blob: 8ebc0956c85c23de1ecb106cbdcf77a8279ebdfc [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohmand78c4002008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner7d2a5392004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35522b72010-01-04 07:12:23 +000038#include "InstCombine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000039#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000043#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerc1f19072009-11-09 23:28:39 +000044#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf390e042009-10-27 20:05:49 +000045#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000046#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
Chris Lattner223812d2010-01-05 07:54:43 +000048#include "llvm/Support/CFG.h"
Meador Inge193e0352012-11-13 04:16:17 +000049#include "llvm/Support/CommandLine.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000050#include "llvm/Support/Debug.h"
Chris Lattner69193f92004-04-05 01:30:19 +000051#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd4252a72004-07-30 07:50:03 +000052#include "llvm/Support/PatternMatch.h"
Nick Lewycky50f49662011-08-03 00:43:35 +000053#include "llvm/Support/ValueHandle.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000054#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
Chris Lattner053c0932002-05-14 15:24:07 +000056#include <algorithm>
Torok Edwinab207842008-04-20 08:33:11 +000057#include <climits>
Chris Lattner8427bff2003-12-07 01:24:23 +000058using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000059using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000060
Chris Lattner79a42ac2006-12-19 21:40:18 +000061STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner79a42ac2006-12-19 21:40:18 +000064STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sandsfbb9ac32010-12-22 13:36:08 +000065STATISTIC(NumExpand, "Number of expansions");
Duncan Sands3547d2e2010-12-22 09:40:51 +000066STATISTIC(NumFactor , "Number of factorizations");
67STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000068
Meador Inge193e0352012-11-13 04:16:17 +000069static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70 cl::init(false),
71 cl::desc("Enable unsafe double to float "
72 "shrinking for math lib calls"));
73
Owen Andersonf7ef5df2010-10-07 20:04:55 +000074// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76 initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80 initializeInstCombine(*unwrap(R));
81}
Chris Lattner260ab202002-04-18 17:39:14 +000082
Dan Gohmand78c4002008-05-13 00:00:25 +000083char InstCombiner::ID = 0;
Chad Rosiere6de63d2011-12-01 21:29:16 +000084INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85 "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersondf7a4f22010-10-07 22:25:06 +000088 "Combine redundant instructions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +000089
Chris Lattner7e044912010-01-04 07:17:19 +000090void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner7e044912010-01-04 07:17:19 +000091 AU.setPreservesCFG();
Chad Rosier82e1bd82011-11-29 23:57:10 +000092 AU.addRequired<TargetLibraryInfo>();
Chris Lattner7e044912010-01-04 07:17:19 +000093}
94
95
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000096Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +000097 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopesa2f6cec2012-05-22 17:19:09 +000098}
99
Chris Lattner1559bed2009-11-10 07:23:37 +0000100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
Chris Lattner229907c2011-07-18 04:54:35 +0000103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands19d0b472010-02-16 11:11:14 +0000104 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000105
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000106 // If we don't have DL, we don't know if the source/dest are legal.
107 if (!DL) return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000108
Chris Lattner1559bed2009-11-10 07:23:37 +0000109 unsigned FromWidth = From->getPrimitiveSizeInBits();
110 unsigned ToWidth = To->getPrimitiveSizeInBits();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000111 bool FromLegal = DL->isLegalInteger(FromWidth);
112 bool ToLegal = DL->isLegalInteger(ToWidth);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000113
Chris Lattner1559bed2009-11-10 07:23:37 +0000114 // If this is a legal integer from type, and the result would be an illegal
115 // type, don't do the transformation.
116 if (FromLegal && !ToLegal)
117 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000118
Chris Lattner1559bed2009-11-10 07:23:37 +0000119 // Otherwise, if both are illegal, do not increase the size of the result. We
120 // do allow things like i160 -> i64, but not i64 -> i160.
121 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122 return false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000123
Chris Lattner1559bed2009-11-10 07:23:37 +0000124 return true;
125}
126
Nick Lewyckyde492782011-08-14 01:45:19 +0000127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134 if (!OBO || !OBO->hasNoSignedWrap()) {
135 return false;
136 }
137
138 // We reason about Add and Sub Only.
139 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000140 if (Opcode != Instruction::Add &&
Nick Lewyckyde492782011-08-14 01:45:19 +0000141 Opcode != Instruction::Sub) {
142 return false;
143 }
144
145 ConstantInt *CB = dyn_cast<ConstantInt>(B);
146 ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148 if (!CB || !CC) {
149 return false;
150 }
151
152 const APInt &BVal = CB->getValue();
153 const APInt &CVal = CC->getValue();
154 bool Overflow = false;
155
156 if (Opcode == Instruction::Add) {
157 BVal.sadd_ov(CVal, Overflow);
158 } else {
159 BVal.ssub_ov(CVal, Overflow);
160 }
161
162 return !Overflow;
163}
164
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170 if (!FPMO) {
171 I.clearSubclassOptionalData();
172 return;
173 }
174
175 FastMathFlags FMF = I.getFastMathFlags();
176 I.clearSubclassOptionalData();
177 I.setFastMathFlags(FMF);
178}
179
Duncan Sands641baf12010-11-13 15:10:37 +0000180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183// Commutative operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000184//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000185// 1. Order operands such that they are listed from right (least complex) to
186// left (most complex). This puts constants before unary operators before
187// binary operators.
188//
Duncan Sands641baf12010-11-13 15:10:37 +0000189// Associative operators:
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000190//
Duncan Sands641baf12010-11-13 15:10:37 +0000191// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194// Associative and commutative operators:
195//
196// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199// if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000202 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands641baf12010-11-13 15:10:37 +0000203 bool Changed = false;
Chris Lattner7fb29e12003-03-11 00:12:48 +0000204
Duncan Sands641baf12010-11-13 15:10:37 +0000205 do {
206 // Order operands such that they are listed from right (least complex) to
207 // left (most complex). This puts constants before unary operators before
208 // binary operators.
209 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210 getComplexity(I.getOperand(1)))
211 Changed = !I.swapOperands();
212
213 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216 if (I.isAssociative()) {
217 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218 if (Op0 && Op0->getOpcode() == Opcode) {
219 Value *A = Op0->getOperand(0);
220 Value *B = Op0->getOperand(1);
221 Value *C = I.getOperand(1);
222
223 // Does "B op C" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000224 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000225 // It simplifies to V. Form "A op V".
226 I.setOperand(0, A);
227 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000228 // Conservatively clear the optional flags, since they may not be
229 // preserved by the reassociation.
Nick Lewyckyae13df62011-08-14 03:41:33 +0000230 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendlingea6397f2012-07-19 00:11:40 +0000231 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewyckyae13df62011-08-14 03:41:33 +0000232 // Note: this is only valid because SimplifyBinOp doesn't look at
233 // the operands to Op0.
Nick Lewyckyde492782011-08-14 01:45:19 +0000234 I.clearSubclassOptionalData();
235 I.setHasNoSignedWrap(true);
236 } else {
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000237 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000238 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000239
Duncan Sands641baf12010-11-13 15:10:37 +0000240 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000241 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000242 continue;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000243 }
Duncan Sands641baf12010-11-13 15:10:37 +0000244 }
245
246 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247 if (Op1 && Op1->getOpcode() == Opcode) {
248 Value *A = I.getOperand(0);
249 Value *B = Op1->getOperand(0);
250 Value *C = Op1->getOperand(1);
251
252 // Does "A op B" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000253 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000254 // It simplifies to V. Form "V op C".
255 I.setOperand(0, V);
256 I.setOperand(1, C);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000257 // Conservatively clear the optional flags, since they may not be
258 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000259 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000260 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000261 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000262 continue;
263 }
264 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000265 }
Duncan Sands641baf12010-11-13 15:10:37 +0000266
267 if (I.isAssociative() && I.isCommutative()) {
268 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269 if (Op0 && Op0->getOpcode() == Opcode) {
270 Value *A = Op0->getOperand(0);
271 Value *B = Op0->getOperand(1);
272 Value *C = I.getOperand(1);
273
274 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000275 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000276 // It simplifies to V. Form "V op B".
277 I.setOperand(0, V);
278 I.setOperand(1, B);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000279 // Conservatively clear the optional flags, since they may not be
280 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000281 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000282 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000283 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000284 continue;
285 }
286 }
287
288 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289 if (Op1 && Op1->getOpcode() == Opcode) {
290 Value *A = I.getOperand(0);
291 Value *B = Op1->getOperand(0);
292 Value *C = Op1->getOperand(1);
293
294 // Does "C op A" simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000295 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
Duncan Sands641baf12010-11-13 15:10:37 +0000296 // It simplifies to V. Form "B op V".
297 I.setOperand(0, B);
298 I.setOperand(1, V);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000299 // Conservatively clear the optional flags, since they may not be
300 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000301 ClearSubclassDataAfterReassociation(I);
Duncan Sands641baf12010-11-13 15:10:37 +0000302 Changed = true;
Duncan Sands3547d2e2010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands641baf12010-11-13 15:10:37 +0000304 continue;
305 }
306 }
307
308 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309 // if C1 and C2 are constants.
310 if (Op0 && Op1 &&
311 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312 isa<Constant>(Op0->getOperand(1)) &&
313 isa<Constant>(Op1->getOperand(1)) &&
314 Op0->hasOneUse() && Op1->hasOneUse()) {
315 Value *A = Op0->getOperand(0);
316 Constant *C1 = cast<Constant>(Op0->getOperand(1));
317 Value *B = Op1->getOperand(0);
318 Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckyde492782011-08-14 01:45:19 +0000321 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Owen Anderson1664dc82014-01-20 07:44:53 +0000322 if (isa<FPMathOperator>(New)) {
323 FastMathFlags Flags = I.getFastMathFlags();
324 Flags &= Op0->getFastMathFlags();
325 Flags &= Op1->getFastMathFlags();
326 New->setFastMathFlags(Flags);
327 }
Eli Friedman35211c62011-05-27 00:19:40 +0000328 InsertNewInstWith(New, I);
Eli Friedman41e509a2011-05-18 23:58:37 +0000329 New->takeName(Op1);
Duncan Sands641baf12010-11-13 15:10:37 +0000330 I.setOperand(0, New);
331 I.setOperand(1, Folded);
Dan Gohmanc6f0bda2011-02-02 02:05:46 +0000332 // Conservatively clear the optional flags, since they may not be
333 // preserved by the reassociation.
Michael Ilseman1dd6f2a2013-02-07 01:40:15 +0000334 ClearSubclassDataAfterReassociation(I);
Nick Lewyckyde492782011-08-14 01:45:19 +0000335
Duncan Sands641baf12010-11-13 15:10:37 +0000336 Changed = true;
337 continue;
338 }
339 }
340
341 // No further simplifications.
342 return Changed;
343 } while (1);
Chris Lattner260ab202002-04-18 17:39:14 +0000344}
Chris Lattnerca081252001-12-14 16:52:21 +0000345
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000346/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sands22df7412010-11-23 15:25:34 +0000347/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000348static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
349 Instruction::BinaryOps ROp) {
350 switch (LOp) {
351 default:
352 return false;
353
354 case Instruction::And:
355 // And distributes over Or and Xor.
356 switch (ROp) {
357 default:
358 return false;
359 case Instruction::Or:
360 case Instruction::Xor:
361 return true;
362 }
363
364 case Instruction::Mul:
365 // Multiplication distributes over addition and subtraction.
366 switch (ROp) {
367 default:
368 return false;
369 case Instruction::Add:
370 case Instruction::Sub:
371 return true;
372 }
373
374 case Instruction::Or:
375 // Or distributes over And.
376 switch (ROp) {
377 default:
378 return false;
379 case Instruction::And:
380 return true;
381 }
382 }
383}
384
385/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
386/// "(X ROp Z) LOp (Y ROp Z)".
387static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
388 Instruction::BinaryOps ROp) {
389 if (Instruction::isCommutative(ROp))
390 return LeftDistributesOverRight(ROp, LOp);
391 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
392 // but this requires knowing that the addition does not overflow and other
393 // such subtleties.
394 return false;
395}
396
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000397/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
398/// which some other binary operation distributes over either by factorizing
399/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
400/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
401/// a win). Returns the simplified value, or null if it didn't simplify.
402Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
403 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
404 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
405 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
406 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000407
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000408 // Factorization.
409 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
410 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
411 // a common term.
412 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
413 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
414 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000415
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000416 // Does "X op' Y" always equal "Y op' X"?
417 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000418
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000419 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
420 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
421 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
422 // commutative case, "(A op' B) op (C op' A)"?
423 if (A == C || (InnerCommutative && A == D)) {
424 if (A != C)
425 std::swap(C, D);
426 // Consider forming "A op' (B op D)".
427 // If "B op D" simplifies then it can be formed with no cost.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000428 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000429 // If "B op D" doesn't simplify then only go on if both of the existing
430 // operations "A op' B" and "C op' D" will be zapped as no longer used.
431 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
432 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
433 if (V) {
434 ++NumFactor;
435 V = Builder->CreateBinOp(InnerOpcode, A, V);
436 V->takeName(&I);
437 return V;
438 }
Duncan Sands3547d2e2010-12-22 09:40:51 +0000439 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000440
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000441 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
442 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
443 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
444 // commutative case, "(A op' B) op (B op' D)"?
445 if (B == D || (InnerCommutative && B == C)) {
446 if (B != D)
447 std::swap(C, D);
448 // Consider forming "(A op C) op' B".
449 // If "A op C" simplifies then it can be formed with no cost.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000450 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000451 // If "A op C" doesn't simplify then only go on if both of the existing
452 // operations "A op' B" and "C op' D" will be zapped as no longer used.
453 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
454 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
455 if (V) {
456 ++NumFactor;
457 V = Builder->CreateBinOp(InnerOpcode, V, B);
458 V->takeName(&I);
459 return V;
460 }
Duncan Sands3547d2e2010-12-22 09:40:51 +0000461 }
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000462 }
463
464 // Expansion.
465 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
466 // The instruction has the form "(A op' B) op C". See if expanding it out
467 // to "(A op C) op' (B op C)" results in simplifications.
468 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
469 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
470
471 // Do "A op C" and "B op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000472 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
473 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000474 // They do! Return "L op' R".
475 ++NumExpand;
476 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
477 if ((L == A && R == B) ||
478 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
479 return Op0;
480 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000481 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000482 return V;
483 // Otherwise, create a new instruction.
484 C = Builder->CreateBinOp(InnerOpcode, L, R);
485 C->takeName(&I);
486 return C;
487 }
488 }
489
490 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
491 // The instruction has the form "A op (B op' C)". See if expanding it out
492 // to "(A op B) op' (A op C)" results in simplifications.
493 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
494 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
495
496 // Do "A op B" and "A op C" both simplify?
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000497 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
498 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000499 // They do! Return "L op' R".
500 ++NumExpand;
501 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
502 if ((L == B && R == C) ||
503 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
504 return Op1;
505 // Otherwise return "L op' R" if it simplifies.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000506 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
Duncan Sandsfbb9ac32010-12-22 13:36:08 +0000507 return V;
508 // Otherwise, create a new instruction.
509 A = Builder->CreateBinOp(InnerOpcode, L, R);
510 A->takeName(&I);
511 return A;
512 }
513 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +0000514
515 return 0;
516}
517
Chris Lattnerbb74e222003-03-10 23:06:50 +0000518// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000520//
Chris Lattner2188e402010-01-04 07:37:31 +0000521Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonbb2501b2009-07-13 22:18:28 +0000522 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000523 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000524
Chris Lattner9ad0d552004-12-14 20:08:06 +0000525 // Constants can be considered to be negated values if they can be folded.
526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000527 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000528
Chris Lattner8213c8a2012-02-06 21:56:39 +0000529 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
530 if (C->getType()->getElementType()->isIntegerTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000531 return ConstantExpr::getNeg(C);
Nick Lewycky3bf55122008-05-23 04:54:45 +0000532
Chris Lattnerbb74e222003-03-10 23:06:50 +0000533 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000534}
535
Dan Gohmana5b96452009-06-04 22:49:04 +0000536// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
537// instruction if the LHS is a constant negative zero (which is the 'negate'
538// form).
539//
Shuxin Yangf0537ab2013-01-09 00:13:41 +0000540Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
541 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
Dan Gohmana5b96452009-06-04 22:49:04 +0000542 return BinaryOperator::getFNegArgument(V);
543
544 // Constants can be considered to be negated values if they can be folded.
545 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Anderson487375e2009-07-29 18:55:55 +0000546 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000547
Chris Lattner8213c8a2012-02-06 21:56:39 +0000548 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
549 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Anderson487375e2009-07-29 18:55:55 +0000550 return ConstantExpr::getFNeg(C);
Dan Gohmana5b96452009-06-04 22:49:04 +0000551
552 return 0;
553}
554
Chris Lattner86102b82005-01-01 16:22:27 +0000555static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +0000556 InstCombiner *IC) {
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000557 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattnerc8565392009-08-30 20:01:10 +0000558 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000559 }
Chris Lattner86102b82005-01-01 16:22:27 +0000560
Chris Lattner183b3362004-04-09 19:05:30 +0000561 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +0000562 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
563 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +0000564
Chris Lattner183b3362004-04-09 19:05:30 +0000565 if (Constant *SOC = dyn_cast<Constant>(SO)) {
566 if (ConstIsRHS)
Owen Anderson487375e2009-07-29 18:55:55 +0000567 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
568 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +0000569 }
570
571 Value *Op0 = SO, *Op1 = ConstOperand;
572 if (!ConstIsRHS)
573 std::swap(Op0, Op1);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000574
Owen Anderson1664dc82014-01-20 07:44:53 +0000575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
576 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
Chris Lattner022a5822009-08-30 07:44:24 +0000577 SO->getName()+".op");
Owen Anderson1664dc82014-01-20 07:44:53 +0000578 Instruction *FPInst = dyn_cast<Instruction>(RI);
579 if (FPInst && isa<FPMathOperator>(FPInst))
580 FPInst->copyFastMathFlags(BO);
581 return RI;
582 }
Chris Lattner022a5822009-08-30 07:44:24 +0000583 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
584 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
585 SO->getName()+".cmp");
586 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
587 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
588 SO->getName()+".cmp");
589 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner86102b82005-01-01 16:22:27 +0000590}
591
592// FoldOpIntoSelect - Given an instruction with a select as one operand and a
593// constant as the other operand, try to fold the binary operator into the
594// select arguments. This also works for Cast instructions, which obviously do
595// not have a second operand.
Chris Lattner2b295a02010-01-04 07:53:58 +0000596Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner86102b82005-01-01 16:22:27 +0000597 // Don't modify shared select instructions
598 if (!SI->hasOneUse()) return 0;
599 Value *TV = SI->getOperand(1);
600 Value *FV = SI->getOperand(2);
601
602 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +0000603 // Bool selects with constant operands can be folded to logical ops.
Duncan Sands9dff9be2010-02-15 16:12:20 +0000604 if (SI->getType()->isIntegerTy(1)) return 0;
Chris Lattner374e6592005-04-21 05:43:13 +0000605
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000606 // If it's a bitcast involving vectors, make sure it has the same number of
607 // elements on both sides.
608 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattner229907c2011-07-18 04:54:35 +0000609 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
610 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000611
612 // Verify that either both or neither are vectors.
613 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
614 // If vectors, verify that they have the same number of elements.
615 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
616 return 0;
617 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000618
Chris Lattner2b295a02010-01-04 07:53:58 +0000619 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
620 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner86102b82005-01-01 16:22:27 +0000621
Nick Lewycky6a083cf2011-01-21 02:30:43 +0000622 return SelectInst::Create(SI->getCondition(),
623 SelectTrueVal, SelectFalseVal);
Chris Lattner86102b82005-01-01 16:22:27 +0000624 }
625 return 0;
Chris Lattner183b3362004-04-09 19:05:30 +0000626}
627
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000628
Chris Lattnerfacb8672009-09-27 19:57:57 +0000629/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
630/// has a PHI node as operand #0, see if we can fold the instruction into the
631/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattnerb391e872009-09-27 20:46:36 +0000632///
Chris Lattnerea7131a2011-01-16 05:14:26 +0000633Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000634 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +0000635 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner25ce2802011-01-16 04:37:29 +0000636 if (NumPHIValues == 0)
Chris Lattnerb391e872009-09-27 20:46:36 +0000637 return 0;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000638
Chris Lattnerf4ca47b2011-01-21 05:08:26 +0000639 // We normally only transform phis with a single use. However, if a PHI has
640 // multiple uses and they are all the same operation, we can fold *all* of the
641 // uses into the PHI.
Chris Lattnerd55581d2011-01-16 05:28:59 +0000642 if (!PN->hasOneUse()) {
643 // Walk the use list for the instruction, comparing them to I.
644 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000645 UI != E; ++UI) {
646 Instruction *User = cast<Instruction>(*UI);
647 if (User != &I && !I.isIdenticalTo(User))
Chris Lattnerd55581d2011-01-16 05:28:59 +0000648 return 0;
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000649 }
Chris Lattnerd55581d2011-01-16 05:28:59 +0000650 // Otherwise, we can replace *all* users with the new PHI we form.
651 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000652
Chris Lattnerfacb8672009-09-27 19:57:57 +0000653 // Check to see if all of the operands of the PHI are simple constants
654 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerae289632009-09-27 20:18:49 +0000655 // remember the BB it is in. If there is more than one or if *it* is a PHI,
656 // bail out. We don't do arbitrary constant expressions here because moving
657 // their computation can be expensive without a cost model.
Chris Lattner04689872006-09-09 22:02:56 +0000658 BasicBlock *NonConstBB = 0;
Chris Lattner25ce2802011-01-16 04:37:29 +0000659 for (unsigned i = 0; i != NumPHIValues; ++i) {
660 Value *InVal = PN->getIncomingValue(i);
661 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
662 continue;
663
664 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
665 if (NonConstBB) return 0; // More than one non-const value.
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000666
Chris Lattner25ce2802011-01-16 04:37:29 +0000667 NonConstBB = PN->getIncomingBlock(i);
Chris Lattnerff2e7372011-01-16 05:08:00 +0000668
669 // If the InVal is an invoke at the end of the pred block, then we can't
670 // insert a computation after it without breaking the edge.
671 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
672 if (II->getParent() == NonConstBB)
673 return 0;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000674
Chris Lattnerb5e15d12011-01-21 05:29:50 +0000675 // If the incoming non-constant value is in I's block, we will remove one
676 // instruction, but insert another equivalent one, leading to infinite
677 // instcombine.
678 if (NonConstBB == I.getParent())
679 return 0;
Chris Lattner25ce2802011-01-16 04:37:29 +0000680 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000681
Chris Lattner04689872006-09-09 22:02:56 +0000682 // If there is exactly one non-constant value, we can insert a copy of the
683 // operation in that block. However, if this is a critical edge, we would be
684 // inserting the computation one some other paths (e.g. inside a loop). Only
685 // do this if the pred block is unconditionally branching into the phi block.
Chris Lattnerea7131a2011-01-16 05:14:26 +0000686 if (NonConstBB != 0) {
Chris Lattner04689872006-09-09 22:02:56 +0000687 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
688 if (!BI || !BI->isUnconditional()) return 0;
689 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000690
691 // Okay, we can do the transformation: create the new PHI node.
Eli Friedman41e509a2011-05-18 23:58:37 +0000692 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner966526c2009-10-21 23:41:58 +0000693 InsertNewInstBefore(NewPN, *PN);
694 NewPN->takeName(PN);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000695
Chris Lattnerff2e7372011-01-16 05:08:00 +0000696 // If we are going to have to insert a new computation, do so right before the
697 // predecessors terminator.
698 if (NonConstBB)
699 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000700
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000701 // Next, add all of the operands to the PHI.
Chris Lattnerfacb8672009-09-27 19:57:57 +0000702 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
703 // We only currently try to fold the condition of a select when it is a phi,
704 // not the true/false values.
Chris Lattnerae289632009-09-27 20:18:49 +0000705 Value *TrueV = SI->getTrueValue();
706 Value *FalseV = SI->getFalseValue();
Chris Lattner0261b5d2009-09-28 06:49:44 +0000707 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattnerfacb8672009-09-27 19:57:57 +0000708 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerae289632009-09-27 20:18:49 +0000709 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner0261b5d2009-09-28 06:49:44 +0000710 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
711 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000712 Value *InV = 0;
Duncan P. N. Exon Smithce5f93e2013-12-06 21:48:36 +0000713 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
714 // even if currently isNullValue gives false.
715 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
716 if (InC && !isa<ConstantExpr>(InC))
Chris Lattnerae289632009-09-27 20:18:49 +0000717 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000718 else
719 InV = Builder->CreateSelect(PN->getIncomingValue(i),
720 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerae289632009-09-27 20:18:49 +0000721 NewPN->addIncoming(InV, ThisBB);
Chris Lattnerfacb8672009-09-27 19:57:57 +0000722 }
Chris Lattnerff2e7372011-01-16 05:08:00 +0000723 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
724 Constant *C = cast<Constant>(I.getOperand(1));
725 for (unsigned i = 0; i != NumPHIValues; ++i) {
726 Value *InV = 0;
727 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
729 else if (isa<ICmpInst>(CI))
730 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
731 C, "phitmp");
732 else
733 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
734 C, "phitmp");
735 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
736 }
Chris Lattnerfacb8672009-09-27 19:57:57 +0000737 } else if (I.getNumOperands() == 2) {
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000738 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +0000739 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerf0da7972007-08-05 08:47:58 +0000740 Value *InV = 0;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000741 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
742 InV = ConstantExpr::get(I.getOpcode(), InC, C);
743 else
744 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
745 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000746 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000747 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000748 } else {
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000749 CastInst *CI = cast<CastInst>(&I);
Chris Lattner229907c2011-07-18 04:54:35 +0000750 Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +0000751 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +0000752 Value *InV;
Chris Lattnerff2e7372011-01-16 05:08:00 +0000753 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Anderson487375e2009-07-29 18:55:55 +0000754 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000755 else
Chris Lattnerff2e7372011-01-16 05:08:00 +0000756 InV = Builder->CreateCast(CI->getOpcode(),
757 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner04689872006-09-09 22:02:56 +0000758 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000759 }
760 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000761
Chris Lattnerd55581d2011-01-16 05:28:59 +0000762 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
763 UI != E; ) {
764 Instruction *User = cast<Instruction>(*UI++);
765 if (User == &I) continue;
766 ReplaceInstUsesWith(*User, NewPN);
767 EraseInstFromFunction(*User);
768 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000769 return ReplaceInstUsesWith(I, NewPN);
770}
771
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000772/// FindElementAtOffset - Given a pointer type and a constant offset, determine
773/// whether or not there is a sequence of GEP indices into the pointed type that
774/// will land us at the specified offset. If so, fill them into NewIndices and
775/// return the resultant element type, otherwise return null.
776Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
777 SmallVectorImpl<Value*> &NewIndices) {
778 assert(PtrTy->isPtrOrPtrVectorTy());
779
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000780 if (!DL)
Matt Arsenaultd79f7d92013-08-19 22:17:40 +0000781 return 0;
782
783 Type *Ty = PtrTy->getPointerElementType();
784 if (!Ty->isSized())
785 return 0;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000786
Chris Lattnerfef138b2009-01-09 05:44:56 +0000787 // Start with the index over the outer type. Note that the type size
788 // might be zero (even if the offset isn't zero) if the indexed type
789 // is something like [0 x {int, int}]
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000790 Type *IntPtrTy = DL->getIntPtrType(PtrTy);
Chris Lattnerfef138b2009-01-09 05:44:56 +0000791 int64_t FirstIdx = 0;
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000792 if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +0000793 FirstIdx = Offset/TySize;
Chris Lattnerbd3c7c82009-01-11 20:41:36 +0000794 Offset -= FirstIdx*TySize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000795
Benjamin Kramere4c46fe2013-01-23 17:52:29 +0000796 // Handle hosts where % returns negative instead of values [0..TySize).
797 if (Offset < 0) {
798 --FirstIdx;
799 Offset += TySize;
800 assert(Offset >= 0);
801 }
Chris Lattnerfef138b2009-01-09 05:44:56 +0000802 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
803 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000804
Owen Andersonedb4a702009-07-24 23:12:02 +0000805 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000806
Chris Lattnerfef138b2009-01-09 05:44:56 +0000807 // Index into the types. If we fail, set OrigBase to null.
808 while (Offset) {
Chris Lattner171d2d42009-01-11 20:15:20 +0000809 // Indexing into tail padding between struct/array elements.
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000810 if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
Chris Lattner72cd68f2009-01-24 01:00:13 +0000811 return 0;
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000812
Chris Lattner229907c2011-07-18 04:54:35 +0000813 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000814 const StructLayout *SL = DL->getStructLayout(STy);
Chris Lattner171d2d42009-01-11 20:15:20 +0000815 assert(Offset < (int64_t)SL->getSizeInBytes() &&
816 "Offset must stay within the indexed type");
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000817
Chris Lattnerfef138b2009-01-09 05:44:56 +0000818 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattnerb8906bd2010-01-04 07:02:48 +0000819 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
820 Elt));
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000821
Chris Lattnerfef138b2009-01-09 05:44:56 +0000822 Offset -= SL->getElementOffset(Elt);
823 Ty = STy->getElementType(Elt);
Chris Lattner229907c2011-07-18 04:54:35 +0000824 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000825 uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
Chris Lattner171d2d42009-01-11 20:15:20 +0000826 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersonedb4a702009-07-24 23:12:02 +0000827 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattner171d2d42009-01-11 20:15:20 +0000828 Offset %= EltSize;
Chris Lattnerb1915162009-01-11 20:23:52 +0000829 Ty = AT->getElementType();
Chris Lattnerfef138b2009-01-09 05:44:56 +0000830 } else {
Chris Lattner171d2d42009-01-11 20:15:20 +0000831 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner72cd68f2009-01-24 01:00:13 +0000832 return 0;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000833 }
834 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +0000835
Chris Lattner72cd68f2009-01-24 01:00:13 +0000836 return Ty;
Chris Lattnerfef138b2009-01-09 05:44:56 +0000837}
838
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +0000839static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
840 // If this GEP has only 0 indices, it is the same pointer as
841 // Src. If Src is not a trivial GEP too, don't combine
842 // the indices.
843 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
844 !Src.hasOneUse())
845 return false;
846 return true;
847}
Chris Lattnerbbbdd852002-05-06 18:06:38 +0000848
Duncan Sands533c8ae2012-10-23 08:28:26 +0000849/// Descale - Return a value X such that Val = X * Scale, or null if none. If
850/// the multiplication is known not to overflow then NoSignedWrap is set.
851Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
852 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
853 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
854 Scale.getBitWidth() && "Scale not compatible with value!");
855
856 // If Val is zero or Scale is one then Val = Val * Scale.
857 if (match(Val, m_Zero()) || Scale == 1) {
858 NoSignedWrap = true;
859 return Val;
860 }
861
862 // If Scale is zero then it does not divide Val.
863 if (Scale.isMinValue())
864 return 0;
865
866 // Look through chains of multiplications, searching for a constant that is
867 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
868 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
869 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
870 // down from Val:
871 //
872 // Val = M1 * X || Analysis starts here and works down
873 // M1 = M2 * Y || Doesn't descend into terms with more
874 // M2 = Z * 4 \/ than one use
875 //
876 // Then to modify a term at the bottom:
877 //
878 // Val = M1 * X
879 // M1 = Z * Y || Replaced M2 with Z
880 //
881 // Then to work back up correcting nsw flags.
882
883 // Op - the term we are currently analyzing. Starts at Val then drills down.
884 // Replaced with its descaled value before exiting from the drill down loop.
885 Value *Op = Val;
886
887 // Parent - initially null, but after drilling down notes where Op came from.
888 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
889 // 0'th operand of Val.
890 std::pair<Instruction*, unsigned> Parent;
891
892 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
893 // levels that doesn't overflow.
894 bool RequireNoSignedWrap = false;
895
896 // logScale - log base 2 of the scale. Negative if not a power of 2.
897 int32_t logScale = Scale.exactLogBase2();
898
899 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
900
901 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
902 // If Op is a constant divisible by Scale then descale to the quotient.
903 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
904 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
905 if (!Remainder.isMinValue())
906 // Not divisible by Scale.
907 return 0;
908 // Replace with the quotient in the parent.
909 Op = ConstantInt::get(CI->getType(), Quotient);
910 NoSignedWrap = true;
911 break;
912 }
913
914 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
915
916 if (BO->getOpcode() == Instruction::Mul) {
917 // Multiplication.
918 NoSignedWrap = BO->hasNoSignedWrap();
919 if (RequireNoSignedWrap && !NoSignedWrap)
920 return 0;
921
922 // There are three cases for multiplication: multiplication by exactly
923 // the scale, multiplication by a constant different to the scale, and
924 // multiplication by something else.
925 Value *LHS = BO->getOperand(0);
926 Value *RHS = BO->getOperand(1);
927
928 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
929 // Multiplication by a constant.
930 if (CI->getValue() == Scale) {
931 // Multiplication by exactly the scale, replace the multiplication
932 // by its left-hand side in the parent.
933 Op = LHS;
934 break;
935 }
936
937 // Otherwise drill down into the constant.
938 if (!Op->hasOneUse())
939 return 0;
940
941 Parent = std::make_pair(BO, 1);
942 continue;
943 }
944
945 // Multiplication by something else. Drill down into the left-hand side
946 // since that's where the reassociate pass puts the good stuff.
947 if (!Op->hasOneUse())
948 return 0;
949
950 Parent = std::make_pair(BO, 0);
951 continue;
952 }
953
954 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
955 isa<ConstantInt>(BO->getOperand(1))) {
956 // Multiplication by a power of 2.
957 NoSignedWrap = BO->hasNoSignedWrap();
958 if (RequireNoSignedWrap && !NoSignedWrap)
959 return 0;
960
961 Value *LHS = BO->getOperand(0);
962 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
963 getLimitedValue(Scale.getBitWidth());
964 // Op = LHS << Amt.
965
966 if (Amt == logScale) {
967 // Multiplication by exactly the scale, replace the multiplication
968 // by its left-hand side in the parent.
969 Op = LHS;
970 break;
971 }
972 if (Amt < logScale || !Op->hasOneUse())
973 return 0;
974
975 // Multiplication by more than the scale. Reduce the multiplying amount
976 // by the scale in the parent.
977 Parent = std::make_pair(BO, 1);
978 Op = ConstantInt::get(BO->getType(), Amt - logScale);
979 break;
980 }
981 }
982
983 if (!Op->hasOneUse())
984 return 0;
985
986 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
987 if (Cast->getOpcode() == Instruction::SExt) {
988 // Op is sign-extended from a smaller type, descale in the smaller type.
989 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
990 APInt SmallScale = Scale.trunc(SmallSize);
991 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
992 // descale Op as (sext Y) * Scale. In order to have
993 // sext (Y * SmallScale) = (sext Y) * Scale
994 // some conditions need to hold however: SmallScale must sign-extend to
995 // Scale and the multiplication Y * SmallScale should not overflow.
996 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
997 // SmallScale does not sign-extend to Scale.
998 return 0;
999 assert(SmallScale.exactLogBase2() == logScale);
1000 // Require that Y * SmallScale must not overflow.
1001 RequireNoSignedWrap = true;
1002
1003 // Drill down through the cast.
1004 Parent = std::make_pair(Cast, 0);
1005 Scale = SmallScale;
1006 continue;
1007 }
1008
Duncan Sands5ed39002012-10-23 09:07:02 +00001009 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001010 // Op is truncated from a larger type, descale in the larger type.
1011 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1012 // trunc (Y * sext Scale) = (trunc Y) * Scale
1013 // always holds. However (trunc Y) * Scale may overflow even if
1014 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1015 // from this point up in the expression (see later).
1016 if (RequireNoSignedWrap)
1017 return 0;
1018
1019 // Drill down through the cast.
1020 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1021 Parent = std::make_pair(Cast, 0);
1022 Scale = Scale.sext(LargeSize);
1023 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1024 logScale = -1;
1025 assert(Scale.exactLogBase2() == logScale);
1026 continue;
1027 }
1028 }
1029
1030 // Unsupported expression, bail out.
1031 return 0;
1032 }
1033
1034 // We know that we can successfully descale, so from here on we can safely
1035 // modify the IR. Op holds the descaled version of the deepest term in the
1036 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1037 // not to overflow.
1038
1039 if (!Parent.first)
1040 // The expression only had one term.
1041 return Op;
1042
1043 // Rewrite the parent using the descaled version of its operand.
1044 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1045 assert(Op != Parent.first->getOperand(Parent.second) &&
1046 "Descaling was a no-op?");
1047 Parent.first->setOperand(Parent.second, Op);
1048 Worklist.Add(Parent.first);
1049
1050 // Now work back up the expression correcting nsw flags. The logic is based
1051 // on the following observation: if X * Y is known not to overflow as a signed
1052 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1053 // then X * Z will not overflow as a signed multiplication either. As we work
1054 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1055 // current level has strictly smaller absolute value than the original.
1056 Instruction *Ancestor = Parent.first;
1057 do {
1058 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1059 // If the multiplication wasn't nsw then we can't say anything about the
1060 // value of the descaled multiplication, and we have to clear nsw flags
1061 // from this point on up.
1062 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1063 NoSignedWrap &= OpNoSignedWrap;
1064 if (NoSignedWrap != OpNoSignedWrap) {
1065 BO->setHasNoSignedWrap(NoSignedWrap);
1066 Worklist.Add(Ancestor);
1067 }
1068 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1069 // The fact that the descaled input to the trunc has smaller absolute
1070 // value than the original input doesn't tell us anything useful about
1071 // the absolute values of the truncations.
1072 NoSignedWrap = false;
1073 }
1074 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1075 "Failed to keep proper track of nsw flags while drilling down?");
1076
1077 if (Ancestor == Val)
1078 // Got to the top, all done!
1079 return Val;
1080
1081 // Move up one level in the expression.
1082 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1083 Ancestor = Ancestor->use_back();
1084 } while (1);
1085}
1086
Chris Lattner113f4f42002-06-25 16:13:24 +00001087Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001088 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1089
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001090 if (Value *V = SimplifyGEPInst(Ops, DL))
Chris Lattner8574aba2009-11-27 00:29:05 +00001091 return ReplaceInstUsesWith(GEP, V);
1092
Chris Lattner5f667a62004-05-07 22:09:22 +00001093 Value *PtrOp = GEP.getOperand(0);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001094
Duncan Sandsc133c542010-11-22 16:32:50 +00001095 // Eliminate unneeded casts for indices, and replace indices which displace
1096 // by multiples of a zero size type with zero.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001097 if (DL) {
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001098 bool MadeChange = false;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001099 Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsc133c542010-11-22 16:32:50 +00001100
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001101 gep_type_iterator GTI = gep_type_begin(GEP);
1102 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1103 I != E; ++I, ++GTI) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001104 // Skip indices into struct types.
Chris Lattner229907c2011-07-18 04:54:35 +00001105 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsc133c542010-11-22 16:32:50 +00001106 if (!SeqTy) continue;
1107
1108 // If the element type has zero size then any index over it is equivalent
1109 // to an index of zero, so replace it with zero if it is not zero already.
1110 if (SeqTy->getElementType()->isSized() &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001111 DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
Duncan Sandsc133c542010-11-22 16:32:50 +00001112 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1113 *I = Constant::getNullValue(IntPtrTy);
1114 MadeChange = true;
1115 }
1116
Nadav Rotem3924cb02011-12-05 06:29:09 +00001117 Type *IndexTy = (*I)->getType();
Duncan Sandsa318ef62012-11-03 11:44:17 +00001118 if (IndexTy != IntPtrTy) {
Duncan Sandsc133c542010-11-22 16:32:50 +00001119 // If we are using a wider index than needed for this platform, shrink
1120 // it to what we need. If narrower, sign-extend it to what we need.
1121 // This explicit cast can make subsequent optimizations more obvious.
1122 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1123 MadeChange = true;
1124 }
Chris Lattner69193f92004-04-05 01:30:19 +00001125 }
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001126 if (MadeChange) return &GEP;
Chris Lattner9bf53ff2007-03-25 20:43:09 +00001127 }
Chris Lattner69193f92004-04-05 01:30:19 +00001128
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001129 // Combine Indices - If the source pointer to this getelementptr instruction
1130 // is a getelementptr instruction, combine the indices of the two
1131 // getelementptr instructions into a single instruction.
1132 //
Dan Gohman31a9b982009-07-28 01:40:03 +00001133 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001134 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Rafael Espindola40325672011-07-11 03:43:47 +00001135 return 0;
1136
Duncan Sands533c8ae2012-10-23 08:28:26 +00001137 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner5f667a62004-05-07 22:09:22 +00001138 // chain to be resolved before we perform this transformation. This
1139 // avoids us creating a TON of code in some cases.
Rafael Espindolaa3a44f3f2011-07-31 04:43:41 +00001140 if (GEPOperator *SrcGEP =
1141 dyn_cast<GEPOperator>(Src->getOperand(0)))
1142 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Chris Lattner06c687b2009-08-30 05:08:50 +00001143 return 0; // Wait until our source is folded to completion.
Chris Lattner5f667a62004-05-07 22:09:22 +00001144
Chris Lattneraf6094f2007-02-15 22:48:32 +00001145 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00001146
1147 // Find out whether the last index in the source GEP is a sequential idx.
1148 bool EndsWithSequential = false;
Chris Lattnerb2995e12009-08-30 05:30:55 +00001149 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1150 I != E; ++I)
Duncan Sands19d0b472010-02-16 11:11:14 +00001151 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanb1c93172005-04-21 23:48:37 +00001152
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001153 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00001154 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00001155 // Replace: gep (gep %P, long B), long A, ...
1156 // With: T = long A+B; gep %P, T, ...
1157 //
Chris Lattner06c687b2009-08-30 05:08:50 +00001158 Value *Sum;
1159 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1160 Value *GO1 = GEP.getOperand(1);
Owen Anderson5a1acd92009-07-31 20:28:14 +00001161 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001162 Sum = GO1;
Owen Anderson5a1acd92009-07-31 20:28:14 +00001163 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner69193f92004-04-05 01:30:19 +00001164 Sum = SO1;
1165 } else {
Chris Lattnerb2995e12009-08-30 05:30:55 +00001166 // If they aren't the same type, then the input hasn't been processed
1167 // by the loop above yet (which canonicalizes sequential index types to
1168 // intptr_t). Just avoid transforming this until the input has been
1169 // normalized.
1170 if (SO1->getType() != GO1->getType())
1171 return 0;
Chris Lattner59663412009-08-30 18:50:58 +00001172 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner69193f92004-04-05 01:30:19 +00001173 }
Chris Lattner5f667a62004-05-07 22:09:22 +00001174
Chris Lattnerb2995e12009-08-30 05:30:55 +00001175 // Update the GEP in place if possible.
Chris Lattner06c687b2009-08-30 05:08:50 +00001176 if (Src->getNumOperands() == 2) {
1177 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner5f667a62004-05-07 22:09:22 +00001178 GEP.setOperand(1, Sum);
1179 return &GEP;
Chris Lattner5f667a62004-05-07 22:09:22 +00001180 }
Chris Lattnerb2995e12009-08-30 05:30:55 +00001181 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerd7b6e912009-08-30 04:49:01 +00001182 Indices.push_back(Sum);
Chris Lattnerb2995e12009-08-30 05:30:55 +00001183 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanb1c93172005-04-21 23:48:37 +00001184 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00001185 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattner06c687b2009-08-30 05:08:50 +00001186 Src->getNumOperands() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001187 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerb2995e12009-08-30 05:30:55 +00001188 Indices.append(Src->op_begin()+1, Src->op_end());
1189 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00001190 }
1191
Dan Gohman1b849082009-09-07 23:54:19 +00001192 if (!Indices.empty())
Chris Lattnere903f382010-01-05 07:42:10 +00001193 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foadd1b78492011-07-25 09:48:08 +00001194 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1195 GEP.getName()) :
1196 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattnere26bf172009-08-30 05:00:50 +00001197 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001198
Benjamin Kramere6461e32013-09-20 14:38:44 +00001199 // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1200 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1201 // pointer arithmetic.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001202 if (DL && GEP.getNumIndices() == 1 &&
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001203 match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1204 unsigned AS = GEP.getPointerAddressSpace();
1205 if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1206 GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001207 DL->getPointerSizeInBits(AS)) {
Matt Arsenaultbfa37e52013-10-03 18:15:57 +00001208 Operator *Index = cast<Operator>(GEP.getOperand(1));
1209 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1210 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1211 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1212 }
Benjamin Kramere6461e32013-09-20 14:38:44 +00001213 }
1214
Chris Lattner06c687b2009-08-30 05:08:50 +00001215 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattnere903f382010-01-05 07:42:10 +00001216 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Roteme63e59c2012-03-26 20:39:18 +00001217 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1218
Nadav Rotema8f35622012-03-26 21:00:53 +00001219 // We do not handle pointer-vector geps here.
1220 if (!StrippedPtrTy)
1221 return 0;
1222
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001223 if (StrippedPtr != PtrOp) {
Chris Lattner8574aba2009-11-27 00:29:05 +00001224 bool HasZeroPointerIndex = false;
1225 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1226 HasZeroPointerIndex = C->isZero();
Nadav Rotema069c6c2011-04-05 14:29:52 +00001227
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001228 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1229 // into : GEP [10 x i8]* X, i32 0, ...
1230 //
1231 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1232 // into : GEP i8* X, ...
Nadav Rotema069c6c2011-04-05 14:29:52 +00001233 //
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001234 // This occurs when the program declares an array extern like "int X[];"
Chris Lattnere26bf172009-08-30 05:00:50 +00001235 if (HasZeroPointerIndex) {
Chris Lattner229907c2011-07-18 04:54:35 +00001236 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1237 if (ArrayType *CATy =
Duncan Sands5795a602009-03-02 09:18:21 +00001238 dyn_cast<ArrayType>(CPTy->getElementType())) {
1239 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattnere903f382010-01-05 07:42:10 +00001240 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001241 // -> GEP i8* X, ...
Chris Lattnere903f382010-01-05 07:42:10 +00001242 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1243 GetElementPtrInst *Res =
Jay Foadd1b78492011-07-25 09:48:08 +00001244 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattnere903f382010-01-05 07:42:10 +00001245 Res->setIsInBounds(GEP.isInBounds());
1246 return Res;
Chris Lattnerc2f2cf82009-08-30 20:36:46 +00001247 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001248
Chris Lattner229907c2011-07-18 04:54:35 +00001249 if (ArrayType *XATy =
Chris Lattnere903f382010-01-05 07:42:10 +00001250 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5795a602009-03-02 09:18:21 +00001251 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattner567b81f2005-09-13 00:40:14 +00001252 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5795a602009-03-02 09:18:21 +00001253 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattner567b81f2005-09-13 00:40:14 +00001254 // At this point, we know that the cast source type is a pointer
1255 // to an array of the same type as the destination pointer
1256 // array. Because the array type is never stepped over (there
1257 // is a leading zero) we can fold the cast into this GEP.
Chris Lattnere903f382010-01-05 07:42:10 +00001258 GEP.setOperand(0, StrippedPtr);
Chris Lattner567b81f2005-09-13 00:40:14 +00001259 return &GEP;
1260 }
Duncan Sands5795a602009-03-02 09:18:21 +00001261 }
1262 }
Chris Lattner567b81f2005-09-13 00:40:14 +00001263 } else if (GEP.getNumOperands() == 2) {
1264 // Transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001265 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1266 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattner229907c2011-07-18 04:54:35 +00001267 Type *SrcElTy = StrippedPtrTy->getElementType();
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001268 Type *ResElTy = PtrOp->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001269 if (DL && SrcElTy->isArrayTy() &&
1270 DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1271 DL->getTypeAllocSize(ResElTy)) {
1272 Type *IdxType = DL->getIntPtrType(GEP.getType());
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001273 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Chris Lattnere903f382010-01-05 07:42:10 +00001274 Value *NewGEP = GEP.isInBounds() ?
Jay Foad040dd822011-07-22 08:16:57 +00001275 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1276 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001277
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001278 // V and GEP are both pointer types --> BitCast
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001279 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1280 return new BitCastInst(NewGEP, GEP.getType());
1281 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001282 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001283
Chris Lattner2a893292005-09-13 18:36:04 +00001284 // Transform things like:
Duncan Sands533c8ae2012-10-23 08:28:26 +00001285 // %V = mul i64 %N, 4
1286 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1287 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001288 if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
Duncan Sands533c8ae2012-10-23 08:28:26 +00001289 // Check that changing the type amounts to dividing the index by a scale
1290 // factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001291 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
1292 uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
Duncan Sands533c8ae2012-10-23 08:28:26 +00001293 if (ResSize && SrcSize % ResSize == 0) {
1294 Value *Idx = GEP.getOperand(1);
1295 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1296 uint64_t Scale = SrcSize / ResSize;
1297
1298 // Earlier transforms ensure that the index has type IntPtrType, which
1299 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001300 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001301 "Index not cast to pointer width?");
1302
1303 bool NSW;
1304 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1305 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1306 // If the multiplication NewIdx * Scale may overflow then the new
1307 // GEP may not be "inbounds".
1308 Value *NewGEP = GEP.isInBounds() && NSW ?
1309 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1310 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001311
Duncan Sands533c8ae2012-10-23 08:28:26 +00001312 // The NewGEP must be pointer typed, so must the old one -> BitCast
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001313 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1314 return new BitCastInst(NewGEP, GEP.getType());
1315 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001316 }
1317 }
1318 }
1319
1320 // Similarly, transform things like:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001321 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner2a893292005-09-13 18:36:04 +00001322 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz309e5a72007-12-12 15:21:32 +00001323 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001324 if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001325 SrcElTy->isArrayTy()) {
1326 // Check that changing to the array element type amounts to dividing the
1327 // index by a scale factor.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001328 uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
Matt Arsenaultfc00f7e2013-08-14 00:24:34 +00001329 uint64_t ArrayEltSize
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001330 = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
Duncan Sands533c8ae2012-10-23 08:28:26 +00001331 if (ResSize && ArrayEltSize % ResSize == 0) {
1332 Value *Idx = GEP.getOperand(1);
1333 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1334 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001335
Duncan Sands533c8ae2012-10-23 08:28:26 +00001336 // Earlier transforms ensure that the index has type IntPtrType, which
1337 // considerably simplifies the logic by eliminating implicit casts.
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001338 assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
Duncan Sands533c8ae2012-10-23 08:28:26 +00001339 "Index not cast to pointer width?");
1340
1341 bool NSW;
1342 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1343 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1344 // If the multiplication NewIdx * Scale may overflow then the new
1345 // GEP may not be "inbounds".
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001346 Value *Off[2] = {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001347 Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
Matt Arsenault9e3a6ca2013-08-14 00:24:38 +00001348 NewIdx
1349 };
1350
Duncan Sands533c8ae2012-10-23 08:28:26 +00001351 Value *NewGEP = GEP.isInBounds() && NSW ?
1352 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1353 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1354 // The NewGEP must be pointer typed, so must the old one -> BitCast
Matt Arsenaultaa689f52014-02-14 00:49:12 +00001355 if (StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace())
1356 return new BitCastInst(NewGEP, GEP.getType());
1357 return new AddrSpaceCastInst(NewGEP, GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00001358 }
1359 }
Chris Lattner2a893292005-09-13 18:36:04 +00001360 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00001361 }
Chris Lattnerca081252001-12-14 16:52:21 +00001362 }
Nadav Rotema069c6c2011-04-05 14:29:52 +00001363
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001364 if (!DL)
Matt Arsenault98f34e32013-08-19 22:17:34 +00001365 return 0;
1366
Chris Lattnerfef138b2009-01-09 05:44:56 +00001367 /// See if we can simplify:
Chris Lattner97fd3592009-08-30 05:55:36 +00001368 /// X = bitcast A* to B*
Chris Lattnerfef138b2009-01-09 05:44:56 +00001369 /// Y = gep X, <...constant indices...>
1370 /// into a gep of the original struct. This is important for SROA and alias
1371 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattnera784a2c2009-01-09 04:53:57 +00001372 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Matt Arsenault98f34e32013-08-19 22:17:34 +00001373 Value *Operand = BCI->getOperand(0);
1374 PointerType *OpType = cast<PointerType>(Operand->getType());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001375 unsigned OffsetBits = DL->getPointerTypeSizeInBits(OpType);
Matt Arsenault98f34e32013-08-19 22:17:34 +00001376 APInt Offset(OffsetBits, 0);
1377 if (!isa<BitCastInst>(Operand) &&
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001378 GEP.accumulateConstantOffset(*DL, Offset) &&
Nadav Rotema069c6c2011-04-05 14:29:52 +00001379 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1380
Chris Lattnerfef138b2009-01-09 05:44:56 +00001381 // If this GEP instruction doesn't move the pointer, just replace the GEP
1382 // with a bitcast of the real input to the dest type.
Nuno Lopesb6ad9822012-12-30 16:25:48 +00001383 if (!Offset) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001384 // If the bitcast is of an allocation, and the allocation will be
1385 // converted to match the type of the cast, don't touch this.
Matt Arsenault98f34e32013-08-19 22:17:34 +00001386 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
Chris Lattnerfef138b2009-01-09 05:44:56 +00001387 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1388 if (Instruction *I = visitBitCast(*BCI)) {
1389 if (I != BCI) {
1390 I->takeName(BCI);
1391 BCI->getParent()->getInstList().insert(BCI, I);
1392 ReplaceInstUsesWith(*BCI, I);
1393 }
1394 return &GEP;
Chris Lattnera784a2c2009-01-09 04:53:57 +00001395 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001396 }
Matt Arsenault98f34e32013-08-19 22:17:34 +00001397 return new BitCastInst(Operand, GEP.getType());
Chris Lattnera784a2c2009-01-09 04:53:57 +00001398 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001399
Chris Lattnerfef138b2009-01-09 05:44:56 +00001400 // Otherwise, if the offset is non-zero, we need to find out if there is a
1401 // field at Offset in 'A's type. If so, we can pull the cast through the
1402 // GEP.
1403 SmallVector<Value*, 8> NewIndices;
Matt Arsenaultd79f7d92013-08-19 22:17:40 +00001404 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
Chris Lattnere903f382010-01-05 07:42:10 +00001405 Value *NGEP = GEP.isInBounds() ?
Matt Arsenault98f34e32013-08-19 22:17:34 +00001406 Builder->CreateInBoundsGEP(Operand, NewIndices) :
1407 Builder->CreateGEP(Operand, NewIndices);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001408
Chris Lattner59663412009-08-30 18:50:58 +00001409 if (NGEP->getType() == GEP.getType())
1410 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattnerfef138b2009-01-09 05:44:56 +00001411 NGEP->takeName(&GEP);
1412 return new BitCastInst(NGEP, GEP.getType());
1413 }
Chris Lattnera784a2c2009-01-09 04:53:57 +00001414 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001415 }
1416
Chris Lattnerca081252001-12-14 16:52:21 +00001417 return 0;
1418}
1419
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001420static bool
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001421isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1422 const TargetLibraryInfo *TLI) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001423 SmallVector<Instruction*, 4> Worklist;
1424 Worklist.push_back(AI);
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001425
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001426 do {
1427 Instruction *PI = Worklist.pop_back_val();
1428 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1429 ++UI) {
1430 Instruction *I = cast<Instruction>(*UI);
1431 switch (I->getOpcode()) {
1432 default:
1433 // Give up the moment we see something we can't handle.
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001434 return false;
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001435
1436 case Instruction::BitCast:
1437 case Instruction::GetElementPtr:
1438 Users.push_back(I);
1439 Worklist.push_back(I);
1440 continue;
1441
1442 case Instruction::ICmp: {
1443 ICmpInst *ICI = cast<ICmpInst>(I);
1444 // We can fold eq/ne comparisons with null to false/true, respectively.
1445 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1446 return false;
1447 Users.push_back(I);
1448 continue;
1449 }
1450
1451 case Instruction::Call:
1452 // Ignore no-op and store intrinsics.
1453 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1454 switch (II->getIntrinsicID()) {
1455 default:
1456 return false;
1457
1458 case Intrinsic::memmove:
1459 case Intrinsic::memcpy:
1460 case Intrinsic::memset: {
1461 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1462 if (MI->isVolatile() || MI->getRawDest() != PI)
1463 return false;
1464 }
1465 // fall through
1466 case Intrinsic::dbg_declare:
1467 case Intrinsic::dbg_value:
1468 case Intrinsic::invariant_start:
1469 case Intrinsic::invariant_end:
1470 case Intrinsic::lifetime_start:
1471 case Intrinsic::lifetime_end:
1472 case Intrinsic::objectsize:
1473 Users.push_back(I);
1474 continue;
1475 }
1476 }
1477
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001478 if (isFreeCall(I, TLI)) {
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001479 Users.push_back(I);
1480 continue;
1481 }
1482 return false;
1483
1484 case Instruction::Store: {
1485 StoreInst *SI = cast<StoreInst>(I);
1486 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1487 return false;
1488 Users.push_back(I);
1489 continue;
1490 }
1491 }
1492 llvm_unreachable("missing a return?");
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001493 }
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001494 } while (!Worklist.empty());
Duncan Sandsf162eac2010-05-27 19:09:06 +00001495 return true;
1496}
1497
Nuno Lopes95cc4f32012-07-09 18:38:20 +00001498Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sandsf162eac2010-05-27 19:09:06 +00001499 // If we have a malloc call which is only used in any amount of comparisons
1500 // to null and free calls, delete the calls and replace the comparisons with
1501 // true or false as appropriate.
Nick Lewycky50f49662011-08-03 00:43:35 +00001502 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001503 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewycky50f49662011-08-03 00:43:35 +00001504 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1505 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1506 if (!I) continue;
Duncan Sandsf162eac2010-05-27 19:09:06 +00001507
Nick Lewycky50f49662011-08-03 00:43:35 +00001508 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001509 ReplaceInstUsesWith(*C,
1510 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1511 C->isFalseWhenEqual()));
Nick Lewycky50f49662011-08-03 00:43:35 +00001512 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckye8ae02d2011-08-02 22:08:01 +00001513 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopesfa0dffc2012-07-06 23:09:25 +00001514 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1515 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1516 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1517 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1518 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1519 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001520 }
Nick Lewycky50f49662011-08-03 00:43:35 +00001521 EraseInstFromFunction(*I);
Duncan Sandsf162eac2010-05-27 19:09:06 +00001522 }
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001523
1524 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopes9ac46612012-06-28 22:31:24 +00001525 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes07594cb2012-06-25 17:11:47 +00001526 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopes9ac46612012-06-28 22:31:24 +00001527 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1528 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
Dmitri Gribenko3238fb72013-05-05 00:40:33 +00001529 None, "", II->getParent());
Nuno Lopesdc6085e2012-06-21 21:25:05 +00001530 }
Duncan Sandsf162eac2010-05-27 19:09:06 +00001531 return EraseInstFromFunction(MI);
1532 }
1533 return 0;
1534}
1535
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001536/// \brief Move the call to free before a NULL test.
1537///
1538/// Check if this free is accessed after its argument has been test
1539/// against NULL (property 0).
1540/// If yes, it is legal to move this call in its predecessor block.
1541///
1542/// The move is performed only if the block containing the call to free
1543/// will be removed, i.e.:
1544/// 1. it has only one predecessor P, and P has two successors
1545/// 2. it contains the call and an unconditional branch
1546/// 3. its successor is the same as its predecessor's successor
1547///
1548/// The profitability is out-of concern here and this function should
1549/// be called only if the caller knows this transformation would be
1550/// profitable (e.g., for code size).
1551static Instruction *
1552tryToMoveFreeBeforeNullTest(CallInst &FI) {
1553 Value *Op = FI.getArgOperand(0);
1554 BasicBlock *FreeInstrBB = FI.getParent();
1555 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1556
1557 // Validate part of constraint #1: Only one predecessor
1558 // FIXME: We can extend the number of predecessor, but in that case, we
1559 // would duplicate the call to free in each predecessor and it may
1560 // not be profitable even for code size.
1561 if (!PredBB)
1562 return 0;
1563
1564 // Validate constraint #2: Does this block contains only the call to
1565 // free and an unconditional branch?
1566 // FIXME: We could check if we can speculate everything in the
1567 // predecessor block
1568 if (FreeInstrBB->size() != 2)
1569 return 0;
1570 BasicBlock *SuccBB;
1571 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1572 return 0;
1573
1574 // Validate the rest of constraint #1 by matching on the pred branch.
1575 TerminatorInst *TI = PredBB->getTerminator();
1576 BasicBlock *TrueBB, *FalseBB;
1577 ICmpInst::Predicate Pred;
1578 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1579 return 0;
1580 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1581 return 0;
1582
1583 // Validate constraint #3: Ensure the null case just falls through.
1584 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1585 return 0;
1586 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1587 "Broken CFG: missing edge from predecessor to successor");
1588
1589 FI.moveBefore(TI);
1590 return &FI;
1591}
Duncan Sandsf162eac2010-05-27 19:09:06 +00001592
1593
Gabor Greif75f69432010-06-24 12:21:15 +00001594Instruction *InstCombiner::visitFree(CallInst &FI) {
1595 Value *Op = FI.getArgOperand(0);
Victor Hernandeze2971492009-10-24 04:23:03 +00001596
1597 // free undef -> unreachable.
1598 if (isa<UndefValue>(Op)) {
1599 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedman41e509a2011-05-18 23:58:37 +00001600 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1601 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandeze2971492009-10-24 04:23:03 +00001602 return EraseInstFromFunction(FI);
1603 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001604
Victor Hernandeze2971492009-10-24 04:23:03 +00001605 // If we have 'free null' delete the instruction. This can happen in stl code
1606 // when lots of inlining happens.
1607 if (isa<ConstantPointerNull>(Op))
1608 return EraseInstFromFunction(FI);
1609
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00001610 // If we optimize for code size, try to move the call to free before the null
1611 // test so that simplify cfg can remove the empty block and dead code
1612 // elimination the branch. I.e., helps to turn something like:
1613 // if (foo) free(foo);
1614 // into
1615 // free(foo);
1616 if (MinimizeSize)
1617 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1618 return I;
1619
Victor Hernandeze2971492009-10-24 04:23:03 +00001620 return 0;
1621}
Chris Lattner8427bff2003-12-07 01:24:23 +00001622
Chris Lattner14a251b2007-04-15 00:07:55 +00001623
Chris Lattner31f486c2005-01-31 05:36:43 +00001624
Chris Lattner9eef8a72003-06-04 04:46:00 +00001625Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1626 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4fdd96c2005-06-18 17:37:34 +00001627 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00001628 BasicBlock *TrueDest;
1629 BasicBlock *FalseDest;
Dan Gohman5476cfd2009-08-12 16:23:25 +00001630 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00001631 !isa<Constant>(X)) {
1632 // Swap Destinations and condition...
1633 BI.setCondition(X);
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001634 BI.swapSuccessors();
Chris Lattnerd4252a72004-07-30 07:50:03 +00001635 return &BI;
1636 }
1637
Alp Tokercb402912014-01-24 17:20:08 +00001638 // Canonicalize fcmp_one -> fcmp_oeq
Reid Spencer266e42b2006-12-23 06:05:41 +00001639 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001640 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00001641 TrueDest, FalseDest)) &&
1642 BI.getCondition()->hasOneUse())
1643 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1644 FPred == FCmpInst::FCMP_OGE) {
1645 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1646 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001647
Chris Lattner905976b2009-08-30 06:13:40 +00001648 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001649 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00001650 Worklist.Add(Cond);
Reid Spencer266e42b2006-12-23 06:05:41 +00001651 return &BI;
1652 }
1653
Alp Tokercb402912014-01-24 17:20:08 +00001654 // Canonicalize icmp_ne -> icmp_eq
Reid Spencer266e42b2006-12-23 06:05:41 +00001655 ICmpInst::Predicate IPred;
1656 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner905976b2009-08-30 06:13:40 +00001657 TrueDest, FalseDest)) &&
1658 BI.getCondition()->hasOneUse())
1659 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1660 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1661 IPred == ICmpInst::ICMP_SGE) {
1662 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1663 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1664 // Swap Destinations and condition.
Chandler Carruth3e8aa652011-10-17 01:11:57 +00001665 BI.swapSuccessors();
Chris Lattner905976b2009-08-30 06:13:40 +00001666 Worklist.Add(Cond);
Chris Lattnere967b342003-06-04 05:10:11 +00001667 return &BI;
1668 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00001669
Chris Lattner9eef8a72003-06-04 04:46:00 +00001670 return 0;
1671}
Chris Lattner1085bdf2002-11-04 16:18:53 +00001672
Chris Lattner4c9c20a2004-07-03 00:26:11 +00001673Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1674 Value *Cond = SI.getCondition();
1675 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1676 if (I->getOpcode() == Instruction::Add)
1677 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1678 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedman95031ed2011-09-29 20:21:17 +00001679 // Skip the first item since that's the default case.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00001680 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00001681 i != e; ++i) {
1682 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedman95031ed2011-09-29 20:21:17 +00001683 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1684 AddRHS);
1685 assert(isa<ConstantInt>(NewCaseVal) &&
1686 "Result of expression should be constant");
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00001687 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedman95031ed2011-09-29 20:21:17 +00001688 }
1689 SI.setCondition(I->getOperand(0));
Chris Lattner905976b2009-08-30 06:13:40 +00001690 Worklist.Add(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00001691 return &SI;
1692 }
1693 }
1694 return 0;
1695}
1696
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00001697Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001698 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00001699
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001700 if (!EV.hasIndices())
1701 return ReplaceInstUsesWith(EV, Agg);
1702
1703 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerfa775002012-01-26 02:32:04 +00001704 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1705 if (EV.getNumIndices() == 0)
1706 return ReplaceInstUsesWith(EV, C2);
1707 // Extract the remaining indices out of the constant indexed by the
1708 // first index
1709 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001710 }
1711 return 0; // Can't handle other constants
Chris Lattnerfa775002012-01-26 02:32:04 +00001712 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001713
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001714 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1715 // We're extracting from an insertvalue instruction, compare the indices
1716 const unsigned *exti, *exte, *insi, *inse;
1717 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1718 exte = EV.idx_end(), inse = IV->idx_end();
1719 exti != exte && insi != inse;
1720 ++exti, ++insi) {
1721 if (*insi != *exti)
1722 // The insert and extract both reference distinctly different elements.
1723 // This means the extract is not influenced by the insert, and we can
1724 // replace the aggregate operand of the extract with the aggregate
1725 // operand of the insert. i.e., replace
1726 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1727 // %E = extractvalue { i32, { i32 } } %I, 0
1728 // with
1729 // %E = extractvalue { i32, { i32 } } %A, 0
1730 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00001731 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001732 }
1733 if (exti == exte && insi == inse)
1734 // Both iterators are at the end: Index lists are identical. Replace
1735 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1736 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1737 // with "i32 42"
1738 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1739 if (exti == exte) {
1740 // The extract list is a prefix of the insert list. i.e. replace
1741 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1742 // %E = extractvalue { i32, { i32 } } %I, 1
1743 // with
1744 // %X = extractvalue { i32, { i32 } } %A, 1
1745 // %E = insertvalue { i32 } %X, i32 42, 0
1746 // by switching the order of the insert and extract (though the
1747 // insertvalue should be left in, since it may have other uses).
Chris Lattner59663412009-08-30 18:50:58 +00001748 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foad57aa6362011-07-13 10:26:04 +00001749 EV.getIndices());
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001750 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001751 makeArrayRef(insi, inse));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001752 }
1753 if (insi == inse)
1754 // The insert list is a prefix of the extract list
1755 // We can simply remove the common indices from the extract and make it
1756 // operate on the inserted value instead of the insertvalue result.
1757 // i.e., replace
1758 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1759 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1760 // with
1761 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001762 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001763 makeArrayRef(exti, exte));
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001764 }
Chris Lattner39c07b22009-11-09 07:07:56 +00001765 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1766 // We're extracting from an intrinsic, see if we're the only user, which
1767 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif75f69432010-06-24 12:21:15 +00001768 // just get one value.
Chris Lattner39c07b22009-11-09 07:07:56 +00001769 if (II->hasOneUse()) {
1770 // Check if we're grabbing the overflow bit or the result of a 'with
1771 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1772 // and replace it with a traditional binary instruction.
1773 switch (II->getIntrinsicID()) {
1774 case Intrinsic::uadd_with_overflow:
1775 case Intrinsic::sadd_with_overflow:
1776 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00001777 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00001778 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00001779 EraseInstFromFunction(*II);
1780 return BinaryOperator::CreateAdd(LHS, RHS);
1781 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00001782
Chris Lattner3e635d22010-12-19 19:43:52 +00001783 // If the normal result of the add is dead, and the RHS is a constant,
1784 // we can transform this into a range comparison.
1785 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattner4fb9dd42010-12-19 23:24:04 +00001786 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1787 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1788 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1789 ConstantExpr::getNot(CI));
Chris Lattner39c07b22009-11-09 07:07:56 +00001790 break;
1791 case Intrinsic::usub_with_overflow:
1792 case Intrinsic::ssub_with_overflow:
1793 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00001794 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00001795 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00001796 EraseInstFromFunction(*II);
1797 return BinaryOperator::CreateSub(LHS, RHS);
1798 }
1799 break;
1800 case Intrinsic::umul_with_overflow:
1801 case Intrinsic::smul_with_overflow:
1802 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif75f69432010-06-24 12:21:15 +00001803 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedmanb9ed18f2011-05-18 00:32:01 +00001804 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner39c07b22009-11-09 07:07:56 +00001805 EraseInstFromFunction(*II);
1806 return BinaryOperator::CreateMul(LHS, RHS);
1807 }
1808 break;
1809 default:
1810 break;
1811 }
1812 }
1813 }
Frits van Bommel28218aa2010-11-29 21:56:20 +00001814 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1815 // If the (non-volatile) load only has one use, we can rewrite this to a
1816 // load from a GEP. This reduces the size of the load.
1817 // FIXME: If a load is used only by extractvalue instructions then this
1818 // could be done regardless of having multiple uses.
Eli Friedman8bc586e2011-08-15 22:09:40 +00001819 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel28218aa2010-11-29 21:56:20 +00001820 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1821 SmallVector<Value*, 4> Indices;
1822 // Prefix an i32 0 since we need the first element.
1823 Indices.push_back(Builder->getInt32(0));
1824 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1825 I != E; ++I)
1826 Indices.push_back(Builder->getInt32(*I));
1827
1828 // We need to insert these at the location of the old load, not at that of
1829 // the extractvalue.
1830 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad040dd822011-07-22 08:16:57 +00001831 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel28218aa2010-11-29 21:56:20 +00001832 // Returning the load directly will cause the main loop to insert it in
1833 // the wrong spot, so use ReplaceInstUsesWith().
1834 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1835 }
1836 // We could simplify extracts from other values. Note that nested extracts may
1837 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijmanc1d74772008-07-16 12:55:45 +00001838 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel28218aa2010-11-29 21:56:20 +00001839 // the value inserted, if appropriate. Similarly for extracts from single-use
1840 // loads: extract (extract (load)) will be translated to extract (load (gep))
1841 // and if again single-use then via load (gep (gep)) to load (gep).
1842 // However, double extracts from e.g. function arguments or return values
1843 // aren't handled yet.
Matthijs Kooijmanb2fc72b2008-06-11 14:05:05 +00001844 return 0;
1845}
1846
Duncan Sands5c055792011-09-30 13:12:16 +00001847enum Personality_Type {
1848 Unknown_Personality,
1849 GNU_Ada_Personality,
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00001850 GNU_CXX_Personality,
1851 GNU_ObjC_Personality
Duncan Sands5c055792011-09-30 13:12:16 +00001852};
1853
1854/// RecognizePersonality - See if the given exception handling personality
1855/// function is one that we understand. If so, return a description of it;
1856/// otherwise return Unknown_Personality.
1857static Personality_Type RecognizePersonality(Value *Pers) {
1858 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1859 if (!F)
1860 return Unknown_Personality;
1861 return StringSwitch<Personality_Type>(F->getName())
1862 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00001863 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1864 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands5c055792011-09-30 13:12:16 +00001865 .Default(Unknown_Personality);
1866}
1867
1868/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1869static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1870 switch (Personality) {
1871 case Unknown_Personality:
1872 return false;
1873 case GNU_Ada_Personality:
1874 // While __gnat_all_others_value will match any Ada exception, it doesn't
1875 // match foreign exceptions (or didn't, before gcc-4.7).
1876 return false;
1877 case GNU_CXX_Personality:
Bill Wendlingc68c8cb2011-10-17 21:20:24 +00001878 case GNU_ObjC_Personality:
Duncan Sands5c055792011-09-30 13:12:16 +00001879 return TypeInfo->isNullValue();
1880 }
1881 llvm_unreachable("Unknown personality!");
1882}
1883
1884static bool shorter_filter(const Value *LHS, const Value *RHS) {
1885 return
1886 cast<ArrayType>(LHS->getType())->getNumElements()
1887 <
1888 cast<ArrayType>(RHS->getType())->getNumElements();
1889}
1890
1891Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1892 // The logic here should be correct for any real-world personality function.
1893 // However if that turns out not to be true, the offending logic can always
1894 // be conditioned on the personality function, like the catch-all logic is.
1895 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1896
1897 // Simplify the list of clauses, eg by removing repeated catch clauses
1898 // (these are often created by inlining).
1899 bool MakeNewInstruction = false; // If true, recreate using the following:
1900 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1901 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1902
1903 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1904 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1905 bool isLastClause = i + 1 == e;
1906 if (LI.isCatch(i)) {
1907 // A catch clause.
1908 Value *CatchClause = LI.getClause(i);
1909 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1910
1911 // If we already saw this clause, there is no point in having a second
1912 // copy of it.
1913 if (AlreadyCaught.insert(TypeInfo)) {
1914 // This catch clause was not already seen.
1915 NewClauses.push_back(CatchClause);
1916 } else {
1917 // Repeated catch clause - drop the redundant copy.
1918 MakeNewInstruction = true;
1919 }
1920
1921 // If this is a catch-all then there is no point in keeping any following
1922 // clauses or marking the landingpad as having a cleanup.
1923 if (isCatchAll(Personality, TypeInfo)) {
1924 if (!isLastClause)
1925 MakeNewInstruction = true;
1926 CleanupFlag = false;
1927 break;
1928 }
1929 } else {
1930 // A filter clause. If any of the filter elements were already caught
1931 // then they can be dropped from the filter. It is tempting to try to
1932 // exploit the filter further by saying that any typeinfo that does not
1933 // occur in the filter can't be caught later (and thus can be dropped).
1934 // However this would be wrong, since typeinfos can match without being
1935 // equal (for example if one represents a C++ class, and the other some
1936 // class derived from it).
1937 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1938 Value *FilterClause = LI.getClause(i);
1939 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1940 unsigned NumTypeInfos = FilterType->getNumElements();
1941
1942 // An empty filter catches everything, so there is no point in keeping any
1943 // following clauses or marking the landingpad as having a cleanup. By
1944 // dealing with this case here the following code is made a bit simpler.
1945 if (!NumTypeInfos) {
1946 NewClauses.push_back(FilterClause);
1947 if (!isLastClause)
1948 MakeNewInstruction = true;
1949 CleanupFlag = false;
1950 break;
1951 }
1952
1953 bool MakeNewFilter = false; // If true, make a new filter.
1954 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1955 if (isa<ConstantAggregateZero>(FilterClause)) {
1956 // Not an empty filter - it contains at least one null typeinfo.
1957 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1958 Constant *TypeInfo =
1959 Constant::getNullValue(FilterType->getElementType());
1960 // If this typeinfo is a catch-all then the filter can never match.
1961 if (isCatchAll(Personality, TypeInfo)) {
1962 // Throw the filter away.
1963 MakeNewInstruction = true;
1964 continue;
1965 }
1966
1967 // There is no point in having multiple copies of this typeinfo, so
1968 // discard all but the first copy if there is more than one.
1969 NewFilterElts.push_back(TypeInfo);
1970 if (NumTypeInfos > 1)
1971 MakeNewFilter = true;
1972 } else {
1973 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1974 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1975 NewFilterElts.reserve(NumTypeInfos);
1976
1977 // Remove any filter elements that were already caught or that already
1978 // occurred in the filter. While there, see if any of the elements are
1979 // catch-alls. If so, the filter can be discarded.
1980 bool SawCatchAll = false;
1981 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1982 Value *Elt = Filter->getOperand(j);
1983 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1984 if (isCatchAll(Personality, TypeInfo)) {
1985 // This element is a catch-all. Bail out, noting this fact.
1986 SawCatchAll = true;
1987 break;
1988 }
1989 if (AlreadyCaught.count(TypeInfo))
1990 // Already caught by an earlier clause, so having it in the filter
1991 // is pointless.
1992 continue;
1993 // There is no point in having multiple copies of the same typeinfo in
1994 // a filter, so only add it if we didn't already.
1995 if (SeenInFilter.insert(TypeInfo))
1996 NewFilterElts.push_back(cast<Constant>(Elt));
1997 }
1998 // A filter containing a catch-all cannot match anything by definition.
1999 if (SawCatchAll) {
2000 // Throw the filter away.
2001 MakeNewInstruction = true;
2002 continue;
2003 }
2004
2005 // If we dropped something from the filter, make a new one.
2006 if (NewFilterElts.size() < NumTypeInfos)
2007 MakeNewFilter = true;
2008 }
2009 if (MakeNewFilter) {
2010 FilterType = ArrayType::get(FilterType->getElementType(),
2011 NewFilterElts.size());
2012 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2013 MakeNewInstruction = true;
2014 }
2015
2016 NewClauses.push_back(FilterClause);
2017
2018 // If the new filter is empty then it will catch everything so there is
2019 // no point in keeping any following clauses or marking the landingpad
2020 // as having a cleanup. The case of the original filter being empty was
2021 // already handled above.
2022 if (MakeNewFilter && !NewFilterElts.size()) {
2023 assert(MakeNewInstruction && "New filter but not a new instruction!");
2024 CleanupFlag = false;
2025 break;
2026 }
2027 }
2028 }
2029
2030 // If several filters occur in a row then reorder them so that the shortest
2031 // filters come first (those with the smallest number of elements). This is
2032 // advantageous because shorter filters are more likely to match, speeding up
2033 // unwinding, but mostly because it increases the effectiveness of the other
2034 // filter optimizations below.
2035 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2036 unsigned j;
2037 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2038 for (j = i; j != e; ++j)
2039 if (!isa<ArrayType>(NewClauses[j]->getType()))
2040 break;
2041
2042 // Check whether the filters are already sorted by length. We need to know
2043 // if sorting them is actually going to do anything so that we only make a
2044 // new landingpad instruction if it does.
2045 for (unsigned k = i; k + 1 < j; ++k)
2046 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2047 // Not sorted, so sort the filters now. Doing an unstable sort would be
2048 // correct too but reordering filters pointlessly might confuse users.
2049 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2050 shorter_filter);
2051 MakeNewInstruction = true;
2052 break;
2053 }
2054
2055 // Look for the next batch of filters.
2056 i = j + 1;
2057 }
2058
2059 // If typeinfos matched if and only if equal, then the elements of a filter L
2060 // that occurs later than a filter F could be replaced by the intersection of
2061 // the elements of F and L. In reality two typeinfos can match without being
2062 // equal (for example if one represents a C++ class, and the other some class
2063 // derived from it) so it would be wrong to perform this transform in general.
2064 // However the transform is correct and useful if F is a subset of L. In that
2065 // case L can be replaced by F, and thus removed altogether since repeating a
2066 // filter is pointless. So here we look at all pairs of filters F and L where
2067 // L follows F in the list of clauses, and remove L if every element of F is
2068 // an element of L. This can occur when inlining C++ functions with exception
2069 // specifications.
2070 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2071 // Examine each filter in turn.
2072 Value *Filter = NewClauses[i];
2073 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2074 if (!FTy)
2075 // Not a filter - skip it.
2076 continue;
2077 unsigned FElts = FTy->getNumElements();
2078 // Examine each filter following this one. Doing this backwards means that
2079 // we don't have to worry about filters disappearing under us when removed.
2080 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2081 Value *LFilter = NewClauses[j];
2082 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2083 if (!LTy)
2084 // Not a filter - skip it.
2085 continue;
2086 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2087 // an element of LFilter, then discard LFilter.
Craig Topperaf0dea12013-07-04 01:31:24 +00002088 SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
Duncan Sands5c055792011-09-30 13:12:16 +00002089 // If Filter is empty then it is a subset of LFilter.
2090 if (!FElts) {
2091 // Discard LFilter.
2092 NewClauses.erase(J);
2093 MakeNewInstruction = true;
2094 // Move on to the next filter.
2095 continue;
2096 }
2097 unsigned LElts = LTy->getNumElements();
2098 // If Filter is longer than LFilter then it cannot be a subset of it.
2099 if (FElts > LElts)
2100 // Move on to the next filter.
2101 continue;
2102 // At this point we know that LFilter has at least one element.
2103 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002104 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands5c055792011-09-30 13:12:16 +00002105 // already know that Filter is not longer than LFilter).
2106 if (isa<ConstantAggregateZero>(Filter)) {
2107 assert(FElts <= LElts && "Should have handled this case earlier!");
2108 // Discard LFilter.
2109 NewClauses.erase(J);
2110 MakeNewInstruction = true;
2111 }
2112 // Move on to the next filter.
2113 continue;
2114 }
2115 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2116 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2117 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00002118 // LFilter iff LFilter contains a zero.
Duncan Sands5c055792011-09-30 13:12:16 +00002119 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2120 for (unsigned l = 0; l != LElts; ++l)
2121 if (LArray->getOperand(l)->isNullValue()) {
2122 // LFilter contains a zero - discard it.
2123 NewClauses.erase(J);
2124 MakeNewInstruction = true;
2125 break;
2126 }
2127 // Move on to the next filter.
2128 continue;
2129 }
2130 // At this point we know that both filters are ConstantArrays. Loop over
2131 // operands to see whether every element of Filter is also an element of
2132 // LFilter. Since filters tend to be short this is probably faster than
2133 // using a method that scales nicely.
2134 ConstantArray *FArray = cast<ConstantArray>(Filter);
2135 bool AllFound = true;
2136 for (unsigned f = 0; f != FElts; ++f) {
2137 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2138 AllFound = false;
2139 for (unsigned l = 0; l != LElts; ++l) {
2140 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2141 if (LTypeInfo == FTypeInfo) {
2142 AllFound = true;
2143 break;
2144 }
2145 }
2146 if (!AllFound)
2147 break;
2148 }
2149 if (AllFound) {
2150 // Discard LFilter.
2151 NewClauses.erase(J);
2152 MakeNewInstruction = true;
2153 }
2154 // Move on to the next filter.
2155 }
2156 }
2157
2158 // If we changed any of the clauses, replace the old landingpad instruction
2159 // with a new one.
2160 if (MakeNewInstruction) {
2161 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2162 LI.getPersonalityFn(),
2163 NewClauses.size());
2164 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2165 NLI->addClause(NewClauses[i]);
2166 // A landing pad with no clauses must have the cleanup flag set. It is
2167 // theoretically possible, though highly unlikely, that we eliminated all
2168 // clauses. If so, force the cleanup flag to true.
2169 if (NewClauses.empty())
2170 CleanupFlag = true;
2171 NLI->setCleanup(CleanupFlag);
2172 return NLI;
2173 }
2174
2175 // Even if none of the clauses changed, we may nonetheless have understood
2176 // that the cleanup flag is pointless. Clear it if so.
2177 if (LI.isCleanup() != CleanupFlag) {
2178 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2179 LI.setCleanup(CleanupFlag);
2180 return &LI;
2181 }
2182
2183 return 0;
2184}
2185
Chris Lattnerfbb77a42006-04-10 22:45:52 +00002186
Robert Bocchinoa8352962006-01-13 22:48:06 +00002187
Chris Lattner39c98bb2004-12-08 23:43:58 +00002188
2189/// TryToSinkInstruction - Try to move the specified instruction from its
2190/// current block into the beginning of DestBlock, which can only happen if it's
2191/// safe to move the instruction past all of the instructions between it and the
2192/// end of its block.
2193static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2194 assert(I->hasOneUse() && "Invariants didn't hold!");
2195
Bill Wendlinge86965e2011-08-15 21:14:31 +00002196 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlinga9ee09f2011-08-17 20:36:44 +00002197 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2198 isa<TerminatorInst>(I))
Chris Lattnera4ee1f52008-05-09 15:07:33 +00002199 return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002200
Chris Lattner39c98bb2004-12-08 23:43:58 +00002201 // Do not sink alloca instructions out of the entry block.
Dan Gohmandcb291f2007-03-22 16:38:57 +00002202 if (isa<AllocaInst>(I) && I->getParent() ==
2203 &DestBlock->getParent()->getEntryBlock())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002204 return false;
2205
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002206 // We can only sink load instructions if there is nothing between the load and
2207 // the end of block that could change the value.
Chris Lattner49a594e2008-05-08 17:37:37 +00002208 if (I->mayReadFromMemory()) {
2209 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002210 Scan != E; ++Scan)
2211 if (Scan->mayWriteToMemory())
2212 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00002213 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00002214
Bill Wendling8ddfc092011-08-16 20:45:24 +00002215 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner9f269e42005-08-08 19:11:57 +00002216 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002217 ++NumSunkInst;
2218 return true;
2219}
2220
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002221
2222/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2223/// all reachable code to the worklist.
2224///
2225/// This has a couple of tricks to make the code faster and more powerful. In
2226/// particular, we constant fold and DCE instructions as we go, to avoid adding
2227/// them to the worklist (this significantly speeds up instcombine on code where
2228/// many instructions are dead or constant). Additionally, if we find a branch
2229/// whose condition is a known constant, we only visit the reachable successors.
2230///
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002231static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner7907e5f2007-02-15 19:41:52 +00002232 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002233 InstCombiner &IC,
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002234 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002235 const TargetLibraryInfo *TLI) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002236 bool MadeIRChange = false;
Chris Lattner1d239152008-08-15 04:03:01 +00002237 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner12b89cc2007-03-23 19:17:18 +00002238 Worklist.push_back(BB);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002239
Benjamin Kramer76229bc2010-10-23 17:10:24 +00002240 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedman68aab452011-05-24 18:52:07 +00002241 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2242
Dan Gohman28943872010-01-05 16:27:25 +00002243 do {
2244 BB = Worklist.pop_back_val();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002245
Chris Lattner12b89cc2007-03-23 19:17:18 +00002246 // We have now visited this block! If we've already been here, ignore it.
2247 if (!Visited.insert(BB)) continue;
Devang Patel7ed6c532008-11-19 18:56:50 +00002248
Chris Lattner12b89cc2007-03-23 19:17:18 +00002249 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2250 Instruction *Inst = BBI++;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002251
Chris Lattner12b89cc2007-03-23 19:17:18 +00002252 // DCE instruction if trivially dead.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002253 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner12b89cc2007-03-23 19:17:18 +00002254 ++NumDeadInst;
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002255 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner12b89cc2007-03-23 19:17:18 +00002256 Inst->eraseFromParent();
2257 continue;
2258 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002259
Chris Lattner12b89cc2007-03-23 19:17:18 +00002260 // ConstantProp instruction if trivially constant.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002261 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002262 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002263 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002264 << *Inst << '\n');
2265 Inst->replaceAllUsesWith(C);
2266 ++NumConstProp;
2267 Inst->eraseFromParent();
2268 continue;
2269 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002270
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002271 if (DL) {
Chris Lattnerc855b452009-10-15 04:59:28 +00002272 // See if we can constant fold its operands.
2273 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2274 i != e; ++i) {
2275 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2276 if (CE == 0) continue;
Eli Friedman68aab452011-05-24 18:52:07 +00002277
2278 Constant*& FoldRes = FoldedConstants[CE];
2279 if (!FoldRes)
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002280 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
Eli Friedman68aab452011-05-24 18:52:07 +00002281 if (!FoldRes)
2282 FoldRes = CE;
2283
2284 if (FoldRes != CE) {
2285 *i = FoldRes;
Chris Lattnerc855b452009-10-15 04:59:28 +00002286 MadeIRChange = true;
2287 }
2288 }
2289 }
Devang Patel7ed6c532008-11-19 18:56:50 +00002290
Chris Lattner8abd5722009-10-12 03:58:40 +00002291 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002292 }
Chris Lattner12b89cc2007-03-23 19:17:18 +00002293
2294 // Recursively visit successors. If this is a branch or switch on a
2295 // constant, only visit the reachable successor.
2296 TerminatorInst *TI = BB->getTerminator();
2297 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2298 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2299 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky271506f2008-03-09 08:50:23 +00002300 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002301 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002302 continue;
2303 }
2304 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2305 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2306 // See if this is an explicit destination.
Stepan Dyatkovskiy97b02fc2012-03-11 06:09:17 +00002307 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiy5b648af2012-03-08 07:06:20 +00002308 i != e; ++i)
2309 if (i.getCaseValue() == Cond) {
2310 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky4d43d3c2008-04-25 16:53:59 +00002311 Worklist.push_back(ReachableBB);
Chris Lattner12b89cc2007-03-23 19:17:18 +00002312 continue;
2313 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002314
Chris Lattner12b89cc2007-03-23 19:17:18 +00002315 // Otherwise it is the default destination.
Stepan Dyatkovskiy513aaa52012-02-01 07:49:51 +00002316 Worklist.push_back(SI->getDefaultDest());
Chris Lattner12b89cc2007-03-23 19:17:18 +00002317 continue;
2318 }
2319 }
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002320
Chris Lattner12b89cc2007-03-23 19:17:18 +00002321 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2322 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman28943872010-01-05 16:27:25 +00002323 } while (!Worklist.empty());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002324
Chris Lattner8abd5722009-10-12 03:58:40 +00002325 // Once we've found all of the instructions to add to instcombine's worklist,
2326 // add them in reverse order. This way instcombine will visit from the top
2327 // of the function down. This jives well with the way that it adds all uses
2328 // of instructions to the worklist after doing a transformation, thus avoiding
2329 // some N^2 behavior in pathological cases.
2330 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2331 InstrsForInstCombineWorklist.size());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002332
Chris Lattnerc855b452009-10-15 04:59:28 +00002333 return MadeIRChange;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002334}
2335
Chris Lattner960a5432007-03-03 02:04:50 +00002336bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002337 MadeIRChange = false;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002338
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002339 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramer1f97a5a2011-11-15 16:27:03 +00002340 << F.getName() << "\n");
Chris Lattnerca081252001-12-14 16:52:21 +00002341
Chris Lattner4ed40f72005-07-07 20:40:38 +00002342 {
Chris Lattnera36ee4e2006-05-10 19:00:36 +00002343 // Do a depth-first traversal of the function, populate the worklist with
2344 // the reachable instructions. Ignore blocks that are not reachable. Keep
2345 // track of which blocks we visit.
Chris Lattner7907e5f2007-02-15 19:41:52 +00002346 SmallPtrSet<BasicBlock*, 64> Visited;
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002347 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00002348 TLI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00002349
Chris Lattner4ed40f72005-07-07 20:40:38 +00002350 // Do a quick scan over the function. If we find any blocks that are
2351 // unreachable, remove any instructions inside of them. This prevents
2352 // the instcombine code from having to deal with some bad special cases.
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002353 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2354 if (Visited.count(BB)) continue;
2355
Bill Wendling321fb372011-09-04 09:43:36 +00002356 // Delete the instructions backwards, as it has a reduced likelihood of
2357 // having to update as many def-use and use-def chains.
2358 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2359 while (EndInst != BB->begin()) {
2360 // Delete the next to last instruction.
2361 BasicBlock::iterator I = EndInst;
2362 Instruction *Inst = --I;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002363 if (!Inst->use_empty())
2364 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendling321fb372011-09-04 09:43:36 +00002365 if (isa<LandingPadInst>(Inst)) {
2366 EndInst = Inst;
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002367 continue;
Bill Wendling321fb372011-09-04 09:43:36 +00002368 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002369 if (!isa<DbgInfoIntrinsic>(Inst)) {
2370 ++NumDeadInst;
2371 MadeIRChange = true;
Chris Lattner4ed40f72005-07-07 20:40:38 +00002372 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002373 Inst->eraseFromParent();
Chris Lattner4ed40f72005-07-07 20:40:38 +00002374 }
Bill Wendlinga3ba6d32011-09-01 21:29:49 +00002375 }
Chris Lattner4ed40f72005-07-07 20:40:38 +00002376 }
Chris Lattnerca081252001-12-14 16:52:21 +00002377
Chris Lattner97fd3592009-08-30 05:55:36 +00002378 while (!Worklist.isEmpty()) {
2379 Instruction *I = Worklist.RemoveOne();
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002380 if (I == 0) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +00002381
Chris Lattner1443bc52006-05-11 17:11:52 +00002382 // Check to see if we can DCE the instruction.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002383 if (isInstructionTriviallyDead(I, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002384 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
Chris Lattner905976b2009-08-30 06:13:40 +00002385 EraseInstFromFunction(*I);
2386 ++NumDeadInst;
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002387 MadeIRChange = true;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002388 continue;
2389 }
Chris Lattner99f48c62002-09-02 04:59:56 +00002390
Chris Lattner1443bc52006-05-11 17:11:52 +00002391 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002392 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002393 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002394 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnercd517ff2005-01-28 19:32:01 +00002395
Chris Lattnerdd1f68a2009-10-15 04:13:44 +00002396 // Add operands to the worklist.
2397 ReplaceInstUsesWith(*I, C);
2398 ++NumConstProp;
2399 EraseInstFromFunction(*I);
2400 MadeIRChange = true;
2401 continue;
2402 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002403
Chris Lattner39c98bb2004-12-08 23:43:58 +00002404 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfa1211f2008-07-23 00:34:11 +00002405 if (I->hasOneUse()) {
Chris Lattner39c98bb2004-12-08 23:43:58 +00002406 BasicBlock *BB = I->getParent();
Chris Lattner6b9044d2009-10-14 15:21:58 +00002407 Instruction *UserInst = cast<Instruction>(I->use_back());
2408 BasicBlock *UserParent;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002409
Chris Lattner6b9044d2009-10-14 15:21:58 +00002410 // Get the block the use occurs in.
2411 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2412 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2413 else
2414 UserParent = UserInst->getParent();
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002415
Chris Lattner39c98bb2004-12-08 23:43:58 +00002416 if (UserParent != BB) {
2417 bool UserIsSuccessor = false;
2418 // See if the user is one of our successors.
2419 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2420 if (*SI == UserParent) {
2421 UserIsSuccessor = true;
2422 break;
2423 }
2424
2425 // If the user is one of our immediate successors, and if that successor
2426 // only has us as a predecessors (we'd have to split the critical edge
2427 // otherwise), we can keep going.
Chris Lattner6b9044d2009-10-14 15:21:58 +00002428 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattner39c98bb2004-12-08 23:43:58 +00002429 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002430 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattner39c98bb2004-12-08 23:43:58 +00002431 }
2432 }
2433
Chris Lattner022a5822009-08-30 07:44:24 +00002434 // Now that we have an instruction, try combining it to simplify it.
2435 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedman96254a02011-05-18 01:28:27 +00002436 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002437
Reid Spencer755d0e72007-03-26 17:44:01 +00002438#ifndef NDEBUG
2439 std::string OrigI;
2440#endif
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002441 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002442 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
Jeffrey Yasskindafd08e2009-10-08 00:12:24 +00002443
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002444 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002445 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +00002446 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +00002447 if (Result != I) {
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002448 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002449 << " New = " << *Result << '\n');
2450
Eli Friedman35211c62011-05-27 00:19:40 +00002451 if (!I->getDebugLoc().isUnknown())
2452 Result->setDebugLoc(I->getDebugLoc());
Chris Lattner396dbfe2004-06-09 05:08:07 +00002453 // Everything uses the new instruction now.
2454 I->replaceAllUsesWith(Result);
2455
Jim Grosbache7abae02011-10-05 20:53:43 +00002456 // Move the name to the new instruction first.
2457 Result->takeName(I);
2458
Jim Grosbach8f9acfa2011-10-05 20:44:29 +00002459 // Push the new instruction and any users onto the worklist.
2460 Worklist.Add(Result);
2461 Worklist.AddUsersToWorkList(*Result);
2462
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002463 // Insert the new instruction into the basic block...
2464 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +00002465 BasicBlock::iterator InsertPos = I;
2466
Eli Friedmana49b8282011-11-01 04:49:29 +00002467 // If we replace a PHI with something that isn't a PHI, fix up the
2468 // insertion point.
2469 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2470 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattner7515cab2004-11-14 19:13:23 +00002471
2472 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +00002473
Chris Lattner905976b2009-08-30 06:13:40 +00002474 EraseInstFromFunction(*I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002475 } else {
Evan Chenga4ed8a52007-03-27 16:44:48 +00002476#ifndef NDEBUG
Matt Arsenaulte6db7602013-09-05 19:48:28 +00002477 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +00002478 << " New = " << *I << '\n');
Evan Chenga4ed8a52007-03-27 16:44:48 +00002479#endif
Chris Lattner7d2a5392004-03-13 23:54:27 +00002480
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002481 // If the instruction was modified, it's possible that it is now dead.
2482 // if so, remove it.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00002483 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner905976b2009-08-30 06:13:40 +00002484 EraseInstFromFunction(*I);
Chris Lattner396dbfe2004-06-09 05:08:07 +00002485 } else {
Chris Lattner905976b2009-08-30 06:13:40 +00002486 Worklist.Add(I);
Chris Lattnerbacd05c2009-08-30 06:22:51 +00002487 Worklist.AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +00002488 }
Chris Lattner053c0932002-05-14 15:24:07 +00002489 }
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002490 MadeIRChange = true;
Chris Lattnerca081252001-12-14 16:52:21 +00002491 }
2492 }
2493
Chris Lattner97fd3592009-08-30 05:55:36 +00002494 Worklist.Zap();
Chris Lattnerff5f1e42009-08-31 06:57:37 +00002495 return MadeIRChange;
Chris Lattner04805fa2002-02-26 21:46:54 +00002496}
2497
Meador Inge76fc1a42012-11-11 03:51:43 +00002498namespace {
2499class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2500 InstCombiner *IC;
2501public:
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002502 InstCombinerLibCallSimplifier(const DataLayout *DL,
Meador Inge76fc1a42012-11-11 03:51:43 +00002503 const TargetLibraryInfo *TLI,
2504 InstCombiner *IC)
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002505 : LibCallSimplifier(DL, TLI, UnsafeFPShrink) {
Meador Inge76fc1a42012-11-11 03:51:43 +00002506 this->IC = IC;
2507 }
2508
2509 /// replaceAllUsesWith - override so that instruction replacement
2510 /// can be defined in terms of the instruction combiner framework.
2511 virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2512 IC->ReplaceInstUsesWith(*I, With);
2513 }
2514};
2515}
Chris Lattner960a5432007-03-03 02:04:50 +00002516
2517bool InstCombiner::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002518 if (skipOptnoneFunction(F))
2519 return false;
2520
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002521 DL = getAnalysisIfAvailable<DataLayout>();
Chad Rosiere6de63d2011-12-01 21:29:16 +00002522 TLI = &getAnalysis<TargetLibraryInfo>();
Quentin Colombet3b2db0b2013-01-07 18:37:41 +00002523 // Minimizing size?
2524 MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2525 Attribute::MinSize);
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002526
Chris Lattner022a5822009-08-30 07:44:24 +00002527 /// Builder - This is an IRBuilder that automatically inserts new
2528 /// instructions into the worklist when they are created.
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002529 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002530 TheBuilder(F.getContext(), TargetFolder(DL),
Chris Lattner022a5822009-08-30 07:44:24 +00002531 InstCombineIRInserter(Worklist));
2532 Builder = &TheBuilder;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002533
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002534 InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
Meador Ingedf796f82012-10-13 16:45:24 +00002535 Simplifier = &TheSimplifier;
2536
Chris Lattner960a5432007-03-03 02:04:50 +00002537 bool EverMadeChange = false;
2538
Devang Patelaad34d82011-03-17 22:18:16 +00002539 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2540 // by instcombiner.
2541 EverMadeChange = LowerDbgDeclare(F);
2542
Chris Lattner960a5432007-03-03 02:04:50 +00002543 // Iterate while there is work to do.
2544 unsigned Iteration = 0;
Bill Wendling37169522008-05-14 22:45:20 +00002545 while (DoOneIteration(F, Iteration++))
Chris Lattner960a5432007-03-03 02:04:50 +00002546 EverMadeChange = true;
Jakub Staszakcfc46f82012-05-06 13:52:31 +00002547
Chris Lattner022a5822009-08-30 07:44:24 +00002548 Builder = 0;
Chris Lattner960a5432007-03-03 02:04:50 +00002549 return EverMadeChange;
2550}
2551
Brian Gaeke38b79e82004-07-27 17:43:21 +00002552FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +00002553 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +00002554}