |
| 1278 | case ISD::SUBC: |
| 1279 | Opc = AArch64ISD::SUBS; |
| 1280 | break; |
| 1281 | case ISD::ADDE: |
| 1282 | Opc = AArch64ISD::ADCS; |
| 1283 | ExtraOp = true; |
| 1284 | break; |
| 1285 | case ISD::SUBE: |
| 1286 | Opc = AArch64ISD::SBCS; |
| 1287 | ExtraOp = true; |
| 1288 | break; |
| 1289 | } |
| 1290 | |
| 1291 | if (!ExtraOp) |
| 1292 | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); |
| 1293 | return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), |
| 1294 | Op.getOperand(2)); |
| 1295 | } |
| 1296 | |
| 1297 | static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { |
| 1298 | // Let legalize expand this if it isn't a legal type yet. |
| 1299 | if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) |
| 1300 | return SDValue(); |
| 1301 | |
| 1302 | AArch64CC::CondCode CC; |
| 1303 | // The actual operation that sets the overflow or carry flag. |
| 1304 | SDValue Value, Overflow; |
| 1305 | std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); |
| 1306 | |
| 1307 | // We use 0 and 1 as false and true values. |
| 1308 | SDValue TVal = DAG.getConstant(1, MVT::i32); |
| 1309 | SDValue FVal = DAG.getConstant(0, MVT::i32); |
| 1310 | |
| 1311 | // We use an inverted condition, because the conditional select is inverted |
| 1312 | // too. This will allow it to be selected to a single instruction: |
| 1313 | // CSINC Wd, WZR, WZR, invert(cond). |
| 1314 | SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32); |
| 1315 | Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal, |
| 1316 | CCVal, Overflow); |
| 1317 | |
| 1318 | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| 1319 | return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow); |
| 1320 | } |
| 1321 | |
| 1322 | // Prefetch operands are: |
| 1323 | // 1: Address to prefetch |
| 1324 | // 2: bool isWrite |
| 1325 | // 3: int locality (0 = no locality ... 3 = extreme locality) |
| 1326 | // 4: bool isDataCache |
| 1327 | static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { |
| 1328 | SDLoc DL(Op); |
| 1329 | unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| 1330 | unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| 1331 | // The data thing is not used. |
| 1332 | // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| 1333 | |
| 1334 | bool IsStream = !Locality; |
| 1335 | // When the locality number is set |
| 1336 | if (Locality) { |
| 1337 | // The front-end should have filtered out the out-of-range values |
| 1338 | assert(Locality <= 3 && "Prefetch locality out-of-range"); |
| 1339 | // The locality degree is the opposite of the cache speed. |
| 1340 | // Put the number the other way around. |
| 1341 | // The encoding starts at 0 for level 1 |
| 1342 | Locality = 3 - Locality; |
| 1343 | } |
| 1344 | |
| 1345 | // built the mask value encoding the expected behavior. |
| 1346 | unsigned PrfOp = (IsWrite << 4) | // Load/Store bit |
| 1347 | (Locality << 1) | // Cache level bits |
| 1348 | (unsigned)IsStream; // Stream bit |
| 1349 | return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), |
| 1350 | DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1)); |
| 1351 | } |
| 1352 | |
| 1353 | SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, |
| 1354 | SelectionDAG &DAG) const { |
| 1355 | assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); |
| 1356 | |
| 1357 | RTLIB::Libcall LC; |
| 1358 | LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1359 | |
| 1360 | return LowerF128Call(Op, DAG, LC); |
| 1361 | } |
| 1362 | |
| 1363 | SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, |
| 1364 | SelectionDAG &DAG) const { |
| 1365 | if (Op.getOperand(0).getValueType() != MVT::f128) { |
| 1366 | // It's legal except when f128 is involved |
| 1367 | return Op; |
| 1368 | } |
| 1369 | |
| 1370 | RTLIB::Libcall LC; |
| 1371 | LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1372 | |
| 1373 | // FP_ROUND node has a second operand indicating whether it is known to be |
| 1374 | // precise. That doesn't take part in the LibCall so we can't directly use |
| 1375 | // LowerF128Call. |
| 1376 | SDValue SrcVal = Op.getOperand(0); |
| 1377 | return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, |
| 1378 | /*isSigned*/ false, SDLoc(Op)).first; |
| 1379 | } |
| 1380 | |
| 1381 | static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| 1382 | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. |
| 1383 | // Any additional optimization in this function should be recorded |
| 1384 | // in the cost tables. |
| 1385 | EVT InVT = Op.getOperand(0).getValueType(); |
| 1386 | EVT VT = Op.getValueType(); |
| 1387 | |
Tim Northover | dbecc3b | 2014-06-15 09:27:15 +0000 | [diff] [blame] | 1388 | if (VT.getSizeInBits() < InVT.getSizeInBits()) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1389 | SDLoc dl(Op); |
| 1390 | SDValue Cv = |
| 1391 | DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), |
| 1392 | Op.getOperand(0)); |
| 1393 | return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); |
Tim Northover | dbecc3b | 2014-06-15 09:27:15 +0000 | [diff] [blame] | 1394 | } |
| 1395 | |
| 1396 | if (VT.getSizeInBits() > InVT.getSizeInBits()) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1397 | SDLoc dl(Op); |
| 1398 | SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0)); |
| 1399 | return DAG.getNode(Op.getOpcode(), dl, VT, Ext); |
| 1400 | } |
| 1401 | |
| 1402 | // Type changing conversions are illegal. |
Tim Northover | dbecc3b | 2014-06-15 09:27:15 +0000 | [diff] [blame] | 1403 | return Op; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1404 | } |
| 1405 | |
| 1406 | SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, |
| 1407 | SelectionDAG &DAG) const { |
| 1408 | if (Op.getOperand(0).getValueType().isVector()) |
| 1409 | return LowerVectorFP_TO_INT(Op, DAG); |
| 1410 | |
| 1411 | if (Op.getOperand(0).getValueType() != MVT::f128) { |
| 1412 | // It's legal except when f128 is involved |
| 1413 | return Op; |
| 1414 | } |
| 1415 | |
| 1416 | RTLIB::Libcall LC; |
| 1417 | if (Op.getOpcode() == ISD::FP_TO_SINT) |
| 1418 | LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1419 | else |
| 1420 | LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1421 | |
| 1422 | SmallVector<SDValue, 2> Ops; |
| 1423 | for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) |
| 1424 | Ops.push_back(Op.getOperand(i)); |
| 1425 | |
| 1426 | return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false, |
| 1427 | SDLoc(Op)).first; |
| 1428 | } |
| 1429 | |
| 1430 | static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| 1431 | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. |
| 1432 | // Any additional optimization in this function should be recorded |
| 1433 | // in the cost tables. |
| 1434 | EVT VT = Op.getValueType(); |
| 1435 | SDLoc dl(Op); |
| 1436 | SDValue In = Op.getOperand(0); |
| 1437 | EVT InVT = In.getValueType(); |
| 1438 | |
Tim Northover | ef0d760 | 2014-06-15 09:27:06 +0000 | [diff] [blame] | 1439 | if (VT.getSizeInBits() < InVT.getSizeInBits()) { |
| 1440 | MVT CastVT = |
| 1441 | MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), |
| 1442 | InVT.getVectorNumElements()); |
| 1443 | In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); |
| 1444 | return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0)); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1445 | } |
| 1446 | |
Tim Northover | ef0d760 | 2014-06-15 09:27:06 +0000 | [diff] [blame] | 1447 | if (VT.getSizeInBits() > InVT.getSizeInBits()) { |
| 1448 | unsigned CastOpc = |
| 1449 | Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 1450 | EVT CastVT = VT.changeVectorElementTypeToInteger(); |
| 1451 | In = DAG.getNode(CastOpc, dl, CastVT, In); |
| 1452 | return DAG.getNode(Op.getOpcode(), dl, VT, In); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1453 | } |
| 1454 | |
Tim Northover | ef0d760 | 2014-06-15 09:27:06 +0000 | [diff] [blame] | 1455 | return Op; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1456 | } |
| 1457 | |
| 1458 | SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, |
| 1459 | SelectionDAG &DAG) const { |
| 1460 | if (Op.getValueType().isVector()) |
| 1461 | return LowerVectorINT_TO_FP(Op, DAG); |
| 1462 | |
| 1463 | // i128 conversions are libcalls. |
| 1464 | if (Op.getOperand(0).getValueType() == MVT::i128) |
| 1465 | return SDValue(); |
| 1466 | |
| 1467 | // Other conversions are legal, unless it's to the completely software-based |
| 1468 | // fp128. |
| 1469 | if (Op.getValueType() != MVT::f128) |
| 1470 | return Op; |
| 1471 | |
| 1472 | RTLIB::Libcall LC; |
| 1473 | if (Op.getOpcode() == ISD::SINT_TO_FP) |
| 1474 | LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1475 | else |
| 1476 | LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| 1477 | |
| 1478 | return LowerF128Call(Op, DAG, LC); |
| 1479 | } |
| 1480 | |
| 1481 | SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, |
| 1482 | SelectionDAG &DAG) const { |
| 1483 | // For iOS, we want to call an alternative entry point: __sincos_stret, |
| 1484 | // which returns the values in two S / D registers. |
| 1485 | SDLoc dl(Op); |
| 1486 | SDValue Arg = Op.getOperand(0); |
| 1487 | EVT ArgVT = Arg.getValueType(); |
| 1488 | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| 1489 | |
| 1490 | ArgListTy Args; |
| 1491 | ArgListEntry Entry; |
| 1492 | |
| 1493 | Entry.Node = Arg; |
| 1494 | Entry.Ty = ArgTy; |
| 1495 | Entry.isSExt = false; |
| 1496 | Entry.isZExt = false; |
| 1497 | Args.push_back(Entry); |
| 1498 | |
| 1499 | const char *LibcallName = |
| 1500 | (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; |
| 1501 | SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); |
| 1502 | |
| 1503 | StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); |
| 1504 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 1505 | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) |
| 1506 | .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0); |
| 1507 | |
| 1508 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| 1509 | return CallResult.first; |
| 1510 | } |
| 1511 | |
| 1512 | SDValue AArch64TargetLowering::LowerOperation(SDValue Op, |
| 1513 | SelectionDAG &DAG) const { |
| 1514 | switch (Op.getOpcode()) { |
| 1515 | default: |
| 1516 | llvm_unreachable("unimplemented operand"); |
| 1517 | return SDValue(); |
| 1518 | case ISD::GlobalAddress: |
| 1519 | return LowerGlobalAddress(Op, DAG); |
| 1520 | case ISD::GlobalTLSAddress: |
| 1521 | return LowerGlobalTLSAddress(Op, DAG); |
| 1522 | case ISD::SETCC: |
| 1523 | return LowerSETCC(Op, DAG); |
| 1524 | case ISD::BR_CC: |
| 1525 | return LowerBR_CC(Op, DAG); |
| 1526 | case ISD::SELECT: |
| 1527 | return LowerSELECT(Op, DAG); |
| 1528 | case ISD::SELECT_CC: |
| 1529 | return LowerSELECT_CC(Op, DAG); |
| 1530 | case ISD::JumpTable: |
| 1531 | return LowerJumpTable(Op, DAG); |
| 1532 | case ISD::ConstantPool: |
| 1533 | return LowerConstantPool(Op, DAG); |
| 1534 | case ISD::BlockAddress: |
| 1535 | return LowerBlockAddress(Op, DAG); |
| 1536 | case ISD::VASTART: |
| 1537 | return LowerVASTART(Op, DAG); |
| 1538 | case ISD::VACOPY: |
| 1539 | return LowerVACOPY(Op, DAG); |
| 1540 | case ISD::VAARG: |
| 1541 | return LowerVAARG(Op, DAG); |
| 1542 | case ISD::ADDC: |
| 1543 | case ISD::ADDE: |
| 1544 | case ISD::SUBC: |
| 1545 | case ISD::SUBE: |
| 1546 | return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); |
| 1547 | case ISD::SADDO: |
| 1548 | case ISD::UADDO: |
| 1549 | case ISD::SSUBO: |
| 1550 | case ISD::USUBO: |
| 1551 | case ISD::SMULO: |
| 1552 | case ISD::UMULO: |
| 1553 | return LowerXALUO(Op, DAG); |
| 1554 | case ISD::FADD: |
| 1555 | return LowerF128Call(Op, DAG, RTLIB::ADD_F128); |
| 1556 | case ISD::FSUB: |
| 1557 | return LowerF128Call(Op, DAG, RTLIB::SUB_F128); |
| 1558 | case ISD::FMUL: |
| 1559 | return LowerF128Call(Op, DAG, RTLIB::MUL_F128); |
| 1560 | case ISD::FDIV: |
| 1561 | return LowerF128Call(Op, DAG, RTLIB::DIV_F128); |
| 1562 | case ISD::FP_ROUND: |
| 1563 | return LowerFP_ROUND(Op, DAG); |
| 1564 | case ISD::FP_EXTEND: |
| 1565 | return LowerFP_EXTEND(Op, DAG); |
| 1566 | case ISD::FRAMEADDR: |
| 1567 | return LowerFRAMEADDR(Op, DAG); |
| 1568 | case ISD::RETURNADDR: |
| 1569 | return LowerRETURNADDR(Op, DAG); |
| 1570 | case ISD::INSERT_VECTOR_ELT: |
| 1571 | return LowerINSERT_VECTOR_ELT(Op, DAG); |
| 1572 | case ISD::EXTRACT_VECTOR_ELT: |
| 1573 | return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 1574 | case ISD::BUILD_VECTOR: |
| 1575 | return LowerBUILD_VECTOR(Op, DAG); |
| 1576 | case ISD::VECTOR_SHUFFLE: |
| 1577 | return LowerVECTOR_SHUFFLE(Op, DAG); |
| 1578 | case ISD::EXTRACT_SUBVECTOR: |
| 1579 | return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| 1580 | case ISD::SRA: |
| 1581 | case ISD::SRL: |
| 1582 | case ISD::SHL: |
| 1583 | return LowerVectorSRA_SRL_SHL(Op, DAG); |
| 1584 | case ISD::SHL_PARTS: |
| 1585 | return LowerShiftLeftParts(Op, DAG); |
| 1586 | case ISD::SRL_PARTS: |
| 1587 | case ISD::SRA_PARTS: |
| 1588 | return LowerShiftRightParts(Op, DAG); |
| 1589 | case ISD::CTPOP: |
| 1590 | return LowerCTPOP(Op, DAG); |
| 1591 | case ISD::FCOPYSIGN: |
| 1592 | return LowerFCOPYSIGN(Op, DAG); |
| 1593 | case ISD::AND: |
| 1594 | return LowerVectorAND(Op, DAG); |
| 1595 | case ISD::OR: |
| 1596 | return LowerVectorOR(Op, DAG); |
| 1597 | case ISD::XOR: |
| 1598 | return LowerXOR(Op, DAG); |
| 1599 | case ISD::PREFETCH: |
| 1600 | return LowerPREFETCH(Op, DAG); |
| 1601 | case ISD::SINT_TO_FP: |
| 1602 | case ISD::UINT_TO_FP: |
| 1603 | return LowerINT_TO_FP(Op, DAG); |
| 1604 | case ISD::FP_TO_SINT: |
| 1605 | case ISD::FP_TO_UINT: |
| 1606 | return LowerFP_TO_INT(Op, DAG); |
| 1607 | case ISD::FSINCOS: |
| 1608 | return LowerFSINCOS(Op, DAG); |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | /// getFunctionAlignment - Return the Log2 alignment of this function. |
| 1613 | unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const { |
| 1614 | return 2; |
| 1615 | } |
| 1616 | |
| 1617 | //===----------------------------------------------------------------------===// |
| 1618 | // Calling Convention Implementation |
| 1619 | //===----------------------------------------------------------------------===// |
| 1620 | |
| 1621 | #include "AArch64GenCallingConv.inc" |
| 1622 | |
| 1623 | /// Selects the correct CCAssignFn for a the given CallingConvention |
| 1624 | /// value. |
| 1625 | CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| 1626 | bool IsVarArg) const { |
| 1627 | switch (CC) { |
| 1628 | default: |
| 1629 | llvm_unreachable("Unsupported calling convention."); |
| 1630 | case CallingConv::WebKit_JS: |
| 1631 | return CC_AArch64_WebKit_JS; |
| 1632 | case CallingConv::C: |
| 1633 | case CallingConv::Fast: |
| 1634 | if (!Subtarget->isTargetDarwin()) |
| 1635 | return CC_AArch64_AAPCS; |
| 1636 | return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | SDValue AArch64TargetLowering::LowerFormalArguments( |
| 1641 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| 1642 | const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, |
| 1643 | SmallVectorImpl<SDValue> &InVals) const { |
| 1644 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1645 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 1646 | |
| 1647 | // Assign locations to all of the incoming arguments. |
| 1648 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1649 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| 1650 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 1651 | |
| 1652 | // At this point, Ins[].VT may already be promoted to i32. To correctly |
| 1653 | // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and |
| 1654 | // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. |
| 1655 | // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here |
| 1656 | // we use a special version of AnalyzeFormalArguments to pass in ValVT and |
| 1657 | // LocVT. |
| 1658 | unsigned NumArgs = Ins.size(); |
| 1659 | Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); |
| 1660 | unsigned CurArgIdx = 0; |
| 1661 | for (unsigned i = 0; i != NumArgs; ++i) { |
| 1662 | MVT ValVT = Ins[i].VT; |
| 1663 | std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx); |
| 1664 | CurArgIdx = Ins[i].OrigArgIndex; |
| 1665 | |
| 1666 | // Get type of the original argument. |
| 1667 | EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true); |
| 1668 | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; |
| 1669 | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1670 | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1671 | ValVT = MVT::i8; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1672 | else if (ActualMVT == MVT::i16) |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1673 | ValVT = MVT::i16; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1674 | |
| 1675 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); |
| 1676 | bool Res = |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1677 | AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1678 | assert(!Res && "Call operand has unhandled type"); |
| 1679 | (void)Res; |
| 1680 | } |
| 1681 | assert(ArgLocs.size() == Ins.size()); |
| 1682 | SmallVector<SDValue, 16> ArgValues; |
| 1683 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1684 | CCValAssign &VA = ArgLocs[i]; |
| 1685 | |
| 1686 | if (Ins[i].Flags.isByVal()) { |
| 1687 | // Byval is used for HFAs in the PCS, but the system should work in a |
| 1688 | // non-compliant manner for larger structs. |
| 1689 | EVT PtrTy = getPointerTy(); |
| 1690 | int Size = Ins[i].Flags.getByValSize(); |
| 1691 | unsigned NumRegs = (Size + 7) / 8; |
| 1692 | |
| 1693 | // FIXME: This works on big-endian for composite byvals, which are the common |
| 1694 | // case. It should also work for fundamental types too. |
| 1695 | unsigned FrameIdx = |
| 1696 | MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); |
| 1697 | SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); |
| 1698 | InVals.push_back(FrameIdxN); |
| 1699 | |
| 1700 | continue; |
Jiangning Liu | cc4f38b | 2014-06-03 03:25:09 +0000 | [diff] [blame] | 1701 | } |
| 1702 | |
| 1703 | if (VA.isRegLoc()) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1704 | // Arguments stored in registers. |
| 1705 | EVT RegVT = VA.getLocVT(); |
| 1706 | |
| 1707 | SDValue ArgValue; |
| 1708 | const TargetRegisterClass *RC; |
| 1709 | |
| 1710 | if (RegVT == MVT::i32) |
| 1711 | RC = &AArch64::GPR32RegClass; |
| 1712 | else if (RegVT == MVT::i64) |
| 1713 | RC = &AArch64::GPR64RegClass; |
| 1714 | else if (RegVT == MVT::f32) |
| 1715 | RC = &AArch64::FPR32RegClass; |
| 1716 | else if (RegVT == MVT::f64 || RegVT.is64BitVector()) |
| 1717 | RC = &AArch64::FPR64RegClass; |
| 1718 | else if (RegVT == MVT::f128 || RegVT.is128BitVector()) |
| 1719 | RC = &AArch64::FPR128RegClass; |
| 1720 | else |
| 1721 | llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| 1722 | |
| 1723 | // Transform the arguments in physical registers into virtual ones. |
| 1724 | unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| 1725 | ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); |
| 1726 | |
| 1727 | // If this is an 8, 16 or 32-bit value, it is really passed promoted |
| 1728 | // to 64 bits. Insert an assert[sz]ext to capture this, then |
| 1729 | // truncate to the right size. |
| 1730 | switch (VA.getLocInfo()) { |
| 1731 | default: |
| 1732 | llvm_unreachable("Unknown loc info!"); |
| 1733 | case CCValAssign::Full: |
| 1734 | break; |
| 1735 | case CCValAssign::BCvt: |
| 1736 | ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); |
| 1737 | break; |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1738 | case CCValAssign::AExt: |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1739 | case CCValAssign::SExt: |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1740 | case CCValAssign::ZExt: |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1741 | // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt |
| 1742 | // nodes after our lowering. |
| 1743 | assert(RegVT == Ins[i].VT && "incorrect register location selected"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1744 | break; |
| 1745 | } |
| 1746 | |
| 1747 | InVals.push_back(ArgValue); |
| 1748 | |
| 1749 | } else { // VA.isRegLoc() |
| 1750 | assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); |
| 1751 | unsigned ArgOffset = VA.getLocMemOffset(); |
| 1752 | unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; |
| 1753 | |
| 1754 | uint32_t BEAlign = 0; |
| 1755 | if (ArgSize < 8 && !Subtarget->isLittleEndian()) |
| 1756 | BEAlign = 8 - ArgSize; |
| 1757 | |
| 1758 | int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); |
| 1759 | |
| 1760 | // Create load nodes to retrieve arguments from the stack. |
| 1761 | SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| 1762 | SDValue ArgValue; |
| 1763 | |
Jiangning Liu | cc4f38b | 2014-06-03 03:25:09 +0000 | [diff] [blame] | 1764 | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1765 | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
Jiangning Liu | cc4f38b | 2014-06-03 03:25:09 +0000 | [diff] [blame] | 1766 | MVT MemVT = VA.getValVT(); |
| 1767 | |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1768 | switch (VA.getLocInfo()) { |
| 1769 | default: |
| 1770 | break; |
Tim Northover | 6890add | 2014-06-03 13:54:53 +0000 | [diff] [blame] | 1771 | case CCValAssign::BCvt: |
| 1772 | MemVT = VA.getLocVT(); |
| 1773 | break; |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1774 | case CCValAssign::SExt: |
| 1775 | ExtType = ISD::SEXTLOAD; |
| 1776 | break; |
| 1777 | case CCValAssign::ZExt: |
| 1778 | ExtType = ISD::ZEXTLOAD; |
| 1779 | break; |
| 1780 | case CCValAssign::AExt: |
| 1781 | ExtType = ISD::EXTLOAD; |
| 1782 | break; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1783 | } |
| 1784 | |
Tim Northover | 6890add | 2014-06-03 13:54:53 +0000 | [diff] [blame] | 1785 | ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1786 | MachinePointerInfo::getFixedStack(FI), |
Craig Topper | 66f09ad | 2014-06-08 22:29:17 +0000 | [diff] [blame] | 1787 | MemVT, false, false, false, nullptr); |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 1788 | |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 1789 | InVals.push_back(ArgValue); |
| 1790 | } |
| 1791 | } |
| 1792 | |
| 1793 | // varargs |
| 1794 | if (isVarArg) { |
| 1795 | if (!Subtarget->isTargetDarwin()) { |
| 1796 | // The AAPCS variadic function ABI is identical to the non-variadic |
| 1797 | // one. As a result there may be more arguments in registers and we should |
| 1798 | // save them for future reference. |
| 1799 | saveVarArgRegisters(CCInfo, DAG, DL, Chain); |
| 1800 | } |
| 1801 | |
| 1802 | AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| 1803 | // This will point to the next argument passed via stack. |
| 1804 | unsigned StackOffset = CCInfo.getNextStackOffset(); |
| 1805 | // We currently pass all varargs at 8-byte alignment. |
| 1806 | StackOffset = ((StackOffset + 7) & ~7); |
| 1807 | AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true)); |
| 1808 | } |
| 1809 | |
| 1810 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 1811 | unsigned StackArgSize = CCInfo.getNextStackOffset(); |
| 1812 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| 1813 | if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { |
| 1814 | // This is a non-standard ABI so by fiat I say we're allowed to make full |
| 1815 | // use of the stack area to be popped, which must be aligned to 16 bytes in |
| 1816 | // any case: |
| 1817 | StackArgSize = RoundUpToAlignment(StackArgSize, 16); |
| 1818 | |
| 1819 | // If we're expected to restore the stack (e.g. fastcc) then we'll be adding |
| 1820 | // a multiple of 16. |
| 1821 | FuncInfo->setArgumentStackToRestore(StackArgSize); |
| 1822 | |
| 1823 | // This realignment carries over to the available bytes below. Our own |
| 1824 | // callers will guarantee the space is free by giving an aligned value to |
| 1825 | // CALLSEQ_START. |
| 1826 | } |
| 1827 | // Even if we're not expected to free up the space, it's useful to know how |
| 1828 | // much is there while considering tail calls (because we can reuse it). |
| 1829 | FuncInfo->setBytesInStackArgArea(StackArgSize); |
| 1830 | |
| 1831 | return Chain; |
| 1832 | } |
| 1833 | |
| 1834 | void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, |
| 1835 | SelectionDAG &DAG, SDLoc DL, |
| 1836 | SDValue &Chain) const { |
| 1837 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1838 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 1839 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 1840 | |
| 1841 | SmallVector<SDValue, 8> MemOps; |
| 1842 | |
| 1843 | static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, |
| 1844 | AArch64::X3, AArch64::X4, AArch64::X5, |
| 1845 | AArch64::X6, AArch64::X7 }; |
| 1846 | static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); |
| 1847 | unsigned FirstVariadicGPR = |
| 1848 | CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs); |
| 1849 | |
| 1850 | unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); |
| 1851 | int GPRIdx = 0; |
| 1852 | if (GPRSaveSize != 0) { |
| 1853 | GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); |
| 1854 | |
| 1855 | SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); |
| 1856 | |
| 1857 | for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { |
| 1858 | unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); |
| 1859 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); |
| 1860 | SDValue Store = |
| 1861 | DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| 1862 | MachinePointerInfo::getStack(i * 8), false, false, 0); |
| 1863 | MemOps.push_back(Store); |
| 1864 | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| 1865 | DAG.getConstant(8, getPointerTy())); |
| 1866 | } |
| 1867 | } |
| 1868 | FuncInfo->setVarArgsGPRIndex(GPRIdx); |
| 1869 | FuncInfo->setVarArgsGPRSize(GPRSaveSize); |
| 1870 | |
| 1871 | if (Subtarget->hasFPARMv8()) { |
| 1872 | static const MCPhysReg FPRArgRegs[] = { |
| 1873 | AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, |
| 1874 | AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; |
| 1875 | static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); |
| 1876 | unsigned FirstVariadicFPR = |
| 1877 | CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs); |
| 1878 | |
| 1879 | unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); |
| 1880 | int FPRIdx = 0; |
| 1881 | if (FPRSaveSize != 0) { |
| 1882 | FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); |
| 1883 | |
| 1884 | SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); |
| 1885 | |
| 1886 | for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { |
| 1887 | unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); |
| 1888 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); |
| 1889 | |
| 1890 | SDValue Store = |
| 1891 | DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| 1892 | MachinePointerInfo::getStack(i * 16), false, false, 0); |
| 1893 | MemOps.push_back(Store); |
| 1894 | FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| 1895 | DAG.getConstant(16, getPointerTy())); |
| 1896 | } |
| 1897 | } |
| 1898 | FuncInfo->setVarArgsFPRIndex(FPRIdx); |
| 1899 | FuncInfo->setVarArgsFPRSize(FPRSaveSize); |
| 1900 | } |
| 1901 | |
| 1902 | if (!MemOps.empty()) { |
| 1903 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| 1904 | } |
| 1905 | } |
| 1906 | |
| 1907 | /// LowerCallResult - Lower the result values of a call into the |
| 1908 | /// appropriate copies out of appropriate physical registers. |
| 1909 | SDValue AArch64TargetLowering::LowerCallResult( |
| 1910 | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| 1911 | const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, |
| 1912 | SmallVectorImpl<SDValue> &InVals, bool isThisReturn, |
| 1913 | SDValue ThisVal) const { |
| 1914 | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| 1915 | ? RetCC_AArch64_WebKit_JS |
| 1916 | : RetCC_AArch64_AAPCS; |
| 1917 | // Assign locations to each value returned by this call. |
| 1918 | SmallVector<CCValAssign, 16> RVLocs; |
| 1919 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| 1920 | getTargetMachine(), RVLocs, *DAG.getContext()); |
| 1921 | CCInfo.AnalyzeCallResult(Ins, RetCC); |
| 1922 | |
| 1923 | // Copy all of the result registers out of their specified physreg. |
| 1924 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 1925 | CCValAssign VA = RVLocs[i]; |
| 1926 | |
| 1927 | // Pass 'this' value directly from the argument to return value, to avoid |
| 1928 | // reg unit interference |
| 1929 | if (i == 0 && isThisReturn) { |
| 1930 | assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && |
| 1931 | "unexpected return calling convention register assignment"); |
| 1932 | InVals.push_back(ThisVal); |
| 1933 | continue; |
| 1934 | } |
| 1935 | |
| 1936 | SDValue Val = |
| 1937 | DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); |
| 1938 | Chain = Val.getValue(1); |
| 1939 | InFlag = Val.getValue(2); |
| 1940 | |
| 1941 | switch (VA.getLocInfo()) { |
| 1942 | default: |
| 1943 | llvm_unreachable("Unknown loc info!"); |
| 1944 | case CCValAssign::Full: |
| 1945 | break; |
| 1946 | case CCValAssign::BCvt: |
| 1947 | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| 1948 | break; |
| 1949 | } |
| 1950 | |
| 1951 | InVals.push_back(Val); |
| 1952 | } |
| 1953 | |
| 1954 | return Chain; |
| 1955 | } |
| 1956 | |
| 1957 | bool AArch64TargetLowering::isEligibleForTailCallOptimization( |
| 1958 | SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, |
| 1959 | bool isCalleeStructRet, bool isCallerStructRet, |
| 1960 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1961 | const SmallVectorImpl<SDValue> &OutVals, |
| 1962 | const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| 1963 | // For CallingConv::C this function knows whether the ABI needs |
| 1964 | // changing. That's not true for other conventions so they will have to opt in |
| 1965 | // manually. |
| 1966 | if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) |
| 1967 | return false; |
| 1968 | |
| 1969 | const MachineFunction &MF = DAG.getMachineFunction(); |
| 1970 | const Function *CallerF = MF.getFunction(); |
| 1971 | CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| 1972 | bool CCMatch = CallerCC == CalleeCC; |
| 1973 | |
| 1974 | // Byval parameters hand the function a pointer directly into the stack area |
| 1975 | // we want to reuse during a tail call. Working around this *is* possible (see |
| 1976 | // X86) but less efficient and uglier in LowerCall. |
| 1977 | for (Function::const_arg_iterator i = CallerF->arg_begin(), |
| 1978 | e = CallerF->arg_end(); |
| 1979 | i != e; ++i) |
| 1980 | if (i->hasByValAttr()) |
| 1981 | return false; |
| 1982 | |
| 1983 | if (getTargetMachine().Options.GuaranteedTailCallOpt) { |
| 1984 | if (IsTailCallConvention(CalleeCC) && CCMatch) |
| 1985 | return true; |
| 1986 | return false; |
| 1987 | } |
| 1988 | |
| 1989 | // Now we search for cases where we can use a tail call without changing the |
| 1990 | // ABI. Sibcall is used in some places (particularly gcc) to refer to this |
| 1991 | // concept. |
| 1992 | |
| 1993 | // I want anyone implementing a new calling convention to think long and hard |
| 1994 | // about this assert. |
| 1995 | assert((!isVarArg || CalleeCC == CallingConv::C) && |
| 1996 | "Unexpected variadic calling convention"); |
| 1997 | |
| 1998 | if (isVarArg && !Outs.empty()) { |
| 1999 | // At least two cases here: if caller is fastcc then we can't have any |
| 2000 | // memory arguments (we'd be expected to clean up the stack afterwards). If |
| 2001 | // caller is C then we could potentially use its argument area. |
| 2002 | |
| 2003 | // FIXME: for now we take the most conservative of these in both cases: |
| 2004 | // disallow all variadic memory operands. |
| 2005 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2006 | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), |
| 2007 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 2008 | |
| 2009 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); |
| 2010 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) |
| 2011 | if (!ArgLocs[i].isRegLoc()) |
| 2012 | return false; |
| 2013 | } |
| 2014 | |
| 2015 | // If the calling conventions do not match, then we'd better make sure the |
| 2016 | // results are returned in the same way as what the caller expects. |
| 2017 | if (!CCMatch) { |
| 2018 | SmallVector<CCValAssign, 16> RVLocs1; |
| 2019 | CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), |
| 2020 | getTargetMachine(), RVLocs1, *DAG.getContext()); |
| 2021 | CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg)); |
| 2022 | |
| 2023 | SmallVector<CCValAssign, 16> RVLocs2; |
| 2024 | CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), |
| 2025 | getTargetMachine(), RVLocs2, *DAG.getContext()); |
| 2026 | CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg)); |
| 2027 | |
| 2028 | if (RVLocs1.size() != RVLocs2.size()) |
| 2029 | return false; |
| 2030 | for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| 2031 | if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| 2032 | return false; |
| 2033 | if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| 2034 | return false; |
| 2035 | if (RVLocs1[i].isRegLoc()) { |
| 2036 | if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| 2037 | return false; |
| 2038 | } else { |
| 2039 | if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| 2040 | return false; |
| 2041 | } |
| 2042 | } |
| 2043 | } |
| 2044 | |
| 2045 | // Nothing more to check if the callee is taking no arguments |
| 2046 | if (Outs.empty()) |
| 2047 | return true; |
| 2048 | |
| 2049 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2050 | CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), |
| 2051 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 2052 | |
| 2053 | CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); |
| 2054 | |
| 2055 | const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 2056 | |
| 2057 | // If the stack arguments for this call would fit into our own save area then |
| 2058 | // the call can be made tail. |
| 2059 | return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); |
| 2060 | } |
| 2061 | |
| 2062 | SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, |
| 2063 | SelectionDAG &DAG, |
| 2064 | MachineFrameInfo *MFI, |
| 2065 | int ClobberedFI) const { |
| 2066 | SmallVector<SDValue, 8> ArgChains; |
| 2067 | int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); |
| 2068 | int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; |
| 2069 | |
| 2070 | // Include the original chain at the beginning of the list. When this is |
| 2071 | // used by target LowerCall hooks, this helps legalize find the |
| 2072 | // CALLSEQ_BEGIN node. |
| 2073 | ArgChains.push_back(Chain); |
| 2074 | |
| 2075 | // Add a chain value for each stack argument corresponding |
| 2076 | for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), |
| 2077 | UE = DAG.getEntryNode().getNode()->use_end(); |
| 2078 | U != UE; ++U) |
| 2079 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| 2080 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| 2081 | if (FI->getIndex() < 0) { |
| 2082 | int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); |
| 2083 | int64_t InLastByte = InFirstByte; |
| 2084 | InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; |
| 2085 | |
| 2086 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| 2087 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| 2088 | ArgChains.push_back(SDValue(L, 1)); |
| 2089 | } |
| 2090 | |
| 2091 | // Build a tokenfactor for all the chains. |
| 2092 | return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); |
| 2093 | } |
| 2094 | |
| 2095 | bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, |
| 2096 | bool TailCallOpt) const { |
| 2097 | return CallCC == CallingConv::Fast && TailCallOpt; |
| 2098 | } |
| 2099 | |
| 2100 | bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { |
| 2101 | return CallCC == CallingConv::Fast; |
| 2102 | } |
| 2103 | |
| 2104 | /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, |
| 2105 | /// and add input and output parameter nodes. |
| 2106 | SDValue |
| 2107 | AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 2108 | SmallVectorImpl<SDValue> &InVals) const { |
| 2109 | SelectionDAG &DAG = CLI.DAG; |
| 2110 | SDLoc &DL = CLI.DL; |
| 2111 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| 2112 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| 2113 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| 2114 | SDValue Chain = CLI.Chain; |
| 2115 | SDValue Callee = CLI.Callee; |
| 2116 | bool &IsTailCall = CLI.IsTailCall; |
| 2117 | CallingConv::ID CallConv = CLI.CallConv; |
| 2118 | bool IsVarArg = CLI.IsVarArg; |
| 2119 | |
| 2120 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2121 | bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); |
| 2122 | bool IsThisReturn = false; |
| 2123 | |
| 2124 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 2125 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| 2126 | bool IsSibCall = false; |
| 2127 | |
| 2128 | if (IsTailCall) { |
| 2129 | // Check if it's really possible to do a tail call. |
| 2130 | IsTailCall = isEligibleForTailCallOptimization( |
| 2131 | Callee, CallConv, IsVarArg, IsStructRet, |
| 2132 | MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); |
| 2133 | if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) |
| 2134 | report_fatal_error("failed to perform tail call elimination on a call " |
| 2135 | "site marked musttail"); |
| 2136 | |
| 2137 | // A sibling call is one where we're under the usual C ABI and not planning |
| 2138 | // to change that but can still do a tail call: |
| 2139 | if (!TailCallOpt && IsTailCall) |
| 2140 | IsSibCall = true; |
| 2141 | |
| 2142 | if (IsTailCall) |
| 2143 | ++NumTailCalls; |
| 2144 | } |
| 2145 | |
| 2146 | // Analyze operands of the call, assigning locations to each operand. |
| 2147 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2148 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), |
| 2149 | getTargetMachine(), ArgLocs, *DAG.getContext()); |
| 2150 | |
| 2151 | if (IsVarArg) { |
| 2152 | // Handle fixed and variable vector arguments differently. |
| 2153 | // Variable vector arguments always go into memory. |
| 2154 | unsigned NumArgs = Outs.size(); |
| 2155 | |
| 2156 | for (unsigned i = 0; i != NumArgs; ++i) { |
| 2157 | MVT ArgVT = Outs[i].VT; |
| 2158 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| 2159 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, |
| 2160 | /*IsVarArg=*/ !Outs[i].IsFixed); |
| 2161 | bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); |
| 2162 | assert(!Res && "Call operand has unhandled type"); |
| 2163 | (void)Res; |
| 2164 | } |
| 2165 | } else { |
| 2166 | // At this point, Outs[].VT may already be promoted to i32. To correctly |
| 2167 | // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and |
| 2168 | // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. |
| 2169 | // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here |
| 2170 | // we use a special version of AnalyzeCallOperands to pass in ValVT and |
| 2171 | // LocVT. |
| 2172 | unsigned NumArgs = Outs.size(); |
| 2173 | for (unsigned i = 0; i != NumArgs; ++i) { |
| 2174 | MVT ValVT = Outs[i].VT; |
| 2175 | // Get type of the original argument. |
| 2176 | EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty, |
| 2177 | /*AllowUnknown*/ true); |
| 2178 | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; |
| 2179 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| 2180 | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2181 | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 2182 | ValVT = MVT::i8; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2183 | else if (ActualMVT == MVT::i16) |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 2184 | ValVT = MVT::i16; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2185 | |
| 2186 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); |
Tim Northover | 47e003c | 2014-05-26 17:21:53 +0000 | [diff] [blame] | 2187 | bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2188 | assert(!Res && "Call operand has unhandled type"); |
| 2189 | (void)Res; |
| 2190 | } |
| 2191 | } |
| 2192 | |
| 2193 | // Get a count of how many bytes are to be pushed on the stack. |
| 2194 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
| 2195 | |
| 2196 | if (IsSibCall) { |
| 2197 | // Since we're not changing the ABI to make this a tail call, the memory |
| 2198 | // operands are already available in the caller's incoming argument space. |
| 2199 | NumBytes = 0; |
| 2200 | } |
| 2201 | |
| 2202 | // FPDiff is the byte offset of the call's argument area from the callee's. |
| 2203 | // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| 2204 | // by this amount for a tail call. In a sibling call it must be 0 because the |
| 2205 | // caller will deallocate the entire stack and the callee still expects its |
| 2206 | // arguments to begin at SP+0. Completely unused for non-tail calls. |
| 2207 | int FPDiff = 0; |
| 2208 | |
| 2209 | if (IsTailCall && !IsSibCall) { |
| 2210 | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); |
| 2211 | |
| 2212 | // Since callee will pop argument stack as a tail call, we must keep the |
| 2213 | // popped size 16-byte aligned. |
| 2214 | NumBytes = RoundUpToAlignment(NumBytes, 16); |
| 2215 | |
| 2216 | // FPDiff will be negative if this tail call requires more space than we |
| 2217 | // would automatically have in our incoming argument space. Positive if we |
| 2218 | // can actually shrink the stack. |
| 2219 | FPDiff = NumReusableBytes - NumBytes; |
| 2220 | |
| 2221 | // The stack pointer must be 16-byte aligned at all times it's used for a |
| 2222 | // memory operation, which in practice means at *all* times and in |
| 2223 | // particular across call boundaries. Therefore our own arguments started at |
| 2224 | // a 16-byte aligned SP and the delta applied for the tail call should |
| 2225 | // satisfy the same constraint. |
| 2226 | assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); |
| 2227 | } |
| 2228 | |
| 2229 | // Adjust the stack pointer for the new arguments... |
| 2230 | // These operations are automatically eliminated by the prolog/epilog pass |
| 2231 | if (!IsSibCall) |
| 2232 | Chain = |
| 2233 | DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL); |
| 2234 | |
| 2235 | SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy()); |
| 2236 | |
| 2237 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| 2238 | SmallVector<SDValue, 8> MemOpChains; |
| 2239 | |
| 2240 | // Walk the register/memloc assignments, inserting copies/loads. |
| 2241 | for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; |
| 2242 | ++i, ++realArgIdx) { |
| 2243 | CCValAssign &VA = ArgLocs[i]; |
| 2244 | SDValue Arg = OutVals[realArgIdx]; |
| 2245 | ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| 2246 | |
| 2247 | // Promote the value if needed. |
| 2248 | switch (VA.getLocInfo()) { |
| 2249 | default: |
| 2250 | llvm_unreachable("Unknown loc info!"); |
| 2251 | case CCValAssign::Full: |
| 2252 | break; |
| 2253 | case CCValAssign::SExt: |
| 2254 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| 2255 | break; |
| 2256 | case CCValAssign::ZExt: |
| 2257 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| 2258 | break; |
| 2259 | case CCValAssign::AExt: |
Tim Northover | 68ae503 | 2014-05-26 17:22:07 +0000 | [diff] [blame] | 2260 | if (Outs[realArgIdx].ArgVT == MVT::i1) { |
| 2261 | // AAPCS requires i1 to be zero-extended to 8-bits by the caller. |
| 2262 | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); |
| 2263 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); |
| 2264 | } |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2265 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| 2266 | break; |
| 2267 | case CCValAssign::BCvt: |
| 2268 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| 2269 | break; |
| 2270 | case CCValAssign::FPExt: |
| 2271 | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); |
| 2272 | break; |
| 2273 | } |
| 2274 | |
| 2275 | if (VA.isRegLoc()) { |
| 2276 | if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { |
| 2277 | assert(VA.getLocVT() == MVT::i64 && |
| 2278 | "unexpected calling convention register assignment"); |
| 2279 | assert(!Ins.empty() && Ins[0].VT == MVT::i64 && |
| 2280 | "unexpected use of 'returned'"); |
| 2281 | IsThisReturn = true; |
| 2282 | } |
| 2283 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 2284 | } else { |
| 2285 | assert(VA.isMemLoc()); |
| 2286 | |
| 2287 | SDValue DstAddr; |
| 2288 | MachinePointerInfo DstInfo; |
| 2289 | |
| 2290 | // FIXME: This works on big-endian for composite byvals, which are the |
| 2291 | // common case. It should also work for fundamental types too. |
| 2292 | uint32_t BEAlign = 0; |
| 2293 | unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 |
| 2294 | : VA.getLocVT().getSizeInBits(); |
| 2295 | OpSize = (OpSize + 7) / 8; |
| 2296 | if (!Subtarget->isLittleEndian() && !Flags.isByVal()) { |
| 2297 | if (OpSize < 8) |
| 2298 | BEAlign = 8 - OpSize; |
| 2299 | } |
| 2300 | unsigned LocMemOffset = VA.getLocMemOffset(); |
| 2301 | int32_t Offset = LocMemOffset + BEAlign; |
| 2302 | SDValue PtrOff = DAG.getIntPtrConstant(Offset); |
| 2303 | PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); |
| 2304 | |
| 2305 | if (IsTailCall) { |
| 2306 | Offset = Offset + FPDiff; |
| 2307 | int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); |
| 2308 | |
| 2309 | DstAddr = DAG.getFrameIndex(FI, getPointerTy()); |
| 2310 | DstInfo = MachinePointerInfo::getFixedStack(FI); |
| 2311 | |
| 2312 | // Make sure any stack arguments overlapping with where we're storing |
| 2313 | // are loaded before this eventual operation. Otherwise they'll be |
| 2314 | // clobbered. |
| 2315 | Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); |
| 2316 | } else { |
| 2317 | SDValue PtrOff = DAG.getIntPtrConstant(Offset); |
| 2318 | |
| 2319 | DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); |
| 2320 | DstInfo = MachinePointerInfo::getStack(LocMemOffset); |
| 2321 | } |
| 2322 | |
| 2323 | if (Outs[i].Flags.isByVal()) { |
| 2324 | SDValue SizeNode = |
| 2325 | DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64); |
| 2326 | SDValue Cpy = DAG.getMemcpy( |
| 2327 | Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), |
| 2328 | /*isVolatile = */ false, |
| 2329 | /*alwaysInline = */ false, DstInfo, MachinePointerInfo()); |
| 2330 | |
| 2331 | MemOpChains.push_back(Cpy); |
| 2332 | } else { |
| 2333 | // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already |
| 2334 | // promoted to a legal register type i32, we should truncate Arg back to |
| 2335 | // i1/i8/i16. |
Tim Northover | 6890add | 2014-06-03 13:54:53 +0000 | [diff] [blame] | 2336 | if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || |
| 2337 | VA.getValVT() == MVT::i16) |
| 2338 | Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2339 | |
| 2340 | SDValue Store = |
| 2341 | DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0); |
| 2342 | MemOpChains.push_back(Store); |
| 2343 | } |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | if (!MemOpChains.empty()) |
| 2348 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| 2349 | |
| 2350 | // Build a sequence of copy-to-reg nodes chained together with token chain |
| 2351 | // and flag operands which copy the outgoing args into the appropriate regs. |
| 2352 | SDValue InFlag; |
| 2353 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| 2354 | Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, |
| 2355 | RegsToPass[i].second, InFlag); |
| 2356 | InFlag = Chain.getValue(1); |
| 2357 | } |
| 2358 | |
| 2359 | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| 2360 | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| 2361 | // node so that legalize doesn't hack it. |
| 2362 | if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| 2363 | Subtarget->isTargetMachO()) { |
| 2364 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 2365 | const GlobalValue *GV = G->getGlobal(); |
| 2366 | bool InternalLinkage = GV->hasInternalLinkage(); |
| 2367 | if (InternalLinkage) |
| 2368 | Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); |
| 2369 | else { |
| 2370 | Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, |
| 2371 | AArch64II::MO_GOT); |
| 2372 | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); |
| 2373 | } |
| 2374 | } else if (ExternalSymbolSDNode *S = |
| 2375 | dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 2376 | const char *Sym = S->getSymbol(); |
| 2377 | Callee = |
| 2378 | DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT); |
| 2379 | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); |
| 2380 | } |
| 2381 | } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 2382 | const GlobalValue *GV = G->getGlobal(); |
| 2383 | Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); |
| 2384 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| 2385 | const char *Sym = S->getSymbol(); |
| 2386 | Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0); |
| 2387 | } |
| 2388 | |
| 2389 | // We don't usually want to end the call-sequence here because we would tidy |
| 2390 | // the frame up *after* the call, however in the ABI-changing tail-call case |
| 2391 | // we've carefully laid out the parameters so that when sp is reset they'll be |
| 2392 | // in the correct location. |
| 2393 | if (IsTailCall && !IsSibCall) { |
| 2394 | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| 2395 | DAG.getIntPtrConstant(0, true), InFlag, DL); |
| 2396 | InFlag = Chain.getValue(1); |
| 2397 | } |
| 2398 | |
| 2399 | std::vector<SDValue> Ops; |
| 2400 | Ops.push_back(Chain); |
| 2401 | Ops.push_back(Callee); |
| 2402 | |
| 2403 | if (IsTailCall) { |
| 2404 | // Each tail call may have to adjust the stack by a different amount, so |
| 2405 | // this information must travel along with the operation for eventual |
| 2406 | // consumption by emitEpilogue. |
| 2407 | Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); |
| 2408 | } |
| 2409 | |
| 2410 | // Add argument registers to the end of the list so that they are known live |
| 2411 | // into the call. |
| 2412 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| 2413 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| 2414 | RegsToPass[i].second.getValueType())); |
| 2415 | |
| 2416 | // Add a register mask operand representing the call-preserved registers. |
| 2417 | const uint32_t *Mask; |
| 2418 | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| 2419 | const AArch64RegisterInfo *ARI = |
| 2420 | static_cast<const AArch64RegisterInfo *>(TRI); |
| 2421 | if (IsThisReturn) { |
| 2422 | // For 'this' returns, use the X0-preserving mask if applicable |
| 2423 | Mask = ARI->getThisReturnPreservedMask(CallConv); |
| 2424 | if (!Mask) { |
| 2425 | IsThisReturn = false; |
| 2426 | Mask = ARI->getCallPreservedMask(CallConv); |
| 2427 | } |
| 2428 | } else |
| 2429 | Mask = ARI->getCallPreservedMask(CallConv); |
| 2430 | |
| 2431 | assert(Mask && "Missing call preserved mask for calling convention"); |
| 2432 | Ops.push_back(DAG.getRegisterMask(Mask)); |
| 2433 | |
| 2434 | if (InFlag.getNode()) |
| 2435 | Ops.push_back(InFlag); |
| 2436 | |
| 2437 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| 2438 | |
| 2439 | // If we're doing a tall call, use a TC_RETURN here rather than an |
| 2440 | // actual call instruction. |
| 2441 | if (IsTailCall) |
| 2442 | return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); |
| 2443 | |
| 2444 | // Returns a chain and a flag for retval copy to use. |
| 2445 | Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); |
| 2446 | InFlag = Chain.getValue(1); |
| 2447 | |
| 2448 | uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) |
| 2449 | ? RoundUpToAlignment(NumBytes, 16) |
| 2450 | : 0; |
| 2451 | |
| 2452 | Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| 2453 | DAG.getIntPtrConstant(CalleePopBytes, true), |
| 2454 | InFlag, DL); |
| 2455 | if (!Ins.empty()) |
| 2456 | InFlag = Chain.getValue(1); |
| 2457 | |
| 2458 | // Handle result values, copying them out of physregs into vregs that we |
| 2459 | // return. |
| 2460 | return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
| 2461 | InVals, IsThisReturn, |
| 2462 | IsThisReturn ? OutVals[0] : SDValue()); |
| 2463 | } |
| 2464 | |
| 2465 | bool AArch64TargetLowering::CanLowerReturn( |
| 2466 | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| 2467 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| 2468 | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| 2469 | ? RetCC_AArch64_WebKit_JS |
| 2470 | : RetCC_AArch64_AAPCS; |
| 2471 | SmallVector<CCValAssign, 16> RVLocs; |
| 2472 | CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); |
| 2473 | return CCInfo.CheckReturn(Outs, RetCC); |
| 2474 | } |
| 2475 | |
| 2476 | SDValue |
| 2477 | AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 2478 | bool isVarArg, |
| 2479 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 2480 | const SmallVectorImpl<SDValue> &OutVals, |
| 2481 | SDLoc DL, SelectionDAG &DAG) const { |
| 2482 | CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| 2483 | ? RetCC_AArch64_WebKit_JS |
| 2484 | : RetCC_AArch64_AAPCS; |
| 2485 | SmallVector<CCValAssign, 16> RVLocs; |
| 2486 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| 2487 | getTargetMachine(), RVLocs, *DAG.getContext()); |
| 2488 | CCInfo.AnalyzeReturn(Outs, RetCC); |
| 2489 | |
| 2490 | // Copy the result values into the output registers. |
| 2491 | SDValue Flag; |
| 2492 | SmallVector<SDValue, 4> RetOps(1, Chain); |
| 2493 | for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); |
| 2494 | ++i, ++realRVLocIdx) { |
| 2495 | CCValAssign &VA = RVLocs[i]; |
| 2496 | assert(VA.isRegLoc() && "Can only return in registers!"); |
| 2497 | SDValue Arg = OutVals[realRVLocIdx]; |
| 2498 | |
| 2499 | switch (VA.getLocInfo()) { |
| 2500 | default: |
| 2501 | llvm_unreachable("Unknown loc info!"); |
| 2502 | case CCValAssign::Full: |
Tim Northover | 68ae503 | 2014-05-26 17:22:07 +0000 | [diff] [blame] | 2503 | if (Outs[i].ArgVT == MVT::i1) { |
| 2504 | // AAPCS requires i1 to be zero-extended to i8 by the producer of the |
| 2505 | // value. This is strictly redundant on Darwin (which uses "zeroext |
| 2506 | // i1"), but will be optimised out before ISel. |
| 2507 | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); |
| 2508 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| 2509 | } |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 2510 | break; |
| 2511 | case CCValAssign::BCvt: |
| 2512 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| 2513 | break; |
| 2514 | } |
| 2515 | |
| 2516 | Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); |
| 2517 | Flag = Chain.getValue(1); |
| 2518 | RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| 2519 | } |
| 2520 | |
| 2521 | RetOps[0] = Chain; // Update chain. |
| 2522 | |
| 2523 | // Add the flag if we have it. |
| 2524 | if (Flag.getNode()) |
| 2525 | RetOps.push_back(Flag); |
| 2526 | |
| 2527 | return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); |
| 2528 | } |
| 2529 | |
| 2530 | //===----------------------------------------------------------------------===// |
| 2531 | // Other Lowering Code |
| 2532 | //===----------------------------------------------------------------------===// |
| 2533 | |
| 2534 | SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, |
| 2535 | SelectionDAG &DAG) const { |
| 2536 | EVT PtrVT = getPointerTy(); |
| 2537 | SDLoc DL(Op); |
| 2538 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| 2539 | unsigned char OpFlags = |
| 2540 | Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); |
| 2541 | |
| 2542 | assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && |
| 2543 | "unexpected offset in global node"); |
| 2544 | |
| 2545 | // This also catched the large code model case for Darwin. |
| 2546 | if ((OpFlags & AArch64II::MO_GOT) != 0) { |
| 2547 | SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); |
| 2548 | // FIXME: Once remat is capable of dealing with instructions with register |
| 2549 | // operands, expand this into two nodes instead of using a wrapper node. |
| 2550 | return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); |
| 2551 | } |
| 2552 | |
| 2553 | if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| 2554 | const unsigned char MO_NC = AArch64II::MO_NC; |
| 2555 | return DAG.getNode( |
| 2556 | AArch64ISD::WrapperLarge, DL, PtrVT, |
| 2557 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3), |
| 2558 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC), |
| 2559 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC), |
| 2560 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); |
| 2561 | } else { |
| 2562 | // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and |
| 2563 | // the only correct model on Darwin. |
| 2564 | SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| 2565 | OpFlags | AArch64II::MO_PAGE); |
| 2566 | unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC; |
| 2567 | SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); |
| 2568 | |
| 2569 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); |
| 2570 | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | /// \brief Convert a TLS address reference into the correct sequence of loads |
| 2575 | /// and calls to compute the variable's address (for Darwin, currently) and |
| 2576 | /// return an SDValue containing the final node. |
| 2577 | |
| 2578 | /// Darwin only has one TLS scheme which must be capable of dealing with the |
| 2579 | /// fully general situation, in the worst case. This means: |
| 2580 | /// + "extern __thread" declaration. |
| 2581 | /// + Defined in a possibly unknown dynamic library. |
| 2582 | /// |
| 2583 | /// The general system is that each __thread variable has a [3 x i64] descriptor |
| 2584 | /// which contains information used by the runtime to calculate the address. The |
| 2585 | /// only part of this the compiler needs to know about is the first xword, which |
| 2586 | /// contains a function pointer that must be called with the address of the |
| 2587 | /// entire descriptor in "x0". |
| 2588 | /// |
| 2589 | /// Since this descriptor may be in a different unit, in general even the |
| 2590 | /// descriptor must be accessed via an indirect load. The "ideal" code sequence |
| 2591 | /// is: |
| 2592 | /// adrp x0, _var@TLVPPAGE |
| 2593 | /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor |
| 2594 | /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, |
| 2595 | /// ; the function pointer |
| 2596 | /// blr x1 ; Uses descriptor address in x0 |
| 2597 | /// ; Address of _var is now in x0. |
| 2598 | /// |
| 2599 | /// If the address of _var's descriptor *is* known to the linker, then it can |
| 2600 | /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for |
| 2601 | /// a slight efficiency gain. |
| 2602 | SDValue |
| 2603 | AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, |
| 2604 | SelectionDAG &DAG) const { |
| 2605 | assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); |
| 2606 | |
| 2607 | SDLoc DL(Op); |
| 2608 | MVT PtrVT = getPointerTy(); |
| 2609 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| 2610 | |
| 2611 | SDValue TLVPAddr = |
| 2612 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| 2613 | SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); |
| 2614 | |
| 2615 | // The first entry in the descriptor is a function pointer that we must call |
| 2616 | // to obtain the address of the variable. |
| 2617 | SDValue Chain = DAG.getEntryNode(); |
| 2618 | SDValue FuncTLVGet = |
| 2619 | DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(), |
| 2620 | false, true, true, 8); |
| 2621 | Chain = FuncTLVGet.getValue(1); |
| 2622 | |
| 2623 | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| 2624 | MFI->setAdjustsStack(true); |
| 2625 | |
| 2626 | // TLS calls preserve all registers except those that absolutely must be |
| 2627 | // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be |
| 2628 | // silly). |
| 2629 | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| 2630 | const AArch64RegisterInfo *ARI = |
| 2631 | static_cast<const AArch64RegisterInfo *>(TRI); |
| 2632 | const uint32_t *Mask = ARI->getTLSCallPreservedMask(); |
| 2633 | |
| 2634 | // Finally, we can make the call. This is just a degenerate version of a |
| 2635 | // normal AArch64 call node: x0 takes the address of the descriptor, and |
| 2636 | // returns the address of the variable in this thread. |
| 2637 | Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); |
| 2638 | Chain = |
| 2639 | DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), |
| 2640 | Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), |
| 2641 | DAG.getRegisterMask(Mask), Chain.getValue(1)); |
| 2642 | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); |
| 2643 | } |
| 2644 | |
| 2645 | /// When accessing thread-local variables under either the general-dynamic or |
| 2646 | /// local-dynamic system, we make a "TLS-descriptor" call. The variable will |
| 2647 | /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry |
| 2648 | /// is a function pointer to carry out the resolution. This function takes the |
| 2649 | /// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All |
| 2650 | /// other registers (except LR, NZCV) are preserved. |
| 2651 | /// |
| 2652 | /// Thus, the ideal call sequence on AArch64 is: |
| 2653 | /// |
| 2654 | /// adrp x0, :tlsdesc:thread_var |
| 2655 | /// ldr x8, [x0, :tlsdesc_lo12:thread_var] |
| 2656 | /// add x0, x0, :tlsdesc_lo12:thread_var |
| 2657 | /// .tlsdesccall thread_var |
| 2658 | /// blr x8 |
| 2659 | /// (TPIDR_EL0 offset now in x0). |
| 2660 | /// |
| 2661 | /// The ".tlsdesccall" directive instructs the assembler to insert a particular |
| 2662 | /// relocation to help the linker relax this sequence if it turns out to be too |
| 2663 | /// conservative. |
| 2664 | /// |
| 2665 | /// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this |
| 2666 | /// is harmless. |
| 2667 | SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr, |
| 2668 | SDValue DescAddr, SDLoc DL, |
| 2669 | SelectionDAG &DAG) const { |
| 2670 | EVT PtrVT = getPointerTy(); |
| 2671 | |
| 2672 | // The function we need to call is simply the first entry in the GOT for this |
| 2673 | // descriptor, load it in preparation. |
| 2674 | SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr); |
| 2675 | |
| 2676 | // TLS calls preserve all registers except those that absolutely must be |
| 2677 | // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be |
| 2678 | // silly). |
| 2679 | const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| 2680 | const AArch64RegisterInfo *ARI = |
| 2681 | static_cast<const AArch64RegisterInfo *>(TRI); |
| 2682 | const uint32_t *Mask = ARI->getTLSCallPreservedMask(); |
| 2683 | |
| 2684 | // The function takes only one argument: the address of the descriptor itself |
| 2685 | // in X0. |
| 2686 | SDValue Glue, Chain; |
| 2687 | Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); |
| 2688 | Glue = Chain.getValue(1); |
| 2689 | |
| 2690 | // We're now ready to populate the argument list, as with a normal call: |
| 2691 | SmallVector<SDValue, 6> Ops; |
| 2692 | Ops.push_back(Chain); |
| 2693 | Ops.push_back(Func); |
| 2694 | Ops.push_back(SymAddr); |
| 2695 | Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); |
| 2696 | Ops.push_back(DAG.getRegisterMask(Mask)); |
| 2697 | Ops.push_back(Glue); |
| 2698 | |
| 2699 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| 2700 | Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops); |
| 2701 | Glue = Chain.getValue(1); |
| 2702 | |
| 2703 | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); |
| 2704 | } |
| 2705 | |
| 2706 | SDValue |
| 2707 | AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, |
| 2708 | SelectionDAG &DAG) const { |
| 2709 | assert(Subtarget->isTargetELF() && "This function expects an ELF target"); |
| 2710 | assert(getTargetMachine().getCodeModel() == CodeModel::Small && |
| 2711 | "ELF TLS only supported in small memory model"); |
| 2712 | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| 2713 | |
| 2714 | TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| 2715 | |
| 2716 | SDValue TPOff; |
| 2717 | EVT PtrVT = getPointerTy(); |
| 2718 | SDLoc DL(Op); |
| 2719 | const GlobalValue *GV = GA->getGlobal(); |
| 2720 | |
| 2721 | SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); |
| 2722 | |
| 2723 | if (Model == TLSModel::LocalExec) { |
| 2724 | SDValue HiVar = DAG.getTargetGlobalAddress( |
| 2725 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); |
| 2726 | SDValue LoVar = DAG.getTargetGlobalAddress( |
| 2727 | GV, DL, PtrVT, 0, |
| 2728 | AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); |
| 2729 | |
| 2730 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, |
| 2731 | DAG.getTargetConstant(16, MVT::i32)), |
| 2732 | 0); |
| 2733 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, |
| 2734 | DAG.getTargetConstant(0, MVT::i32)), |
| 2735 | 0); |
| 2736 | } else if (Model == TLSModel::InitialExec) { |
| 2737 | TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| 2738 | TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); |
| 2739 | } else if (Model == TLSModel::LocalDynamic) { |
| 2740 | // Local-dynamic accesses proceed in two phases. A general-dynamic TLS |
| 2741 | // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate |
| 2742 | // the beginning of the module's TLS region, followed by a DTPREL offset |
| 2743 | // calculation. |
| 2744 | |
| 2745 | // These accesses will need deduplicating if there's more than one. |
| 2746 | AArch64FunctionInfo *MFI = |
| 2747 | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); |
| 2748 | MFI->incNumLocalDynamicTLSAccesses(); |
| 2749 | |
| 2750 | // Accesses used in this sequence go via the TLS descriptor which lives in |
| 2751 | // the GOT. Prepare an address we can use to handle this. |
| 2752 | SDValue HiDesc = DAG.getTargetExternalSymbol( |
| 2753 | "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE); |
| 2754 | SDValue LoDesc = DAG.getTargetExternalSymbol( |
| 2755 | "_TLS_MODULE_BASE_", PtrVT, |
| 2756 | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 2757 | |
| 2758 | // First argument to the descriptor call is the address of the descriptor |
| 2759 | // itself. |
| 2760 | SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); |
| 2761 | DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); |
| 2762 | |
| 2763 | // The call needs a relocation too for linker relaxation. It doesn't make |
| 2764 | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of |
| 2765 | // the address. |
| 2766 | SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| 2767 | AArch64II::MO_TLS); |
| 2768 | |
| 2769 | // Now we can calculate the offset from TPIDR_EL0 to this module's |
| 2770 | // thread-local area. |
| 2771 | TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| 2772 | |
| 2773 | // Now use :dtprel_whatever: operations to calculate this variable's offset |
| 2774 | // in its thread-storage area. |
| 2775 | SDValue HiVar = DAG.getTargetGlobalAddress( |
| 2776 | GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1); |
| 2777 | SDValue LoVar = DAG.getTargetGlobalAddress( |
| 2778 | GV, DL, MVT::i64, 0, |
| 2779 | AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); |
| 2780 | |
| 2781 | SDValue DTPOff = |
| 2782 | SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, |
| 2783 | DAG.getTargetConstant(16, MVT::i32)), |
| 2784 | 0); |
| 2785 | DTPOff = |
| 2786 | SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar, |
| 2787 | DAG.getTargetConstant(0, MVT::i32)), |
| 2788 | 0); |
| 2789 | |
| 2790 | TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff); |
| 2791 | } else if (Model == TLSModel::GeneralDynamic) { |
| 2792 | // Accesses used in this sequence go via the TLS descriptor which lives in |
| 2793 | // the GOT. Prepare an address we can use to handle this. |
| 2794 | SDValue HiDesc = DAG.getTargetGlobalAddress( |
| 2795 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE); |
| 2796 | SDValue LoDesc = DAG.getTargetGlobalAddress( |
| 2797 | GV, DL, PtrVT, 0, |
| 2798 | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 2799 | |
| 2800 | // First argument to the descriptor call is the address of the descriptor |
| 2801 | // itself. |
| 2802 | SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); |
| 2803 | DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); |
| 2804 | |
| 2805 | // The call needs a relocation too for linker relaxation. It doesn't make |
| 2806 | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of |
| 2807 | // the address. |
| 2808 | SDValue SymAddr = |
| 2809 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| 2810 | |
| 2811 | // Finally we can make a call to calculate the offset from tpidr_el0. |
| 2812 | TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| 2813 | } else |
| 2814 | llvm_unreachable("Unsupported ELF TLS access model"); |
| 2815 | |
| 2816 | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); |
| 2817 | } |
| 2818 | |
| 2819 | SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| 2820 | SelectionDAG &DAG) const { |
| 2821 | if (Subtarget->isTargetDarwin()) |
| 2822 | return LowerDarwinGlobalTLSAddress(Op, DAG); |
| 2823 | else if (Subtarget->isTargetELF()) |
| 2824 | return LowerELFGlobalTLSAddress(Op, DAG); |
| 2825 | |
| 2826 | llvm_unreachable("Unexpected platform trying to use TLS"); |
| 2827 | } |
| 2828 | SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| 2829 | SDValue Chain = Op.getOperand(0); |
| 2830 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| 2831 | SDValue LHS = Op.getOperand(2); |
| 2832 | SDValue RHS = Op.getOperand(3); |
| 2833 | SDValue Dest = Op.getOperand(4); |
| 2834 | SDLoc dl(Op); |
| 2835 | |
| 2836 | // Handle f128 first, since lowering it will result in comparing the return |
| 2837 | // value of a libcall against zero, which is just what the rest of LowerBR_CC |
| 2838 | // is expecting to deal with. |
| 2839 | if (LHS.getValueType() == MVT::f128) { |
| 2840 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 2841 | |
| 2842 | // If softenSetCCOperands returned a scalar, we need to compare the result |
| 2843 | // against zero to select between true and false values. |
| 2844 | if (!RHS.getNode()) { |
| 2845 | RHS = DAG.getConstant(0, LHS.getValueType()); |
| 2846 | CC = ISD::SETNE; |
| 2847 | } |
| 2848 | } |
| 2849 | |
| 2850 | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch |
| 2851 | // instruction. |
| 2852 | unsigned Opc = LHS.getOpcode(); |
| 2853 | if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) && |
| 2854 | cast<ConstantSDNode>(RHS)->isOne() && |
| 2855 | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| 2856 | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { |
| 2857 | assert((CC == ISD::SETEQ || CC == ISD::SETNE) && |
| 2858 | "Unexpected condition code."); |
| 2859 | // Only lower legal XALUO ops. |
| 2860 | if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) |
| 2861 | return SDValue(); |
| 2862 | |
| 2863 | // The actual operation with overflow check. |
| 2864 | AArch64CC::CondCode OFCC; |
| 2865 | SDValue Value, Overflow; |
| 2866 | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); |
| 2867 | |
| 2868 | if (CC == ISD::SETNE) |
| 2869 | OFCC = getInvertedCondCode(OFCC); |
| 2870 | SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); |
| 2871 | |
| 2872 | return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest, |
| 2873 | CCVal, Overflow); |
| 2874 | } |
| 2875 | |
| 2876 | if (LHS.getValueType().isInteger()) { |
| 2877 | assert((LHS.getValueType() == RHS.getValueType()) && |
| 2878 | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); |
| 2879 | |
| 2880 | // If the RHS of the comparison is zero, we can potentially fold this |
| 2881 | // to a specialized branch. |
| 2882 | const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); |
| 2883 | if (RHSC && RHSC->getZExtValue() == 0) { |
| 2884 | if (CC == ISD::SETEQ) { |
| 2885 | // See if we can use a TBZ to fold in an AND as well. |
| 2886 | // TBZ has a smaller branch displacement than CBZ. If the offset is |
| 2887 | // out of bounds, a late MI-layer pass rewrites branches. |
| 2888 | // 403.gcc is an example that hits this case. |
| 2889 | if (LHS.getOpcode() == ISD::AND && |
| 2890 | isa<ConstantSDNode>(LHS.getOperand(1)) && |
| 2891 | isPowerOf2_64(LHS.getConstantOperandVal(1))) { |
| 2892 | SDValue Test = LHS.getOperand(0); |
| 2893 | uint64_t Mask = LHS.getConstantOperandVal(1); |
| 2894 | |
| 2895 | // TBZ only operates on i64's, but the ext should be free. |
| 2896 | if (Test.getValueType() == MVT::i32) |
| 2897 | Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); |
| 2898 | |
| 2899 | return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, |
| 2900 | DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); |
| 2901 | } |
| 2902 | |
| 2903 | return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); |
| 2904 | } else if (CC == ISD::SETNE) { |
| 2905 | // See if we can use a TBZ to fold in an AND as well. |
| 2906 | // TBZ has a smaller branch displacement than CBZ. If the offset is |
| 2907 | // out of bounds, a late MI-layer pass rewrites branches. |
| 2908 | // 403.gcc is an example that hits this case. |
| 2909 | if (LHS.getOpcode() == ISD::AND && |
| 2910 | isa<ConstantSDNode>(LHS.getOperand(1)) && |
| 2911 | isPowerOf2_64(LHS.getConstantOperandVal(1))) { |
| 2912 | SDValue Test = LHS.getOperand(0); |
| 2913 | uint64_t Mask = LHS.getConstantOperandVal(1); |
| 2914 | |
| 2915 | // TBNZ only operates on i64's, but the ext should be free. |
| 2916 | if (Test.getValueType() == MVT::i32) |
| 2917 | Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64); |
| 2918 | |
| 2919 | return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, |
| 2920 | DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); |
| 2921 | } |
| 2922 | |
| 2923 | return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | SDValue CCVal; |
| 2928 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| 2929 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, |
| 2930 | Cmp); |
| 2931 | } |
| 2932 | |
| 2933 | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| 2934 | |
| 2935 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| 2936 | // clean. Some of them require two branches to implement. |
| 2937 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| 2938 | AArch64CC::CondCode CC1, CC2; |
| 2939 | changeFPCCToAArch64CC(CC, CC1, CC2); |
| 2940 | SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); |
| 2941 | SDValue BR1 = |
| 2942 | DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); |
| 2943 | if (CC2 != AArch64CC::AL) { |
| 2944 | SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); |
| 2945 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, |
| 2946 | Cmp); |
| 2947 | } |
| 2948 | |
| 2949 | return BR1; |
| 2950 | } |
| 2951 | |
| 2952 | SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, |
| 2953 | SelectionDAG &DAG) const { |
| 2954 | EVT VT = Op.getValueType(); |
| 2955 | SDLoc DL(Op); |
| 2956 | |
| 2957 | SDValue In1 = Op.getOperand(0); |
| 2958 | SDValue In2 = Op.getOperand(1); |
| 2959 | EVT SrcVT = In2.getValueType(); |
| 2960 | if (SrcVT != VT) { |
| 2961 | if (SrcVT == MVT::f32 && VT == MVT::f64) |
| 2962 | In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); |
| 2963 | else if (SrcVT == MVT::f64 && VT == MVT::f32) |
| 2964 | In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0)); |
| 2965 | else |
| 2966 | // FIXME: Src type is different, bail out for now. Can VT really be a |
| 2967 | // vector type? |
| 2968 | return SDValue(); |
| 2969 | } |
| 2970 | |
| 2971 | EVT VecVT; |
| 2972 | EVT EltVT; |
| 2973 | SDValue EltMask, VecVal1, VecVal2; |
| 2974 | if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { |
| 2975 | EltVT = MVT::i32; |
| 2976 | VecVT = MVT::v4i32; |
| 2977 | EltMask = DAG.getConstant(0x80000000ULL, EltVT); |
| 2978 | |
| 2979 | if (!VT.isVector()) { |
| 2980 | VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, |
| 2981 | DAG.getUNDEF(VecVT), In1); |
| 2982 | VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, |
| 2983 | DAG.getUNDEF(VecVT), In2); |
| 2984 | } else { |
| 2985 | VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); |
| 2986 | VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); |
| 2987 | } |
| 2988 | } else if (VT == MVT::f64 || VT == MVT::v2f64) { |
| 2989 | EltVT = MVT::i64; |
| 2990 | VecVT = MVT::v2i64; |
| 2991 | |
| 2992 | // We want to materialize a mask with the the high bit set, but the AdvSIMD |
| 2993 | // immediate moves cannot materialize that in a single instruction for |
| 2994 | // 64-bit elements. Instead, materialize zero and then negate it. |
| 2995 | EltMask = DAG.getConstant(0, EltVT); |
| 2996 | |
| 2997 | if (!VT.isVector()) { |
| 2998 | VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, |
| 2999 | DAG.getUNDEF(VecVT), In1); |
| 3000 | VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, |
| 3001 | DAG.getUNDEF(VecVT), In2); |
| 3002 | } else { |
| 3003 | VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); |
| 3004 | VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); |
| 3005 | } |
| 3006 | } else { |
| 3007 | llvm_unreachable("Invalid type for copysign!"); |
| 3008 | } |
| 3009 | |
| 3010 | std::vector<SDValue> BuildVectorOps; |
| 3011 | for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) |
| 3012 | BuildVectorOps.push_back(EltMask); |
| 3013 | |
| 3014 | SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps); |
| 3015 | |
| 3016 | // If we couldn't materialize the mask above, then the mask vector will be |
| 3017 | // the zero vector, and we need to negate it here. |
| 3018 | if (VT == MVT::f64 || VT == MVT::v2f64) { |
| 3019 | BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); |
| 3020 | BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); |
| 3021 | BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); |
| 3022 | } |
| 3023 | |
| 3024 | SDValue Sel = |
| 3025 | DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); |
| 3026 | |
| 3027 | if (VT == MVT::f32) |
| 3028 | return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); |
| 3029 | else if (VT == MVT::f64) |
| 3030 | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); |
| 3031 | else |
| 3032 | return DAG.getNode(ISD::BITCAST, DL, VT, Sel); |
| 3033 | } |
| 3034 | |
| 3035 | SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { |
| 3036 | if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( |
| 3037 | AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) |
| 3038 | return SDValue(); |
| 3039 | |
| 3040 | // While there is no integer popcount instruction, it can |
| 3041 | // be more efficiently lowered to the following sequence that uses |
| 3042 | // AdvSIMD registers/instructions as long as the copies to/from |
| 3043 | // the AdvSIMD registers are cheap. |
| 3044 | // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd |
| 3045 | // CNT V0.8B, V0.8B // 8xbyte pop-counts |
| 3046 | // ADDV B0, V0.8B // sum 8xbyte pop-counts |
| 3047 | // UMOV X0, V0.B[0] // copy byte result back to integer reg |
| 3048 | SDValue Val = Op.getOperand(0); |
| 3049 | SDLoc DL(Op); |
| 3050 | EVT VT = Op.getValueType(); |
| 3051 | SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8); |
| 3052 | |
| 3053 | SDValue VecVal; |
| 3054 | if (VT == MVT::i32) { |
| 3055 | VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); |
| 3056 | VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec, |
| 3057 | VecVal); |
| 3058 | } else { |
| 3059 | VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); |
| 3060 | } |
| 3061 | |
| 3062 | SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal); |
| 3063 | SDValue UaddLV = DAG.getNode( |
| 3064 | ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, |
| 3065 | DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop); |
| 3066 | |
| 3067 | if (VT == MVT::i64) |
| 3068 | UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); |
| 3069 | return UaddLV; |
| 3070 | } |
| 3071 | |
| 3072 | SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| 3073 | |
| 3074 | if (Op.getValueType().isVector()) |
| 3075 | return LowerVSETCC(Op, DAG); |
| 3076 | |
| 3077 | SDValue LHS = Op.getOperand(0); |
| 3078 | SDValue RHS = Op.getOperand(1); |
| 3079 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| 3080 | SDLoc dl(Op); |
| 3081 | |
| 3082 | // We chose ZeroOrOneBooleanContents, so use zero and one. |
| 3083 | EVT VT = Op.getValueType(); |
| 3084 | SDValue TVal = DAG.getConstant(1, VT); |
| 3085 | SDValue FVal = DAG.getConstant(0, VT); |
| 3086 | |
| 3087 | // Handle f128 first, since one possible outcome is a normal integer |
| 3088 | // comparison which gets picked up by the next if statement. |
| 3089 | if (LHS.getValueType() == MVT::f128) { |
| 3090 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 3091 | |
| 3092 | // If softenSetCCOperands returned a scalar, use it. |
| 3093 | if (!RHS.getNode()) { |
| 3094 | assert(LHS.getValueType() == Op.getValueType() && |
| 3095 | "Unexpected setcc expansion!"); |
| 3096 | return LHS; |
| 3097 | } |
| 3098 | } |
| 3099 | |
| 3100 | if (LHS.getValueType().isInteger()) { |
| 3101 | SDValue CCVal; |
| 3102 | SDValue Cmp = |
| 3103 | getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); |
| 3104 | |
| 3105 | // Note that we inverted the condition above, so we reverse the order of |
| 3106 | // the true and false operands here. This will allow the setcc to be |
| 3107 | // matched to a single CSINC instruction. |
| 3108 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); |
| 3109 | } |
| 3110 | |
| 3111 | // Now we know we're dealing with FP values. |
| 3112 | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| 3113 | |
| 3114 | // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead |
| 3115 | // and do the comparison. |
| 3116 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| 3117 | |
| 3118 | AArch64CC::CondCode CC1, CC2; |
| 3119 | changeFPCCToAArch64CC(CC, CC1, CC2); |
| 3120 | if (CC2 == AArch64CC::AL) { |
| 3121 | changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); |
| 3122 | SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); |
| 3123 | |
| 3124 | // Note that we inverted the condition above, so we reverse the order of |
| 3125 | // the true and false operands here. This will allow the setcc to be |
| 3126 | // matched to a single CSINC instruction. |
| 3127 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); |
| 3128 | } else { |
| 3129 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't |
| 3130 | // totally clean. Some of them require two CSELs to implement. As is in |
| 3131 | // this case, we emit the first CSEL and then emit a second using the output |
| 3132 | // of the first as the RHS. We're effectively OR'ing the two CC's together. |
| 3133 | |
| 3134 | // FIXME: It would be nice if we could match the two CSELs to two CSINCs. |
| 3135 | SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); |
| 3136 | SDValue CS1 = |
| 3137 | DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); |
| 3138 | |
| 3139 | SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); |
| 3140 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); |
| 3141 | } |
| 3142 | } |
| 3143 | |
| 3144 | /// A SELECT_CC operation is really some kind of max or min if both values being |
| 3145 | /// compared are, in some sense, equal to the results in either case. However, |
| 3146 | /// it is permissible to compare f32 values and produce directly extended f64 |
| 3147 | /// values. |
| 3148 | /// |
| 3149 | /// Extending the comparison operands would also be allowed, but is less likely |
| 3150 | /// to happen in practice since their use is right here. Note that truncate |
| 3151 | /// operations would *not* be semantically equivalent. |
| 3152 | static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) { |
| 3153 | if (Cmp == Result) |
| 3154 | return true; |
| 3155 | |
| 3156 | ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp); |
| 3157 | ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result); |
| 3158 | if (CCmp && CResult && Cmp.getValueType() == MVT::f32 && |
| 3159 | Result.getValueType() == MVT::f64) { |
| 3160 | bool Lossy; |
| 3161 | APFloat CmpVal = CCmp->getValueAPF(); |
| 3162 | CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy); |
| 3163 | return CResult->getValueAPF().bitwiseIsEqual(CmpVal); |
| 3164 | } |
| 3165 | |
| 3166 | return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp; |
| 3167 | } |
| 3168 | |
| 3169 | SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, |
| 3170 | SelectionDAG &DAG) const { |
| 3171 | SDValue CC = Op->getOperand(0); |
| 3172 | SDValue TVal = Op->getOperand(1); |
| 3173 | SDValue FVal = Op->getOperand(2); |
| 3174 | SDLoc DL(Op); |
| 3175 | |
| 3176 | unsigned Opc = CC.getOpcode(); |
| 3177 | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select |
| 3178 | // instruction. |
| 3179 | if (CC.getResNo() == 1 && |
| 3180 | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| 3181 | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { |
| 3182 | // Only lower legal XALUO ops. |
| 3183 | if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0))) |
| 3184 | return SDValue(); |
| 3185 | |
| 3186 | AArch64CC::CondCode OFCC; |
| 3187 | SDValue Value, Overflow; |
| 3188 | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG); |
| 3189 | SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); |
| 3190 | |
| 3191 | return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, |
| 3192 | CCVal, Overflow); |
| 3193 | } |
| 3194 | |
| 3195 | if (CC.getOpcode() == ISD::SETCC) |
| 3196 | return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal, |
| 3197 | cast<CondCodeSDNode>(CC.getOperand(2))->get()); |
| 3198 | else |
| 3199 | return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal, |
| 3200 | FVal, ISD::SETNE); |
| 3201 | } |
| 3202 | |
| 3203 | SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, |
| 3204 | SelectionDAG &DAG) const { |
| 3205 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| 3206 | SDValue LHS = Op.getOperand(0); |
| 3207 | SDValue RHS = Op.getOperand(1); |
| 3208 | SDValue TVal = Op.getOperand(2); |
| 3209 | SDValue FVal = Op.getOperand(3); |
| 3210 | SDLoc dl(Op); |
| 3211 | |
| 3212 | // Handle f128 first, because it will result in a comparison of some RTLIB |
| 3213 | // call result against zero. |
| 3214 | if (LHS.getValueType() == MVT::f128) { |
| 3215 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| 3216 | |
| 3217 | // If softenSetCCOperands returned a scalar, we need to compare the result |
| 3218 | // against zero to select between true and false values. |
| 3219 | if (!RHS.getNode()) { |
| 3220 | RHS = DAG.getConstant(0, LHS.getValueType()); |
| 3221 | CC = ISD::SETNE; |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | // Handle integers first. |
| 3226 | if (LHS.getValueType().isInteger()) { |
| 3227 | assert((LHS.getValueType() == RHS.getValueType()) && |
| 3228 | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); |
| 3229 | |
| 3230 | unsigned Opcode = AArch64ISD::CSEL; |
| 3231 | |
| 3232 | // If both the TVal and the FVal are constants, see if we can swap them in |
| 3233 | // order to for a CSINV or CSINC out of them. |
| 3234 | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); |
| 3235 | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); |
| 3236 | |
| 3237 | if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { |
| 3238 | std::swap(TVal, FVal); |
| 3239 | std::swap(CTVal, CFVal); |
| 3240 | CC = ISD::getSetCCInverse(CC, true); |
| 3241 | } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { |
| 3242 | std::swap(TVal, FVal); |
| 3243 | std::swap(CTVal, CFVal); |
| 3244 | CC = ISD::getSetCCInverse(CC, true); |
| 3245 | } else if (TVal.getOpcode() == ISD::XOR) { |
| 3246 | // If TVal is a NOT we want to swap TVal and FVal so that we can match |
| 3247 | // with a CSINV rather than a CSEL. |
| 3248 | ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1)); |
| 3249 | |
| 3250 | if (CVal && CVal->isAllOnesValue()) { |
| 3251 | std::swap(TVal, FVal); |
| 3252 | std::swap(CTVal, CFVal); |
| 3253 | CC = ISD::getSetCCInverse(CC, true); |
| 3254 | } |
| 3255 | } else if (TVal.getOpcode() == ISD::SUB) { |
| 3256 | // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so |
| 3257 | // that we can match with a CSNEG rather than a CSEL. |
| 3258 | ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0)); |
| 3259 | |
| 3260 | if (CVal && CVal->isNullValue()) { |
| 3261 | std::swap(TVal, FVal); |
| 3262 | std::swap(CTVal, CFVal); |
| 3263 | CC = ISD::getSetCCInverse(CC, true); |
| 3264 | } |
| 3265 | } else if (CTVal && CFVal) { |
| 3266 | const int64_t TrueVal = CTVal->getSExtValue(); |
| 3267 | const int64_t FalseVal = CFVal->getSExtValue(); |
| 3268 | bool Swap = false; |
| 3269 | |
| 3270 | // If both TVal and FVal are constants, see if FVal is the |
| 3271 | // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC |
| 3272 | // instead of a CSEL in that case. |
| 3273 | if (TrueVal == ~FalseVal) { |
| 3274 | Opcode = AArch64ISD::CSINV; |
| 3275 | } else if (TrueVal == -FalseVal) { |
| 3276 | Opcode = AArch64ISD::CSNEG; |
| 3277 | } else if (TVal.getValueType() == MVT::i32) { |
| 3278 | // If our operands are only 32-bit wide, make sure we use 32-bit |
| 3279 | // arithmetic for the check whether we can use CSINC. This ensures that |
| 3280 | // the addition in the check will wrap around properly in case there is |
| 3281 | // an overflow (which would not be the case if we do the check with |
| 3282 | // 64-bit arithmetic). |
| 3283 | const uint32_t TrueVal32 = CTVal->getZExtValue(); |
| 3284 | const uint32_t FalseVal32 = CFVal->getZExtValue(); |
| 3285 | |
| 3286 | if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { |
| 3287 | Opcode = AArch64ISD::CSINC; |
| 3288 | |
| 3289 | if (TrueVal32 > FalseVal32) { |
| 3290 | Swap = true; |
| 3291 | } |
| 3292 | } |
| 3293 | // 64-bit check whether we can use CSINC. |
| 3294 | } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { |
| 3295 | Opcode = AArch64ISD::CSINC; |
| 3296 | |
| 3297 | if (TrueVal > FalseVal) { |
| 3298 | Swap = true; |
| 3299 | } |
| 3300 | } |
| 3301 | |
| 3302 | // Swap TVal and FVal if necessary. |
| 3303 | if (Swap) { |
| 3304 | std::swap(TVal, FVal); |
| 3305 | std::swap(CTVal, CFVal); |
| 3306 | CC = ISD::getSetCCInverse(CC, true); |
| 3307 | } |
| 3308 | |
| 3309 | if (Opcode != AArch64ISD::CSEL) { |
| 3310 | // Drop FVal since we can get its value by simply inverting/negating |
| 3311 | // TVal. |
| 3312 | FVal = TVal; |
| 3313 | } |
| 3314 | } |
| 3315 | |
| 3316 | SDValue CCVal; |
| 3317 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| 3318 | |
| 3319 | EVT VT = Op.getValueType(); |
| 3320 | return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); |
| 3321 | } |
| 3322 | |
| 3323 | // Now we know we're dealing with FP values. |
| 3324 | assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| 3325 | assert(LHS.getValueType() == RHS.getValueType()); |
| 3326 | EVT VT = Op.getValueType(); |
| 3327 | |
| 3328 | // Try to match this select into a max/min operation, which have dedicated |
| 3329 | // opcode in the instruction set. |
| 3330 | // FIXME: This is not correct in the presence of NaNs, so we only enable this |
| 3331 | // in no-NaNs mode. |
| 3332 | if (getTargetMachine().Options.NoNaNsFPMath) { |
| 3333 | SDValue MinMaxLHS = TVal, MinMaxRHS = FVal; |
| 3334 | if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) && |
| 3335 | selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) { |
| 3336 | CC = ISD::getSetCCSwappedOperands(CC); |
| 3337 | std::swap(MinMaxLHS, MinMaxRHS); |
| 3338 | } |
| 3339 | |
| 3340 | if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) && |
| 3341 | selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) { |
| 3342 | switch (CC) { |
| 3343 | default: |
| 3344 | break; |
| 3345 | case ISD::SETGT: |
| 3346 | case ISD::SETGE: |
| 3347 | case ISD::SETUGT: |
| 3348 | case ISD::SETUGE: |
| 3349 | case ISD::SETOGT: |
| 3350 | case ISD::SETOGE: |
| 3351 | return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS); |
| 3352 | break; |
| 3353 | case ISD::SETLT: |
| 3354 | case ISD::SETLE: |
| 3355 | case ISD::SETULT: |
| 3356 | case ISD::SETULE: |
| 3357 | case ISD::SETOLT: |
| 3358 | case ISD::SETOLE: |
| 3359 | return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS); |
| 3360 | break; |
| 3361 | } |
| 3362 | } |
| 3363 | } |
| 3364 | |
| 3365 | // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead |
| 3366 | // and do the comparison. |
| 3367 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| 3368 | |
| 3369 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| 3370 | // clean. Some of them require two CSELs to implement. |
| 3371 | AArch64CC::CondCode CC1, CC2; |
| 3372 | changeFPCCToAArch64CC(CC, CC1, CC2); |
| 3373 | SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); |
| 3374 | SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); |
| 3375 | |
| 3376 | // If we need a second CSEL, emit it, using the output of the first as the |
| 3377 | // RHS. We're effectively OR'ing the two CC's together. |
| 3378 | if (CC2 != AArch64CC::AL) { |
| 3379 | SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); |
| 3380 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); |
| 3381 | } |
| 3382 | |
| 3383 | // Otherwise, return the output of the first CSEL. |
| 3384 | return CS1; |
| 3385 | } |
| 3386 | |
| 3387 | SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, |
| 3388 | SelectionDAG &DAG) const { |
| 3389 | // Jump table entries as PC relative offsets. No additional tweaking |
| 3390 | // is necessary here. Just get the address of the jump table. |
| 3391 | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| 3392 | EVT PtrVT = getPointerTy(); |
| 3393 | SDLoc DL(Op); |
| 3394 | |
| 3395 | if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| 3396 | !Subtarget->isTargetMachO()) { |
| 3397 | const unsigned char MO_NC = AArch64II::MO_NC; |
| 3398 | return DAG.getNode( |
| 3399 | AArch64ISD::WrapperLarge, DL, PtrVT, |
| 3400 | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3), |
| 3401 | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC), |
| 3402 | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC), |
| 3403 | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, |
| 3404 | AArch64II::MO_G0 | MO_NC)); |
| 3405 | } |
| 3406 | |
| 3407 | SDValue Hi = |
| 3408 | DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE); |
| 3409 | SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, |
| 3410 | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 3411 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); |
| 3412 | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); |
| 3413 | } |
| 3414 | |
| 3415 | SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, |
| 3416 | SelectionDAG &DAG) const { |
| 3417 | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| 3418 | EVT PtrVT = getPointerTy(); |
| 3419 | SDLoc DL(Op); |
| 3420 | |
| 3421 | if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| 3422 | // Use the GOT for the large code model on iOS. |
| 3423 | if (Subtarget->isTargetMachO()) { |
| 3424 | SDValue GotAddr = DAG.getTargetConstantPool( |
| 3425 | CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), |
| 3426 | AArch64II::MO_GOT); |
| 3427 | return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); |
| 3428 | } |
| 3429 | |
| 3430 | const unsigned char MO_NC = AArch64II::MO_NC; |
| 3431 | return DAG.getNode( |
| 3432 | AArch64ISD::WrapperLarge, DL, PtrVT, |
| 3433 | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), |
| 3434 | CP->getOffset(), AArch64II::MO_G3), |
| 3435 | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), |
| 3436 | CP->getOffset(), AArch64II::MO_G2 | MO_NC), |
| 3437 | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), |
| 3438 | CP->getOffset(), AArch64II::MO_G1 | MO_NC), |
| 3439 | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), |
| 3440 | CP->getOffset(), AArch64II::MO_G0 | MO_NC)); |
| 3441 | } else { |
| 3442 | // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on |
| 3443 | // ELF, the only valid one on Darwin. |
| 3444 | SDValue Hi = |
| 3445 | DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), |
| 3446 | CP->getOffset(), AArch64II::MO_PAGE); |
| 3447 | SDValue Lo = DAG.getTargetConstantPool( |
| 3448 | CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), |
| 3449 | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 3450 | |
| 3451 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); |
| 3452 | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); |
| 3453 | } |
| 3454 | } |
| 3455 | |
| 3456 | SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, |
| 3457 | SelectionDAG &DAG) const { |
| 3458 | const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| 3459 | EVT PtrVT = getPointerTy(); |
| 3460 | SDLoc DL(Op); |
| 3461 | if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| 3462 | !Subtarget->isTargetMachO()) { |
| 3463 | const unsigned char MO_NC = AArch64II::MO_NC; |
| 3464 | return DAG.getNode( |
| 3465 | AArch64ISD::WrapperLarge, DL, PtrVT, |
| 3466 | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3), |
| 3467 | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC), |
| 3468 | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC), |
| 3469 | DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); |
| 3470 | } else { |
| 3471 | SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE); |
| 3472 | SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF | |
| 3473 | AArch64II::MO_NC); |
| 3474 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); |
| 3475 | return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); |
| 3476 | } |
| 3477 | } |
| 3478 | |
| 3479 | SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, |
| 3480 | SelectionDAG &DAG) const { |
| 3481 | AArch64FunctionInfo *FuncInfo = |
| 3482 | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); |
| 3483 | |
| 3484 | SDLoc DL(Op); |
| 3485 | SDValue FR = |
| 3486 | DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); |
| 3487 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| 3488 | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| 3489 | MachinePointerInfo(SV), false, false, 0); |
| 3490 | } |
| 3491 | |
| 3492 | SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, |
| 3493 | SelectionDAG &DAG) const { |
| 3494 | // The layout of the va_list struct is specified in the AArch64 Procedure Call |
| 3495 | // Standard, section B.3. |
| 3496 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3497 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 3498 | SDLoc DL(Op); |
| 3499 | |
| 3500 | SDValue Chain = Op.getOperand(0); |
| 3501 | SDValue VAList = Op.getOperand(1); |
| 3502 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| 3503 | SmallVector<SDValue, 4> MemOps; |
| 3504 | |
| 3505 | // void *__stack at offset 0 |
| 3506 | SDValue Stack = |
| 3507 | DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); |
| 3508 | MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, |
| 3509 | MachinePointerInfo(SV), false, false, 8)); |
| 3510 | |
| 3511 | // void *__gr_top at offset 8 |
| 3512 | int GPRSize = FuncInfo->getVarArgsGPRSize(); |
| 3513 | if (GPRSize > 0) { |
| 3514 | SDValue GRTop, GRTopAddr; |
| 3515 | |
| 3516 | GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3517 | DAG.getConstant(8, getPointerTy())); |
| 3518 | |
| 3519 | GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy()); |
| 3520 | GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, |
| 3521 | DAG.getConstant(GPRSize, getPointerTy())); |
| 3522 | |
| 3523 | MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, |
| 3524 | MachinePointerInfo(SV, 8), false, false, 8)); |
| 3525 | } |
| 3526 | |
| 3527 | // void *__vr_top at offset 16 |
| 3528 | int FPRSize = FuncInfo->getVarArgsFPRSize(); |
| 3529 | if (FPRSize > 0) { |
| 3530 | SDValue VRTop, VRTopAddr; |
| 3531 | VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3532 | DAG.getConstant(16, getPointerTy())); |
| 3533 | |
| 3534 | VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy()); |
| 3535 | VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, |
| 3536 | DAG.getConstant(FPRSize, getPointerTy())); |
| 3537 | |
| 3538 | MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, |
| 3539 | MachinePointerInfo(SV, 16), false, false, 8)); |
| 3540 | } |
| 3541 | |
| 3542 | // int __gr_offs at offset 24 |
| 3543 | SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3544 | DAG.getConstant(24, getPointerTy())); |
| 3545 | MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), |
| 3546 | GROffsAddr, MachinePointerInfo(SV, 24), false, |
| 3547 | false, 4)); |
| 3548 | |
| 3549 | // int __vr_offs at offset 28 |
| 3550 | SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3551 | DAG.getConstant(28, getPointerTy())); |
| 3552 | MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), |
| 3553 | VROffsAddr, MachinePointerInfo(SV, 28), false, |
| 3554 | false, 4)); |
| 3555 | |
| 3556 | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| 3557 | } |
| 3558 | |
| 3559 | SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, |
| 3560 | SelectionDAG &DAG) const { |
| 3561 | return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) |
| 3562 | : LowerAAPCS_VASTART(Op, DAG); |
| 3563 | } |
| 3564 | |
| 3565 | SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, |
| 3566 | SelectionDAG &DAG) const { |
| 3567 | // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single |
| 3568 | // pointer. |
| 3569 | unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; |
| 3570 | const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| 3571 | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| 3572 | |
| 3573 | return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1), |
| 3574 | Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32), |
| 3575 | 8, false, false, MachinePointerInfo(DestSV), |
| 3576 | MachinePointerInfo(SrcSV)); |
| 3577 | } |
| 3578 | |
| 3579 | SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| 3580 | assert(Subtarget->isTargetDarwin() && |
| 3581 | "automatic va_arg instruction only works on Darwin"); |
| 3582 | |
| 3583 | const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| 3584 | EVT VT = Op.getValueType(); |
| 3585 | SDLoc DL(Op); |
| 3586 | SDValue Chain = Op.getOperand(0); |
| 3587 | SDValue Addr = Op.getOperand(1); |
| 3588 | unsigned Align = Op.getConstantOperandVal(3); |
| 3589 | |
| 3590 | SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr, |
| 3591 | MachinePointerInfo(V), false, false, false, 0); |
| 3592 | Chain = VAList.getValue(1); |
| 3593 | |
| 3594 | if (Align > 8) { |
| 3595 | assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); |
| 3596 | VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3597 | DAG.getConstant(Align - 1, getPointerTy())); |
| 3598 | VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList, |
| 3599 | DAG.getConstant(-(int64_t)Align, getPointerTy())); |
| 3600 | } |
| 3601 | |
| 3602 | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); |
| 3603 | uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); |
| 3604 | |
| 3605 | // Scalar integer and FP values smaller than 64 bits are implicitly extended |
| 3606 | // up to 64 bits. At the very least, we have to increase the striding of the |
| 3607 | // vaargs list to match this, and for FP values we need to introduce |
| 3608 | // FP_ROUND nodes as well. |
| 3609 | if (VT.isInteger() && !VT.isVector()) |
| 3610 | ArgSize = 8; |
| 3611 | bool NeedFPTrunc = false; |
| 3612 | if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { |
| 3613 | ArgSize = 8; |
| 3614 | NeedFPTrunc = true; |
| 3615 | } |
| 3616 | |
| 3617 | // Increment the pointer, VAList, to the next vaarg |
| 3618 | SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| 3619 | DAG.getConstant(ArgSize, getPointerTy())); |
| 3620 | // Store the incremented VAList to the legalized pointer |
| 3621 | SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V), |
| 3622 | false, false, 0); |
| 3623 | |
| 3624 | // Load the actual argument out of the pointer VAList |
| 3625 | if (NeedFPTrunc) { |
| 3626 | // Load the value as an f64. |
| 3627 | SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, |
| 3628 | MachinePointerInfo(), false, false, false, 0); |
| 3629 | // Round the value down to an f32. |
| 3630 | SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), |
| 3631 | DAG.getIntPtrConstant(1)); |
| 3632 | SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; |
| 3633 | // Merge the rounded value with the chain output of the load. |
| 3634 | return DAG.getMergeValues(Ops, DL); |
| 3635 | } |
| 3636 | |
| 3637 | return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false, |
| 3638 | false, false, 0); |
| 3639 | } |
| 3640 | |
| 3641 | SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, |
| 3642 | SelectionDAG &DAG) const { |
| 3643 | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| 3644 | MFI->setFrameAddressIsTaken(true); |
| 3645 | |
| 3646 | EVT VT = Op.getValueType(); |
| 3647 | SDLoc DL(Op); |
| 3648 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| 3649 | SDValue FrameAddr = |
| 3650 | DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); |
| 3651 | while (Depth--) |
| 3652 | FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, |
| 3653 | MachinePointerInfo(), false, false, false, 0); |
| 3654 | return FrameAddr; |
| 3655 | } |
| 3656 | |
| 3657 | // FIXME? Maybe this could be a TableGen attribute on some registers and |
| 3658 | // this table could be generated automatically from RegInfo. |
| 3659 | unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, |
| 3660 | EVT VT) const { |
| 3661 | unsigned Reg = StringSwitch<unsigned>(RegName) |
| 3662 | .Case("sp", AArch64::SP) |
| 3663 | .Default(0); |
| 3664 | if (Reg) |
| 3665 | return Reg; |
| 3666 | report_fatal_error("Invalid register name global variable"); |
| 3667 | } |
| 3668 | |
| 3669 | SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, |
| 3670 | SelectionDAG &DAG) const { |
| 3671 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3672 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 3673 | MFI->setReturnAddressIsTaken(true); |
| 3674 | |
| 3675 | EVT VT = Op.getValueType(); |
| 3676 | SDLoc DL(Op); |
| 3677 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| 3678 | if (Depth) { |
| 3679 | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| 3680 | SDValue Offset = DAG.getConstant(8, getPointerTy()); |
| 3681 | return DAG.getLoad(VT, DL, DAG.getEntryNode(), |
| 3682 | DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), |
| 3683 | MachinePointerInfo(), false, false, false, 0); |
| 3684 | } |
| 3685 | |
| 3686 | // Return LR, which contains the return address. Mark it an implicit live-in. |
| 3687 | unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); |
| 3688 | return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
| 3689 | } |
| 3690 | |
| 3691 | /// LowerShiftRightParts - Lower SRA_PARTS, which returns two |
| 3692 | /// i64 values and take a 2 x i64 value to shift plus a shift amount. |
| 3693 | SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, |
| 3694 | SelectionDAG &DAG) const { |
| 3695 | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| 3696 | EVT VT = Op.getValueType(); |
| 3697 | unsigned VTBits = VT.getSizeInBits(); |
| 3698 | SDLoc dl(Op); |
| 3699 | SDValue ShOpLo = Op.getOperand(0); |
| 3700 | SDValue ShOpHi = Op.getOperand(1); |
| 3701 | SDValue ShAmt = Op.getOperand(2); |
| 3702 | SDValue ARMcc; |
| 3703 | unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| 3704 | |
| 3705 | assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| 3706 | |
| 3707 | SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, |
| 3708 | DAG.getConstant(VTBits, MVT::i64), ShAmt); |
| 3709 | SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| 3710 | SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, |
| 3711 | DAG.getConstant(VTBits, MVT::i64)); |
| 3712 | SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| 3713 | |
| 3714 | SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), |
| 3715 | ISD::SETGE, dl, DAG); |
| 3716 | SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); |
| 3717 | |
| 3718 | SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| 3719 | SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| 3720 | SDValue Lo = |
| 3721 | DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); |
| 3722 | |
| 3723 | // AArch64 shifts larger than the register width are wrapped rather than |
| 3724 | // clamped, so we can't just emit "hi >> x". |
| 3725 | SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| 3726 | SDValue TrueValHi = Opc == ISD::SRA |
| 3727 | ? DAG.getNode(Opc, dl, VT, ShOpHi, |
| 3728 | DAG.getConstant(VTBits - 1, MVT::i64)) |
| 3729 | : DAG.getConstant(0, VT); |
| 3730 | SDValue Hi = |
| 3731 | DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp); |
| 3732 | |
| 3733 | SDValue Ops[2] = { Lo, Hi }; |
| 3734 | return DAG.getMergeValues(Ops, dl); |
| 3735 | } |
| 3736 | |
| 3737 | /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two |
| 3738 | /// i64 values and take a 2 x i64 value to shift plus a shift amount. |
| 3739 | SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, |
| 3740 | SelectionDAG &DAG) const { |
| 3741 | assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| 3742 | EVT VT = Op.getValueType(); |
| 3743 | unsigned VTBits = VT.getSizeInBits(); |
| 3744 | SDLoc dl(Op); |
| 3745 | SDValue ShOpLo = Op.getOperand(0); |
| 3746 | SDValue ShOpHi = Op.getOperand(1); |
| 3747 | SDValue ShAmt = Op.getOperand(2); |
| 3748 | SDValue ARMcc; |
| 3749 | |
| 3750 | assert(Op.getOpcode() == ISD::SHL_PARTS); |
| 3751 | SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, |
| 3752 | DAG.getConstant(VTBits, MVT::i64), ShAmt); |
| 3753 | SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| 3754 | SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, |
| 3755 | DAG.getConstant(VTBits, MVT::i64)); |
| 3756 | SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| 3757 | SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| 3758 | |
| 3759 | SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| 3760 | |
| 3761 | SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), |
| 3762 | ISD::SETGE, dl, DAG); |
| 3763 | SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); |
| 3764 | SDValue Hi = |
| 3765 | DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp); |
| 3766 | |
| 3767 | // AArch64 shifts of larger than register sizes are wrapped rather than |
| 3768 | // clamped, so we can't just emit "lo << a" if a is too big. |
| 3769 | SDValue TrueValLo = DAG.getConstant(0, VT); |
| 3770 | SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| 3771 | SDValue Lo = |
| 3772 | DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); |
| 3773 | |
| 3774 | SDValue Ops[2] = { Lo, Hi }; |
| 3775 | return DAG.getMergeValues(Ops, dl); |
| 3776 | } |
| 3777 | |
| 3778 | bool AArch64TargetLowering::isOffsetFoldingLegal( |
| 3779 | const GlobalAddressSDNode *GA) const { |
| 3780 | // The AArch64 target doesn't support folding offsets into global addresses. |
| 3781 | return false; |
| 3782 | } |
| 3783 | |
| 3784 | bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| 3785 | // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. |
| 3786 | // FIXME: We should be able to handle f128 as well with a clever lowering. |
| 3787 | if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) |
| 3788 | return true; |
| 3789 | |
| 3790 | if (VT == MVT::f64) |
| 3791 | return AArch64_AM::getFP64Imm(Imm) != -1; |
| 3792 | else if (VT == MVT::f32) |
| 3793 | return AArch64_AM::getFP32Imm(Imm) != -1; |
| 3794 | return false; |
| 3795 | } |
| 3796 | |
| 3797 | //===----------------------------------------------------------------------===// |
| 3798 | // AArch64 Optimization Hooks |
| 3799 | //===----------------------------------------------------------------------===// |
| 3800 | |
| 3801 | //===----------------------------------------------------------------------===// |
| 3802 | // AArch64 Inline Assembly Support |
| 3803 | //===----------------------------------------------------------------------===// |
| 3804 | |
| 3805 | // Table of Constraints |
| 3806 | // TODO: This is the current set of constraints supported by ARM for the |
| 3807 | // compiler, not all of them may make sense, e.g. S may be difficult to support. |
| 3808 | // |
| 3809 | // r - A general register |
| 3810 | // w - An FP/SIMD register of some size in the range v0-v31 |
| 3811 | // x - An FP/SIMD register of some size in the range v0-v15 |
| 3812 | // I - Constant that can be used with an ADD instruction |
| 3813 | // J - Constant that can be used with a SUB instruction |
| 3814 | // K - Constant that can be used with a 32-bit logical instruction |
| 3815 | // L - Constant that can be used with a 64-bit logical instruction |
| 3816 | // M - Constant that can be used as a 32-bit MOV immediate |
| 3817 | // N - Constant that can be used as a 64-bit MOV immediate |
| 3818 | // Q - A memory reference with base register and no offset |
| 3819 | // S - A symbolic address |
| 3820 | // Y - Floating point constant zero |
| 3821 | // Z - Integer constant zero |
| 3822 | // |
| 3823 | // Note that general register operands will be output using their 64-bit x |
| 3824 | // register name, whatever the size of the variable, unless the asm operand |
| 3825 | // is prefixed by the %w modifier. Floating-point and SIMD register operands |
| 3826 | // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or |
| 3827 | // %q modifier. |
| 3828 | |
| 3829 | /// getConstraintType - Given a constraint letter, return the type of |
| 3830 | /// constraint it is for this target. |
| 3831 | AArch64TargetLowering::ConstraintType |
| 3832 | AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { |
| 3833 | if (Constraint.size() == 1) { |
| 3834 | switch (Constraint[0]) { |
| 3835 | default: |
| 3836 | break; |
| 3837 | case 'z': |
| 3838 | return C_Other; |
| 3839 | case 'x': |
| 3840 | case 'w': |
| 3841 | return C_RegisterClass; |
| 3842 | // An address with a single base register. Due to the way we |
| 3843 | // currently handle addresses it is the same as 'r'. |
| 3844 | case 'Q': |
| 3845 | return C_Memory; |
| 3846 | } |
| 3847 | } |
| 3848 | return TargetLowering::getConstraintType(Constraint); |
| 3849 | } |
| 3850 | |
| 3851 | /// Examine constraint type and operand type and determine a weight value. |
| 3852 | /// This object must already have been set up with the operand type |
| 3853 | /// and the current alternative constraint selected. |
| 3854 | TargetLowering::ConstraintWeight |
| 3855 | AArch64TargetLowering::getSingleConstraintMatchWeight( |
| 3856 | AsmOperandInfo &info, const char *constraint) const { |
| 3857 | ConstraintWeight weight = CW_Invalid; |
| 3858 | Value *CallOperandVal = info.CallOperandVal; |
| 3859 | // If we don't have a value, we can't do a match, |
| 3860 | // but allow it at the lowest weight. |
| 3861 | if (!CallOperandVal) |
| 3862 | return CW_Default; |
| 3863 | Type *type = CallOperandVal->getType(); |
| 3864 | // Look at the constraint type. |
| 3865 | switch (*constraint) { |
| 3866 | default: |
| 3867 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| 3868 | break; |
| 3869 | case 'x': |
| 3870 | case 'w': |
| 3871 | if (type->isFloatingPointTy() || type->isVectorTy()) |
| 3872 | weight = CW_Register; |
| 3873 | break; |
| 3874 | case 'z': |
| 3875 | weight = CW_Constant; |
| 3876 | break; |
| 3877 | } |
| 3878 | return weight; |
| 3879 | } |
| 3880 | |
| 3881 | std::pair<unsigned, const TargetRegisterClass *> |
| 3882 | AArch64TargetLowering::getRegForInlineAsmConstraint( |
| 3883 | const std::string &Constraint, MVT VT) const { |
| 3884 | if (Constraint.size() == 1) { |
| 3885 | switch (Constraint[0]) { |
| 3886 | case 'r': |
| 3887 | if (VT.getSizeInBits() == 64) |
| 3888 | return std::make_pair(0U, &AArch64::GPR64commonRegClass); |
| 3889 | return std::make_pair(0U, &AArch64::GPR32commonRegClass); |
| 3890 | case 'w': |
| 3891 | if (VT == MVT::f32) |
| 3892 | return std::make_pair(0U, &AArch64::FPR32RegClass); |
| 3893 | if (VT.getSizeInBits() == 64) |
| 3894 | return std::make_pair(0U, &AArch64::FPR64RegClass); |
| 3895 | if (VT.getSizeInBits() == 128) |
| 3896 | return std::make_pair(0U, &AArch64::FPR128RegClass); |
| 3897 | break; |
| 3898 | // The instructions that this constraint is designed for can |
| 3899 | // only take 128-bit registers so just use that regclass. |
| 3900 | case 'x': |
| 3901 | if (VT.getSizeInBits() == 128) |
| 3902 | return std::make_pair(0U, &AArch64::FPR128_loRegClass); |
| 3903 | break; |
| 3904 | } |
| 3905 | } |
| 3906 | if (StringRef("{cc}").equals_lower(Constraint)) |
| 3907 | return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); |
| 3908 | |
| 3909 | // Use the default implementation in TargetLowering to convert the register |
| 3910 | // constraint into a member of a register class. |
| 3911 | std::pair<unsigned, const TargetRegisterClass *> Res; |
| 3912 | Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| 3913 | |
| 3914 | // Not found as a standard register? |
| 3915 | if (!Res.second) { |
| 3916 | unsigned Size = Constraint.size(); |
| 3917 | if ((Size == 4 || Size == 5) && Constraint[0] == '{' && |
| 3918 | tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { |
| 3919 | const std::string Reg = |
| 3920 | std::string(&Constraint[2], &Constraint[Size - 1]); |
| 3921 | int RegNo = atoi(Reg.c_str()); |
| 3922 | if (RegNo >= 0 && RegNo <= 31) { |
| 3923 | // v0 - v31 are aliases of q0 - q31. |
| 3924 | // By default we'll emit v0-v31 for this unless there's a modifier where |
| 3925 | // we'll emit the correct register as well. |
| 3926 | Res.first = AArch64::FPR128RegClass.getRegister(RegNo); |
| 3927 | Res.second = &AArch64::FPR128RegClass; |
| 3928 | } |
| 3929 | } |
| 3930 | } |
| 3931 | |
| 3932 | return Res; |
| 3933 | } |
| 3934 | |
| 3935 | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| 3936 | /// vector. If it is invalid, don't add anything to Ops. |
| 3937 | void AArch64TargetLowering::LowerAsmOperandForConstraint( |
| 3938 | SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, |
| 3939 | SelectionDAG &DAG) const { |
| 3940 | SDValue Result; |
| 3941 | |
| 3942 | // Currently only support length 1 constraints. |
| 3943 | if (Constraint.length() != 1) |
| 3944 | return; |
| 3945 | |
| 3946 | char ConstraintLetter = Constraint[0]; |
| 3947 | switch (ConstraintLetter) { |
| 3948 | default: |
| 3949 | break; |
| 3950 | |
| 3951 | // This set of constraints deal with valid constants for various instructions. |
| 3952 | // Validate and return a target constant for them if we can. |
| 3953 | case 'z': { |
| 3954 | // 'z' maps to xzr or wzr so it needs an input of 0. |
| 3955 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| 3956 | if (!C || C->getZExtValue() != 0) |
| 3957 | return; |
| 3958 | |
| 3959 | if (Op.getValueType() == MVT::i64) |
| 3960 | Result = DAG.getRegister(AArch64::XZR, MVT::i64); |
| 3961 | else |
| 3962 | Result = DAG.getRegister(AArch64::WZR, MVT::i32); |
| 3963 | break; |
| 3964 | } |
| 3965 | |
| 3966 | case 'I': |
| 3967 | case 'J': |
| 3968 | case 'K': |
| 3969 | case 'L': |
| 3970 | case 'M': |
| 3971 | case 'N': |
| 3972 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| 3973 | if (!C) |
| 3974 | return; |
| 3975 | |
| 3976 | // Grab the value and do some validation. |
| 3977 | uint64_t CVal = C->getZExtValue(); |
| 3978 | switch (ConstraintLetter) { |
| 3979 | // The I constraint applies only to simple ADD or SUB immediate operands: |
| 3980 | // i.e. 0 to 4095 with optional shift by 12 |
| 3981 | // The J constraint applies only to ADD or SUB immediates that would be |
| 3982 | // valid when negated, i.e. if [an add pattern] were to be output as a SUB |
| 3983 | // instruction [or vice versa], in other words -1 to -4095 with optional |
| 3984 | // left shift by 12. |
| 3985 | case 'I': |
| 3986 | if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) |
| 3987 | break; |
| 3988 | return; |
| 3989 | case 'J': { |
| 3990 | uint64_t NVal = -C->getSExtValue(); |
| 3991 | if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) |
| 3992 | break; |
| 3993 | return; |
| 3994 | } |
| 3995 | // The K and L constraints apply *only* to logical immediates, including |
| 3996 | // what used to be the MOVI alias for ORR (though the MOVI alias has now |
| 3997 | // been removed and MOV should be used). So these constraints have to |
| 3998 | // distinguish between bit patterns that are valid 32-bit or 64-bit |
| 3999 | // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but |
| 4000 | // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice |
| 4001 | // versa. |
| 4002 | case 'K': |
| 4003 | if (AArch64_AM::isLogicalImmediate(CVal, 32)) |
| 4004 | break; |
| 4005 | return; |
| 4006 | case 'L': |
| 4007 | if (AArch64_AM::isLogicalImmediate(CVal, 64)) |
| 4008 | break; |
| 4009 | return; |
| 4010 | // The M and N constraints are a superset of K and L respectively, for use |
| 4011 | // with the MOV (immediate) alias. As well as the logical immediates they |
| 4012 | // also match 32 or 64-bit immediates that can be loaded either using a |
| 4013 | // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca |
| 4014 | // (M) or 64-bit 0x1234000000000000 (N) etc. |
| 4015 | // As a note some of this code is liberally stolen from the asm parser. |
| 4016 | case 'M': { |
| 4017 | if (!isUInt<32>(CVal)) |
| 4018 | return; |
| 4019 | if (AArch64_AM::isLogicalImmediate(CVal, 32)) |
| 4020 | break; |
| 4021 | if ((CVal & 0xFFFF) == CVal) |
| 4022 | break; |
| 4023 | if ((CVal & 0xFFFF0000ULL) == CVal) |
| 4024 | break; |
| 4025 | uint64_t NCVal = ~(uint32_t)CVal; |
| 4026 | if ((NCVal & 0xFFFFULL) == NCVal) |
| 4027 | break; |
| 4028 | if ((NCVal & 0xFFFF0000ULL) == NCVal) |
| 4029 | break; |
| 4030 | return; |
| 4031 | } |
| 4032 | case 'N': { |
| 4033 | if (AArch64_AM::isLogicalImmediate(CVal, 64)) |
| 4034 | break; |
| 4035 | if ((CVal & 0xFFFFULL) == CVal) |
| 4036 | break; |
| 4037 | if ((CVal & 0xFFFF0000ULL) == CVal) |
| 4038 | break; |
| 4039 | if ((CVal & 0xFFFF00000000ULL) == CVal) |
| 4040 | break; |
| 4041 | if ((CVal & 0xFFFF000000000000ULL) == CVal) |
| 4042 | break; |
| 4043 | uint64_t NCVal = ~CVal; |
| 4044 | if ((NCVal & 0xFFFFULL) == NCVal) |
| 4045 | break; |
| 4046 | if ((NCVal & 0xFFFF0000ULL) == NCVal) |
| 4047 | break; |
| 4048 | if ((NCVal & 0xFFFF00000000ULL) == NCVal) |
| 4049 | break; |
| 4050 | if ((NCVal & 0xFFFF000000000000ULL) == NCVal) |
| 4051 | break; |
| 4052 | return; |
| 4053 | } |
| 4054 | default: |
| 4055 | return; |
| 4056 | } |
| 4057 | |
| 4058 | // All assembler immediates are 64-bit integers. |
| 4059 | Result = DAG.getTargetConstant(CVal, MVT::i64); |
| 4060 | break; |
| 4061 | } |
| 4062 | |
| 4063 | if (Result.getNode()) { |
| 4064 | Ops.push_back(Result); |
| 4065 | return; |
| 4066 | } |
| 4067 | |
| 4068 | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 4069 | } |
| 4070 | |
| 4071 | //===----------------------------------------------------------------------===// |
| 4072 | // AArch64 Advanced SIMD Support |
| 4073 | //===----------------------------------------------------------------------===// |
| 4074 | |
| 4075 | /// WidenVector - Given a value in the V64 register class, produce the |
| 4076 | /// equivalent value in the V128 register class. |
| 4077 | static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { |
| 4078 | EVT VT = V64Reg.getValueType(); |
| 4079 | unsigned NarrowSize = VT.getVectorNumElements(); |
| 4080 | MVT EltTy = VT.getVectorElementType().getSimpleVT(); |
| 4081 | MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); |
| 4082 | SDLoc DL(V64Reg); |
| 4083 | |
| 4084 | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), |
| 4085 | V64Reg, DAG.getConstant(0, MVT::i32)); |
| 4086 | } |
| 4087 | |
| 4088 | /// getExtFactor - Determine the adjustment factor for the position when |
| 4089 | /// generating an "extract from vector registers" instruction. |
| 4090 | static unsigned getExtFactor(SDValue &V) { |
| 4091 | EVT EltType = V.getValueType().getVectorElementType(); |
| 4092 | return EltType.getSizeInBits() / 8; |
| 4093 | } |
| 4094 | |
| 4095 | /// NarrowVector - Given a value in the V128 register class, produce the |
| 4096 | /// equivalent value in the V64 register class. |
| 4097 | static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { |
| 4098 | EVT VT = V128Reg.getValueType(); |
| 4099 | unsigned WideSize = VT.getVectorNumElements(); |
| 4100 | MVT EltTy = VT.getVectorElementType().getSimpleVT(); |
| 4101 | MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); |
| 4102 | SDLoc DL(V128Reg); |
| 4103 | |
| 4104 | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); |
| 4105 | } |
| 4106 | |
| 4107 | // Gather data to see if the operation can be modelled as a |
| 4108 | // shuffle in combination with VEXTs. |
| 4109 | SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, |
| 4110 | SelectionDAG &DAG) const { |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4111 | assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4112 | SDLoc dl(Op); |
| 4113 | EVT VT = Op.getValueType(); |
| 4114 | unsigned NumElts = VT.getVectorNumElements(); |
| 4115 | |
| 4116 | SmallVector<SDValue, 2> SourceVecs; |
| 4117 | SmallVector<unsigned, 2> MinElts; |
| 4118 | SmallVector<unsigned, 2> MaxElts; |
| 4119 | |
| 4120 | for (unsigned i = 0; i < NumElts; ++i) { |
| 4121 | SDValue V = Op.getOperand(i); |
| 4122 | if (V.getOpcode() == ISD::UNDEF) |
| 4123 | continue; |
| 4124 | else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { |
| 4125 | // A shuffle can only come from building a vector from various |
| 4126 | // elements of other vectors. |
| 4127 | return SDValue(); |
| 4128 | } |
| 4129 | |
| 4130 | // Record this extraction against the appropriate vector if possible... |
| 4131 | SDValue SourceVec = V.getOperand(0); |
| 4132 | unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); |
| 4133 | bool FoundSource = false; |
| 4134 | for (unsigned j = 0; j < SourceVecs.size(); ++j) { |
| 4135 | if (SourceVecs[j] == SourceVec) { |
| 4136 | if (MinElts[j] > EltNo) |
| 4137 | MinElts[j] = EltNo; |
| 4138 | if (MaxElts[j] < EltNo) |
| 4139 | MaxElts[j] = EltNo; |
| 4140 | FoundSource = true; |
| 4141 | break; |
| 4142 | } |
| 4143 | } |
| 4144 | |
| 4145 | // Or record a new source if not... |
| 4146 | if (!FoundSource) { |
| 4147 | SourceVecs.push_back(SourceVec); |
| 4148 | MinElts.push_back(EltNo); |
| 4149 | MaxElts.push_back(EltNo); |
| 4150 | } |
| 4151 | } |
| 4152 | |
| 4153 | // Currently only do something sane when at most two source vectors |
| 4154 | // involved. |
| 4155 | if (SourceVecs.size() > 2) |
| 4156 | return SDValue(); |
| 4157 | |
| 4158 | SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; |
| 4159 | int VEXTOffsets[2] = { 0, 0 }; |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4160 | int OffsetMultipliers[2] = { 1, 1 }; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4161 | |
| 4162 | // This loop extracts the usage patterns of the source vectors |
| 4163 | // and prepares appropriate SDValues for a shuffle if possible. |
| 4164 | for (unsigned i = 0; i < SourceVecs.size(); ++i) { |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4165 | unsigned NumSrcElts = SourceVecs[i].getValueType().getVectorNumElements(); |
| 4166 | SDValue CurSource = SourceVecs[i]; |
| 4167 | if (SourceVecs[i].getValueType().getVectorElementType() != |
| 4168 | VT.getVectorElementType()) { |
| 4169 | // It may hit this case if SourceVecs[i] is AssertSext/AssertZext. |
| 4170 | // Then bitcast it to the vector which holds asserted element type, |
| 4171 | // and record the multiplier of element width between SourceVecs and |
| 4172 | // Build_vector which is needed to extract the correct lanes later. |
| 4173 | EVT CastVT = |
| 4174 | EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), |
| 4175 | SourceVecs[i].getValueSizeInBits() / |
| 4176 | VT.getVectorElementType().getSizeInBits()); |
| 4177 | |
| 4178 | CurSource = DAG.getNode(ISD::BITCAST, dl, CastVT, SourceVecs[i]); |
| 4179 | OffsetMultipliers[i] = CastVT.getVectorNumElements() / NumSrcElts; |
| 4180 | NumSrcElts *= OffsetMultipliers[i]; |
| 4181 | MaxElts[i] *= OffsetMultipliers[i]; |
| 4182 | MinElts[i] *= OffsetMultipliers[i]; |
| 4183 | } |
| 4184 | |
| 4185 | if (CurSource.getValueType() == VT) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4186 | // No VEXT necessary |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4187 | ShuffleSrcs[i] = CurSource; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4188 | VEXTOffsets[i] = 0; |
| 4189 | continue; |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4190 | } else if (NumSrcElts < NumElts) { |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4191 | // We can pad out the smaller vector for free, so if it's part of a |
| 4192 | // shuffle... |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4193 | ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, CurSource, |
| 4194 | DAG.getUNDEF(CurSource.getValueType())); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4195 | continue; |
| 4196 | } |
| 4197 | |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4198 | // Since only 64-bit and 128-bit vectors are legal on ARM and |
| 4199 | // we've eliminated the other cases... |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4200 | assert(NumSrcElts == 2 * NumElts && |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4201 | "unexpected vector sizes in ReconstructShuffle"); |
| 4202 | |
| 4203 | if (MaxElts[i] - MinElts[i] >= NumElts) { |
| 4204 | // Span too large for a VEXT to cope |
| 4205 | return SDValue(); |
| 4206 | } |
| 4207 | |
| 4208 | if (MinElts[i] >= NumElts) { |
| 4209 | // The extraction can just take the second half |
| 4210 | VEXTOffsets[i] = NumElts; |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4211 | ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, |
| 4212 | DAG.getIntPtrConstant(NumElts)); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4213 | } else if (MaxElts[i] < NumElts) { |
| 4214 | // The extraction can just take the first half |
| 4215 | VEXTOffsets[i] = 0; |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4216 | ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, |
| 4217 | DAG.getIntPtrConstant(0)); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4218 | } else { |
| 4219 | // An actual VEXT is needed |
| 4220 | VEXTOffsets[i] = MinElts[i]; |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4221 | SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, |
| 4222 | DAG.getIntPtrConstant(0)); |
| 4223 | SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CurSource, |
| 4224 | DAG.getIntPtrConstant(NumElts)); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4225 | unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1); |
| 4226 | ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2, |
| 4227 | DAG.getConstant(Imm, MVT::i32)); |
| 4228 | } |
| 4229 | } |
| 4230 | |
| 4231 | SmallVector<int, 8> Mask; |
| 4232 | |
| 4233 | for (unsigned i = 0; i < NumElts; ++i) { |
| 4234 | SDValue Entry = Op.getOperand(i); |
| 4235 | if (Entry.getOpcode() == ISD::UNDEF) { |
| 4236 | Mask.push_back(-1); |
| 4237 | continue; |
| 4238 | } |
| 4239 | |
| 4240 | SDValue ExtractVec = Entry.getOperand(0); |
| 4241 | int ExtractElt = |
| 4242 | cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue(); |
| 4243 | if (ExtractVec == SourceVecs[0]) { |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4244 | Mask.push_back(ExtractElt * OffsetMultipliers[0] - VEXTOffsets[0]); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4245 | } else { |
Kevin Qin | f0ec9af | 2014-06-18 05:54:42 +0000 | [diff] [blame] | 4246 | Mask.push_back(ExtractElt * OffsetMultipliers[1] + NumElts - |
| 4247 | VEXTOffsets[1]); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 4248 | } |
| 4249 | } |
| 4250 | |
| 4251 | // Final check before we try to produce nonsense... |
| 4252 | if (isShuffleMaskLegal(Mask, VT)) |
| 4253 | return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], |
| 4254 | &Mask[0]); |
| 4255 | |
| 4256 | return SDValue(); |
| 4257 | } |
| 4258 | |
| 4259 | // check if an EXT instruction can handle the shuffle mask when the |
| 4260 | // vector sources of the shuffle are the same. |
| 4261 | static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { |
| 4262 | unsigned NumElts = VT.getVectorNumElements(); |
| 4263 | |
| 4264 | // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| 4265 | if (M[0] < 0) |
| 4266 | return false; |
| 4267 | |
| 4268 | Imm = M[0]; |
| 4269 | |
| 4270 | // If this is a VEXT shuffle, the immediate value is the index of the first |
| 4271 | // element. The other shuffle indices must be the successive elements after |
| 4272 | // the first one. |
| 4273 | unsigned ExpectedElt = Imm; |
| 4274 | for (unsigned i = 1; i < NumElts; ++i) { |
| 4275 | // Increment the expected index. If it wraps around, just follow it |
| 4276 | // back to index zero and keep going. |
| 4277 | ++ExpectedElt; |
| 4278 | if (ExpectedElt == NumElts) |
| 4279 | ExpectedElt = 0; |
| 4280 | |
| 4281 | if (M[i] < 0) |
| 4282 | continue; // ignore UNDEF indices |
| 4283 | if (ExpectedElt != static_cast<unsigned>(M[i])) |
| 4284 | return false; |
| 4285 | } |
| 4286 | |
| 4287 | return true; |
| 4288 | } |
| 4289 | |
| 4290 | // check if an EXT instruction can handle the shuffle mask when the |
| 4291 | // vector sources of the shuffle are different. |
| 4292 | static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, |
| 4293 | unsigned &Imm) { |
| 4294 | // Look for the first non-undef element. |
| 4295 | const int *FirstRealElt = std::find_if(M.begin(), M.end(), |
| 4296 | [](int Elt) {return Elt >= 0;}); |
| 4297 | |
| 4298 | // Benefit form APInt to handle overflow when calculating expected element. |
| 4299 | unsigned NumElts = VT.getVectorNumElements(); |
| 4300 | unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); |
| 4301 | APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); |
| 4302 | // The following shuffle indices must be the successive elements after the |
| 4303 | // first real element. |
| 4304 | const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), |
| 4305 | [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); |
| 4306 | if (FirstWrongElt != M.end()) |
| 4307 | return false; |
| 4308 | |
| 4309 | // The index of an EXT is the first element if it is not UNDEF. |
| 4310 | // Watch out for the beginning UNDEFs. The EXT index should be the expected |
| 4311 | // value of the first element. E.g. |
| 4312 | // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. |
| 4313 | // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. |
| 4314 | // ExpectedElt is the last mask index plus 1. |
| 4315 | Imm = ExpectedElt.getZExtValue(); |
| 4316 | |
| 4317 | // There are two difference cases requiring to reverse input vectors. |
| 4318 | // For example, for vector <4 x i32> we have the following cases, |
| 4319 | // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) |
| 4320 | // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) |
| 4321 | // For both cases, we finally use mask <5, 6, 7, 0>, which requires |
| 4322 | // to reverse two input vectors. |
| 4323 | if (Imm < NumElts) |
| 4324 | ReverseEXT = true; |
| 4325 | else |
| 4326 | Imm -= NumElts; |
| 4327 | |
| 4328 | return true; |
| 4329 | } |
| 4330 | |
| 4331 | /// isREVMask - Check if a vector shuffle corresponds to a REV |
| 4332 | /// instruction with the specified blocksize. (The order of the elements |
| 4333 | /// within each block of the vector is reversed.) |
| 4334 | static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { |
| 4335 | assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && |
| 4336 | "Only possible block sizes for REV are: 16, 32, 64"); |
| 4337 | |
| 4338 | unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| 4339 | if (EltSz == 64) |
| 4340 | return false; |
| 4341 | |
| 4342 | unsigned NumElts = VT.getVectorNumElements(); |
| 4343 | unsigned BlockElts = M[0] + 1; |
| 4344 | // If the first shuffle index is UNDEF, be optimistic. |
| 4345 | if (M[0] < 0) |
| 4346 | BlockElts = BlockSize / EltSz; |
| 4347 | |
| 4348 | if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) |
| 4349 | return false; |
| 4350 | |
| 4351 | for (unsigned i = 0; i < NumElts; ++i) { |
| 4352 | if (M[i] < 0) |
| 4353 | continue; // ignore UNDEF indices |
| 4354 | if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) |
| 4355 | return false; |
| 4356 | } |
| 4357 | |
| 4358 | return true; |
| 4359 | } |
| 4360 | |
| 4361 | static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4362 | unsigned NumElts = VT.getVectorNumElements(); |
| 4363 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4364 | unsigned Idx = WhichResult * NumElts / 2; |
| 4365 | for (unsigned i = 0; i != NumElts; i += 2) { |
| 4366 | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || |
| 4367 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) |
| 4368 | return false; |
| 4369 | Idx += 1; |
| 4370 | } |
| 4371 | |
| 4372 | return true; |
| 4373 | } |
| 4374 | |
| 4375 | static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4376 | unsigned NumElts = VT.getVectorNumElements(); |
| 4377 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4378 | for (unsigned i = 0; i != NumElts; ++i) { |
| 4379 | if (M[i] < 0) |
| 4380 | continue; // ignore UNDEF indices |
| 4381 | if ((unsigned)M[i] != 2 * i + WhichResult) |
| 4382 | return false; |
| 4383 | } |
| 4384 | |
| 4385 | return true; |
| 4386 | } |
| 4387 | |
| 4388 | static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4389 | unsigned NumElts = VT.getVectorNumElements(); |
| 4390 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4391 | for (unsigned i = 0; i < NumElts; i += 2) { |
| 4392 | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || |
| 4393 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) |
| 4394 | return false; |
| 4395 | } |
| 4396 | return true; |
| 4397 | } |
| 4398 | |
| 4399 | /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of |
| 4400 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| 4401 | /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. |
| 4402 | static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4403 | unsigned NumElts = VT.getVectorNumElements(); |
| 4404 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4405 | unsigned Idx = WhichResult * NumElts / 2; |
| 4406 | for (unsigned i = 0; i != NumElts; i += 2) { |
| 4407 | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || |
| 4408 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) |
| 4409 | return false; |
| 4410 | Idx += 1; |
| 4411 | } |
| 4412 | |
| 4413 | return true; |
| 4414 | } |
| 4415 | |
| 4416 | /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of |
| 4417 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| 4418 | /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, |
| 4419 | static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4420 | unsigned Half = VT.getVectorNumElements() / 2; |
| 4421 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4422 | for (unsigned j = 0; j != 2; ++j) { |
| 4423 | unsigned Idx = WhichResult; |
| 4424 | for (unsigned i = 0; i != Half; ++i) { |
| 4425 | int MIdx = M[i + j * Half]; |
| 4426 | if (MIdx >= 0 && (unsigned)MIdx != Idx) |
| 4427 | return false; |
| 4428 | Idx += 2; |
| 4429 | } |
| 4430 | } |
| 4431 | |
| 4432 | return true; |
| 4433 | } |
| 4434 | |
| 4435 | /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of |
| 4436 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| 4437 | /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. |
| 4438 | static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| 4439 | unsigned NumElts = VT.getVectorNumElements(); |
| 4440 | WhichResult = (M[0] == 0 ? 0 : 1); |
| 4441 | for (unsigned i = 0; i < NumElts; i += 2) { |
| 4442 | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || |
| 4443 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) |
| 4444 | return false; |
| 4445 | } |
| 4446 | return true; |
| 4447 | } |
| 4448 | |
| 4449 | static bool isINSMask(ArrayRef<int> M, int NumInputElements, |
| 4450 | bool &DstIsLeft, int &Anomaly) { |
| 4451 | if (M.size() != static_cast<size_t>(NumInputElements)) |
| 4452 | return false; |
| 4453 | |
| 4454 | int NumLHSMatch = 0, NumRHSMatch = 0; |
| 4455 | int LastLHSMismatch = -1, LastRHSMismatch = -1; |
| 4456 | |
| 4457 | for (int i = 0; i < NumInputElements; ++i) { |
| 4458 | if (M[i] == -1) { |
| 4459 | ++NumLHSMatch; |
| 4460 | ++NumRHSMatch; |
| 4461 | continue; |
| 4462 | } |
| 4463 | |
| 4464 | if (M[i] == i) |
| 4465 | ++NumLHSMatch; |
| 4466 | else |
| 4467 | LastLHSMismatch = i; |
| 4468 | |
| 4469 | if (M[i] == i + NumInputElements) |
| 4470 | ++NumRHSMatch; |
| 4471 | else |
| 4472 | LastRHSMismatch = i; |
| 4473 | } |
| 4474 | |
| 4475 | if (NumLHSMatch == NumInputElements - 1) { |
| 4476 | DstIsLeft = true; |
| 4477 | Anomaly = LastLHSMismatch; |
| 4478 | return true; |
| 4479 | } else if (NumRHSMatch == NumInputElements - 1) { |
| 4480 | DstIsLeft = false; |
| 4481 | Anomaly = LastRHSMismatch; |
| 4482 | return true; |
| 4483 | } |
| 4484 | |
| 4485 | return false; |
| 4486 | } |
| 4487 | |
| 4488 | static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { |
| 4489 | if (VT.getSizeInBits() != 128) |
| 4490 | return false; |
| 4491 | |
| 4492 | unsigned NumElts = VT.getVectorNumElements(); |
| 4493 | |
| 4494 | for (int I = 0, E = NumElts / 2; I != E; I++) { |
| 4495 | if (Mask[I] != I) |
| 4496 | return false; |
| 4497 | } |
| 4498 | |
| 4499 | int Offset = NumElts / 2; |
| 4500 | for (int I = NumElts / 2, E = NumElts; I != E; I++) { |
| 4501 | if (Mask[I] != I + SplitLHS * Offset) |
| 4502 | return false; |
| 4503 | } |
| 4504 | |
| 4505 | return true; |
| 4506 | } |
| 4507 | |
| 4508 | static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { |
| 4509 | SDLoc DL(Op); |
| 4510 | EVT VT = Op.getValueType(); |
| 4511 | SDValue V0 = Op.getOperand(0); |
| 4512 | SDValue V1 = Op.getOperand(1); |
| 4513 | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); |
| 4514 | |
| 4515 | if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || |
| 4516 | VT.getVectorElementType() != V1.getValueType().getVectorElementType()) |
| 4517 | return SDValue(); |
| 4518 | |
| 4519 | bool SplitV0 = V0.getValueType().getSizeInBits() == 128; |
| 4520 | |
| 4521 | if (!isConcatMask(Mask, VT, SplitV0)) |
| 4522 | return SDValue(); |
| 4523 | |
| 4524 | EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), |
| 4525 | VT.getVectorNumElements() / 2); |
| 4526 | if (SplitV0) { |
| 4527 | V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, |
| 4528 | DAG.getConstant(0, MVT::i64)); |
| 4529 | } |
| 4530 | if (V1.getValueType().getSizeInBits() == 128) { |
| 4531 | V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, |
| 4532 | DAG.getConstant(0, MVT::i64)); |
| 4533 | } |
| 4534 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); |
| 4535 | } |
| 4536 | |
| 4537 | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| 4538 | /// the specified operations to build the shuffle. |
| 4539 | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| 4540 | SDValue RHS, SelectionDAG &DAG, |
| 4541 | SDLoc dl) { |
| 4542 | unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| 4543 | unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); |
| 4544 | unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); |
| 4545 | |
| 4546 | enum { |
| 4547 | OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| 4548 | OP_VREV, |
| 4549 | OP_VDUP0, |
| 4550 | OP_VDUP1, |
| 4551 | OP_VDUP2, |
| 4552 | OP_VDUP3, |
| 4553 | OP_VEXT1, |
| 4554 | OP_VEXT2, |
| 4555 | OP_VEXT3, |
| 4556 | OP_VUZPL, // VUZP, left result |
| 4557 | OP_VUZPR, // VUZP, right result |
| 4558 | OP_VZIPL, // VZIP, left result |
| 4559 | OP_VZIPR, // VZIP, right result |
| 4560 | OP_VTRNL, // VTRN, left result |
| 4561 | OP_VTRNR // VTRN, right result |
| 4562 | }; |
| 4563 | |
| 4564 | if (OpNum == OP_COPY) { |
| 4565 | if (LHSID == (1 * 9 + 2) * 9 + 3) |
| 4566 | return LHS; |
| 4567 | assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); |
| 4568 | return RHS; |
| 4569 | } |
| 4570 | |
| 4571 | SDValue OpLHS, OpRHS; |
| 4572 | OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| 4573 | OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| 4574 | EVT VT = OpLHS.getValueType(); |
| 4575 | |
| 4576 | switch (OpNum) { |
| 4577 | default: |
| 4578 | llvm_unreachable("Unknown shuffle opcode!"); |
| 4579 | case OP_VREV: |
| 4580 | // VREV divides the vector in half and swaps within the half. |
| 4581 | if (VT.getVectorElementType() == MVT::i32 || |
| 4582 | VT.getVectorElementType() == MVT::f32) |
| 4583 | return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); |
| 4584 | // vrev <4 x i16> -> REV32 |
| 4585 | if (VT.getVectorElementType() == MVT::i16) |
| 4586 | return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); |
| 4587 | // vrev <4 x i8> -> REV16 |
| 4588 | assert(VT.getVectorElementType() == MVT::i8); |
| 4589 | return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); |
| 4590 | case OP_VDUP0: |
| 4591 | case OP_VDUP1: |
| 4592 | case OP_VDUP2: |
| 4593 | case OP_VDUP3: { |
| 4594 | EVT EltTy = VT.getVectorElementType(); |
| 4595 | unsigned Opcode; |
| 4596 | if (EltTy == MVT::i8) |
| 4597 | Opcode = AArch64ISD::DUPLANE8; |
| 4598 | else if (EltTy == MVT::i16) |
| 4599 | Opcode = AArch64ISD::DUPLANE16; |
| 4600 | else if (EltTy == MVT::i32 || EltTy == MVT::f32) |
| 4601 | Opcode = AArch64ISD::DUPLANE32; |
| 4602 | else if (EltTy == MVT::i64 || EltTy == MVT::f64) |
| 4603 | Opcode = AArch64ISD::DUPLANE64; |
| 4604 | else |
| 4605 | llvm_unreachable("Invalid vector element type?"); |
| 4606 | |
| 4607 | if (VT.getSizeInBits() == 64) |
| 4608 | OpLHS = WidenVector(OpLHS, DAG); |
| 4609 | SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64); |
| 4610 | return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); |
| 4611 | } |
| 4612 | case OP_VEXT1: |
| 4613 | case OP_VEXT2: |
| 4614 | case OP_VEXT3: { |
| 4615 | unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); |
| 4616 | return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, |
| 4617 | DAG.getConstant(Imm, MVT::i32)); |
| 4618 | } |
| 4619 | case OP_VUZPL: |
| 4620 | return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4621 | OpRHS); |
| 4622 | case OP_VUZPR: |
| 4623 | return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4624 | OpRHS); |
| 4625 | case OP_VZIPL: |
| 4626 | return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4627 | OpRHS); |
| 4628 | case OP_VZIPR: |
| 4629 | return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4630 | OpRHS); |
| 4631 | case OP_VTRNL: |
| 4632 | return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4633 | OpRHS); |
| 4634 | case OP_VTRNR: |
| 4635 | return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, |
| 4636 | OpRHS); |
| 4637 | } |
| 4638 | } |
| 4639 | |
| 4640 | static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, |
| 4641 | SelectionDAG &DAG) { |
| 4642 | // Check to see if we can use the TBL instruction. |
| 4643 | SDValue V1 = Op.getOperand(0); |
| 4644 | SDValue V2 = Op.getOperand(1); |
| 4645 | SDLoc DL(Op); |
| 4646 | |
| 4647 | EVT EltVT = Op.getValueType().getVectorElementType(); |
| 4648 | unsigned BytesPerElt = EltVT.getSizeInBits() / 8; |
| 4649 | |
| 4650 | SmallVector<SDValue, 8> TBLMask; |
| 4651 | for (int Val : ShuffleMask) { |
| 4652 | for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { |
| 4653 | unsigned Offset = Byte + Val * BytesPerElt; |
| 4654 | TBLMask.push_back(DAG.getConstant(Offset, MVT::i32)); |
| 4655 | } |
| 4656 | } |
| 4657 | |
| 4658 | MVT IndexVT = MVT::v8i8; |
| 4659 | unsigned IndexLen = 8; |
| 4660 | if (Op.getValueType().getSizeInBits() == 128) { |
| 4661 | IndexVT = MVT::v16i8; |
| 4662 | IndexLen = 16; |
| 4663 | } |
| 4664 | |
| 4665 | SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); |
| 4666 | SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); |
| 4667 | |
| 4668 | SDValue Shuffle; |
| 4669 | if (V2.getNode()->getOpcode() == ISD::UNDEF) { |
| 4670 | if (IndexLen == 8) |
| 4671 | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); |
| 4672 | Shuffle = DAG.getNode( |
| 4673 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| 4674 | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, |
| 4675 | DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, |
| 4676 | makeArrayRef(TBLMask.data(), IndexLen))); |
| 4677 | } else { |
| 4678 | if (IndexLen == 8) { |
| 4679 | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); |
| 4680 | Shuffle = DAG.getNode( |
| 4681 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| 4682 | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, |
| 4683 | DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, |
| 4684 | makeArrayRef(TBLMask.data(), IndexLen))); |
| 4685 | } else { |
| 4686 | // FIXME: We cannot, for the moment, emit a TBL2 instruction because we |
| 4687 | // cannot currently represent the register constraints on the input |
| 4688 | // table registers. |
| 4689 | // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, |
| 4690 | // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, |
| 4691 | // &TBLMask[0], IndexLen)); |
| 4692 | Shuffle = DAG.getNode( |
| 4693 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| 4694 | DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst, |
| 4695 | DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, |
| 4696 | makeArrayRef(TBLMask.data(), IndexLen))); |
| 4697 | } |
| 4698 | } |
| 4699 | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); |
| 4700 | } |
| 4701 | |
| 4702 | static unsigned getDUPLANEOp(EVT EltType) { |
| 4703 | if (EltType == MVT::i8) |
| 4704 | return AArch64ISD::DUPLANE8; |
| 4705 | if (EltType == MVT::i16) |
| 4706 | return AArch64ISD::DUPLANE16; |
| 4707 | if (EltType == MVT::i32 || EltType == MVT::f32) |
| 4708 | return AArch64ISD::DUPLANE32; |
| 4709 | if (EltType == MVT::i64 || EltType == MVT::f64) |
| 4710 | return AArch64ISD::DUPLANE64; |
| 4711 | |
| 4712 | llvm_unreachable("Invalid vector element type?"); |
| 4713 | } |
| 4714 | |
| 4715 | SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| 4716 | SelectionDAG &DAG) const { |
| 4717 | SDLoc dl(Op); |
| 4718 | EVT VT = Op.getValueType(); |
| 4719 | |
| 4720 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| 4721 | |
| 4722 | // Convert shuffles that are directly supported on NEON to target-specific |
| 4723 | // DAG nodes, instead of keeping them as shuffles and matching them again |
| 4724 | // during code selection. This is more efficient and avoids the possibility |
| 4725 | // of inconsistencies between legalization and selection. |
| 4726 | ArrayRef<int> ShuffleMask = SVN->getMask(); |
| 4727 | |
| 4728 | SDValue V1 = Op.getOperand(0); |
| 4729 | SDValue V2 = Op.getOperand(1); |
| 4730 | |
| 4731 | if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], |
| 4732 | V1.getValueType().getSimpleVT())) { |
| 4733 | int Lane = SVN->getSplatIndex(); |
| 4734 | // If this is undef splat, generate it via "just" vdup, if possible. |
| 4735 | if (Lane == -1) |
| 4736 | Lane = 0; |
| 4737 | |
| 4738 | if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| 4739 | return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), |
| 4740 | V1.getOperand(0)); |
| 4741 | // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- |
| 4742 | // constant. If so, we can just reference the lane's definition directly. |
| 4743 | if (V1.getOpcode() == ISD::BUILD_VECTOR && |
| 4744 | !isa<ConstantSDNode>(V1.getOperand(Lane))) |
| 4745 | return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); |
| 4746 | |
| 4747 | // Otherwise, duplicate from the lane of the input vector. |
| 4748 | unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); |
| 4749 | |
| 4750 | // SelectionDAGBuilder may have "helpfully" already extracted or conatenated |
| 4751 | // to make a vector of the same size as this SHUFFLE. We can ignore the |
| 4752 | // extract entirely, and canonicalise the concat using WidenVector. |
| 4753 | if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| 4754 | Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); |
| 4755 | V1 = V1.getOperand(0); |
| 4756 | } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { |
| 4757 | unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; |
| 4758 | Lane -= Idx * VT.getVectorNumElements() / 2; |
| 4759 | V1 = WidenVector(V1.getOperand(Idx), DAG); |
| 4760 | } else if (VT.getSizeInBits() == 64) |
| 4761 | V1 = WidenVector(V1, DAG); |
| 4762 | |
| 4763 | return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64)); |
| 4764 | } |
| 4765 | |
| 4766 | if (isREVMask(ShuffleMask, VT, 64)) |
| 4767 | return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); |
| 4768 | if (isREVMask(ShuffleMask, VT, 32)) |
| 4769 | return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); |
| 4770 | if (isREVMask(ShuffleMask, VT, 16)) |
| 4771 | return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); |
| 4772 | |
| 4773 | bool ReverseEXT = false; |
| 4774 | unsigned Imm; |
| 4775 | if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { |
| 4776 | if (ReverseEXT) |
| 4777 | std::swap(V1, V2); |
| 4778 | Imm *= getExtFactor(V1); |
| 4779 | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, |
| 4780 | DAG.getConstant(Imm, MVT::i32)); |
| 4781 | } else if (V2->getOpcode() == ISD::UNDEF && |
| 4782 | isSingletonEXTMask(ShuffleMask, VT, Imm)) { |
| 4783 | Imm *= getExtFactor(V1); |
| 4784 | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, |
| 4785 | DAG.getConstant(Imm, MVT::i32)); |
| 4786 | } |
| 4787 | |
| 4788 | unsigned WhichResult; |
| 4789 | if (isZIPMask(ShuffleMask, VT, WhichResult)) { |
| 4790 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; |
| 4791 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| 4792 | } |
| 4793 | if (isUZPMask(ShuffleMask, VT, WhichResult)) { |
| 4794 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; |
| 4795 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| 4796 | } |
| 4797 | if (isTRNMask(ShuffleMask, VT, WhichResult)) { |
| 4798 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; |
| 4799 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| 4800 | } |
| 4801 | |
| 4802 | if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| 4803 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; |
| 4804 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| 4805 | } |
| 4806 | if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| 4807 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; |
| 4808 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| 4809 | } |
| 4810 | if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| 4811 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; |
| 4812 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| 4813 | } |
| 4814 | |
| 4815 | SDValue Concat = tryFormConcatFromShuffle(Op, DAG); |
| 4816 | if (Concat.getNode()) |
| 4817 | return Concat; |
| 4818 | |
| 4819 | bool DstIsLeft; |
| 4820 | int Anomaly; |
| 4821 | int NumInputElements = V1.getValueType().getVectorNumElements(); |
| 4822 | if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { |
| 4823 | SDValue DstVec = DstIsLeft ? V1 : V2; |
| 4824 | SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64); |
| 4825 | |
| 4826 | SDValue SrcVec = V1; |
| 4827 | int SrcLane = ShuffleMask[Anomaly]; |
| 4828 | if (SrcLane >= NumInputElements) { |
| 4829 | SrcVec = V2; |
| 4830 | SrcLane -= VT.getVectorNumElements(); |
| 4831 | } |
| 4832 | SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64); |
| 4833 | |
| 4834 | EVT ScalarVT = VT.getVectorElementType(); |
| 4835 | if (ScalarVT.getSizeInBits() < 32) |
| 4836 | ScalarVT = MVT::i32; |
| 4837 | |
| 4838 | return DAG.getNode( |
| 4839 | ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, |
| 4840 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), |
| 4841 | DstLaneV); |
| 4842 | } |
| 4843 | |
| 4844 | // If the shuffle is not directly supported and it has 4 elements, use |
| 4845 | // the PerfectShuffle-generated table to synthesize it from other shuffles. |
| 4846 | unsigned NumElts = VT.getVectorNumElements(); |
| 4847 | if (NumElts == 4) { |
| 4848 | unsigned PFIndexes[4]; |
| 4849 | for (unsigned i = 0; i != 4; ++i) { |
| 4850 | if (ShuffleMask[i] < 0) |
| 4851 | PFIndexes[i] = 8; |
| 4852 | else |
| 4853 | PFIndexes[i] = ShuffleMask[i]; |
| 4854 | } |
| 4855 | |
| 4856 | // Compute the index in the perfect shuffle table. |
| 4857 | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + |
| 4858 | PFIndexes[2] * 9 + PFIndexes[3]; |
| 4859 | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| 4860 | unsigned Cost = (PFEntry >> 30); |
| 4861 | |
| 4862 | if (Cost <= 4) |
| 4863 | return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| 4864 | } |
| 4865 | |
| 4866 | return GenerateTBL(Op, ShuffleMask, DAG); |
| 4867 | } |
| 4868 | |
| 4869 | static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, |
| 4870 | APInt &UndefBits) { |
| 4871 | EVT VT = BVN->getValueType(0); |
| 4872 | APInt SplatBits, SplatUndef; |
| 4873 | unsigned SplatBitSize; |
| 4874 | bool HasAnyUndefs; |
| 4875 | if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| 4876 | unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; |
| 4877 | |
| 4878 | for (unsigned i = 0; i < NumSplats; ++i) { |
| 4879 | CnstBits <<= SplatBitSize; |
| 4880 | UndefBits <<= SplatBitSize; |
| 4881 | CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); |
| 4882 | UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); |
| 4883 | } |
| 4884 | |
| 4885 | return true; |
| 4886 | } |
| 4887 | |
| 4888 | return false; |
| 4889 | } |
| 4890 | |
| 4891 | SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, |
| 4892 | SelectionDAG &DAG) const { |
| 4893 | BuildVectorSDNode *BVN = |
| 4894 | dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); |
| 4895 | SDValue LHS = Op.getOperand(0); |
| 4896 | SDLoc dl(Op); |
| 4897 | EVT VT = Op.getValueType(); |
| 4898 | |
| 4899 | if (!BVN) |
| 4900 | return Op; |
| 4901 | |
| 4902 | APInt CnstBits(VT.getSizeInBits(), 0); |
| 4903 | APInt UndefBits(VT.getSizeInBits(), 0); |
| 4904 | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { |
| 4905 | // We only have BIC vector immediate instruction, which is and-not. |
| 4906 | CnstBits = ~CnstBits; |
| 4907 | |
| 4908 | // We make use of a little bit of goto ickiness in order to avoid having to |
| 4909 | // duplicate the immediate matching logic for the undef toggled case. |
| 4910 | bool SecondTry = false; |
| 4911 | AttemptModImm: |
| 4912 | |
| 4913 | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { |
| 4914 | CnstBits = CnstBits.zextOrTrunc(64); |
| 4915 | uint64_t CnstVal = CnstBits.getZExtValue(); |
| 4916 | |
| 4917 | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { |
| 4918 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); |
| 4919 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 4920 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4921 | DAG.getConstant(CnstVal, MVT::i32), |
| 4922 | DAG.getConstant(0, MVT::i32)); |
| 4923 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4924 | } |
| 4925 | |
| 4926 | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { |
| 4927 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); |
| 4928 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 4929 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4930 | DAG.getConstant(CnstVal, MVT::i32), |
| 4931 | DAG.getConstant(8, MVT::i32)); |
| 4932 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4933 | } |
| 4934 | |
| 4935 | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { |
| 4936 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); |
| 4937 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 4938 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4939 | DAG.getConstant(CnstVal, MVT::i32), |
| 4940 | DAG.getConstant(16, MVT::i32)); |
| 4941 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4942 | } |
| 4943 | |
| 4944 | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { |
| 4945 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); |
| 4946 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 4947 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4948 | DAG.getConstant(CnstVal, MVT::i32), |
| 4949 | DAG.getConstant(24, MVT::i32)); |
| 4950 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4951 | } |
| 4952 | |
| 4953 | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { |
| 4954 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); |
| 4955 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 4956 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4957 | DAG.getConstant(CnstVal, MVT::i32), |
| 4958 | DAG.getConstant(0, MVT::i32)); |
| 4959 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4960 | } |
| 4961 | |
| 4962 | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { |
| 4963 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); |
| 4964 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 4965 | SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, |
| 4966 | DAG.getConstant(CnstVal, MVT::i32), |
| 4967 | DAG.getConstant(8, MVT::i32)); |
| 4968 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 4969 | } |
| 4970 | } |
| 4971 | |
| 4972 | if (SecondTry) |
| 4973 | goto FailedModImm; |
| 4974 | SecondTry = true; |
| 4975 | CnstBits = ~UndefBits; |
| 4976 | goto AttemptModImm; |
| 4977 | } |
| 4978 | |
| 4979 | // We can always fall back to a non-immediate AND. |
| 4980 | FailedModImm: |
| 4981 | return Op; |
| 4982 | } |
| 4983 | |
| 4984 | // Specialized code to quickly find if PotentialBVec is a BuildVector that |
| 4985 | // consists of only the same constant int value, returned in reference arg |
| 4986 | // ConstVal |
| 4987 | static bool isAllConstantBuildVector(const SDValue &PotentialBVec, |
| 4988 | uint64_t &ConstVal) { |
| 4989 | BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); |
| 4990 | if (!Bvec) |
| 4991 | return false; |
| 4992 | ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); |
| 4993 | if (!FirstElt) |
| 4994 | return false; |
| 4995 | EVT VT = Bvec->getValueType(0); |
| 4996 | unsigned NumElts = VT.getVectorNumElements(); |
| 4997 | for (unsigned i = 1; i < NumElts; ++i) |
| 4998 | if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) |
| 4999 | return false; |
| 5000 | ConstVal = FirstElt->getZExtValue(); |
| 5001 | return true; |
| 5002 | } |
| 5003 | |
| 5004 | static unsigned getIntrinsicID(const SDNode *N) { |
| 5005 | unsigned Opcode = N->getOpcode(); |
| 5006 | switch (Opcode) { |
| 5007 | default: |
| 5008 | return Intrinsic::not_intrinsic; |
| 5009 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5010 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| 5011 | if (IID < Intrinsic::num_intrinsics) |
| 5012 | return IID; |
| 5013 | return Intrinsic::not_intrinsic; |
| 5014 | } |
| 5015 | } |
| 5016 | } |
| 5017 | |
| 5018 | // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), |
| 5019 | // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a |
| 5020 | // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. |
| 5021 | // Also, logical shift right -> sri, with the same structure. |
| 5022 | static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { |
| 5023 | EVT VT = N->getValueType(0); |
| 5024 | |
| 5025 | if (!VT.isVector()) |
| 5026 | return SDValue(); |
| 5027 | |
| 5028 | SDLoc DL(N); |
| 5029 | |
| 5030 | // Is the first op an AND? |
| 5031 | const SDValue And = N->getOperand(0); |
| 5032 | if (And.getOpcode() != ISD::AND) |
| 5033 | return SDValue(); |
| 5034 | |
| 5035 | // Is the second op an shl or lshr? |
| 5036 | SDValue Shift = N->getOperand(1); |
| 5037 | // This will have been turned into: AArch64ISD::VSHL vector, #shift |
| 5038 | // or AArch64ISD::VLSHR vector, #shift |
| 5039 | unsigned ShiftOpc = Shift.getOpcode(); |
| 5040 | if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) |
| 5041 | return SDValue(); |
| 5042 | bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; |
| 5043 | |
| 5044 | // Is the shift amount constant? |
| 5045 | ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); |
| 5046 | if (!C2node) |
| 5047 | return SDValue(); |
| 5048 | |
| 5049 | // Is the and mask vector all constant? |
| 5050 | uint64_t C1; |
| 5051 | if (!isAllConstantBuildVector(And.getOperand(1), C1)) |
| 5052 | return SDValue(); |
| 5053 | |
| 5054 | // Is C1 == ~C2, taking into account how much one can shift elements of a |
| 5055 | // particular size? |
| 5056 | uint64_t C2 = C2node->getZExtValue(); |
| 5057 | unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits(); |
| 5058 | if (C2 > ElemSizeInBits) |
| 5059 | return SDValue(); |
| 5060 | unsigned ElemMask = (1 << ElemSizeInBits) - 1; |
| 5061 | if ((C1 & ElemMask) != (~C2 & ElemMask)) |
| 5062 | return SDValue(); |
| 5063 | |
| 5064 | SDValue X = And.getOperand(0); |
| 5065 | SDValue Y = Shift.getOperand(0); |
| 5066 | |
| 5067 | unsigned Intrin = |
| 5068 | IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; |
| 5069 | SDValue ResultSLI = |
| 5070 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| 5071 | DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1)); |
| 5072 | |
| 5073 | DEBUG(dbgs() << "aarch64-lower: transformed: \n"); |
| 5074 | DEBUG(N->dump(&DAG)); |
| 5075 | DEBUG(dbgs() << "into: \n"); |
| 5076 | DEBUG(ResultSLI->dump(&DAG)); |
| 5077 | |
| 5078 | ++NumShiftInserts; |
| 5079 | return ResultSLI; |
| 5080 | } |
| 5081 | |
| 5082 | SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, |
| 5083 | SelectionDAG &DAG) const { |
| 5084 | // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) |
| 5085 | if (EnableAArch64SlrGeneration) { |
| 5086 | SDValue Res = tryLowerToSLI(Op.getNode(), DAG); |
| 5087 | if (Res.getNode()) |
| 5088 | return Res; |
| 5089 | } |
| 5090 | |
| 5091 | BuildVectorSDNode *BVN = |
| 5092 | dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); |
| 5093 | SDValue LHS = Op.getOperand(1); |
| 5094 | SDLoc dl(Op); |
| 5095 | EVT VT = Op.getValueType(); |
| 5096 | |
| 5097 | // OR commutes, so try swapping the operands. |
| 5098 | if (!BVN) { |
| 5099 | LHS = Op.getOperand(0); |
| 5100 | BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); |
| 5101 | } |
| 5102 | if (!BVN) |
| 5103 | return Op; |
| 5104 | |
| 5105 | APInt CnstBits(VT.getSizeInBits(), 0); |
| 5106 | APInt UndefBits(VT.getSizeInBits(), 0); |
| 5107 | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { |
| 5108 | // We make use of a little bit of goto ickiness in order to avoid having to |
| 5109 | // duplicate the immediate matching logic for the undef toggled case. |
| 5110 | bool SecondTry = false; |
| 5111 | AttemptModImm: |
| 5112 | |
| 5113 | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { |
| 5114 | CnstBits = CnstBits.zextOrTrunc(64); |
| 5115 | uint64_t CnstVal = CnstBits.getZExtValue(); |
| 5116 | |
| 5117 | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { |
| 5118 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); |
| 5119 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5120 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5121 | DAG.getConstant(CnstVal, MVT::i32), |
| 5122 | DAG.getConstant(0, MVT::i32)); |
| 5123 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5124 | } |
| 5125 | |
| 5126 | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { |
| 5127 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); |
| 5128 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5129 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5130 | DAG.getConstant(CnstVal, MVT::i32), |
| 5131 | DAG.getConstant(8, MVT::i32)); |
| 5132 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5133 | } |
| 5134 | |
| 5135 | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { |
| 5136 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); |
| 5137 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5138 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5139 | DAG.getConstant(CnstVal, MVT::i32), |
| 5140 | DAG.getConstant(16, MVT::i32)); |
| 5141 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5142 | } |
| 5143 | |
| 5144 | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { |
| 5145 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); |
| 5146 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5147 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5148 | DAG.getConstant(CnstVal, MVT::i32), |
| 5149 | DAG.getConstant(24, MVT::i32)); |
| 5150 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5151 | } |
| 5152 | |
| 5153 | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { |
| 5154 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); |
| 5155 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5156 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5157 | DAG.getConstant(CnstVal, MVT::i32), |
| 5158 | DAG.getConstant(0, MVT::i32)); |
| 5159 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5160 | } |
| 5161 | |
| 5162 | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { |
| 5163 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); |
| 5164 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5165 | SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, |
| 5166 | DAG.getConstant(CnstVal, MVT::i32), |
| 5167 | DAG.getConstant(8, MVT::i32)); |
| 5168 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5169 | } |
| 5170 | } |
| 5171 | |
| 5172 | if (SecondTry) |
| 5173 | goto FailedModImm; |
| 5174 | SecondTry = true; |
| 5175 | CnstBits = UndefBits; |
| 5176 | goto AttemptModImm; |
| 5177 | } |
| 5178 | |
| 5179 | // We can always fall back to a non-immediate OR. |
| 5180 | FailedModImm: |
| 5181 | return Op; |
| 5182 | } |
| 5183 | |
| 5184 | SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| 5185 | SelectionDAG &DAG) const { |
| 5186 | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| 5187 | SDLoc dl(Op); |
| 5188 | EVT VT = Op.getValueType(); |
| 5189 | |
| 5190 | APInt CnstBits(VT.getSizeInBits(), 0); |
| 5191 | APInt UndefBits(VT.getSizeInBits(), 0); |
| 5192 | if (resolveBuildVector(BVN, CnstBits, UndefBits)) { |
| 5193 | // We make use of a little bit of goto ickiness in order to avoid having to |
| 5194 | // duplicate the immediate matching logic for the undef toggled case. |
| 5195 | bool SecondTry = false; |
| 5196 | AttemptModImm: |
| 5197 | |
| 5198 | if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { |
| 5199 | CnstBits = CnstBits.zextOrTrunc(64); |
| 5200 | uint64_t CnstVal = CnstBits.getZExtValue(); |
| 5201 | |
| 5202 | // Certain magic vector constants (used to express things like NOT |
| 5203 | // and NEG) are passed through unmodified. This allows codegen patterns |
| 5204 | // for these operations to match. Special-purpose patterns will lower |
| 5205 | // these immediates to MOVIs if it proves necessary. |
| 5206 | if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) |
| 5207 | return Op; |
| 5208 | |
| 5209 | // The many faces of MOVI... |
| 5210 | if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) { |
| 5211 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal); |
| 5212 | if (VT.getSizeInBits() == 128) { |
| 5213 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64, |
| 5214 | DAG.getConstant(CnstVal, MVT::i32)); |
| 5215 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5216 | } |
| 5217 | |
| 5218 | // Support the V64 version via subregister insertion. |
| 5219 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64, |
| 5220 | DAG.getConstant(CnstVal, MVT::i32)); |
| 5221 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5222 | } |
| 5223 | |
| 5224 | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { |
| 5225 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); |
| 5226 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5227 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5228 | DAG.getConstant(CnstVal, MVT::i32), |
| 5229 | DAG.getConstant(0, MVT::i32)); |
| 5230 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5231 | } |
| 5232 | |
| 5233 | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { |
| 5234 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); |
| 5235 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5236 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5237 | DAG.getConstant(CnstVal, MVT::i32), |
| 5238 | DAG.getConstant(8, MVT::i32)); |
| 5239 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5240 | } |
| 5241 | |
| 5242 | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { |
| 5243 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); |
| 5244 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5245 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5246 | DAG.getConstant(CnstVal, MVT::i32), |
| 5247 | DAG.getConstant(16, MVT::i32)); |
| 5248 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5249 | } |
| 5250 | |
| 5251 | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { |
| 5252 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); |
| 5253 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5254 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5255 | DAG.getConstant(CnstVal, MVT::i32), |
| 5256 | DAG.getConstant(24, MVT::i32)); |
| 5257 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5258 | } |
| 5259 | |
| 5260 | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { |
| 5261 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); |
| 5262 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5263 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5264 | DAG.getConstant(CnstVal, MVT::i32), |
| 5265 | DAG.getConstant(0, MVT::i32)); |
| 5266 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5267 | } |
| 5268 | |
| 5269 | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { |
| 5270 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); |
| 5271 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5272 | SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, |
| 5273 | DAG.getConstant(CnstVal, MVT::i32), |
| 5274 | DAG.getConstant(8, MVT::i32)); |
| 5275 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5276 | } |
| 5277 | |
| 5278 | if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { |
| 5279 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); |
| 5280 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5281 | SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, |
| 5282 | DAG.getConstant(CnstVal, MVT::i32), |
| 5283 | DAG.getConstant(264, MVT::i32)); |
| 5284 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5285 | } |
| 5286 | |
| 5287 | if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { |
| 5288 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); |
| 5289 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5290 | SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, |
| 5291 | DAG.getConstant(CnstVal, MVT::i32), |
| 5292 | DAG.getConstant(272, MVT::i32)); |
| 5293 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5294 | } |
| 5295 | |
| 5296 | if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) { |
| 5297 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal); |
| 5298 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; |
| 5299 | SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy, |
| 5300 | DAG.getConstant(CnstVal, MVT::i32)); |
| 5301 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5302 | } |
| 5303 | |
| 5304 | // The few faces of FMOV... |
| 5305 | if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) { |
| 5306 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal); |
| 5307 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; |
| 5308 | SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy, |
| 5309 | DAG.getConstant(CnstVal, MVT::i32)); |
| 5310 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5311 | } |
| 5312 | |
| 5313 | if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) && |
| 5314 | VT.getSizeInBits() == 128) { |
| 5315 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal); |
| 5316 | SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64, |
| 5317 | DAG.getConstant(CnstVal, MVT::i32)); |
| 5318 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5319 | } |
| 5320 | |
| 5321 | // The many faces of MVNI... |
| 5322 | CnstVal = ~CnstVal; |
| 5323 | if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { |
| 5324 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); |
| 5325 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5326 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5327 | DAG.getConstant(CnstVal, MVT::i32), |
| 5328 | DAG.getConstant(0, MVT::i32)); |
| 5329 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5330 | } |
| 5331 | |
| 5332 | if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { |
| 5333 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); |
| 5334 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5335 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5336 | DAG.getConstant(CnstVal, MVT::i32), |
| 5337 | DAG.getConstant(8, MVT::i32)); |
| 5338 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5339 | } |
| 5340 | |
| 5341 | if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { |
| 5342 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); |
| 5343 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5344 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5345 | DAG.getConstant(CnstVal, MVT::i32), |
| 5346 | DAG.getConstant(16, MVT::i32)); |
| 5347 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5348 | } |
| 5349 | |
| 5350 | if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { |
| 5351 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); |
| 5352 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5353 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5354 | DAG.getConstant(CnstVal, MVT::i32), |
| 5355 | DAG.getConstant(24, MVT::i32)); |
| 5356 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5357 | } |
| 5358 | |
| 5359 | if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { |
| 5360 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); |
| 5361 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5362 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5363 | DAG.getConstant(CnstVal, MVT::i32), |
| 5364 | DAG.getConstant(0, MVT::i32)); |
| 5365 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5366 | } |
| 5367 | |
| 5368 | if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { |
| 5369 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); |
| 5370 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| 5371 | SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, |
| 5372 | DAG.getConstant(CnstVal, MVT::i32), |
| 5373 | DAG.getConstant(8, MVT::i32)); |
| 5374 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5375 | } |
| 5376 | |
| 5377 | if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { |
| 5378 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); |
| 5379 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5380 | SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, |
| 5381 | DAG.getConstant(CnstVal, MVT::i32), |
| 5382 | DAG.getConstant(264, MVT::i32)); |
| 5383 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5384 | } |
| 5385 | |
| 5386 | if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { |
| 5387 | CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); |
| 5388 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| 5389 | SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, |
| 5390 | DAG.getConstant(CnstVal, MVT::i32), |
| 5391 | DAG.getConstant(272, MVT::i32)); |
| 5392 | return DAG.getNode(ISD::BITCAST, dl, VT, Mov); |
| 5393 | } |
| 5394 | } |
| 5395 | |
| 5396 | if (SecondTry) |
| 5397 | goto FailedModImm; |
| 5398 | SecondTry = true; |
| 5399 | CnstBits = UndefBits; |
| 5400 | goto AttemptModImm; |
| 5401 | } |
| 5402 | FailedModImm: |
| 5403 | |
| 5404 | // Scan through the operands to find some interesting properties we can |
| 5405 | // exploit: |
| 5406 | // 1) If only one value is used, we can use a DUP, or |
| 5407 | // 2) if only the low element is not undef, we can just insert that, or |
| 5408 | // 3) if only one constant value is used (w/ some non-constant lanes), |
| 5409 | // we can splat the constant value into the whole vector then fill |
| 5410 | // in the non-constant lanes. |
| 5411 | // 4) FIXME: If different constant values are used, but we can intelligently |
| 5412 | // select the values we'll be overwriting for the non-constant |
| 5413 | // lanes such that we can directly materialize the vector |
| 5414 | // some other way (MOVI, e.g.), we can be sneaky. |
| 5415 | unsigned NumElts = VT.getVectorNumElements(); |
| 5416 | bool isOnlyLowElement = true; |
| 5417 | bool usesOnlyOneValue = true; |
| 5418 | bool usesOnlyOneConstantValue = true; |
| 5419 | bool isConstant = true; |
| 5420 | unsigned NumConstantLanes = 0; |
| 5421 | SDValue Value; |
| 5422 | SDValue ConstantValue; |
| 5423 | for (unsigned i = 0; i < NumElts; ++i) { |
| 5424 | SDValue V = Op.getOperand(i); |
| 5425 | if (V.getOpcode() == ISD::UNDEF) |
| 5426 | continue; |
| 5427 | if (i > 0) |
| 5428 | isOnlyLowElement = false; |
| 5429 | if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| 5430 | isConstant = false; |
| 5431 | |
| 5432 | if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { |
| 5433 | ++NumConstantLanes; |
| 5434 | if (!ConstantValue.getNode()) |
| 5435 | ConstantValue = V; |
| 5436 | else if (ConstantValue != V) |
| 5437 | usesOnlyOneConstantValue = false; |
| 5438 | } |
| 5439 | |
| 5440 | if (!Value.getNode()) |
| 5441 | Value = V; |
| 5442 | else if (V != Value) |
| 5443 | usesOnlyOneValue = false; |
| 5444 | } |
| 5445 | |
| 5446 | if (!Value.getNode()) |
| 5447 | return DAG.getUNDEF(VT); |
| 5448 | |
| 5449 | if (isOnlyLowElement) |
| 5450 | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); |
| 5451 | |
| 5452 | // Use DUP for non-constant splats. For f32 constant splats, reduce to |
| 5453 | // i32 and try again. |
| 5454 | if (usesOnlyOneValue) { |
| 5455 | if (!isConstant) { |
| 5456 | if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| 5457 | Value.getValueType() != VT) |
| 5458 | return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); |
| 5459 | |
| 5460 | // This is actually a DUPLANExx operation, which keeps everything vectory. |
| 5461 | |
| 5462 | // DUPLANE works on 128-bit vectors, widen it if necessary. |
| 5463 | SDValue Lane = Value.getOperand(1); |
| 5464 | Value = Value.getOperand(0); |
| 5465 | if (Value.getValueType().getSizeInBits() == 64) |
| 5466 | Value = WidenVector(Value, DAG); |
| 5467 | |
| 5468 | unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); |
| 5469 | return DAG.getNode(Opcode, dl, VT, Value, Lane); |
| 5470 | } |
| 5471 | |
| 5472 | if (VT.getVectorElementType().isFloatingPoint()) { |
| 5473 | SmallVector<SDValue, 8> Ops; |
| 5474 | MVT NewType = |
| 5475 | (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; |
| 5476 | for (unsigned i = 0; i < NumElts; ++i) |
| 5477 | Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); |
| 5478 | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); |
| 5479 | SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); |
| 5480 | Val = LowerBUILD_VECTOR(Val, DAG); |
| 5481 | if (Val.getNode()) |
| 5482 | return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| 5483 | } |
| 5484 | } |
| 5485 | |
| 5486 | // If there was only one constant value used and for more than one lane, |
| 5487 | // start by splatting that value, then replace the non-constant lanes. This |
| 5488 | // is better than the default, which will perform a separate initialization |
| 5489 | // for each lane. |
| 5490 | if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { |
| 5491 | SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); |
| 5492 | // Now insert the non-constant lanes. |
| 5493 | for (unsigned i = 0; i < NumElts; ++i) { |
| 5494 | SDValue V = Op.getOperand(i); |
| 5495 | SDValue LaneIdx = DAG.getConstant(i, MVT::i64); |
| 5496 | if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { |
| 5497 | // Note that type legalization likely mucked about with the VT of the |
| 5498 | // source operand, so we may have to convert it here before inserting. |
| 5499 | Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); |
| 5500 | } |
| 5501 | } |
| 5502 | return Val; |
| 5503 | } |
| 5504 | |
| 5505 | // If all elements are constants and the case above didn't get hit, fall back |
| 5506 | // to the default expansion, which will generate a load from the constant |
| 5507 | // pool. |
| 5508 | if (isConstant) |
| 5509 | return SDValue(); |
| 5510 | |
| 5511 | // Empirical tests suggest this is rarely worth it for vectors of length <= 2. |
| 5512 | if (NumElts >= 4) { |
| 5513 | SDValue shuffle = ReconstructShuffle(Op, DAG); |
| 5514 | if (shuffle != SDValue()) |
| 5515 | return shuffle; |
| 5516 | } |
| 5517 | |
| 5518 | // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we |
| 5519 | // know the default expansion would otherwise fall back on something even |
| 5520 | // worse. For a vector with one or two non-undef values, that's |
| 5521 | // scalar_to_vector for the elements followed by a shuffle (provided the |
| 5522 | // shuffle is valid for the target) and materialization element by element |
| 5523 | // on the stack followed by a load for everything else. |
| 5524 | if (!isConstant && !usesOnlyOneValue) { |
| 5525 | SDValue Vec = DAG.getUNDEF(VT); |
| 5526 | SDValue Op0 = Op.getOperand(0); |
| 5527 | unsigned ElemSize = VT.getVectorElementType().getSizeInBits(); |
| 5528 | unsigned i = 0; |
| 5529 | // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to |
| 5530 | // a) Avoid a RMW dependency on the full vector register, and |
| 5531 | // b) Allow the register coalescer to fold away the copy if the |
| 5532 | // value is already in an S or D register. |
| 5533 | if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) { |
| 5534 | unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub; |
| 5535 | MachineSDNode *N = |
| 5536 | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, |
| 5537 | DAG.getTargetConstant(SubIdx, MVT::i32)); |
| 5538 | Vec = SDValue(N, 0); |
| 5539 | ++i; |
| 5540 | } |
| 5541 | for (; i < NumElts; ++i) { |
| 5542 | SDValue V = Op.getOperand(i); |
| 5543 | if (V.getOpcode() == ISD::UNDEF) |
| 5544 | continue; |
| 5545 | SDValue LaneIdx = DAG.getConstant(i, MVT::i64); |
| 5546 | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); |
| 5547 | } |
| 5548 | return Vec; |
| 5549 | } |
| 5550 | |
| 5551 | // Just use the default expansion. We failed to find a better alternative. |
| 5552 | return SDValue(); |
| 5553 | } |
| 5554 | |
| 5555 | SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| 5556 | SelectionDAG &DAG) const { |
| 5557 | assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); |
| 5558 | |
| 5559 | // Check for non-constant lane. |
| 5560 | if (!isa<ConstantSDNode>(Op.getOperand(2))) |
| 5561 | return SDValue(); |
| 5562 | |
| 5563 | EVT VT = Op.getOperand(0).getValueType(); |
| 5564 | |
| 5565 | // Insertion/extraction are legal for V128 types. |
| 5566 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| 5567 | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) |
| 5568 | return Op; |
| 5569 | |
| 5570 | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && |
| 5571 | VT != MVT::v1i64 && VT != MVT::v2f32) |
| 5572 | return SDValue(); |
| 5573 | |
| 5574 | // For V64 types, we perform insertion by expanding the value |
| 5575 | // to a V128 type and perform the insertion on that. |
| 5576 | SDLoc DL(Op); |
| 5577 | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); |
| 5578 | EVT WideTy = WideVec.getValueType(); |
| 5579 | |
| 5580 | SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, |
| 5581 | Op.getOperand(1), Op.getOperand(2)); |
| 5582 | // Re-narrow the resultant vector. |
| 5583 | return NarrowVector(Node, DAG); |
| 5584 | } |
| 5585 | |
| 5586 | SDValue |
| 5587 | AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| 5588 | SelectionDAG &DAG) const { |
| 5589 | assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); |
| 5590 | |
| 5591 | // Check for non-constant lane. |
| 5592 | if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| 5593 | return SDValue(); |
| 5594 | |
| 5595 | EVT VT = Op.getOperand(0).getValueType(); |
| 5596 | |
| 5597 | // Insertion/extraction are legal for V128 types. |
| 5598 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| 5599 | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) |
| 5600 | return Op; |
| 5601 | |
| 5602 | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && |
| 5603 | VT != MVT::v1i64 && VT != MVT::v2f32) |
| 5604 | return SDValue(); |
| 5605 | |
| 5606 | // For V64 types, we perform extraction by expanding the value |
| 5607 | // to a V128 type and perform the extraction on that. |
| 5608 | SDLoc DL(Op); |
| 5609 | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); |
| 5610 | EVT WideTy = WideVec.getValueType(); |
| 5611 | |
| 5612 | EVT ExtrTy = WideTy.getVectorElementType(); |
| 5613 | if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) |
| 5614 | ExtrTy = MVT::i32; |
| 5615 | |
| 5616 | // For extractions, we just return the result directly. |
| 5617 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, |
| 5618 | Op.getOperand(1)); |
| 5619 | } |
| 5620 | |
| 5621 | SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, |
| 5622 | SelectionDAG &DAG) const { |
| 5623 | EVT VT = Op.getOperand(0).getValueType(); |
| 5624 | SDLoc dl(Op); |
| 5625 | // Just in case... |
| 5626 | if (!VT.isVector()) |
| 5627 | return SDValue(); |
| 5628 | |
| 5629 | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| 5630 | if (!Cst) |
| 5631 | return SDValue(); |
| 5632 | unsigned Val = Cst->getZExtValue(); |
| 5633 | |
| 5634 | unsigned Size = Op.getValueType().getSizeInBits(); |
| 5635 | if (Val == 0) { |
| 5636 | switch (Size) { |
| 5637 | case 8: |
| 5638 | return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(), |
| 5639 | Op.getOperand(0)); |
| 5640 | case 16: |
| 5641 | return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(), |
| 5642 | Op.getOperand(0)); |
| 5643 | case 32: |
| 5644 | return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(), |
| 5645 | Op.getOperand(0)); |
| 5646 | case 64: |
| 5647 | return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(), |
| 5648 | Op.getOperand(0)); |
| 5649 | default: |
| 5650 | llvm_unreachable("Unexpected vector type in extract_subvector!"); |
| 5651 | } |
| 5652 | } |
| 5653 | // If this is extracting the upper 64-bits of a 128-bit vector, we match |
| 5654 | // that directly. |
| 5655 | if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64) |
| 5656 | return Op; |
| 5657 | |
| 5658 | return SDValue(); |
| 5659 | } |
| 5660 | |
| 5661 | bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, |
| 5662 | EVT VT) const { |
| 5663 | if (VT.getVectorNumElements() == 4 && |
| 5664 | (VT.is128BitVector() || VT.is64BitVector())) { |
| 5665 | unsigned PFIndexes[4]; |
| 5666 | for (unsigned i = 0; i != 4; ++i) { |
| 5667 | if (M[i] < 0) |
| 5668 | PFIndexes[i] = 8; |
| 5669 | else |
| 5670 | PFIndexes[i] = M[i]; |
| 5671 | } |
| 5672 | |
| 5673 | // Compute the index in the perfect shuffle table. |
| 5674 | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + |
| 5675 | PFIndexes[2] * 9 + PFIndexes[3]; |
| 5676 | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| 5677 | unsigned Cost = (PFEntry >> 30); |
| 5678 | |
| 5679 | if (Cost <= 4) |
| 5680 | return true; |
| 5681 | } |
| 5682 | |
| 5683 | bool DummyBool; |
| 5684 | int DummyInt; |
| 5685 | unsigned DummyUnsigned; |
| 5686 | |
| 5687 | return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || |
| 5688 | isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || |
| 5689 | isEXTMask(M, VT, DummyBool, DummyUnsigned) || |
| 5690 | // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. |
| 5691 | isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || |
| 5692 | isZIPMask(M, VT, DummyUnsigned) || |
| 5693 | isTRN_v_undef_Mask(M, VT, DummyUnsigned) || |
| 5694 | isUZP_v_undef_Mask(M, VT, DummyUnsigned) || |
| 5695 | isZIP_v_undef_Mask(M, VT, DummyUnsigned) || |
| 5696 | isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || |
| 5697 | isConcatMask(M, VT, VT.getSizeInBits() == 128)); |
| 5698 | } |
| 5699 | |
| 5700 | /// getVShiftImm - Check if this is a valid build_vector for the immediate |
| 5701 | /// operand of a vector shift operation, where all the elements of the |
| 5702 | /// build_vector must have the same constant integer value. |
| 5703 | static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { |
| 5704 | // Ignore bit_converts. |
| 5705 | while (Op.getOpcode() == ISD::BITCAST) |
| 5706 | Op = Op.getOperand(0); |
| 5707 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| 5708 | APInt SplatBits, SplatUndef; |
| 5709 | unsigned SplatBitSize; |
| 5710 | bool HasAnyUndefs; |
| 5711 | if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| 5712 | HasAnyUndefs, ElementBits) || |
| 5713 | SplatBitSize > ElementBits) |
| 5714 | return false; |
| 5715 | Cnt = SplatBits.getSExtValue(); |
| 5716 | return true; |
| 5717 | } |
| 5718 | |
| 5719 | /// isVShiftLImm - Check if this is a valid build_vector for the immediate |
| 5720 | /// operand of a vector shift left operation. That value must be in the range: |
| 5721 | /// 0 <= Value < ElementBits for a left shift; or |
| 5722 | /// 0 <= Value <= ElementBits for a long left shift. |
| 5723 | static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { |
| 5724 | assert(VT.isVector() && "vector shift count is not a vector type"); |
| 5725 | unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| 5726 | if (!getVShiftImm(Op, ElementBits, Cnt)) |
| 5727 | return false; |
| 5728 | return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); |
| 5729 | } |
| 5730 | |
| 5731 | /// isVShiftRImm - Check if this is a valid build_vector for the immediate |
| 5732 | /// operand of a vector shift right operation. For a shift opcode, the value |
| 5733 | /// is positive, but for an intrinsic the value count must be negative. The |
| 5734 | /// absolute value must be in the range: |
| 5735 | /// 1 <= |Value| <= ElementBits for a right shift; or |
| 5736 | /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. |
| 5737 | static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, |
| 5738 | int64_t &Cnt) { |
| 5739 | assert(VT.isVector() && "vector shift count is not a vector type"); |
| 5740 | unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| 5741 | if (!getVShiftImm(Op, ElementBits, Cnt)) |
| 5742 | return false; |
| 5743 | if (isIntrinsic) |
| 5744 | Cnt = -Cnt; |
| 5745 | return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); |
| 5746 | } |
| 5747 | |
| 5748 | SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, |
| 5749 | SelectionDAG &DAG) const { |
| 5750 | EVT VT = Op.getValueType(); |
| 5751 | SDLoc DL(Op); |
| 5752 | int64_t Cnt; |
| 5753 | |
| 5754 | if (!Op.getOperand(1).getValueType().isVector()) |
| 5755 | return Op; |
| 5756 | unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| 5757 | |
| 5758 | switch (Op.getOpcode()) { |
| 5759 | default: |
| 5760 | llvm_unreachable("unexpected shift opcode"); |
| 5761 | |
| 5762 | case ISD::SHL: |
| 5763 | if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) |
| 5764 | return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0), |
| 5765 | DAG.getConstant(Cnt, MVT::i32)); |
| 5766 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| 5767 | DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32), |
| 5768 | Op.getOperand(0), Op.getOperand(1)); |
| 5769 | case ISD::SRA: |
| 5770 | case ISD::SRL: |
| 5771 | // Right shift immediate |
| 5772 | if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) && |
| 5773 | Cnt < EltSize) { |
| 5774 | unsigned Opc = |
| 5775 | (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; |
| 5776 | return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0), |
| 5777 | DAG.getConstant(Cnt, MVT::i32)); |
| 5778 | } |
| 5779 | |
| 5780 | // Right shift register. Note, there is not a shift right register |
| 5781 | // instruction, but the shift left register instruction takes a signed |
| 5782 | // value, where negative numbers specify a right shift. |
| 5783 | unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl |
| 5784 | : Intrinsic::aarch64_neon_ushl; |
| 5785 | // negate the shift amount |
| 5786 | SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); |
| 5787 | SDValue NegShiftLeft = |
| 5788 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| 5789 | DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift); |
| 5790 | return NegShiftLeft; |
| 5791 | } |
| 5792 | |
| 5793 | return SDValue(); |
| 5794 | } |
| 5795 | |
| 5796 | static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, |
| 5797 | AArch64CC::CondCode CC, bool NoNans, EVT VT, |
| 5798 | SDLoc dl, SelectionDAG &DAG) { |
| 5799 | EVT SrcVT = LHS.getValueType(); |
| 5800 | |
| 5801 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); |
| 5802 | APInt CnstBits(VT.getSizeInBits(), 0); |
| 5803 | APInt UndefBits(VT.getSizeInBits(), 0); |
| 5804 | bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); |
| 5805 | bool IsZero = IsCnst && (CnstBits == 0); |
| 5806 | |
| 5807 | if (SrcVT.getVectorElementType().isFloatingPoint()) { |
| 5808 | switch (CC) { |
| 5809 | default: |
| 5810 | return SDValue(); |
| 5811 | case AArch64CC::NE: { |
| 5812 | SDValue Fcmeq; |
| 5813 | if (IsZero) |
| 5814 | Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); |
| 5815 | else |
| 5816 | Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); |
| 5817 | return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); |
| 5818 | } |
| 5819 | case AArch64CC::EQ: |
| 5820 | if (IsZero) |
| 5821 | return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); |
| 5822 | return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); |
| 5823 | case AArch64CC::GE: |
| 5824 | if (IsZero) |
| 5825 | return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); |
| 5826 | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); |
| 5827 | case AArch64CC::GT: |
| 5828 | if (IsZero) |
| 5829 | return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); |
| 5830 | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); |
| 5831 | case AArch64CC::LS: |
| 5832 | if (IsZero) |
| 5833 | return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); |
| 5834 | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); |
| 5835 | case AArch64CC::LT: |
| 5836 | if (!NoNans) |
| 5837 | return SDValue(); |
| 5838 | // If we ignore NaNs then we can use to the MI implementation. |
| 5839 | // Fallthrough. |
| 5840 | case AArch64CC::MI: |
| 5841 | if (IsZero) |
| 5842 | return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); |
| 5843 | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); |
| 5844 | } |
| 5845 | } |
| 5846 | |
| 5847 | switch (CC) { |
| 5848 | default: |
| 5849 | return SDValue(); |
| 5850 | case AArch64CC::NE: { |
| 5851 | SDValue Cmeq; |
| 5852 | if (IsZero) |
| 5853 | Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); |
| 5854 | else |
| 5855 | Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); |
| 5856 | return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); |
| 5857 | } |
| 5858 | case AArch64CC::EQ: |
| 5859 | if (IsZero) |
| 5860 | return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); |
| 5861 | return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); |
| 5862 | case AArch64CC::GE: |
| 5863 | if (IsZero) |
| 5864 | return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); |
| 5865 | return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); |
| 5866 | case AArch64CC::GT: |
| 5867 | if (IsZero) |
| 5868 | return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); |
| 5869 | return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); |
| 5870 | case AArch64CC::LE: |
| 5871 | if (IsZero) |
| 5872 | return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); |
| 5873 | return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); |
| 5874 | case AArch64CC::LS: |
| 5875 | return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); |
| 5876 | case AArch64CC::LO: |
| 5877 | return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); |
| 5878 | case AArch64CC::LT: |
| 5879 | if (IsZero) |
| 5880 | return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); |
| 5881 | return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); |
| 5882 | case AArch64CC::HI: |
| 5883 | return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); |
| 5884 | case AArch64CC::HS: |
| 5885 | return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); |
| 5886 | } |
| 5887 | } |
| 5888 | |
| 5889 | SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, |
| 5890 | SelectionDAG &DAG) const { |
| 5891 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| 5892 | SDValue LHS = Op.getOperand(0); |
| 5893 | SDValue RHS = Op.getOperand(1); |
| 5894 | SDLoc dl(Op); |
| 5895 | |
| 5896 | if (LHS.getValueType().getVectorElementType().isInteger()) { |
| 5897 | assert(LHS.getValueType() == RHS.getValueType()); |
| 5898 | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); |
| 5899 | return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(), |
| 5900 | dl, DAG); |
| 5901 | } |
| 5902 | |
| 5903 | assert(LHS.getValueType().getVectorElementType() == MVT::f32 || |
| 5904 | LHS.getValueType().getVectorElementType() == MVT::f64); |
| 5905 | |
| 5906 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| 5907 | // clean. Some of them require two branches to implement. |
| 5908 | AArch64CC::CondCode CC1, CC2; |
| 5909 | bool ShouldInvert; |
| 5910 | changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); |
| 5911 | |
| 5912 | bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; |
| 5913 | SDValue Cmp = |
| 5914 | EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG); |
| 5915 | if (!Cmp.getNode()) |
| 5916 | return SDValue(); |
| 5917 | |
| 5918 | if (CC2 != AArch64CC::AL) { |
| 5919 | SDValue Cmp2 = |
| 5920 | EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG); |
| 5921 | if (!Cmp2.getNode()) |
| 5922 | return SDValue(); |
| 5923 | |
| 5924 | Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2); |
| 5925 | } |
| 5926 | |
| 5927 | if (ShouldInvert) |
| 5928 | return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); |
| 5929 | |
| 5930 | return Cmp; |
| 5931 | } |
| 5932 | |
| 5933 | /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as |
| 5934 | /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment |
| 5935 | /// specified in the intrinsic calls. |
| 5936 | bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| 5937 | const CallInst &I, |
| 5938 | unsigned Intrinsic) const { |
| 5939 | switch (Intrinsic) { |
| 5940 | case Intrinsic::aarch64_neon_ld2: |
| 5941 | case Intrinsic::aarch64_neon_ld3: |
| 5942 | case Intrinsic::aarch64_neon_ld4: |
| 5943 | case Intrinsic::aarch64_neon_ld1x2: |
| 5944 | case Intrinsic::aarch64_neon_ld1x3: |
| 5945 | case Intrinsic::aarch64_neon_ld1x4: |
| 5946 | case Intrinsic::aarch64_neon_ld2lane: |
| 5947 | case Intrinsic::aarch64_neon_ld3lane: |
| 5948 | case Intrinsic::aarch64_neon_ld4lane: |
| 5949 | case Intrinsic::aarch64_neon_ld2r: |
| 5950 | case Intrinsic::aarch64_neon_ld3r: |
| 5951 | case Intrinsic::aarch64_neon_ld4r: { |
| 5952 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 5953 | // Conservatively set memVT to the entire set of vectors loaded. |
| 5954 | uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; |
| 5955 | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| 5956 | Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); |
| 5957 | Info.offset = 0; |
| 5958 | Info.align = 0; |
| 5959 | Info.vol = false; // volatile loads with NEON intrinsics not supported |
| 5960 | Info.readMem = true; |
| 5961 | Info.writeMem = false; |
| 5962 | return true; |
| 5963 | } |
| 5964 | case Intrinsic::aarch64_neon_st2: |
| 5965 | case Intrinsic::aarch64_neon_st3: |
| 5966 | case Intrinsic::aarch64_neon_st4: |
| 5967 | case Intrinsic::aarch64_neon_st1x2: |
| 5968 | case Intrinsic::aarch64_neon_st1x3: |
| 5969 | case Intrinsic::aarch64_neon_st1x4: |
| 5970 | case Intrinsic::aarch64_neon_st2lane: |
| 5971 | case Intrinsic::aarch64_neon_st3lane: |
| 5972 | case Intrinsic::aarch64_neon_st4lane: { |
| 5973 | Info.opc = ISD::INTRINSIC_VOID; |
| 5974 | // Conservatively set memVT to the entire set of vectors stored. |
| 5975 | unsigned NumElts = 0; |
| 5976 | for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { |
| 5977 | Type *ArgTy = I.getArgOperand(ArgI)->getType(); |
| 5978 | if (!ArgTy->isVectorTy()) |
| 5979 | break; |
| 5980 | NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; |
| 5981 | } |
| 5982 | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| 5983 | Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); |
| 5984 | Info.offset = 0; |
| 5985 | Info.align = 0; |
| 5986 | Info.vol = false; // volatile stores with NEON intrinsics not supported |
| 5987 | Info.readMem = false; |
| 5988 | Info.writeMem = true; |
| 5989 | return true; |
| 5990 | } |
| 5991 | case Intrinsic::aarch64_ldaxr: |
| 5992 | case Intrinsic::aarch64_ldxr: { |
| 5993 | PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); |
| 5994 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 5995 | Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| 5996 | Info.ptrVal = I.getArgOperand(0); |
| 5997 | Info.offset = 0; |
| 5998 | Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); |
| 5999 | Info.vol = true; |
| 6000 | Info.readMem = true; |
| 6001 | Info.writeMem = false; |
| 6002 | return true; |
| 6003 | } |
| 6004 | case Intrinsic::aarch64_stlxr: |
| 6005 | case Intrinsic::aarch64_stxr: { |
| 6006 | PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); |
| 6007 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 6008 | Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| 6009 | Info.ptrVal = I.getArgOperand(1); |
| 6010 | Info.offset = 0; |
| 6011 | Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); |
| 6012 | Info.vol = true; |
| 6013 | Info.readMem = false; |
| 6014 | Info.writeMem = true; |
| 6015 | return true; |
| 6016 | } |
| 6017 | case Intrinsic::aarch64_ldaxp: |
| 6018 | case Intrinsic::aarch64_ldxp: { |
| 6019 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 6020 | Info.memVT = MVT::i128; |
| 6021 | Info.ptrVal = I.getArgOperand(0); |
| 6022 | Info.offset = 0; |
| 6023 | Info.align = 16; |
| 6024 | Info.vol = true; |
| 6025 | Info.readMem = true; |
| 6026 | Info.writeMem = false; |
| 6027 | return true; |
| 6028 | } |
| 6029 | case Intrinsic::aarch64_stlxp: |
| 6030 | case Intrinsic::aarch64_stxp: { |
| 6031 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 6032 | Info.memVT = MVT::i128; |
| 6033 | Info.ptrVal = I.getArgOperand(2); |
| 6034 | Info.offset = 0; |
| 6035 | Info.align = 16; |
| 6036 | Info.vol = true; |
| 6037 | Info.readMem = false; |
| 6038 | Info.writeMem = true; |
| 6039 | return true; |
| 6040 | } |
| 6041 | default: |
| 6042 | break; |
| 6043 | } |
| 6044 | |
| 6045 | return false; |
| 6046 | } |
| 6047 | |
| 6048 | // Truncations from 64-bit GPR to 32-bit GPR is free. |
| 6049 | bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| 6050 | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| 6051 | return false; |
| 6052 | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| 6053 | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6054 | return NumBits1 > NumBits2; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6055 | } |
| 6056 | bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6057 | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6058 | return false; |
| 6059 | unsigned NumBits1 = VT1.getSizeInBits(); |
| 6060 | unsigned NumBits2 = VT2.getSizeInBits(); |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6061 | return NumBits1 > NumBits2; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6062 | } |
| 6063 | |
| 6064 | // All 32-bit GPR operations implicitly zero the high-half of the corresponding |
| 6065 | // 64-bit GPR. |
| 6066 | bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { |
| 6067 | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| 6068 | return false; |
| 6069 | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| 6070 | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6071 | return NumBits1 == 32 && NumBits2 == 64; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6072 | } |
| 6073 | bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6074 | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6075 | return false; |
| 6076 | unsigned NumBits1 = VT1.getSizeInBits(); |
| 6077 | unsigned NumBits2 = VT2.getSizeInBits(); |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6078 | return NumBits1 == 32 && NumBits2 == 64; |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6079 | } |
| 6080 | |
| 6081 | bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| 6082 | EVT VT1 = Val.getValueType(); |
| 6083 | if (isZExtFree(VT1, VT2)) { |
| 6084 | return true; |
| 6085 | } |
| 6086 | |
| 6087 | if (Val.getOpcode() != ISD::LOAD) |
| 6088 | return false; |
| 6089 | |
| 6090 | // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. |
Hao Liu | 4091450 | 2014-05-29 09:19:07 +0000 | [diff] [blame] | 6091 | return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && |
| 6092 | VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && |
| 6093 | VT1.getSizeInBits() <= 32); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6094 | } |
| 6095 | |
| 6096 | bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType, |
| 6097 | unsigned &RequiredAligment) const { |
| 6098 | if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy()) |
| 6099 | return false; |
| 6100 | // Cyclone supports unaligned accesses. |
| 6101 | RequiredAligment = 0; |
| 6102 | unsigned NumBits = LoadedType->getPrimitiveSizeInBits(); |
| 6103 | return NumBits == 32 || NumBits == 64; |
| 6104 | } |
| 6105 | |
| 6106 | bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, |
| 6107 | unsigned &RequiredAligment) const { |
| 6108 | if (!LoadedType.isSimple() || |
| 6109 | (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) |
| 6110 | return false; |
| 6111 | // Cyclone supports unaligned accesses. |
| 6112 | RequiredAligment = 0; |
| 6113 | unsigned NumBits = LoadedType.getSizeInBits(); |
| 6114 | return NumBits == 32 || NumBits == 64; |
| 6115 | } |
| 6116 | |
| 6117 | static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, |
| 6118 | unsigned AlignCheck) { |
| 6119 | return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && |
| 6120 | (DstAlign == 0 || DstAlign % AlignCheck == 0)); |
| 6121 | } |
| 6122 | |
| 6123 | EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, |
| 6124 | unsigned SrcAlign, bool IsMemset, |
| 6125 | bool ZeroMemset, |
| 6126 | bool MemcpyStrSrc, |
| 6127 | MachineFunction &MF) const { |
| 6128 | // Don't use AdvSIMD to implement 16-byte memset. It would have taken one |
| 6129 | // instruction to materialize the v2i64 zero and one store (with restrictive |
| 6130 | // addressing mode). Just do two i64 store of zero-registers. |
| 6131 | bool Fast; |
| 6132 | const Function *F = MF.getFunction(); |
| 6133 | if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && |
| 6134 | !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| 6135 | Attribute::NoImplicitFloat) && |
| 6136 | (memOpAlign(SrcAlign, DstAlign, 16) || |
| 6137 | (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast))) |
| 6138 | return MVT::f128; |
| 6139 | |
| 6140 | return Size >= 8 ? MVT::i64 : MVT::i32; |
| 6141 | } |
| 6142 | |
| 6143 | // 12-bit optionally shifted immediates are legal for adds. |
| 6144 | bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { |
| 6145 | if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)) |
| 6146 | return true; |
| 6147 | return false; |
| 6148 | } |
| 6149 | |
| 6150 | // Integer comparisons are implemented with ADDS/SUBS, so the range of valid |
| 6151 | // immediates is the same as for an add or a sub. |
| 6152 | bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { |
| 6153 | if (Immed < 0) |
| 6154 | Immed *= -1; |
| 6155 | return isLegalAddImmediate(Immed); |
| 6156 | } |
| 6157 | |
| 6158 | /// isLegalAddressingMode - Return true if the addressing mode represented |
| 6159 | /// by AM is legal for this target, for a load/store of the specified type. |
| 6160 | bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| 6161 | Type *Ty) const { |
| 6162 | // AArch64 has five basic addressing modes: |
| 6163 | // reg |
| 6164 | // reg + 9-bit signed offset |
| 6165 | // reg + SIZE_IN_BYTES * 12-bit unsigned offset |
| 6166 | // reg1 + reg2 |
| 6167 | // reg + SIZE_IN_BYTES * reg |
| 6168 | |
| 6169 | // No global is ever allowed as a base. |
| 6170 | if (AM.BaseGV) |
| 6171 | return false; |
| 6172 | |
| 6173 | // No reg+reg+imm addressing. |
| 6174 | if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) |
| 6175 | return false; |
| 6176 | |
| 6177 | // check reg + imm case: |
| 6178 | // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 |
| 6179 | uint64_t NumBytes = 0; |
| 6180 | if (Ty->isSized()) { |
| 6181 | uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty); |
| 6182 | NumBytes = NumBits / 8; |
| 6183 | if (!isPowerOf2_64(NumBits)) |
| 6184 | NumBytes = 0; |
| 6185 | } |
| 6186 | |
| 6187 | if (!AM.Scale) { |
| 6188 | int64_t Offset = AM.BaseOffs; |
| 6189 | |
| 6190 | // 9-bit signed offset |
| 6191 | if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) |
| 6192 | return true; |
| 6193 | |
| 6194 | // 12-bit unsigned offset |
| 6195 | unsigned shift = Log2_64(NumBytes); |
| 6196 | if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && |
| 6197 | // Must be a multiple of NumBytes (NumBytes is a power of 2) |
| 6198 | (Offset >> shift) << shift == Offset) |
| 6199 | return true; |
| 6200 | return false; |
| 6201 | } |
| 6202 | |
| 6203 | // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 |
| 6204 | |
| 6205 | if (!AM.Scale || AM.Scale == 1 || |
| 6206 | (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) |
| 6207 | return true; |
| 6208 | return false; |
| 6209 | } |
| 6210 | |
| 6211 | int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM, |
| 6212 | Type *Ty) const { |
| 6213 | // Scaling factors are not free at all. |
| 6214 | // Operands | Rt Latency |
| 6215 | // ------------------------------------------- |
| 6216 | // Rt, [Xn, Xm] | 4 |
| 6217 | // ------------------------------------------- |
| 6218 | // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 |
| 6219 | // Rt, [Xn, Wm, <extend> #imm] | |
| 6220 | if (isLegalAddressingMode(AM, Ty)) |
| 6221 | // Scale represents reg2 * scale, thus account for 1 if |
| 6222 | // it is not equal to 0 or 1. |
| 6223 | return AM.Scale != 0 && AM.Scale != 1; |
| 6224 | return -1; |
| 6225 | } |
| 6226 | |
| 6227 | bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { |
| 6228 | VT = VT.getScalarType(); |
| 6229 | |
| 6230 | if (!VT.isSimple()) |
| 6231 | return false; |
| 6232 | |
| 6233 | switch (VT.getSimpleVT().SimpleTy) { |
| 6234 | case MVT::f32: |
| 6235 | case MVT::f64: |
| 6236 | return true; |
| 6237 | default: |
| 6238 | break; |
| 6239 | } |
| 6240 | |
| 6241 | return false; |
| 6242 | } |
| 6243 | |
| 6244 | const MCPhysReg * |
| 6245 | AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { |
| 6246 | // LR is a callee-save register, but we must treat it as clobbered by any call |
| 6247 | // site. Hence we include LR in the scratch registers, which are in turn added |
| 6248 | // as implicit-defs for stackmaps and patchpoints. |
| 6249 | static const MCPhysReg ScratchRegs[] = { |
| 6250 | AArch64::X16, AArch64::X17, AArch64::LR, 0 |
| 6251 | }; |
| 6252 | return ScratchRegs; |
| 6253 | } |
| 6254 | |
| 6255 | bool |
| 6256 | AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { |
| 6257 | EVT VT = N->getValueType(0); |
| 6258 | // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine |
| 6259 | // it with shift to let it be lowered to UBFX. |
| 6260 | if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && |
| 6261 | isa<ConstantSDNode>(N->getOperand(1))) { |
| 6262 | uint64_t TruncMask = N->getConstantOperandVal(1); |
| 6263 | if (isMask_64(TruncMask) && |
| 6264 | N->getOperand(0).getOpcode() == ISD::SRL && |
| 6265 | isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) |
| 6266 | return false; |
| 6267 | } |
| 6268 | return true; |
| 6269 | } |
| 6270 | |
| 6271 | bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| 6272 | Type *Ty) const { |
| 6273 | assert(Ty->isIntegerTy()); |
| 6274 | |
| 6275 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 6276 | if (BitSize == 0) |
| 6277 | return false; |
| 6278 | |
| 6279 | int64_t Val = Imm.getSExtValue(); |
| 6280 | if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) |
| 6281 | return true; |
| 6282 | |
| 6283 | if ((int64_t)Val < 0) |
| 6284 | Val = ~Val; |
| 6285 | if (BitSize == 32) |
| 6286 | Val &= (1LL << 32) - 1; |
| 6287 | |
| 6288 | unsigned LZ = countLeadingZeros((uint64_t)Val); |
| 6289 | unsigned Shift = (63 - LZ) / 16; |
| 6290 | // MOVZ is free so return true for one or fewer MOVK. |
| 6291 | return (Shift < 3) ? true : false; |
| 6292 | } |
| 6293 | |
| 6294 | // Generate SUBS and CSEL for integer abs. |
| 6295 | static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { |
| 6296 | EVT VT = N->getValueType(0); |
| 6297 | |
| 6298 | SDValue N0 = N->getOperand(0); |
| 6299 | SDValue N1 = N->getOperand(1); |
| 6300 | SDLoc DL(N); |
| 6301 | |
| 6302 | // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) |
| 6303 | // and change it to SUB and CSEL. |
| 6304 | if (VT.isInteger() && N->getOpcode() == ISD::XOR && |
| 6305 | N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && |
| 6306 | N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) |
| 6307 | if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) |
| 6308 | if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { |
| 6309 | SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), |
| 6310 | N0.getOperand(0)); |
| 6311 | // Generate SUBS & CSEL. |
| 6312 | SDValue Cmp = |
| 6313 | DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), |
| 6314 | N0.getOperand(0), DAG.getConstant(0, VT)); |
| 6315 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, |
| 6316 | DAG.getConstant(AArch64CC::PL, MVT::i32), |
| 6317 | SDValue(Cmp.getNode(), 1)); |
| 6318 | } |
| 6319 | return SDValue(); |
| 6320 | } |
| 6321 | |
| 6322 | // performXorCombine - Attempts to handle integer ABS. |
| 6323 | static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, |
| 6324 | TargetLowering::DAGCombinerInfo &DCI, |
| 6325 | const AArch64Subtarget *Subtarget) { |
| 6326 | if (DCI.isBeforeLegalizeOps()) |
| 6327 | return SDValue(); |
| 6328 | |
| 6329 | return performIntegerAbsCombine(N, DAG); |
| 6330 | } |
| 6331 | |
| 6332 | static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, |
| 6333 | TargetLowering::DAGCombinerInfo &DCI, |
| 6334 | const AArch64Subtarget *Subtarget) { |
| 6335 | if (DCI.isBeforeLegalizeOps()) |
| 6336 | return SDValue(); |
| 6337 | |
| 6338 | // Multiplication of a power of two plus/minus one can be done more |
| 6339 | // cheaply as as shift+add/sub. For now, this is true unilaterally. If |
| 6340 | // future CPUs have a cheaper MADD instruction, this may need to be |
| 6341 | // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and |
| 6342 | // 64-bit is 5 cycles, so this is always a win. |
| 6343 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| 6344 | APInt Value = C->getAPIntValue(); |
| 6345 | EVT VT = N->getValueType(0); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6346 | APInt VM1 = Value - 1; |
| 6347 | if (VM1.isPowerOf2()) { |
| 6348 | // Multiplying by one more than a power of two, replace with a shift |
| 6349 | // and an add. |
| 6350 | SDValue ShiftedVal = |
| 6351 | DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), |
| 6352 | DAG.getConstant(VM1.logBase2(), MVT::i64)); |
| 6353 | return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); |
| 6354 | } |
Chad Rosier | d96e9f1 | 2014-06-09 01:25:51 +0000 | [diff] [blame] | 6355 | APInt VP1 = Value + 1; |
| 6356 | if (VP1.isPowerOf2()) { |
| 6357 | // Multiplying by one less than a power of two, replace with a shift |
| 6358 | // and a subtract. |
| 6359 | SDValue ShiftedVal = |
| 6360 | DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), |
| 6361 | DAG.getConstant(VP1.logBase2(), MVT::i64)); |
| 6362 | return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); |
| 6363 | } |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6364 | } |
| 6365 | return SDValue(); |
| 6366 | } |
| 6367 | |
| 6368 | static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) { |
| 6369 | EVT VT = N->getValueType(0); |
| 6370 | if (VT != MVT::f32 && VT != MVT::f64) |
| 6371 | return SDValue(); |
| 6372 | // Only optimize when the source and destination types have the same width. |
| 6373 | if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits()) |
| 6374 | return SDValue(); |
| 6375 | |
| 6376 | // If the result of an integer load is only used by an integer-to-float |
| 6377 | // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. |
| 6378 | // This eliminates an "integer-to-vector-move UOP and improve throughput. |
| 6379 | SDValue N0 = N->getOperand(0); |
| 6380 | if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| 6381 | // Do not change the width of a volatile load. |
| 6382 | !cast<LoadSDNode>(N0)->isVolatile()) { |
| 6383 | LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| 6384 | SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), |
| 6385 | LN0->getPointerInfo(), LN0->isVolatile(), |
| 6386 | LN0->isNonTemporal(), LN0->isInvariant(), |
| 6387 | LN0->getAlignment()); |
| 6388 | |
| 6389 | // Make sure successors of the original load stay after it by updating them |
| 6390 | // to use the new Chain. |
| 6391 | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); |
| 6392 | |
| 6393 | unsigned Opcode = |
| 6394 | (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; |
| 6395 | return DAG.getNode(Opcode, SDLoc(N), VT, Load); |
| 6396 | } |
| 6397 | |
| 6398 | return SDValue(); |
| 6399 | } |
| 6400 | |
| 6401 | /// An EXTR instruction is made up of two shifts, ORed together. This helper |
| 6402 | /// searches for and classifies those shifts. |
| 6403 | static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, |
| 6404 | bool &FromHi) { |
| 6405 | if (N.getOpcode() == ISD::SHL) |
| 6406 | FromHi = false; |
| 6407 | else if (N.getOpcode() == ISD::SRL) |
| 6408 | FromHi = true; |
| 6409 | else |
| 6410 | return false; |
| 6411 | |
| 6412 | if (!isa<ConstantSDNode>(N.getOperand(1))) |
| 6413 | return false; |
| 6414 | |
| 6415 | ShiftAmount = N->getConstantOperandVal(1); |
| 6416 | Src = N->getOperand(0); |
| 6417 | return true; |
| 6418 | } |
| 6419 | |
| 6420 | /// EXTR instruction extracts a contiguous chunk of bits from two existing |
| 6421 | /// registers viewed as a high/low pair. This function looks for the pattern: |
| 6422 | /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an |
| 6423 | /// EXTR. Can't quite be done in TableGen because the two immediates aren't |
| 6424 | /// independent. |
| 6425 | static SDValue tryCombineToEXTR(SDNode *N, |
| 6426 | TargetLowering::DAGCombinerInfo &DCI) { |
| 6427 | SelectionDAG &DAG = DCI.DAG; |
| 6428 | SDLoc DL(N); |
| 6429 | EVT VT = N->getValueType(0); |
| 6430 | |
| 6431 | assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| 6432 | |
| 6433 | if (VT != MVT::i32 && VT != MVT::i64) |
| 6434 | return SDValue(); |
| 6435 | |
| 6436 | SDValue LHS; |
| 6437 | uint32_t ShiftLHS = 0; |
| 6438 | bool LHSFromHi = 0; |
| 6439 | if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) |
| 6440 | return SDValue(); |
| 6441 | |
| 6442 | SDValue RHS; |
| 6443 | uint32_t ShiftRHS = 0; |
| 6444 | bool RHSFromHi = 0; |
| 6445 | if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) |
| 6446 | return SDValue(); |
| 6447 | |
| 6448 | // If they're both trying to come from the high part of the register, they're |
| 6449 | // not really an EXTR. |
| 6450 | if (LHSFromHi == RHSFromHi) |
| 6451 | return SDValue(); |
| 6452 | |
| 6453 | if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) |
| 6454 | return SDValue(); |
| 6455 | |
| 6456 | if (LHSFromHi) { |
| 6457 | std::swap(LHS, RHS); |
| 6458 | std::swap(ShiftLHS, ShiftRHS); |
| 6459 | } |
| 6460 | |
| 6461 | return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, |
| 6462 | DAG.getConstant(ShiftRHS, MVT::i64)); |
| 6463 | } |
| 6464 | |
| 6465 | static SDValue tryCombineToBSL(SDNode *N, |
| 6466 | TargetLowering::DAGCombinerInfo &DCI) { |
| 6467 | EVT VT = N->getValueType(0); |
| 6468 | SelectionDAG &DAG = DCI.DAG; |
| 6469 | SDLoc DL(N); |
| 6470 | |
| 6471 | if (!VT.isVector()) |
| 6472 | return SDValue(); |
| 6473 | |
| 6474 | SDValue N0 = N->getOperand(0); |
| 6475 | if (N0.getOpcode() != ISD::AND) |
| 6476 | return SDValue(); |
| 6477 | |
| 6478 | SDValue N1 = N->getOperand(1); |
| 6479 | if (N1.getOpcode() != ISD::AND) |
| 6480 | return SDValue(); |
| 6481 | |
| 6482 | // We only have to look for constant vectors here since the general, variable |
| 6483 | // case can be handled in TableGen. |
| 6484 | unsigned Bits = VT.getVectorElementType().getSizeInBits(); |
| 6485 | uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); |
| 6486 | for (int i = 1; i >= 0; --i) |
| 6487 | for (int j = 1; j >= 0; --j) { |
| 6488 | BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); |
| 6489 | BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); |
| 6490 | if (!BVN0 || !BVN1) |
| 6491 | continue; |
| 6492 | |
| 6493 | bool FoundMatch = true; |
| 6494 | for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { |
| 6495 | ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); |
| 6496 | ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); |
| 6497 | if (!CN0 || !CN1 || |
| 6498 | CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { |
| 6499 | FoundMatch = false; |
| 6500 | break; |
| 6501 | } |
| 6502 | } |
| 6503 | |
| 6504 | if (FoundMatch) |
| 6505 | return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), |
| 6506 | N0->getOperand(1 - i), N1->getOperand(1 - j)); |
| 6507 | } |
| 6508 | |
| 6509 | return SDValue(); |
| 6510 | } |
| 6511 | |
| 6512 | static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| 6513 | const AArch64Subtarget *Subtarget) { |
| 6514 | // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) |
| 6515 | if (!EnableAArch64ExtrGeneration) |
| 6516 | return SDValue(); |
| 6517 | SelectionDAG &DAG = DCI.DAG; |
| 6518 | EVT VT = N->getValueType(0); |
| 6519 | |
| 6520 | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| 6521 | return SDValue(); |
| 6522 | |
| 6523 | SDValue Res = tryCombineToEXTR(N, DCI); |
| 6524 | if (Res.getNode()) |
| 6525 | return Res; |
| 6526 | |
| 6527 | Res = tryCombineToBSL(N, DCI); |
| 6528 | if (Res.getNode()) |
| 6529 | return Res; |
| 6530 | |
| 6531 | return SDValue(); |
| 6532 | } |
| 6533 | |
| 6534 | static SDValue performBitcastCombine(SDNode *N, |
| 6535 | TargetLowering::DAGCombinerInfo &DCI, |
| 6536 | SelectionDAG &DAG) { |
| 6537 | // Wait 'til after everything is legalized to try this. That way we have |
| 6538 | // legal vector types and such. |
| 6539 | if (DCI.isBeforeLegalizeOps()) |
| 6540 | return SDValue(); |
| 6541 | |
| 6542 | // Remove extraneous bitcasts around an extract_subvector. |
| 6543 | // For example, |
| 6544 | // (v4i16 (bitconvert |
| 6545 | // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) |
| 6546 | // becomes |
| 6547 | // (extract_subvector ((v8i16 ...), (i64 4))) |
| 6548 | |
| 6549 | // Only interested in 64-bit vectors as the ultimate result. |
| 6550 | EVT VT = N->getValueType(0); |
| 6551 | if (!VT.isVector()) |
| 6552 | return SDValue(); |
| 6553 | if (VT.getSimpleVT().getSizeInBits() != 64) |
| 6554 | return SDValue(); |
| 6555 | // Is the operand an extract_subvector starting at the beginning or halfway |
| 6556 | // point of the vector? A low half may also come through as an |
| 6557 | // EXTRACT_SUBREG, so look for that, too. |
| 6558 | SDValue Op0 = N->getOperand(0); |
| 6559 | if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && |
| 6560 | !(Op0->isMachineOpcode() && |
| 6561 | Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) |
| 6562 | return SDValue(); |
| 6563 | uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); |
| 6564 | if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| 6565 | if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) |
| 6566 | return SDValue(); |
| 6567 | } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { |
| 6568 | if (idx != AArch64::dsub) |
| 6569 | return SDValue(); |
| 6570 | // The dsub reference is equivalent to a lane zero subvector reference. |
| 6571 | idx = 0; |
| 6572 | } |
| 6573 | // Look through the bitcast of the input to the extract. |
| 6574 | if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) |
| 6575 | return SDValue(); |
| 6576 | SDValue Source = Op0->getOperand(0)->getOperand(0); |
| 6577 | // If the source type has twice the number of elements as our destination |
| 6578 | // type, we know this is an extract of the high or low half of the vector. |
| 6579 | EVT SVT = Source->getValueType(0); |
| 6580 | if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) |
| 6581 | return SDValue(); |
| 6582 | |
| 6583 | DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); |
| 6584 | |
| 6585 | // Create the simplified form to just extract the low or high half of the |
| 6586 | // vector directly rather than bothering with the bitcasts. |
| 6587 | SDLoc dl(N); |
| 6588 | unsigned NumElements = VT.getVectorNumElements(); |
| 6589 | if (idx) { |
| 6590 | SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64); |
| 6591 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); |
| 6592 | } else { |
| 6593 | SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32); |
| 6594 | return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, |
| 6595 | Source, SubReg), |
| 6596 | 0); |
| 6597 | } |
| 6598 | } |
| 6599 | |
| 6600 | static SDValue performConcatVectorsCombine(SDNode *N, |
| 6601 | TargetLowering::DAGCombinerInfo &DCI, |
| 6602 | SelectionDAG &DAG) { |
| 6603 | // Wait 'til after everything is legalized to try this. That way we have |
| 6604 | // legal vector types and such. |
| 6605 | if (DCI.isBeforeLegalizeOps()) |
| 6606 | return SDValue(); |
| 6607 | |
| 6608 | SDLoc dl(N); |
| 6609 | EVT VT = N->getValueType(0); |
| 6610 | |
| 6611 | // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector |
| 6612 | // splat. The indexed instructions are going to be expecting a DUPLANE64, so |
| 6613 | // canonicalise to that. |
| 6614 | if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) { |
| 6615 | assert(VT.getVectorElementType().getSizeInBits() == 64); |
| 6616 | return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, |
| 6617 | WidenVector(N->getOperand(0), DAG), |
| 6618 | DAG.getConstant(0, MVT::i64)); |
| 6619 | } |
| 6620 | |
| 6621 | // Canonicalise concat_vectors so that the right-hand vector has as few |
| 6622 | // bit-casts as possible before its real operation. The primary matching |
| 6623 | // destination for these operations will be the narrowing "2" instructions, |
| 6624 | // which depend on the operation being performed on this right-hand vector. |
| 6625 | // For example, |
| 6626 | // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) |
| 6627 | // becomes |
| 6628 | // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) |
| 6629 | |
| 6630 | SDValue Op1 = N->getOperand(1); |
| 6631 | if (Op1->getOpcode() != ISD::BITCAST) |
| 6632 | return SDValue(); |
| 6633 | SDValue RHS = Op1->getOperand(0); |
| 6634 | MVT RHSTy = RHS.getValueType().getSimpleVT(); |
| 6635 | // If the RHS is not a vector, this is not the pattern we're looking for. |
| 6636 | if (!RHSTy.isVector()) |
| 6637 | return SDValue(); |
| 6638 | |
| 6639 | DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); |
| 6640 | |
| 6641 | MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), |
| 6642 | RHSTy.getVectorNumElements() * 2); |
| 6643 | return DAG.getNode( |
| 6644 | ISD::BITCAST, dl, VT, |
| 6645 | DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, |
| 6646 | DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS)); |
| 6647 | } |
| 6648 | |
| 6649 | static SDValue tryCombineFixedPointConvert(SDNode *N, |
| 6650 | TargetLowering::DAGCombinerInfo &DCI, |
| 6651 | SelectionDAG &DAG) { |
| 6652 | // Wait 'til after everything is legalized to try this. That way we have |
| 6653 | // legal vector types and such. |
| 6654 | if (DCI.isBeforeLegalizeOps()) |
| 6655 | return SDValue(); |
| 6656 | // Transform a scalar conversion of a value from a lane extract into a |
| 6657 | // lane extract of a vector conversion. E.g., from foo1 to foo2: |
| 6658 | // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } |
| 6659 | // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } |
| 6660 | // |
| 6661 | // The second form interacts better with instruction selection and the |
| 6662 | // register allocator to avoid cross-class register copies that aren't |
| 6663 | // coalescable due to a lane reference. |
| 6664 | |
| 6665 | // Check the operand and see if it originates from a lane extract. |
| 6666 | SDValue Op1 = N->getOperand(1); |
| 6667 | if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| 6668 | // Yep, no additional predication needed. Perform the transform. |
| 6669 | SDValue IID = N->getOperand(0); |
| 6670 | SDValue Shift = N->getOperand(2); |
| 6671 | SDValue Vec = Op1.getOperand(0); |
| 6672 | SDValue Lane = Op1.getOperand(1); |
| 6673 | EVT ResTy = N->getValueType(0); |
| 6674 | EVT VecResTy; |
| 6675 | SDLoc DL(N); |
| 6676 | |
| 6677 | // The vector width should be 128 bits by the time we get here, even |
| 6678 | // if it started as 64 bits (the extract_vector handling will have |
| 6679 | // done so). |
| 6680 | assert(Vec.getValueType().getSizeInBits() == 128 && |
| 6681 | "unexpected vector size on extract_vector_elt!"); |
| 6682 | if (Vec.getValueType() == MVT::v4i32) |
| 6683 | VecResTy = MVT::v4f32; |
| 6684 | else if (Vec.getValueType() == MVT::v2i64) |
| 6685 | VecResTy = MVT::v2f64; |
| 6686 | else |
Craig Topper | 2a30d78 | 2014-06-18 05:05:13 +0000 | [diff] [blame] | 6687 | llvm_unreachable("unexpected vector type!"); |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 6688 | |
| 6689 | SDValue Convert = |
| 6690 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); |
| 6691 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); |
| 6692 | } |
| 6693 | return SDValue(); |
| 6694 | } |
| 6695 | |
| 6696 | // AArch64 high-vector "long" operations are formed by performing the non-high |
| 6697 | // version on an extract_subvector of each operand which gets the high half: |
| 6698 | // |
| 6699 | // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) |
| 6700 | // |
| 6701 | // However, there are cases which don't have an extract_high explicitly, but |
| 6702 | // have another operation that can be made compatible with one for free. For |
| 6703 | // example: |
| 6704 | // |
| 6705 | // (dupv64 scalar) --> (extract_high (dup128 scalar)) |
| 6706 | // |
| 6707 | // This routine does the actual conversion of such DUPs, once outer routines |
| 6708 | // have determined that everything else is in order. |
| 6709 | static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { |
| 6710 | // We can handle most types of duplicate, but the lane ones have an extra |
| 6711 | // operand saying *which* lane, so we need to know. |
| 6712 | bool IsDUPLANE; |
| 6713 | switch (N.getOpcode()) { |
| 6714 | case AArch64ISD::DUP: |
| 6715 | IsDUPLANE = false; |
| 6716 | break; |
| 6717 | case AArch64ISD::DUPLANE8: |
| 6718 | case AArch64ISD::DUPLANE16: |
| 6719 | case AArch64ISD::DUPLANE32: |
| 6720 | case AArch64ISD::DUPLANE64: |
| 6721 | IsDUPLANE = true; |
| 6722 | break; |
| 6723 | default: |
| 6724 | return SDValue(); |
| 6725 | } |
| 6726 | |
| 6727 | MVT NarrowTy = N.getSimpleValueType(); |
| 6728 | if (!NarrowTy.is64BitVector()) |
| 6729 | return SDValue(); |
| 6730 | |
| 6731 | MVT ElementTy = NarrowTy.getVectorElementType(); |
| 6732 | unsigned NumElems = NarrowTy.getVectorNumElements(); |
| 6733 | MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2); |
| 6734 | |
| 6735 | SDValue NewDUP; |
| 6736 | if (IsDUPLANE) |
| 6737 | NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0), |
| 6738 | N.getOperand(1)); |
| 6739 | else |
| 6740 | NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0)); |
| 6741 | |
| 6742 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy, |
| 6743 | NewDUP, DAG.getConstant(NumElems, MVT::i64)); |
| 6744 | } |
| 6745 | |
| 6746 | static bool isEssentiallyExtractSubvector(SDValue N) { |
| 6747 | if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) |
| 6748 | return true; |
| 6749 | |
| 6750 | return N.getOpcode() == ISD::BITCAST && |
| 6751 | N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; |
| 6752 | } |
| 6753 | |
| 6754 | /// \brief Helper structure to keep track of ISD::SET_CC operands. |
| 6755 | struct GenericSetCCInfo { |
| 6756 | const SDValue *Opnd0; |
| 6757 | const SDValue *Opnd1; |
| 6758 | ISD::CondCode CC; |
| 6759 | }; |
| 6760 | |
| 6761 | /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code. |
| 6762 | struct AArch64SetCCInfo { |
| 6763 | const SDValue *Cmp; |
| 6764 | AArch64CC::CondCode CC; |
| 6765 | }; |
| 6766 | |
| 6767 | /// \brief Helper structure to keep track of SetCC information. |
| 6768 | union SetCCInfo { |
| 6769 | GenericSetCCInfo Generic; |
| 6770 | AArch64SetCCInfo AArch64; |
| 6771 | }; |
| 6772 | |
| 6773 | /// \brief Helper structure to be able to read SetCC information. If set to |
| 6774 | /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a |
| 6775 | /// GenericSetCCInfo. |
| 6776 | struct SetCCInfoAndKind { |
| 6777 | SetCCInfo Info; |
| 6778 | bool IsAArch64; |
| 6779 | }; |
| 6780 | |
| 6781 | /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or |
| 6782 | /// an |
| 6783 | /// AArch64 lowered one. |
| 6784 | /// \p SetCCInfo is filled accordingly. |
| 6785 | /// \post SetCCInfo is meanginfull only when this function returns true. |
| 6786 | /// \return True when Op is a kind of SET_CC operation. |
| 6787 | static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { |
| 6788 | // If this is a setcc, this is straight forward. |
| 6789 | if (Op.getOpcode() == ISD::SETCC) { |
| 6790 | SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); |
| 6791 | SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); |
| 6792 | SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| 6793 | SetCCInfo.IsAArch64 = false; |
| 6794 | return true; |
| 6795 | } |
| 6796 | // Otherwise, check if this is a matching csel instruction. |
| 6797 | // In other words: |
| 6798 | // - csel 1, 0, cc |
| 6799 | // - csel 0, 1, !cc |
| 6800 | if (Op.getOpcode() != AArch64ISD::CSEL) |
| 6801 | return false; |
| 6802 | // Set the information about the operands. |
| 6803 | // TODO: we want the operands of the Cmp not the csel |
| 6804 | SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); |
| 6805 | SetCCInfo.IsAArch64 = true; |
| 6806 | SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( |
| 6807 | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); |
| 6808 | |
| 6809 | // Check that the operands matches the constraints: |
| 6810 | // (1) Both operands must be constants. |
| 6811 | // (2) One must be 1 and the other must be 0. |
| 6812 | ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 6813 | ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| 6814 | |
| 6815 | // Check (1). |
| 6816 | if (!TValue || !FValue) |
| 6817 | return false; |
| 6818 | |
| 6819 | // Check (2). |
| 6820 | if (!TValue->isOne()) { |
| 6821 | // Update the comparison when we are interested in !cc. |
| 6822 | std::swap(TValue, FValue); |
| 6823 | SetCCInfo.Info.AArch64.CC = |
| 6824 | AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); |
| 6825 | } |
| 6826 | return TValue->isOne() && FValue->isNullValue(); |
| 6827 | } |
| 6828 | |
| 6829 | // Returns true if Op is setcc or zext of setcc. |
| 6830 | static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { |
| 6831 | if (isSetCC(Op, Info)) |
| 6832 | return true; |
| 6833 | return ((Op.getOpcode() == ISD::ZERO_EXTEND) && |
| 6834 | isSetCC(Op->getOperand(0), Info)); |
| 6835 | } |
| 6836 | |
| 6837 | // The folding we want to perform is: |
| 6838 | // (add x, [zext] (setcc cc ...) ) |
| 6839 | // --> |
| 6840 | // (csel x, (add x, 1), !cc ...) |
| 6841 | // |
| 6842 | // The latter will get matched to a CSINC instruction. |
| 6843 | static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { |
| 6844 | assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); |
| 6845 | SDValue LHS = Op->getOperand(0); |
| 6846 | SDValue RHS = Op->getOperand(1); |
| 6847 | SetCCInfoAndKind InfoAndKind; |
| 6848 | |
| 6849 | // If neither operand is a SET_CC, give up. |
| 6850 | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { |
| 6851 | std::swap(LHS, RHS); |
| 6852 | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) |
| 6853 | return SDValue(); |
| 6854 | } |
| 6855 | |
| 6856 | // FIXME: This could be generatized to work for FP comparisons. |
| 6857 | EVT CmpVT = InfoAndKind.IsAArch64 |
| 6858 | ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() |
| 6859 | : InfoAndKind.Info.Generic.Opnd0->getValueType(); |
| 6860 | if (CmpVT != MVT::i32 && CmpVT != MVT::i64) |
| 6861 | return SDValue(); |
| 6862 | |
| 6863 | SDValue CCVal; |
| 6864 | SDValue Cmp; |
| 6865 | SDLoc dl(Op); |
| 6866 | if (InfoAndKind.IsAArch64) { |
| 6867 | CCVal = DAG.getConstant( |
| 6868 | AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32); |
| 6869 | Cmp = *InfoAndKind.Info.AArch64.Cmp; |
| 6870 | } else |
| 6871 | Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, |
| 6872 | *InfoAndKind.Info.Generic.Opnd1, |
| 6873 | ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), |
| 6874 | CCVal, DAG, dl); |
| 6875 | |
| 6876 | EVT VT = Op->getValueType(0); |
| 6877 | LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT)); |
| 6878 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); |
| 6879 | } |
| 6880 | |
| 6881 | // The basic add/sub long vector instructions have variants with "2" on the end |
| 6882 | // which act on the high-half of their inputs. They are normally matched by |
| 6883 | // patterns like: |
| 6884 | // |
| 6885 | // (add (zeroext (extract_high LHS)), |
| 6886 | // (zeroext (extract_high RHS))) |
| 6887 | // -> uaddl2 vD, vN, vM |
| 6888 | // |
| 6889 | // However, if one of the extracts is something like a duplicate, this |
| 6890 | // instruction can still be used profitably. This function puts the DAG into a |
| 6891 | // more appropriate form for those patterns to trigger. |
| 6892 | static SDValue performAddSubLongCombine(SDNode *N, |
| 6893 | TargetLowering::DAGCombinerInfo &DCI, |
| 6894 | SelectionDAG &DAG) { |
| 6895 | if (DCI.isBeforeLegalizeOps()) |
| 6896 | return SDValue(); |
| 6897 | |
| 6898 | MVT VT = N->getSimpleValueType(0); |
| 6899 | if (!VT.is128BitVector()) { |
| 6900 | if (N->getOpcode() == ISD::ADD) |
| 6901 | return performSetccAddFolding(N, DAG); |
| 6902 | return SDValue(); |
| 6903 | } |
| 6904 | |
| 6905 | // Make sure both branches are extended in the same way. |
| 6906 | SDValue LHS = N->getOperand(0); |
| 6907 | SDValue RHS = N->getOperand(1); |
| 6908 | if ((LHS.getOpcode() != ISD::ZERO_EXTEND && |
| 6909 | LHS.getOpcode() != ISD::SIGN_EXTEND) || |
| 6910 | LHS.getOpcode() != RHS.getOpcode()) |
| 6911 | return SDValue(); |
| 6912 | |
| 6913 | unsigned ExtType = LHS.getOpcode(); |
| 6914 | |
| 6915 | // It's not worth doing if at least one of the inputs isn't already an |
| 6916 | // extract, but we don't know which it'll be so we have to try both. |
| 6917 | if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { |
| 6918 | RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); |
| 6919 | if (!RHS.getNode()) |
| 6920 | return SDValue(); |
| 6921 | |
| 6922 | RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); |
| 6923 | } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { |
| 6924 | LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); |
| 6925 | if (!LHS.getNode()) |
| 6926 | return SDValue(); |
| 6927 | |
| 6928 | LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); |
| 6929 | } |
| 6930 | |
| 6931 | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); |
| 6932 | } |
| 6933 | |
| 6934 | // Massage DAGs which we can use the high-half "long" operations on into |
| 6935 | // something isel will recognize better. E.g. |
| 6936 | // |
| 6937 | // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> |
| 6938 | // (aarch64_neon_umull (extract_high (v2i64 vec))) |
| 6939 | // (extract_high (v2i64 (dup128 scalar))))) |
| 6940 | // |
| 6941 | static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, |
| 6942 | TargetLowering::DAGCombinerInfo &DCI, |
| 6943 | SelectionDAG &DAG) { |
| 6944 | if (DCI.isBeforeLegalizeOps()) |
| 6945 | return SDValue(); |
| 6946 | |
| 6947 | SDValue LHS = N->getOperand(1); |
| 6948 | SDValue RHS = N->getOperand(2); |
| 6949 | assert(LHS.getValueType().is64BitVector() && |
| 6950 | RHS.getValueType().is64BitVector() && |
| 6951 | "unexpected shape for long operation"); |
| 6952 | |
| 6953 | // Either node could be a DUP, but it's not worth doing both of them (you'd |
| 6954 | // just as well use the non-high version) so look for a corresponding extract |
| 6955 | // operation on the other "wing". |
| 6956 | if (isEssentiallyExtractSubvector(LHS)) { |
| 6957 | RHS = tryExtendDUPToExtractHigh(RHS, DAG); |
| 6958 | if (!RHS.getNode()) |
| 6959 | return SDValue(); |
| 6960 | } else if (isEssentiallyExtractSubvector(RHS)) { |
| 6961 | LHS = tryExtendDUPToExtractHigh(LHS, DAG); |
| 6962 | if (!LHS.getNode()) |
| 6963 | return SDValue(); |
| 6964 | } |
| 6965 | |
| 6966 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), |
| 6967 | N->getOperand(0), LHS, RHS); |
| 6968 | } |
| 6969 | |
| 6970 | static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { |
| 6971 | MVT ElemTy = N->getSimpleValueType(0).getScalarType(); |
| 6972 | unsigned ElemBits = ElemTy.getSizeInBits(); |
| 6973 | |
| 6974 | int64_t ShiftAmount; |
| 6975 | if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { |
| 6976 | APInt SplatValue, SplatUndef; |
| 6977 | unsigned SplatBitSize; |
| 6978 | bool HasAnyUndefs; |
| 6979 | if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, |
| 6980 | HasAnyUndefs, ElemBits) || |
| 6981 | SplatBitSize != ElemBits) |
| 6982 | return SDValue(); |
| 6983 | |
| 6984 | ShiftAmount = SplatValue.getSExtValue(); |
| 6985 | } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { |
| 6986 | ShiftAmount = CVN->getSExtValue(); |
| 6987 | } else |
| 6988 | return SDValue(); |
| 6989 | |
| 6990 | unsigned Opcode; |
| 6991 | bool IsRightShift; |
| 6992 | switch (IID) { |
| 6993 | default: |
| 6994 | llvm_unreachable("Unknown shift intrinsic"); |
| 6995 | case Intrinsic::aarch64_neon_sqshl: |
| 6996 | Opcode = AArch64ISD::SQSHL_I; |
| 6997 | IsRightShift = false; |
| 6998 | break; |
| 6999 | case Intrinsic::aarch64_neon_uqshl: |
| 7000 | Opcode = AArch64ISD::UQSHL_I; |
| 7001 | IsRightShift = false; |
| 7002 | break; |
| 7003 | case Intrinsic::aarch64_neon_srshl: |
| 7004 | Opcode = AArch64ISD::SRSHR_I; |
| 7005 | IsRightShift = true; |
| 7006 | break; |
| 7007 | case Intrinsic::aarch64_neon_urshl: |
| 7008 | Opcode = AArch64ISD::URSHR_I; |
| 7009 | IsRightShift = true; |
| 7010 | break; |
| 7011 | case Intrinsic::aarch64_neon_sqshlu: |
| 7012 | Opcode = AArch64ISD::SQSHLU_I; |
| 7013 | IsRightShift = false; |
| 7014 | break; |
| 7015 | } |
| 7016 | |
| 7017 | if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) |
| 7018 | return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), |
| 7019 | DAG.getConstant(-ShiftAmount, MVT::i32)); |
James Molloy | 1e3b5a4 | 2014-06-16 10:39:21 +0000 | [diff] [blame] | 7020 | else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) |
Tim Northover | 3b0846e | 2014-05-24 12:50:23 +0000 | [diff] [blame] | 7021 | return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), |
| 7022 | DAG.getConstant(ShiftAmount, MVT::i32)); |
| 7023 | |
| 7024 | return SDValue(); |
| 7025 | } |
| 7026 | |
| 7027 | // The CRC32[BH] instructions ignore the high bits of their data operand. Since |
| 7028 | // the intrinsics must be legal and take an i32, this means there's almost |
| 7029 | // certainly going to be a zext in the DAG which we can eliminate. |
| 7030 | static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { |
| 7031 | SDValue AndN = N->getOperand(2); |
| 7032 | if (AndN.getOpcode() != ISD::AND) |
| 7033 | return SDValue(); |
| 7034 | |
| 7035 | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); |
| 7036 | if (!CMask || CMask->getZExtValue() != Mask) |
| 7037 | return SDValue(); |
| 7038 | |
| 7039 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, |
| 7040 | N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); |
| 7041 | } |
| 7042 | |
| 7043 | static SDValue performIntrinsicCombine(SDNode *N, |
| 7044 | TargetLowering::DAGCombinerInfo &DCI, |
| 7045 | const AArch64Subtarget *Subtarget) { |
| 7046 | SelectionDAG &DAG = DCI.DAG; |
| 7047 | unsigned IID = getIntrinsicID(N); |
| 7048 | switch (IID) { |
| 7049 | default: |
| 7050 | break; |
| 7051 | case Intrinsic::aarch64_neon_vcvtfxs2fp: |
| 7052 | case Intrinsic::aarch64_neon_vcvtfxu2fp: |
| 7053 | return tryCombineFixedPointConvert(N, DCI, DAG); |
| 7054 | break; |
| 7055 | case Intrinsic::aarch64_neon_fmax: |
| 7056 | return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0), |
| 7057 | N->getOperand(1), N->getOperand(2)); |
| 7058 | case Intrinsic::aarch64_neon_fmin: |
| 7059 | return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0), |
| 7060 | N->getOperand(1), N->getOperand(2)); |
| 7061 | case Intrinsic::aarch64_neon_smull: |
| 7062 | case Intrinsic::aarch64_neon_umull: |
| 7063 | case Intrinsic::aarch64_neon_pmull: |
| 7064 | case Intrinsic::aarch64_neon_sqdmull: |
| 7065 | return tryCombineLongOpWithDup(IID, N, DCI, DAG); |
| 7066 | case Intrinsic::aarch64_neon_sqshl: |
| 7067 | case Intrinsic::aarch64_neon_uqshl: |
| 7068 | case Intrinsic::aarch64_neon_sqshlu: |
| 7069 | case Intrinsic::aarch64_neon_srshl: |
| 7070 | case Intrinsic::aarch64_neon_urshl: |
| 7071 | return tryCombineShiftImm(IID, N, DAG); |
| 7072 | case Intrinsic::aarch64_crc32b: |
| 7073 | case Intrinsic::aarch64_crc32cb: |
| 7074 | return tryCombineCRC32(0xff, N, DAG); |
| 7075 | case Intrinsic::aarch64_crc32h: |
| 7076 | case Intrinsic::aarch64_crc32ch: |
| 7077 | return tryCombineCRC32(0xffff, N, DAG); |
| 7078 | } |
| 7079 | return SDValue(); |
| 7080 | } |
| 7081 | |
| 7082 | static SDValue performExtendCombine(SDNode *N, |
| 7083 | TargetLowering::DAGCombinerInfo &DCI, |
| 7084 | SelectionDAG &DAG) { |
| 7085 | // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then |
| 7086 | // we can convert that DUP into another extract_high (of a bigger DUP), which |
| 7087 | // helps the backend to decide that an sabdl2 would be useful, saving a real |
| 7088 | // extract_high operation. |
| 7089 | if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && |
| 7090 | N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { |
| 7091 | SDNode *ABDNode = N->getOperand(0).getNode(); |
| 7092 | unsigned IID = getIntrinsicID(ABDNode); |
| 7093 | if (IID == Intrinsic::aarch64_neon_sabd || |
| 7094 | IID == Intrinsic::aarch64_neon_uabd) { |
| 7095 | SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); |
| 7096 | if (!NewABD.getNode()) |
| 7097 | return SDValue(); |
| 7098 | |
| 7099 | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), |
| 7100 | NewABD); |
| 7101 | } |
| 7102 | } |
| 7103 | |
| 7104 | // This is effectively a custom type legalization for AArch64. |
| 7105 | // |
| 7106 | // Type legalization will split an extend of a small, legal, type to a larger |
| 7107 | // illegal type by first splitting the destination type, often creating |
| 7108 | // illegal source types, which then get legalized in isel-confusing ways, |
| 7109 | // leading to really terrible codegen. E.g., |
| 7110 | // %result = v8i32 sext v8i8 %value |
| 7111 | // becomes |
| 7112 | // %losrc = extract_subreg %value, ... |
| 7113 | // %hisrc = extract_subreg %value, ... |
| 7114 | // %lo = v4i32 sext v4i8 %losrc |
| 7115 | // %hi = v4i32 sext v4i8 %hisrc |
| 7116 | // Things go rapidly downhill from there. |
| 7117 | // |
| 7118 | // For AArch64, the [sz]ext vector instructions can only go up one element |
| 7119 | // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 |
| 7120 | // take two instructions. |
| 7121 | // |
| 7122 | // This implies that the most efficient way to do the extend from v8i8 |
| 7123 | // to two v4i32 values is to first extend the v8i8 to v8i16, then do |
| 7124 | // the normal splitting to happen for the v8i16->v8i32. |
| 7125 | |
| 7126 | // This is pre-legalization to catch some cases where the default |
| 7127 | // type legalization will create ill-tempered code. |
| 7128 | if (!DCI.isBeforeLegalizeOps()) |
| 7129 | return SDValue(); |
| 7130 | |
| 7131 | // We're only interested in cleaning things up for non-legal vector types |
| 7132 | // here. If both the source and destination are legal, things will just |
| 7133 | // work naturally without any fiddling. |
| 7134 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 7135 | EVT ResVT = N->getValueType(0); |
| 7136 | if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) |
| 7137 | return SDValue(); |
| 7138 | // If the vector type isn't a simple VT, it's beyond the scope of what |
| 7139 | // we're worried about here. Let legalization do its thing and hope for |
| 7140 | // the best. |
| 7141 | if (!ResVT.isSimple()) |
| 7142 | return SDValue(); |
| 7143 | |
| 7144 | SDValue Src = N->getOperand(0); |
| 7145 | MVT SrcVT = Src->getValueType(0).getSimpleVT(); |
| 7146 | // If the source VT is a 64-bit vector, we can play games and get the |
| 7147 | // better results we want. |
| 7148 | if (SrcVT.getSizeInBits() != 64) |
| 7149 | return SDValue(); |
| 7150 | |
| 7151 | unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); |
| 7152 | unsigned ElementCount = SrcVT.getVectorNumElements(); |
| 7153 | SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); |
| 7154 | SDLoc DL(N); |
| 7155 | Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); |
| 7156 | |
| 7157 | // Now split the rest of the operation into two halves, each with a 64 |
| 7158 | // bit source. |
| 7159 | EVT LoVT, HiVT; |
| 7160 | SDValue Lo, Hi; |
| 7161 | unsigned NumElements = ResVT.getVectorNumElements(); |
| 7162 | assert(!(NumElements & 1) && "Splitting vector, but not in half!"); |
| 7163 | LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), |
| 7164 | ResVT.getVectorElementType(), NumElements / 2); |
| 7165 | |
| 7166 | EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), |
| 7167 | LoVT.getVectorNumElements()); |
| 7168 | Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, |
| 7169 | DAG.getIntPtrConstant(0)); |
| 7170 | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, |
| 7171 | DAG.getIntPtrConstant(InNVT.getVectorNumElements())); |
| 7172 | Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); |
| 7173 | Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); |
| 7174 | |
| 7175 | // Now combine the parts back together so we still have a single result |
| 7176 | // like the combiner expects. |
| 7177 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); |
| 7178 | } |
| 7179 | |
| 7180 | /// Replace a splat of a scalar to a vector store by scalar stores of the scalar |
| 7181 | /// value. The load store optimizer pass will merge them to store pair stores. |
| 7182 | /// This has better performance than a splat of the scalar followed by a split |
| 7183 | /// vector store. Even if the stores are not merged it is four stores vs a dup, |
| 7184 | /// followed by an ext.b and two stores. |
| 7185 | static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) { |
| 7186 | SDValue StVal = St->getValue(); |
| 7187 | EVT VT = StVal.getValueType(); |
| 7188 | |
| 7189 | // Don't replace floating point stores, they possibly won't be transformed to |
| 7190 | // stp because of the store pair suppress pass. |
| 7191 | if (VT.isFloatingPoint()) |
| 7192 | return SDValue(); |
| 7193 | |
| 7194 | // Check for insert vector elements. |
| 7195 | if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) |
| 7196 | return SDValue(); |
| 7197 | |
| 7198 | // We can express a splat as store pair(s) for 2 or 4 elements. |
| 7199 | unsigned NumVecElts = VT.getVectorNumElements(); |
| 7200 | if (NumVecElts != 4 && NumVecElts != 2) |
| 7201 | return SDValue(); |
| 7202 | SDValue SplatVal = StVal.getOperand(1); |
| 7203 | unsigned RemainInsertElts = NumVecElts - 1; |
| 7204 | |
| 7205 | // Check that this is a splat. |
| 7206 | while (--RemainInsertElts) { |
| 7207 | SDValue NextInsertElt = StVal.getOperand(0); |
| 7208 | if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT) |
| 7209 | return SDValue(); |
| 7210 | if (NextInsertElt.getOperand(1) != SplatVal) |
| 7211 | return SDValue(); |
| 7212 | StVal = NextInsertElt; |
| 7213 | } |
| 7214 | unsigned OrigAlignment = St->getAlignment(); |
| 7215 | unsigned EltOffset = NumVecElts == 4 ? 4 : 8; |
| 7216 | unsigned Alignment = std::min(OrigAlignment, EltOffset); |
| 7217 | |
| 7218 | // Create scalar stores. This is at least as good as the code sequence for a |
| 7219 | // split unaligned store wich is a dup.s, ext.b, and two stores. |
| 7220 | // Most of the time the three stores should be replaced by store pair |
| 7221 | // instructions (stp). |
| 7222 | SDLoc DL(St); |
| 7223 | SDValue BasePtr = St->getBasePtr(); |
| 7224 | SDValue NewST1 = |
| 7225 | DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(), |
| 7226 | St->isVolatile(), St->isNonTemporal(), St->getAlignment()); |
| 7227 | |
| 7228 | unsigned Offset = EltOffset; |
| 7229 | while (--NumVecElts) { |
| 7230 | SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, |
| 7231 | DAG.getConstant(Offset, MVT::i64)); |
| 7232 | NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, |
| 7233 | St->getPointerInfo(), St->isVolatile(), |
| 7234 | St->isNonTemporal(), Alignment); |
| 7235 | Offset += EltOffset; |
| 7236 | } |
| 7237 | return NewST1; |
| 7238 | } |
| 7239 | |
| 7240 | static SDValue performSTORECombine(SDNode *N, |
| 7241 | TargetLowering::DAGCombinerInfo &DCI, |
| 7242 | SelectionDAG &DAG, |
| 7243 | const AArch64Subtarget *Subtarget) { |
| 7244 | if (!DCI.isBeforeLegalize()) |
| 7245 | return SDValue(); |
| 7246 | |
| 7247 | StoreSDNode *S = cast<StoreSDNode>(N); |
| 7248 | if (S->isVolatile()) |
| 7249 | return SDValue(); |
| 7250 | |
| 7251 | // Cyclone has bad performance on unaligned 16B stores when crossing line and |
| 7252 | // page boundries. We want to split such stores. |
| 7253 | if (!Subtarget->isCyclone()) |
| 7254 | return SDValue(); |
| 7255 | |
| 7256 | // Don't split at Oz. |
| 7257 | MachineFunction &MF = DAG.getMachineFunction(); |
| 7258 | bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute( |
| 7259 | AttributeSet::FunctionIndex, Attribute::MinSize); |
| 7260 | if (IsMinSize) |
| 7261 | return SDValue(); |
| 7262 | |
| 7263 | SDValue StVal = S->getValue(); |
| 7264 | EVT VT = StVal.getValueType(); |
| 7265 | |
| 7266 | // Don't split v2i64 vectors. Memcpy lowering produces those and splitting |
| 7267 | // those up regresses performance on micro-benchmarks and olden/bh. |
| 7268 | if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64) |
| 7269 | return SDValue(); |
| 7270 | |
| 7271 | // Split unaligned 16B stores. They are terrible for performance. |
| 7272 | // Don't split stores with alignment of 1 or 2. Code that uses clang vector |
| 7273 | // extensions can use this to mark that it does not want splitting to happen |
| 7274 | // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of |
| 7275 | // eliminating alignment hazards is only 1 in 8 for alignment of 2. |
| 7276 | if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || |
| 7277 | S->getAlignment() <= 2) |
| 7278 | return SDValue(); |
| 7279 | |
| 7280 | // If we get a splat of a scalar convert this vector store to a store of |
| 7281 | // scalars. They will be merged into store pairs thereby removing two |
| 7282 | // instructions. |
| 7283 | SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S); |
| 7284 | if (ReplacedSplat != SDValue()) |
| 7285 | return ReplacedSplat; |
| 7286 | |
| 7287 | SDLoc DL(S); |
| 7288 | unsigned NumElts = VT.getVectorNumElements() / 2; |
| 7289 | // Split VT into two. |
| 7290 | EVT HalfVT = |
| 7291 | EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); |
| 7292 | SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, |
| 7293 | DAG.getIntPtrConstant(0)); |
| 7294 | SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, |
| 7295 | DAG.getIntPtrConstant(NumElts)); |
| 7296 | SDValue BasePtr = S->getBasePtr(); |
| 7297 | SDValue NewST1 = |
| 7298 | DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), |
| 7299 | S->isVolatile(), S->isNonTemporal(), S->getAlignment()); |
| 7300 | SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, |
| 7301 | DAG.getConstant(8, MVT::i64)); |
| 7302 | return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, |
| 7303 | S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), |
| 7304 | S->getAlignment()); |
| 7305 | } |
| 7306 | |
| 7307 | /// Target-specific DAG combine function for post-increment LD1 (lane) and |
| 7308 | /// post-increment LD1R. |
| 7309 | static SDValue performPostLD1Combine(SDNode *N, |
| 7310 | TargetLowering::DAGCombinerInfo &DCI, |
| 7311 | bool IsLaneOp) { |
| 7312 | if (DCI.isBeforeLegalizeOps()) |
| 7313 | return SDValue(); |
| 7314 | |
| 7315 | SelectionDAG &DAG = DCI.DAG; |
| 7316 | EVT VT = N->getValueType(0); |
| 7317 | |
| 7318 | unsigned LoadIdx = IsLaneOp ? 1 : 0; |
| 7319 | SDNode *LD = N->getOperand(LoadIdx).getNode(); |
| 7320 | // If it is not LOAD, can not do such combine. |
| 7321 | if (LD->getOpcode() != ISD::LOAD) |
| 7322 | return SDValue(); |
| 7323 | |
| 7324 | LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); |
| 7325 | EVT MemVT = LoadSDN->getMemoryVT(); |
| 7326 | // Check if memory operand is the same type as the vector element. |
| 7327 | if (MemVT != VT.getVectorElementType()) |
| 7328 | return SDValue(); |
| 7329 | |
| 7330 | // Check if there are other uses. If so, do not combine as it will introduce |
| 7331 | // an extra load. |
| 7332 | for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; |
| 7333 | ++UI) { |
| 7334 | if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. |
| 7335 | continue; |
| 7336 | if (*UI != N) |
| 7337 | return SDValue(); |
| 7338 | } |
| 7339 | |
| 7340 | SDValue Addr = LD->getOperand(1); |
| 7341 | SDValue Vector = N->getOperand(0); |
| 7342 | // Search for a use of the address operand that is an increment. |
| 7343 | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = |
| 7344 | Addr.getNode()->use_end(); UI != UE; ++UI) { |
| 7345 | SDNode *User = *UI; |
| 7346 | if (User->getOpcode() != ISD::ADD |
| 7347 | || UI.getUse().getResNo() != Addr.getResNo()) |
| 7348 | continue; |
| 7349 | |
| 7350 | // Check that the add is independent of the load. Otherwise, folding it |
| 7351 | // would create a cycle. |
| 7352 | if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) |
| 7353 | continue; |
| 7354 | // Also check that add is not used in the vector operand. This would also |
| 7355 | // create a cycle. |
| 7356 | if (User->isPredecessorOf(Vector.getNode())) |
| 7357 | continue; |
| 7358 | |
| 7359 | // If the increment is a constant, it must match the memory ref size. |
| 7360 | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| 7361 | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { |
| 7362 | uint32_t IncVal = CInc->getZExtValue(); |
| 7363 | unsigned NumBytes = VT.getScalarSizeInBits() / 8; |
| 7364 | if (IncVal != NumBytes) |
| 7365 | continue; |
| 7366 | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); |
| 7367 | } |
| 7368 | |
| 7369 | SmallVector<SDValue, 8> Ops; |
| 7370 | Ops.push_back(LD->getOperand(0)); // Chain |
| 7371 | if (IsLaneOp) { |
| 7372 | Ops.push_back(Vector); // The vector to be inserted |
| 7373 | Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector |
| 7374 | } |
| 7375 | Ops.push_back(Addr); |
| 7376 | Ops.push_back(Inc); |
| 7377 | |
| 7378 | EVT Tys[3] = { VT, MVT::i64, MVT::Other }; |
| 7379 | SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3)); |
| 7380 | unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; |
| 7381 | SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, |
| 7382 | MemVT, |
| 7383 | LoadSDN->getMemOperand()); |
| 7384 | |
| 7385 | // Update the uses. |
| 7386 | std::vector<SDValue> NewResults; |
| 7387 | NewResults.push_back(SDValue(LD, 0)); // The result of load |
| 7388 | NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain |
| 7389 | DCI.CombineTo(LD, NewResults); |
| 7390 | DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result |
| 7391 | DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register |
| 7392 | |
| 7393 | break; |
| 7394 | } |
| 7395 | return SDValue(); |
| 7396 | } |
| 7397 | |
| 7398 | /// Target-specific DAG combine function for NEON load/store intrinsics |
| 7399 | /// to merge base address updates. |
| 7400 | static SDValue performNEONPostLDSTCombine(SDNode *N, |
| 7401 | TargetLowering::DAGCombinerInfo &DCI, |
| 7402 | SelectionDAG &DAG) { |
| 7403 | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| 7404 | return SDValue(); |
| 7405 | |
| 7406 | unsigned AddrOpIdx = N->getNumOperands() - 1; |
| 7407 | SDValue Addr = N->getOperand(AddrOpIdx); |
| 7408 | |
| 7409 | // Search for a use of the address operand that is an increment. |
| 7410 | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| 7411 | UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| 7412 | SDNode *User = *UI; |
| 7413 | if (User->getOpcode() != ISD::ADD || |
| 7414 | UI.getUse().getResNo() != Addr.getResNo()) |
| 7415 | continue; |
| 7416 | |
| 7417 | // Check that the add is independent of the load/store. Otherwise, folding |
| 7418 | // it would create a cycle. |
| 7419 | if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) |
| 7420 | continue; |
| 7421 | |
| 7422 | // Find the new opcode for the updating load/store. |
| 7423 | bool IsStore = false; |
| 7424 | bool IsLaneOp = false; |
| 7425 | bool IsDupOp = false; |
| 7426 | unsigned NewOpc = 0; |
| 7427 | unsigned NumVecs = 0; |
| 7428 | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| 7429 | switch (IntNo) { |
| 7430 | default: llvm_unreachable("unexpected intrinsic for Neon base update"); |
| 7431 | case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; |
| 7432 | NumVecs = 2; break; |
| 7433 | case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; |
| 7434 | NumVecs = 3; break; |
| 7435 | case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; |
| 7436 | NumVecs = 4; break; |
| 7437 | case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; |
| 7438 | NumVecs = 2; IsStore = true; break; |
| 7439 | case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; |
| 7440 | NumVecs = 3; IsStore = true; break; |
| 7441 | case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; |
| 7442 | NumVecs = 4; IsStore = true; break; |
| 7443 | case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; |
| 7444 | NumVecs = 2; break; |
| 7445 | case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; |
| 7446 | NumVecs = 3; break; |
| 7447 | case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; |
| 7448 | NumVecs = 4; break; |
| 7449 | case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; |
| 7450 | NumVecs = 2; IsStore = true; break; |
| 7451 | case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; |
| 7452 | NumVecs = 3; IsStore = true; break; |
| 7453 | case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; |
| 7454 | NumVecs = 4; IsStore = true; break; |
| 7455 | case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; |
| 7456 | NumVecs = 2; IsDupOp = true; break; |
| 7457 | case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; |
| 7458 | NumVecs = 3; IsDupOp = true; break; |
| 7459 | case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; |
| 7460 | NumVecs = 4; IsDupOp = true; break; |
| 7461 | case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; |
| 7462 | NumVecs = 2; IsLaneOp = true; break; |
| 7463 | case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; |
| 7464 | NumVecs = 3; IsLaneOp = true; break; |
| 7465 | case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; |
| 7466 | NumVecs = 4; IsLaneOp = true; break; |
| 7467 | case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; |
| 7468 | NumVecs = 2; IsStore = true; IsLaneOp = true; break; |
| 7469 | case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; |
| 7470 | NumVecs = 3; IsStore = true; IsLaneOp = true; break; |
| 7471 | case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; |
| 7472 | NumVecs = 4; IsStore = true; IsLaneOp = true; break; |
| 7473 | } |
| 7474 | |
| 7475 | EVT VecTy; |
| 7476 | if (IsStore) |
| 7477 | VecTy = N->getOperand(2).getValueType(); |
| 7478 | else |
| 7479 | VecTy = N->getValueType(0); |
| 7480 | |
| 7481 | // If the increment is a constant, it must match the memory ref size. |
| 7482 | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| 7483 | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { |
| 7484 | uint32_t IncVal = CInc->getZExtValue(); |
| 7485 | unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; |
| 7486 | if (IsLaneOp || IsDupOp) |
| 7487 | NumBytes /= VecTy.getVectorNumElements(); |
| 7488 | if (IncVal != NumBytes) |
| 7489 | continue; |
| 7490 | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); |
| 7491 | } |
| 7492 | SmallVector<SDValue, 8> Ops; |
| 7493 | Ops.push_back(N->getOperand(0)); // Incoming chain |
| 7494 | // Load lane and store have vector list as input. |
| 7495 | if (IsLaneOp || IsStore) |
| 7496 | for (unsigned i = 2; i < AddrOpIdx; ++i) |
| 7497 | Ops.push_back(N->getOperand(i)); |
| 7498 | Ops.push_back(Addr); // Base register |
| 7499 | Ops.push_back(Inc); |
| 7500 | |
| 7501 | // Return Types. |
| 7502 | EVT Tys[6]; |
| 7503 | unsigned NumResultVecs = (IsStore ? 0 : NumVecs); |
| 7504 | unsigned n; |
| 7505 | for (n = 0; n < NumResultVecs; ++n) |
| 7506 | Tys[n] = VecTy; |
| 7507 | Tys[n++] = MVT::i64; // Type of write back register |
| 7508 | Tys[n] = MVT::Other; // Type of the chain |
| 7509 | SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2)); |
| 7510 | |
| 7511 | MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); |
| 7512 | SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, |
| 7513 | MemInt->getMemoryVT(), |
| 7514 | MemInt->getMemOperand()); |
| 7515 | |
| 7516 | // Update the uses. |
| 7517 | std::vector<SDValue> NewResults; |
| 7518 | for (unsigned i = 0; i < NumResultVecs; ++i) { |
| 7519 | NewResults.push_back(SDValue(UpdN.getNode(), i)); |
| 7520 | } |
| 7521 | NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); |
| 7522 | DCI.CombineTo(N, NewResults); |
| 7523 | DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); |
| 7524 | |
| 7525 | break; |
| 7526 | } |
| 7527 | return SDValue(); |
| 7528 | } |
| 7529 | |
| 7530 | // Optimize compare with zero and branch. |
| 7531 | static SDValue performBRCONDCombine(SDNode *N, |
| 7532 | TargetLowering::DAGCombinerInfo &DCI, |
| 7533 | SelectionDAG &DAG) { |
| 7534 | SDValue Chain = N->getOperand(0); |
| 7535 | SDValue Dest = N->getOperand(1); |
| 7536 | SDValue CCVal = N->getOperand(2); |
| 7537 | SDValue Cmp = N->getOperand(3); |
| 7538 | |
| 7539 | assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); |
| 7540 | unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); |
| 7541 | if (CC != AArch64CC::EQ && CC != AArch64CC::NE) |
| 7542 | return SDValue(); |
| 7543 | |
| 7544 | unsigned CmpOpc = Cmp.getOpcode(); |
| 7545 | if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) |
| 7546 | return SDValue(); |
| 7547 | |
| 7548 | // Only attempt folding if there is only one use of the flag and no use of the |
| 7549 | // value. |
| 7550 | if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) |
| 7551 | return SDValue(); |
| 7552 | |
| 7553 | SDValue LHS = Cmp.getOperand(0); |
| 7554 | SDValue RHS = Cmp.getOperand(1); |
| 7555 | |
| 7556 | assert(LHS.getValueType() == RHS.getValueType() && |
| 7557 | "Expected the value type to be the same for both operands!"); |
| 7558 | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) |
| 7559 | return SDValue(); |
| 7560 | |
| 7561 | if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue()) |
| 7562 | std::swap(LHS, RHS); |
| 7563 | |
| 7564 | if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue()) |
| 7565 | return SDValue(); |
| 7566 | |
| 7567 | if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || |
| 7568 | LHS.getOpcode() == ISD::SRL) |
| 7569 | return SDValue(); |
| 7570 | |
| 7571 | // Fold the compare into the branch instruction. |
| 7572 | SDValue BR; |
| 7573 | if (CC == AArch64CC::EQ) |
| 7574 | BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); |
| 7575 | else |
| 7576 | BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); |
| 7577 | |
| 7578 | // Do not add new nodes to DAG combiner worklist. |
| 7579 | DCI.CombineTo(N, BR, false); |
| 7580 | |
| 7581 | return SDValue(); |
| 7582 | } |
| 7583 | |
| 7584 | // vselect (v1i1 setcc) -> |
| 7585 | // vselect (v1iXX setcc) (XX is the size of the compared operand type) |
| 7586 | // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as |
| 7587 | // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine |
| 7588 | // such VSELECT. |
| 7589 | static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { |
| 7590 | SDValue N0 = N->getOperand(0); |
| 7591 | EVT CCVT = N0.getValueType(); |
| 7592 | |
| 7593 | if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || |
| 7594 | CCVT.getVectorElementType() != MVT::i1) |
| 7595 | return SDValue(); |
| 7596 | |
| 7597 | EVT ResVT = N->getValueType(0); |
| 7598 | EVT CmpVT = N0.getOperand(0).getValueType(); |
| 7599 | // Only combine when the result type is of the same size as the compared |
| 7600 | // operands. |
| 7601 | if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) |
| 7602 | return SDValue(); |
| 7603 | |
| 7604 | SDValue IfTrue = N->getOperand(1); |
| 7605 | SDValue IfFalse = N->getOperand(2); |
| 7606 | SDValue SetCC = |
| 7607 | DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), |
| 7608 | N0.getOperand(0), N0.getOperand(1), |
| 7609 | cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| 7610 | return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, |
| 7611 | IfTrue, IfFalse); |
| 7612 | } |
| 7613 | |
| 7614 | /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with |
| 7615 | /// the compare-mask instructions rather than going via NZCV, even if LHS and |
| 7616 | /// RHS are really scalar. This replaces any scalar setcc in the above pattern |
| 7617 | /// with a vector one followed by a DUP shuffle on the result. |
| 7618 | static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) { |
| 7619 | SDValue N0 = N->getOperand(0); |
| 7620 | EVT ResVT = N->getValueType(0); |
| 7621 | |
| 7622 | if (!N->getOperand(1).getValueType().isVector()) |
| 7623 | return SDValue(); |
| 7624 | |
| 7625 | if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1) |
| 7626 | return SDValue(); |
| 7627 | |
| 7628 | SDLoc DL(N0); |
| 7629 | |
| 7630 | EVT SrcVT = N0.getOperand(0).getValueType(); |
| 7631 | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, |
| 7632 | ResVT.getSizeInBits() / SrcVT.getSizeInBits()); |
| 7633 | EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); |
| 7634 | |
| 7635 | // First perform a vector comparison, where lane 0 is the one we're interested |
| 7636 | // in. |
| 7637 | SDValue LHS = |
| 7638 | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); |
| 7639 | SDValue RHS = |
| 7640 | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); |
| 7641 | SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); |
| 7642 | |
| 7643 | // Now duplicate the comparison mask we want across all other lanes. |
| 7644 | SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); |
| 7645 | SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data()); |
| 7646 | Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(), |
| 7647 | Mask); |
| 7648 | |
| 7649 | return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); |
| 7650 | } |
| 7651 | |
| 7652 | SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, |
| 7653 | DAGCombinerInfo &DCI) const { |
| 7654 | SelectionDAG &DAG = DCI.DAG; |
| 7655 | switch (N->getOpcode()) { |
| 7656 | default: |
| 7657 | break; |
| 7658 | case ISD::ADD: |
| 7659 | case ISD::SUB: |
| 7660 | return performAddSubLongCombine(N, DCI, DAG); |
| 7661 | case ISD::XOR: |
| 7662 | return performXorCombine(N, DAG, DCI, Subtarget); |
| 7663 | case ISD::MUL: |
| 7664 | return performMulCombine(N, DAG, DCI, Subtarget); |
| 7665 | case ISD::SINT_TO_FP: |
| 7666 | case ISD::UINT_TO_FP: |
| 7667 | return performIntToFpCombine(N, DAG); |
| 7668 | case ISD::OR: |
| 7669 | return performORCombine(N, DCI, Subtarget); |
| 7670 | case ISD::INTRINSIC_WO_CHAIN: |
| 7671 | return performIntrinsicCombine(N, DCI, Subtarget); |
| 7672 | case ISD::ANY_EXTEND: |
| 7673 | case ISD::ZERO_EXTEND: |
| 7674 | case ISD::SIGN_EXTEND: |
| 7675 | return performExtendCombine(N, DCI, DAG); |
| 7676 | case ISD::BITCAST: |
| 7677 | return performBitcastCombine(N, DCI, DAG); |
| 7678 | case ISD::CONCAT_VECTORS: |
| 7679 | return performConcatVectorsCombine(N, DCI, DAG); |
| 7680 | case ISD::SELECT: |
| 7681 | return performSelectCombine(N, DAG); |
| 7682 | case ISD::VSELECT: |
| 7683 | return performVSelectCombine(N, DCI.DAG); |
| 7684 | case ISD::STORE: |
| 7685 | return performSTORECombine(N, DCI, DAG, Subtarget); |
| 7686 | case AArch64ISD::BRCOND: |
| 7687 | return performBRCONDCombine(N, DCI, DAG); |
| 7688 | case AArch64ISD::DUP: |
| 7689 | return performPostLD1Combine(N, DCI, false); |
| 7690 | case ISD::INSERT_VECTOR_ELT: |
| 7691 | return performPostLD1Combine(N, DCI, true); |
| 7692 | case ISD::INTRINSIC_VOID: |
| 7693 | case ISD::INTRINSIC_W_CHAIN: |
| 7694 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| 7695 | case Intrinsic::aarch64_neon_ld2: |
| 7696 | case Intrinsic::aarch64_neon_ld3: |
| 7697 | case Intrinsic::aarch64_neon_ld4: |
| 7698 | case Intrinsic::aarch64_neon_ld1x2: |
| 7699 | case Intrinsic::aarch64_neon_ld1x3: |
| 7700 | case Intrinsic::aarch64_neon_ld1x4: |
| 7701 | case Intrinsic::aarch64_neon_ld2lane: |
| 7702 | case Intrinsic::aarch64_neon_ld3lane: |
| 7703 | case Intrinsic::aarch64_neon_ld4lane: |
| 7704 | case Intrinsic::aarch64_neon_ld2r: |
| 7705 | case Intrinsic::aarch64_neon_ld3r: |
| 7706 | case Intrinsic::aarch64_neon_ld4r: |
| 7707 | case Intrinsic::aarch64_neon_st2: |
| 7708 | case Intrinsic::aarch64_neon_st3: |
| 7709 | case Intrinsic::aarch64_neon_st4: |
| 7710 | case Intrinsic::aarch64_neon_st1x2: |
| 7711 | case Intrinsic::aarch64_neon_st1x3: |
| 7712 | case Intrinsic::aarch64_neon_st1x4: |
| 7713 | case Intrinsic::aarch64_neon_st2lane: |
| 7714 | case Intrinsic::aarch64_neon_st3lane: |
| 7715 | case Intrinsic::aarch64_neon_st4lane: |
| 7716 | return performNEONPostLDSTCombine(N, DCI, DAG); |
| 7717 | default: |
| 7718 | break; |
| 7719 | } |
| 7720 | } |
| 7721 | return SDValue(); |
| 7722 | } |
| 7723 | |
| 7724 | // Check if the return value is used as only a return value, as otherwise |
| 7725 | // we can't perform a tail-call. In particular, we need to check for |
| 7726 | // target ISD nodes that are returns and any other "odd" constructs |
| 7727 | // that the generic analysis code won't necessarily catch. |
| 7728 | bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, |
| 7729 | SDValue &Chain) const { |
| 7730 | if (N->getNumValues() != 1) |
| 7731 | return false; |
| 7732 | if (!N->hasNUsesOfValue(1, 0)) |
| 7733 | return false; |
| 7734 | |
| 7735 | SDValue TCChain = Chain; |
| 7736 | SDNode *Copy = *N->use_begin(); |
| 7737 | if (Copy->getOpcode() == ISD::CopyToReg) { |
| 7738 | // If the copy has a glue operand, we conservatively assume it isn't safe to |
| 7739 | // perform a tail call. |
| 7740 | if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == |
| 7741 | MVT::Glue) |
| 7742 | return false; |
| 7743 | TCChain = Copy->getOperand(0); |
| 7744 | } else if (Copy->getOpcode() != ISD::FP_EXTEND) |
| 7745 | return false; |
| 7746 | |
| 7747 | bool HasRet = false; |
| 7748 | for (SDNode *Node : Copy->uses()) { |
| 7749 | if (Node->getOpcode() != AArch64ISD::RET_FLAG) |
| 7750 | return false; |
| 7751 | HasRet = true; |
| 7752 | } |
| 7753 | |
| 7754 | if (!HasRet) |
| 7755 | return false; |
| 7756 | |
| 7757 | Chain = TCChain; |
| 7758 | return true; |
| 7759 | } |
| 7760 | |
| 7761 | // Return whether the an instruction can potentially be optimized to a tail |
| 7762 | // call. This will cause the optimizers to attempt to move, or duplicate, |
| 7763 | // return instructions to help enable tail call optimizations for this |
| 7764 | // instruction. |
| 7765 | bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { |
| 7766 | if (!CI->isTailCall()) |
| 7767 | return false; |
| 7768 | |
| 7769 | return true; |
| 7770 | } |
| 7771 | |
| 7772 | bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, |
| 7773 | SDValue &Offset, |
| 7774 | ISD::MemIndexedMode &AM, |
| 7775 | bool &IsInc, |
| 7776 | SelectionDAG &DAG) const { |
| 7777 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) |
| 7778 | return false; |
| 7779 | |
| 7780 | Base = Op->getOperand(0); |
| 7781 | // All of the indexed addressing mode instructions take a signed |
| 7782 | // 9 bit immediate offset. |
| 7783 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| 7784 | int64_t RHSC = (int64_t)RHS->getZExtValue(); |
| 7785 | if (RHSC >= 256 || RHSC <= -256) |
| 7786 | return false; |
| 7787 | IsInc = (Op->getOpcode() == ISD::ADD); |
| 7788 | Offset = Op->getOperand(1); |
| 7789 | return true; |
| 7790 | } |
| 7791 | return false; |
| 7792 | } |
| 7793 | |
| 7794 | bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| 7795 | SDValue &Offset, |
| 7796 | ISD::MemIndexedMode &AM, |
| 7797 | SelectionDAG &DAG) const { |
| 7798 | EVT VT; |
| 7799 | SDValue Ptr; |
| 7800 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| 7801 | VT = LD->getMemoryVT(); |
| 7802 | Ptr = LD->getBasePtr(); |
| 7803 | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| 7804 | VT = ST->getMemoryVT(); |
| 7805 | Ptr = ST->getBasePtr(); |
| 7806 | } else |
| 7807 | return false; |
| 7808 | |
| 7809 | bool IsInc; |
| 7810 | if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) |
| 7811 | return false; |
| 7812 | AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| 7813 | return true; |
| 7814 | } |
| 7815 | |
| 7816 | bool AArch64TargetLowering::getPostIndexedAddressParts( |
| 7817 | SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, |
| 7818 | ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { |
| 7819 | EVT VT; |
| 7820 | SDValue Ptr; |
| 7821 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| 7822 | VT = LD->getMemoryVT(); |
| 7823 | Ptr = LD->getBasePtr(); |
| 7824 | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| 7825 | VT = ST->getMemoryVT(); |
| 7826 | Ptr = ST->getBasePtr(); |
| 7827 | } else |
| 7828 | return false; |
| 7829 | |
| 7830 | bool IsInc; |
| 7831 | if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) |
| 7832 | return false; |
| 7833 | // Post-indexing updates the base, so it's not a valid transform |
| 7834 | // if that's not the same as the load's pointer. |
| 7835 | if (Ptr != Base) |
| 7836 | return false; |
| 7837 | AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; |
| 7838 | return true; |
| 7839 | } |
| 7840 | |
| 7841 | void AArch64TargetLowering::ReplaceNodeResults( |
| 7842 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| 7843 | switch (N->getOpcode()) { |
| 7844 | default: |
| 7845 | llvm_unreachable("Don't know how to custom expand this"); |
| 7846 | case ISD::FP_TO_UINT: |
| 7847 | case ISD::FP_TO_SINT: |
| 7848 | assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); |
| 7849 | // Let normal code take care of it by not adding anything to Results. |
| 7850 | return; |
| 7851 | } |
| 7852 | } |
| 7853 | |
| 7854 | bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const { |
| 7855 | // Loads and stores less than 128-bits are already atomic; ones above that |
| 7856 | // are doomed anyway, so defer to the default libcall and blame the OS when |
| 7857 | // things go wrong: |
| 7858 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| 7859 | return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128; |
| 7860 | else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| 7861 | return LI->getType()->getPrimitiveSizeInBits() == 128; |
| 7862 | |
| 7863 | // For the real atomic operations, we have ldxr/stxr up to 128 bits. |
| 7864 | return Inst->getType()->getPrimitiveSizeInBits() <= 128; |
| 7865 | } |
| 7866 | |
| 7867 | Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, |
| 7868 | AtomicOrdering Ord) const { |
| 7869 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| 7870 | Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); |
| 7871 | bool IsAcquire = |
| 7872 | Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent; |
| 7873 | |
| 7874 | // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd |
| 7875 | // intrinsic must return {i64, i64} and we have to recombine them into a |
| 7876 | // single i128 here. |
| 7877 | if (ValTy->getPrimitiveSizeInBits() == 128) { |
| 7878 | Intrinsic::ID Int = |
| 7879 | IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; |
| 7880 | Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); |
| 7881 | |
| 7882 | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| 7883 | Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); |
| 7884 | |
| 7885 | Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| 7886 | Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| 7887 | Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| 7888 | Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| 7889 | return Builder.CreateOr( |
| 7890 | Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); |
| 7891 | } |
| 7892 | |
| 7893 | Type *Tys[] = { Addr->getType() }; |
| 7894 | Intrinsic::ID Int = |
| 7895 | IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; |
| 7896 | Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); |
| 7897 | |
| 7898 | return Builder.CreateTruncOrBitCast( |
| 7899 | Builder.CreateCall(Ldxr, Addr), |
| 7900 | cast<PointerType>(Addr->getType())->getElementType()); |
| 7901 | } |
| 7902 | |
| 7903 | Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, |
| 7904 | Value *Val, Value *Addr, |
| 7905 | AtomicOrdering Ord) const { |
| 7906 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| 7907 | bool IsRelease = |
| 7908 | Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent; |
| 7909 | |
| 7910 | // Since the intrinsics must have legal type, the i128 intrinsics take two |
| 7911 | // parameters: "i64, i64". We must marshal Val into the appropriate form |
| 7912 | // before the call. |
| 7913 | if (Val->getType()->getPrimitiveSizeInBits() == 128) { |
| 7914 | Intrinsic::ID Int = |
| 7915 | IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; |
| 7916 | Function *Stxr = Intrinsic::getDeclaration(M, Int); |
| 7917 | Type *Int64Ty = Type::getInt64Ty(M->getContext()); |
| 7918 | |
| 7919 | Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); |
| 7920 | Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); |
| 7921 | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| 7922 | return Builder.CreateCall3(Stxr, Lo, Hi, Addr); |
| 7923 | } |
| 7924 | |
| 7925 | Intrinsic::ID Int = |
| 7926 | IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; |
| 7927 | Type *Tys[] = { Addr->getType() }; |
| 7928 | Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); |
| 7929 | |
| 7930 | return Builder.CreateCall2( |
| 7931 | Stxr, Builder.CreateZExtOrBitCast( |
| 7932 | Val, Stxr->getFunctionType()->getParamType(0)), |
| 7933 | Addr); |
| 7934 | } |