blob: dc15486556af84f32a69e6aad86003ccea000fbc [file] [log] [blame]
Chris Lattnere6794492002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerca081252001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner99f48c62002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattnerca081252001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner07418422007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattnerca081252001-12-14 16:52:21 +000017// into:
Chris Lattner07418422007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattnerca081252001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner216c7b82003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattnerbfb1d032003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencer266e42b2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnerede3fe02003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattner7515cab2004-11-14 19:13:23 +000032// ... etc.
Chris Lattnerbfb1d032003-07-23 21:41:57 +000033//
Chris Lattnerca081252001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner7d2a5392004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner00648e12004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattner04805fa2002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner1085bdf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner0f1d8a32003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattner024f4ab2007-01-30 23:46:24 +000042#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerf4ad1652003-11-02 05:57:39 +000043#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
Chris Lattner69193f92004-04-05 01:30:19 +000046#include "llvm/Support/CallSite.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000047#include "llvm/Support/Debug.h"
Chris Lattner69193f92004-04-05 01:30:19 +000048#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner260ab202002-04-18 17:39:14 +000049#include "llvm/Support/InstVisitor.h"
Chris Lattner22d00a82005-08-02 19:16:58 +000050#include "llvm/Support/MathExtras.h"
Chris Lattnerd4252a72004-07-30 07:50:03 +000051#include "llvm/Support/PatternMatch.h"
Chris Lattner3d27be12006-08-27 12:54:02 +000052#include "llvm/Support/Compiler.h"
Chris Lattnerb15e2b12007-03-02 21:28:56 +000053#include "llvm/ADT/DenseMap.h"
Chris Lattnerf96f4a82007-01-31 04:40:53 +000054#include "llvm/ADT/SmallVector.h"
Chris Lattner7907e5f2007-02-15 19:41:52 +000055#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000056#include "llvm/ADT/Statistic.h"
Chris Lattner39c98bb2004-12-08 23:43:58 +000057#include "llvm/ADT/STLExtras.h"
Chris Lattner053c0932002-05-14 15:24:07 +000058#include <algorithm>
Reid Spencer3f4e6e82007-02-04 00:40:42 +000059#include <set>
Chris Lattner8427bff2003-12-07 01:24:23 +000060using namespace llvm;
Chris Lattnerd4252a72004-07-30 07:50:03 +000061using namespace llvm::PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000062
Chris Lattner79a42ac2006-12-19 21:40:18 +000063STATISTIC(NumCombined , "Number of insts combined");
64STATISTIC(NumConstProp, "Number of constant folds");
65STATISTIC(NumDeadInst , "Number of dead inst eliminated");
66STATISTIC(NumDeadStore, "Number of dead stores eliminated");
67STATISTIC(NumSunkInst , "Number of instructions sunk");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000068
Chris Lattner79a42ac2006-12-19 21:40:18 +000069namespace {
Chris Lattner4a4c7fe2006-06-28 22:08:15 +000070 class VISIBILITY_HIDDEN InstCombiner
71 : public FunctionPass,
72 public InstVisitor<InstCombiner, Instruction*> {
Chris Lattner260ab202002-04-18 17:39:14 +000073 // Worklist of all of the instructions that need to be simplified.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000074 std::vector<Instruction*> Worklist;
75 DenseMap<Instruction*, unsigned> WorklistMap;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000076 TargetData *TD;
Chris Lattner8258b442007-03-04 04:27:24 +000077 bool MustPreserveLCSSA;
Chris Lattnerb15e2b12007-03-02 21:28:56 +000078 public:
79 /// AddToWorkList - Add the specified instruction to the worklist if it
80 /// isn't already in it.
81 void AddToWorkList(Instruction *I) {
82 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
83 Worklist.push_back(I);
84 }
85
86 // RemoveFromWorkList - remove I from the worklist if it exists.
87 void RemoveFromWorkList(Instruction *I) {
88 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
89 if (It == WorklistMap.end()) return; // Not in worklist.
90
91 // Don't bother moving everything down, just null out the slot.
92 Worklist[It->second] = 0;
93
94 WorklistMap.erase(It);
95 }
96
97 Instruction *RemoveOneFromWorkList() {
98 Instruction *I = Worklist.back();
99 Worklist.pop_back();
100 WorklistMap.erase(I);
101 return I;
102 }
Chris Lattner260ab202002-04-18 17:39:14 +0000103
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000104
Chris Lattner51ea1272004-02-28 05:22:00 +0000105 /// AddUsersToWorkList - When an instruction is simplified, add all users of
106 /// the instruction to the work lists because they might get more simplified
107 /// now.
108 ///
Chris Lattner2590e512006-02-07 06:56:34 +0000109 void AddUsersToWorkList(Value &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +0000110 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattner260ab202002-04-18 17:39:14 +0000111 UI != UE; ++UI)
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000112 AddToWorkList(cast<Instruction>(*UI));
Chris Lattner260ab202002-04-18 17:39:14 +0000113 }
114
Chris Lattner51ea1272004-02-28 05:22:00 +0000115 /// AddUsesToWorkList - When an instruction is simplified, add operands to
116 /// the work lists because they might get more simplified now.
117 ///
118 void AddUsesToWorkList(Instruction &I) {
119 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
120 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000121 AddToWorkList(Op);
Chris Lattner51ea1272004-02-28 05:22:00 +0000122 }
Chris Lattner2deeaea2006-10-05 06:55:50 +0000123
124 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
125 /// dead. Add all of its operands to the worklist, turning them into
126 /// undef's to reduce the number of uses of those instructions.
127 ///
128 /// Return the specified operand before it is turned into an undef.
129 ///
130 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
131 Value *R = I.getOperand(op);
132
133 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
134 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000135 AddToWorkList(Op);
Chris Lattner2deeaea2006-10-05 06:55:50 +0000136 // Set the operand to undef to drop the use.
137 I.setOperand(i, UndefValue::get(Op->getType()));
138 }
139
140 return R;
141 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000142
Chris Lattner260ab202002-04-18 17:39:14 +0000143 public:
Chris Lattner113f4f42002-06-25 16:13:24 +0000144 virtual bool runOnFunction(Function &F);
Chris Lattner960a5432007-03-03 02:04:50 +0000145
146 bool DoOneIteration(Function &F, unsigned ItNum);
Chris Lattner260ab202002-04-18 17:39:14 +0000147
Chris Lattnerf12cc842002-04-28 21:27:06 +0000148 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerf4ad1652003-11-02 05:57:39 +0000149 AU.addRequired<TargetData>();
Owen Andersona6968f82006-07-10 19:03:49 +0000150 AU.addPreservedID(LCSSAID);
Chris Lattner820d9712002-10-21 20:00:28 +0000151 AU.setPreservesCFG();
Chris Lattnerf12cc842002-04-28 21:27:06 +0000152 }
153
Chris Lattner69193f92004-04-05 01:30:19 +0000154 TargetData &getTargetData() const { return *TD; }
155
Chris Lattner260ab202002-04-18 17:39:14 +0000156 // Visitation implementation - Implement instruction combining for different
157 // instruction types. The semantics are as follows:
158 // Return Value:
159 // null - No change was made
Chris Lattnere6794492002-08-12 21:17:25 +0000160 // I - Change was made, I is still valid, I may be dead though
Chris Lattner260ab202002-04-18 17:39:14 +0000161 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanb1c93172005-04-21 23:48:37 +0000162 //
Chris Lattner113f4f42002-06-25 16:13:24 +0000163 Instruction *visitAdd(BinaryOperator &I);
164 Instruction *visitSub(BinaryOperator &I);
165 Instruction *visitMul(BinaryOperator &I);
Reid Spencer7eb55b32006-11-02 01:53:59 +0000166 Instruction *visitURem(BinaryOperator &I);
167 Instruction *visitSRem(BinaryOperator &I);
168 Instruction *visitFRem(BinaryOperator &I);
169 Instruction *commonRemTransforms(BinaryOperator &I);
170 Instruction *commonIRemTransforms(BinaryOperator &I);
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000171 Instruction *commonDivTransforms(BinaryOperator &I);
172 Instruction *commonIDivTransforms(BinaryOperator &I);
173 Instruction *visitUDiv(BinaryOperator &I);
174 Instruction *visitSDiv(BinaryOperator &I);
175 Instruction *visitFDiv(BinaryOperator &I);
Chris Lattner113f4f42002-06-25 16:13:24 +0000176 Instruction *visitAnd(BinaryOperator &I);
177 Instruction *visitOr (BinaryOperator &I);
178 Instruction *visitXor(BinaryOperator &I);
Reid Spencer2341c222007-02-02 02:16:23 +0000179 Instruction *visitShl(BinaryOperator &I);
180 Instruction *visitAShr(BinaryOperator &I);
181 Instruction *visitLShr(BinaryOperator &I);
182 Instruction *commonShiftTransforms(BinaryOperator &I);
Reid Spencer266e42b2006-12-23 06:05:41 +0000183 Instruction *visitFCmpInst(FCmpInst &I);
184 Instruction *visitICmpInst(ICmpInst &I);
185 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Chris Lattnerd1f46d32005-04-24 06:59:08 +0000186
Reid Spencer266e42b2006-12-23 06:05:41 +0000187 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
188 ICmpInst::Predicate Cond, Instruction &I);
Reid Spencere0fc4df2006-10-20 07:07:24 +0000189 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer2341c222007-02-02 02:16:23 +0000190 BinaryOperator &I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000191 Instruction *commonCastTransforms(CastInst &CI);
192 Instruction *commonIntCastTransforms(CastInst &CI);
193 Instruction *visitTrunc(CastInst &CI);
194 Instruction *visitZExt(CastInst &CI);
195 Instruction *visitSExt(CastInst &CI);
196 Instruction *visitFPTrunc(CastInst &CI);
197 Instruction *visitFPExt(CastInst &CI);
198 Instruction *visitFPToUI(CastInst &CI);
199 Instruction *visitFPToSI(CastInst &CI);
200 Instruction *visitUIToFP(CastInst &CI);
201 Instruction *visitSIToFP(CastInst &CI);
202 Instruction *visitPtrToInt(CastInst &CI);
203 Instruction *visitIntToPtr(CastInst &CI);
204 Instruction *visitBitCast(CastInst &CI);
Chris Lattner411336f2005-01-19 21:50:18 +0000205 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
206 Instruction *FI);
Chris Lattnerb909e8b2004-03-12 05:52:32 +0000207 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner970c33a2003-06-19 17:00:31 +0000208 Instruction *visitCallInst(CallInst &CI);
209 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner113f4f42002-06-25 16:13:24 +0000210 Instruction *visitPHINode(PHINode &PN);
211 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner1085bdf2002-11-04 16:18:53 +0000212 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner8427bff2003-12-07 01:24:23 +0000213 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner0f1d8a32003-06-26 05:06:25 +0000214 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner31f486c2005-01-31 05:36:43 +0000215 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattner9eef8a72003-06-04 04:46:00 +0000216 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner4c9c20a2004-07-03 00:26:11 +0000217 Instruction *visitSwitchInst(SwitchInst &SI);
Chris Lattner39fac442006-04-15 01:39:45 +0000218 Instruction *visitInsertElementInst(InsertElementInst &IE);
Robert Bocchinoa8352962006-01-13 22:48:06 +0000219 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnerfbb77a42006-04-10 22:45:52 +0000220 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Chris Lattner260ab202002-04-18 17:39:14 +0000221
222 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner113f4f42002-06-25 16:13:24 +0000223 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000224
Chris Lattner970c33a2003-06-19 17:00:31 +0000225 private:
Chris Lattneraec3d942003-10-07 22:32:43 +0000226 Instruction *visitCallSite(CallSite CS);
Chris Lattner970c33a2003-06-19 17:00:31 +0000227 bool transformConstExprCastCall(CallSite CS);
228
Chris Lattner69193f92004-04-05 01:30:19 +0000229 public:
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000230 // InsertNewInstBefore - insert an instruction New before instruction Old
231 // in the program. Add the new instruction to the worklist.
232 //
Chris Lattner623826c2004-09-28 21:48:02 +0000233 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattner65217ff2002-08-23 18:32:43 +0000234 assert(New && New->getParent() == 0 &&
235 "New instruction already inserted into a basic block!");
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000236 BasicBlock *BB = Old.getParent();
237 BB->getInstList().insert(&Old, New); // Insert inst
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000238 AddToWorkList(New);
Chris Lattnere79e8542004-02-23 06:38:22 +0000239 return New;
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000240 }
241
Chris Lattner7e794272004-09-24 15:21:34 +0000242 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
243 /// This also adds the cast to the worklist. Finally, this returns the
244 /// cast.
Reid Spencer13bc5d72006-12-12 09:18:51 +0000245 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
246 Instruction &Pos) {
Chris Lattner7e794272004-09-24 15:21:34 +0000247 if (V->getType() == Ty) return V;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000248
Chris Lattnere79d2492006-04-06 19:19:17 +0000249 if (Constant *CV = dyn_cast<Constant>(V))
Reid Spencer13bc5d72006-12-12 09:18:51 +0000250 return ConstantExpr::getCast(opc, CV, Ty);
Chris Lattnere79d2492006-04-06 19:19:17 +0000251
Reid Spencer13bc5d72006-12-12 09:18:51 +0000252 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000253 AddToWorkList(C);
Chris Lattner7e794272004-09-24 15:21:34 +0000254 return C;
255 }
256
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000257 // ReplaceInstUsesWith - This method is to be used when an instruction is
258 // found to be dead, replacable with another preexisting expression. Here
259 // we add all uses of I to the worklist, replace all uses of I with the new
260 // value, then return I, so that the inst combiner will know that I was
261 // modified.
262 //
263 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner51ea1272004-02-28 05:22:00 +0000264 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner8953b902004-04-05 02:10:19 +0000265 if (&I != V) {
266 I.replaceAllUsesWith(V);
267 return &I;
268 } else {
269 // If we are replacing the instruction with itself, this must be in a
270 // segment of unreachable code, so just clobber the instruction.
Chris Lattner8ba9ec92004-10-18 02:59:09 +0000271 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner8953b902004-04-05 02:10:19 +0000272 return &I;
273 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +0000274 }
Chris Lattner51ea1272004-02-28 05:22:00 +0000275
Chris Lattner2590e512006-02-07 06:56:34 +0000276 // UpdateValueUsesWith - This method is to be used when an value is
277 // found to be replacable with another preexisting expression or was
278 // updated. Here we add all uses of I to the worklist, replace all uses of
279 // I with the new value (unless the instruction was just updated), then
280 // return true, so that the inst combiner will know that I was modified.
281 //
282 bool UpdateValueUsesWith(Value *Old, Value *New) {
283 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
284 if (Old != New)
285 Old->replaceAllUsesWith(New);
286 if (Instruction *I = dyn_cast<Instruction>(Old))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000287 AddToWorkList(I);
Chris Lattner5b2edb12006-02-12 08:02:11 +0000288 if (Instruction *I = dyn_cast<Instruction>(New))
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000289 AddToWorkList(I);
Chris Lattner2590e512006-02-07 06:56:34 +0000290 return true;
291 }
292
Chris Lattner51ea1272004-02-28 05:22:00 +0000293 // EraseInstFromFunction - When dealing with an instruction that has side
294 // effects or produces a void value, we can't rely on DCE to delete the
295 // instruction. Instead, visit methods should return the value returned by
296 // this function.
297 Instruction *EraseInstFromFunction(Instruction &I) {
298 assert(I.use_empty() && "Cannot erase instruction that is used!");
299 AddUsesToWorkList(I);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000300 RemoveFromWorkList(&I);
Chris Lattner95307542004-11-18 21:41:39 +0000301 I.eraseFromParent();
Chris Lattner51ea1272004-02-28 05:22:00 +0000302 return 0; // Don't do anything with FI
303 }
304
Chris Lattner3ac7c262003-08-13 20:16:26 +0000305 private:
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000306 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
307 /// InsertBefore instruction. This is specialized a bit to avoid inserting
308 /// casts that are known to not do anything...
309 ///
Reid Spencer13bc5d72006-12-12 09:18:51 +0000310 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
311 Value *V, const Type *DestTy,
Chris Lattnerdfae8be2003-07-24 17:35:25 +0000312 Instruction *InsertBefore);
313
Reid Spencer266e42b2006-12-23 06:05:41 +0000314 /// SimplifyCommutative - This performs a few simplifications for
315 /// commutative operators.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000316 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerba1cb382003-09-19 17:17:26 +0000317
Reid Spencer266e42b2006-12-23 06:05:41 +0000318 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
319 /// most-complex to least-complex order.
320 bool SimplifyCompare(CmpInst &I);
321
Reid Spencer1791f232007-03-12 17:25:59 +0000322 bool SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
Chris Lattner0157e7f2006-02-11 09:31:47 +0000323 uint64_t &KnownZero, uint64_t &KnownOne,
324 unsigned Depth = 0);
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000325
Reid Spencer1791f232007-03-12 17:25:59 +0000326 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
327 APInt& KnownZero, APInt& KnownOne,
328 unsigned Depth = 0);
329
Chris Lattner2deeaea2006-10-05 06:55:50 +0000330 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
331 uint64_t &UndefElts, unsigned Depth = 0);
332
Chris Lattner6a4adcd2004-09-29 05:07:12 +0000333 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
334 // PHI node as operand #0, see if we can fold the instruction into the PHI
335 // (which is only possible if all operands to the PHI are constants).
336 Instruction *FoldOpIntoPhi(Instruction &I);
337
Chris Lattner7515cab2004-11-14 19:13:23 +0000338 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
339 // operator and they all are only used by the PHI, PHI together their
340 // inputs, and do the operation once, to the result of the PHI.
341 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Chris Lattnercadac0c2006-11-01 04:51:18 +0000342 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
343
344
Zhou Sheng75b871f2007-01-11 12:24:14 +0000345 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
346 ConstantInt *AndRHS, BinaryOperator &TheAnd);
Chris Lattneraf517572005-09-18 04:24:45 +0000347
Zhou Sheng75b871f2007-01-11 12:24:14 +0000348 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
Chris Lattneraf517572005-09-18 04:24:45 +0000349 bool isSub, Instruction &I);
Chris Lattner6862fbd2004-09-29 17:40:11 +0000350 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencer266e42b2006-12-23 06:05:41 +0000351 bool isSigned, bool Inside, Instruction &IB);
Chris Lattner216be912005-10-24 06:03:58 +0000352 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattnerc482a9e2006-06-15 19:07:26 +0000353 Instruction *MatchBSwap(BinaryOperator &I);
354
Reid Spencer74a528b2006-12-13 18:21:21 +0000355 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
Chris Lattner260ab202002-04-18 17:39:14 +0000356 };
Chris Lattnerb28b6802002-07-23 18:06:35 +0000357
Chris Lattnerc2d3d312006-08-27 22:42:52 +0000358 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattner260ab202002-04-18 17:39:14 +0000359}
360
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000361// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattner81a7a232004-10-16 18:11:37 +0000362// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000363static unsigned getComplexity(Value *V) {
364 if (isa<Instruction>(V)) {
365 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattner81a7a232004-10-16 18:11:37 +0000366 return 3;
367 return 4;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000368 }
Chris Lattner81a7a232004-10-16 18:11:37 +0000369 if (isa<Argument>(V)) return 3;
370 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000371}
Chris Lattner260ab202002-04-18 17:39:14 +0000372
Chris Lattner7fb29e12003-03-11 00:12:48 +0000373// isOnlyUse - Return true if this instruction will be deleted if we stop using
374// it.
375static bool isOnlyUse(Value *V) {
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000376 return V->hasOneUse() || isa<Constant>(V);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000377}
378
Chris Lattnere79e8542004-02-23 06:38:22 +0000379// getPromotedType - Return the specified type promoted as it would be to pass
380// though a va_arg area...
381static const Type *getPromotedType(const Type *Ty) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +0000382 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
383 if (ITy->getBitWidth() < 32)
384 return Type::Int32Ty;
385 } else if (Ty == Type::FloatTy)
386 return Type::DoubleTy;
387 return Ty;
Chris Lattnere79e8542004-02-23 06:38:22 +0000388}
389
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000390/// getBitCastOperand - If the specified operand is a CastInst or a constant
391/// expression bitcast, return the operand value, otherwise return null.
392static Value *getBitCastOperand(Value *V) {
393 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
Chris Lattner567b81f2005-09-13 00:40:14 +0000394 return I->getOperand(0);
395 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000396 if (CE->getOpcode() == Instruction::BitCast)
Chris Lattner567b81f2005-09-13 00:40:14 +0000397 return CE->getOperand(0);
398 return 0;
399}
400
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000401/// This function is a wrapper around CastInst::isEliminableCastPair. It
402/// simply extracts arguments and returns what that function returns.
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000403static Instruction::CastOps
404isEliminableCastPair(
405 const CastInst *CI, ///< The first cast instruction
406 unsigned opcode, ///< The opcode of the second cast instruction
407 const Type *DstTy, ///< The target type for the second cast instruction
408 TargetData *TD ///< The target data for pointer size
409) {
410
411 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
412 const Type *MidTy = CI->getType(); // B from above
Chris Lattner1d441ad2006-05-06 09:00:16 +0000413
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000414 // Get the opcodes of the two Cast instructions
415 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
416 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000417
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000418 return Instruction::CastOps(
419 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
420 DstTy, TD->getIntPtrType()));
Chris Lattner1d441ad2006-05-06 09:00:16 +0000421}
422
423/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
424/// in any code being generated. It does not require codegen if V is simple
425/// enough or if the cast can be folded into other casts.
Reid Spencer266e42b2006-12-23 06:05:41 +0000426static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
427 const Type *Ty, TargetData *TD) {
Chris Lattner1d441ad2006-05-06 09:00:16 +0000428 if (V->getType() == Ty || isa<Constant>(V)) return false;
429
Chris Lattner99155be2006-05-25 23:24:33 +0000430 // If this is another cast that can be eliminated, it isn't codegen either.
Chris Lattner1d441ad2006-05-06 09:00:16 +0000431 if (const CastInst *CI = dyn_cast<CastInst>(V))
Reid Spencer266e42b2006-12-23 06:05:41 +0000432 if (isEliminableCastPair(CI, opcode, Ty, TD))
Chris Lattner1d441ad2006-05-06 09:00:16 +0000433 return false;
434 return true;
435}
436
437/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
438/// InsertBefore instruction. This is specialized a bit to avoid inserting
439/// casts that are known to not do anything...
440///
Reid Spencer13bc5d72006-12-12 09:18:51 +0000441Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
442 Value *V, const Type *DestTy,
Chris Lattner1d441ad2006-05-06 09:00:16 +0000443 Instruction *InsertBefore) {
444 if (V->getType() == DestTy) return V;
445 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer13bc5d72006-12-12 09:18:51 +0000446 return ConstantExpr::getCast(opcode, C, DestTy);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000447
Reid Spencer13bc5d72006-12-12 09:18:51 +0000448 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
Chris Lattner1d441ad2006-05-06 09:00:16 +0000449}
450
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000451// SimplifyCommutative - This performs a few simplifications for commutative
452// operators:
Chris Lattner260ab202002-04-18 17:39:14 +0000453//
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000454// 1. Order operands such that they are listed from right (least complex) to
455// left (most complex). This puts constants before unary operators before
456// binary operators.
457//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000458// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
459// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000460//
Chris Lattner7fb29e12003-03-11 00:12:48 +0000461bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000462 bool Changed = false;
463 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
464 Changed = !I.swapOperands();
Misha Brukmanb1c93172005-04-21 23:48:37 +0000465
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000466 if (!I.isAssociative()) return Changed;
467 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattner7fb29e12003-03-11 00:12:48 +0000468 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
469 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
470 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner34428442003-05-27 16:40:51 +0000471 Constant *Folded = ConstantExpr::get(I.getOpcode(),
472 cast<Constant>(I.getOperand(1)),
473 cast<Constant>(Op->getOperand(1)));
Chris Lattner7fb29e12003-03-11 00:12:48 +0000474 I.setOperand(0, Op->getOperand(0));
475 I.setOperand(1, Folded);
476 return true;
477 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
478 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
479 isOnlyUse(Op) && isOnlyUse(Op1)) {
480 Constant *C1 = cast<Constant>(Op->getOperand(1));
481 Constant *C2 = cast<Constant>(Op1->getOperand(1));
482
483 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner34428442003-05-27 16:40:51 +0000484 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000485 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
486 Op1->getOperand(0),
487 Op1->getName(), &I);
Chris Lattnerb15e2b12007-03-02 21:28:56 +0000488 AddToWorkList(New);
Chris Lattner7fb29e12003-03-11 00:12:48 +0000489 I.setOperand(0, New);
490 I.setOperand(1, Folded);
491 return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +0000492 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000493 }
Chris Lattnerdcf240a2003-03-10 21:43:22 +0000494 return Changed;
Chris Lattner260ab202002-04-18 17:39:14 +0000495}
Chris Lattnerca081252001-12-14 16:52:21 +0000496
Reid Spencer266e42b2006-12-23 06:05:41 +0000497/// SimplifyCompare - For a CmpInst this function just orders the operands
498/// so that theyare listed from right (least complex) to left (most complex).
499/// This puts constants before unary operators before binary operators.
500bool InstCombiner::SimplifyCompare(CmpInst &I) {
501 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
502 return false;
503 I.swapOperands();
504 // Compare instructions are not associative so there's nothing else we can do.
505 return true;
506}
507
Chris Lattnerbb74e222003-03-10 23:06:50 +0000508// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
509// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattner9fa53de2002-05-06 16:49:18 +0000510//
Chris Lattnerbb74e222003-03-10 23:06:50 +0000511static inline Value *dyn_castNegVal(Value *V) {
512 if (BinaryOperator::isNeg(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000513 return BinaryOperator::getNegArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000514
Chris Lattner9ad0d552004-12-14 20:08:06 +0000515 // Constants can be considered to be negated values if they can be folded.
516 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
517 return ConstantExpr::getNeg(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000518 return 0;
Chris Lattner9fa53de2002-05-06 16:49:18 +0000519}
520
Chris Lattnerbb74e222003-03-10 23:06:50 +0000521static inline Value *dyn_castNotVal(Value *V) {
522 if (BinaryOperator::isNot(V))
Chris Lattnerd6f636a2005-04-24 07:30:14 +0000523 return BinaryOperator::getNotArgument(V);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000524
525 // Constants can be considered to be not'ed values...
Zhou Sheng75b871f2007-01-11 12:24:14 +0000526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Chris Lattnerc8e7e292004-06-10 02:12:35 +0000527 return ConstantExpr::getNot(C);
Chris Lattnerbb74e222003-03-10 23:06:50 +0000528 return 0;
529}
530
Chris Lattner7fb29e12003-03-11 00:12:48 +0000531// dyn_castFoldableMul - If this value is a multiply that can be folded into
532// other computations (because it has a constant operand), return the
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000533// non-constant operand of the multiply, and set CST to point to the multiplier.
534// Otherwise, return null.
Chris Lattner7fb29e12003-03-11 00:12:48 +0000535//
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000536static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattner03c49532007-01-15 02:27:26 +0000537 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000538 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattner7fb29e12003-03-11 00:12:48 +0000539 if (I->getOpcode() == Instruction::Mul)
Chris Lattner970136362004-11-15 05:54:07 +0000540 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattner7fb29e12003-03-11 00:12:48 +0000541 return I->getOperand(0);
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000542 if (I->getOpcode() == Instruction::Shl)
Chris Lattner970136362004-11-15 05:54:07 +0000543 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner8c3e7b92004-11-13 19:50:12 +0000544 // The multiplier is really 1 << CST.
545 Constant *One = ConstantInt::get(V->getType(), 1);
546 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
547 return I->getOperand(0);
548 }
549 }
Chris Lattner7fb29e12003-03-11 00:12:48 +0000550 return 0;
Chris Lattner3082c5a2003-02-18 19:28:33 +0000551}
Chris Lattner31ae8632002-08-14 17:51:49 +0000552
Chris Lattner0798af32005-01-13 20:14:25 +0000553/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
554/// expression, return it.
555static User *dyn_castGetElementPtr(Value *V) {
556 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
557 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
558 if (CE->getOpcode() == Instruction::GetElementPtr)
559 return cast<User>(V);
560 return false;
561}
562
Chris Lattner623826c2004-09-28 21:48:02 +0000563// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattner6862fbd2004-09-29 17:40:11 +0000564static ConstantInt *AddOne(ConstantInt *C) {
565 return cast<ConstantInt>(ConstantExpr::getAdd(C,
566 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000567}
Chris Lattner6862fbd2004-09-29 17:40:11 +0000568static ConstantInt *SubOne(ConstantInt *C) {
569 return cast<ConstantInt>(ConstantExpr::getSub(C,
570 ConstantInt::get(C->getType(), 1)));
Chris Lattner623826c2004-09-28 21:48:02 +0000571}
572
Chris Lattner4534dd592006-02-09 07:38:58 +0000573/// ComputeMaskedBits - Determine which of the bits specified in Mask are
574/// known to be either zero or one and return them in the KnownZero/KnownOne
Reid Spenceraa696402007-03-08 01:46:38 +0000575/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
576/// processing.
577/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
578/// we cannot optimize based on the assumption that it is zero without changing
579/// it to be an explicit zero. If we don't change it to zero, other code could
580/// optimized based on the contradictory assumption that it is non-zero.
581/// Because instcombine aggressively folds operations with undef args anyway,
582/// this won't lose us code quality.
583static void ComputeMaskedBits(Value *V, APInt Mask, APInt& KnownZero,
584 APInt& KnownOne, unsigned Depth = 0) {
Zhou Shengaf4341d2007-03-13 02:23:10 +0000585 assert(V && "No Value?");
586 assert(Depth <= 6 && "Limit Search Depth");
Reid Spenceraa696402007-03-08 01:46:38 +0000587 uint32_t BitWidth = Mask.getBitWidth();
Zhou Shengaf4341d2007-03-13 02:23:10 +0000588 const IntegerType *VTy = cast<IntegerType>(V->getType());
589 assert(VTy->getBitWidth() == BitWidth &&
590 KnownZero.getBitWidth() == BitWidth &&
Reid Spenceraa696402007-03-08 01:46:38 +0000591 KnownOne.getBitWidth() == BitWidth &&
Zhou Shengaf4341d2007-03-13 02:23:10 +0000592 "VTy, Mask, KnownOne and KnownZero should have same BitWidth");
Reid Spenceraa696402007-03-08 01:46:38 +0000593 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
594 // We know all of the bits for a constant!
Zhou Shengaf4341d2007-03-13 02:23:10 +0000595 KnownOne = CI->getValue() & Mask;
Reid Spenceraa696402007-03-08 01:46:38 +0000596 KnownZero = ~KnownOne & Mask;
597 return;
598 }
599
Reid Spenceraa696402007-03-08 01:46:38 +0000600 if (Depth == 6 || Mask == 0)
601 return; // Limit search depth.
602
603 Instruction *I = dyn_cast<Instruction>(V);
604 if (!I) return;
605
Zhou Shengaf4341d2007-03-13 02:23:10 +0000606 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
Reid Spenceraa696402007-03-08 01:46:38 +0000607 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Zhou Shengaf4341d2007-03-13 02:23:10 +0000608 Mask &= APInt::getAllOnesValue(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000609
610 switch (I->getOpcode()) {
611 case Instruction::And:
612 // If either the LHS or the RHS are Zero, the result is zero.
613 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
614 Mask &= ~KnownZero;
615 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
616 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
617 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
618
619 // Output known-1 bits are only known if set in both the LHS & RHS.
620 KnownOne &= KnownOne2;
621 // Output known-0 are known to be clear if zero in either the LHS | RHS.
622 KnownZero |= KnownZero2;
623 return;
624 case Instruction::Or:
625 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
626 Mask &= ~KnownOne;
627 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
628 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
629 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
630
631 // Output known-0 bits are only known if clear in both the LHS & RHS.
632 KnownZero &= KnownZero2;
633 // Output known-1 are known to be set if set in either the LHS | RHS.
634 KnownOne |= KnownOne2;
635 return;
636 case Instruction::Xor: {
637 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
638 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
639 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
640 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
641
642 // Output known-0 bits are known if clear or set in both the LHS & RHS.
643 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
644 // Output known-1 are known to be set if set in only one of the LHS, RHS.
645 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
646 KnownZero = KnownZeroOut;
647 return;
648 }
649 case Instruction::Select:
650 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
651 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
652 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
654
655 // Only known if known in both the LHS and RHS.
656 KnownOne &= KnownOne2;
657 KnownZero &= KnownZero2;
658 return;
659 case Instruction::FPTrunc:
660 case Instruction::FPExt:
661 case Instruction::FPToUI:
662 case Instruction::FPToSI:
663 case Instruction::SIToFP:
664 case Instruction::PtrToInt:
665 case Instruction::UIToFP:
666 case Instruction::IntToPtr:
667 return; // Can't work with floating point or pointers
Zhou Shengaf4341d2007-03-13 02:23:10 +0000668 case Instruction::Trunc: {
Reid Spenceraa696402007-03-08 01:46:38 +0000669 // All these have integer operands
Zhou Shengaf4341d2007-03-13 02:23:10 +0000670 uint32_t SrcBitWidth =
671 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
672 ComputeMaskedBits(I->getOperand(0), Mask.zext(SrcBitWidth),
673 KnownZero.zext(SrcBitWidth), KnownOne.zext(SrcBitWidth), Depth+1);
674 KnownZero.trunc(BitWidth);
675 KnownOne.trunc(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000676 return;
Zhou Shengaf4341d2007-03-13 02:23:10 +0000677 }
Reid Spenceraa696402007-03-08 01:46:38 +0000678 case Instruction::BitCast: {
679 const Type *SrcTy = I->getOperand(0)->getType();
680 if (SrcTy->isInteger()) {
681 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
682 return;
683 }
684 break;
685 }
686 case Instruction::ZExt: {
687 // Compute the bits in the result that are not present in the input.
688 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Zhou Sheng387d7b12007-03-08 05:42:00 +0000689 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
Reid Spenceraa696402007-03-08 01:46:38 +0000690
Zhou Shengaf4341d2007-03-13 02:23:10 +0000691 uint32_t SrcBitWidth = SrcTy->getBitWidth();
692 ComputeMaskedBits(I->getOperand(0), Mask.trunc(SrcBitWidth),
693 KnownZero.trunc(SrcBitWidth), KnownOne.trunc(SrcBitWidth), Depth+1);
Reid Spenceraa696402007-03-08 01:46:38 +0000694 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
695 // The top bits are known to be zero.
Zhou Shengaf4341d2007-03-13 02:23:10 +0000696 KnownZero.zext(BitWidth);
697 KnownOne.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000698 KnownZero |= NewBits;
699 return;
700 }
701 case Instruction::SExt: {
702 // Compute the bits in the result that are not present in the input.
703 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Zhou Sheng387d7b12007-03-08 05:42:00 +0000704 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
Reid Spenceraa696402007-03-08 01:46:38 +0000705
Zhou Shengaf4341d2007-03-13 02:23:10 +0000706 uint32_t SrcBitWidth = SrcTy->getBitWidth();
707 ComputeMaskedBits(I->getOperand(0), Mask.trunc(SrcBitWidth),
708 KnownZero.trunc(SrcBitWidth), KnownOne.trunc(SrcBitWidth), Depth+1);
Reid Spenceraa696402007-03-08 01:46:38 +0000709 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Shengaf4341d2007-03-13 02:23:10 +0000710 KnownZero.zext(BitWidth);
711 KnownOne.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000712
713 // If the sign bit of the input is known set or clear, then we know the
714 // top bits of the result.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000715 APInt InSignBit(APInt::getSignBit(SrcTy->getBitWidth()));
Zhou Shengaf4341d2007-03-13 02:23:10 +0000716 InSignBit.zext(BitWidth);
Reid Spenceraa696402007-03-08 01:46:38 +0000717 if ((KnownZero & InSignBit) != 0) { // Input sign bit known zero
718 KnownZero |= NewBits;
719 KnownOne &= ~NewBits;
720 } else if ((KnownOne & InSignBit) != 0) { // Input sign bit known set
721 KnownOne |= NewBits;
722 KnownZero &= ~NewBits;
723 } else { // Input sign bit unknown
724 KnownZero &= ~NewBits;
725 KnownOne &= ~NewBits;
726 }
727 return;
728 }
729 case Instruction::Shl:
730 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
731 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
732 uint64_t ShiftAmt = SA->getZExtValue();
733 Mask = APIntOps::lshr(Mask, ShiftAmt);
734 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
735 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Zhou Shengb3e00c42007-03-12 05:44:52 +0000736 KnownZero <<= ShiftAmt;
737 KnownOne <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000738 KnownZero |= APInt(BitWidth, 1ULL).shl(ShiftAmt)-1; // low bits known zero.
739 return;
740 }
741 break;
742 case Instruction::LShr:
743 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
744 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
745 // Compute the new bits that are at the top now.
746 uint64_t ShiftAmt = SA->getZExtValue();
747 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt));
748
749 // Unsigned shift right.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000750 Mask <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000751 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
752 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
753 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
754 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
755 KnownZero |= HighBits; // high bits known zero.
756 return;
757 }
758 break;
759 case Instruction::AShr:
760 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
761 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
762 // Compute the new bits that are at the top now.
763 uint64_t ShiftAmt = SA->getZExtValue();
764 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth-ShiftAmt));
765
766 // Signed shift right.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000767 Mask <<= ShiftAmt;
Reid Spenceraa696402007-03-08 01:46:38 +0000768 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
769 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
770 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
771 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
772
773 // Handle the sign bits and adjust to where it is now in the mask.
Zhou Shengb3e00c42007-03-12 05:44:52 +0000774 APInt SignBit(APInt::getSignBit(BitWidth).lshr(ShiftAmt));
Reid Spenceraa696402007-03-08 01:46:38 +0000775
776 if ((KnownZero & SignBit) != 0) { // New bits are known zero.
777 KnownZero |= HighBits;
778 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
779 KnownOne |= HighBits;
780 }
781 return;
782 }
783 break;
784 }
785}
786
787/// ComputeMaskedBits - Determine which of the bits specified in Mask are
788/// known to be either zero or one and return them in the KnownZero/KnownOne
Chris Lattner4534dd592006-02-09 07:38:58 +0000789/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
790/// processing.
Reid Spenceraa696402007-03-08 01:46:38 +0000791static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
Chris Lattner4534dd592006-02-09 07:38:58 +0000792 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner0b3557f2005-09-24 23:43:33 +0000793 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
794 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattnerc3ebf402006-02-07 07:27:52 +0000795 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner0b3557f2005-09-24 23:43:33 +0000796 // optimized based on the contradictory assumption that it is non-zero.
797 // Because instcombine aggressively folds operations with undef args anyway,
798 // this won't lose us code quality.
Zhou Sheng75b871f2007-01-11 12:24:14 +0000799 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000800 // We know all of the bits for a constant!
Chris Lattner0157e7f2006-02-11 09:31:47 +0000801 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner4534dd592006-02-09 07:38:58 +0000802 KnownZero = ~KnownOne & Mask;
803 return;
804 }
805
806 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner92a68652006-02-07 08:05:22 +0000807 if (Depth == 6 || Mask == 0)
Chris Lattner4534dd592006-02-09 07:38:58 +0000808 return; // Limit search depth.
809
810 uint64_t KnownZero2, KnownOne2;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000811 Instruction *I = dyn_cast<Instruction>(V);
812 if (!I) return;
813
Reid Spencera94d3942007-01-19 21:13:56 +0000814 Mask &= cast<IntegerType>(V->getType())->getBitMask();
Chris Lattnerfb296922006-05-04 17:33:35 +0000815
Chris Lattner0157e7f2006-02-11 09:31:47 +0000816 switch (I->getOpcode()) {
817 case Instruction::And:
818 // If either the LHS or the RHS are Zero, the result is zero.
819 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
820 Mask &= ~KnownZero;
821 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
822 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
823 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
824
825 // Output known-1 bits are only known if set in both the LHS & RHS.
826 KnownOne &= KnownOne2;
827 // Output known-0 are known to be clear if zero in either the LHS | RHS.
828 KnownZero |= KnownZero2;
829 return;
830 case Instruction::Or:
831 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
832 Mask &= ~KnownOne;
833 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
834 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
835 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
836
837 // Output known-0 bits are only known if clear in both the LHS & RHS.
838 KnownZero &= KnownZero2;
839 // Output known-1 are known to be set if set in either the LHS | RHS.
840 KnownOne |= KnownOne2;
841 return;
842 case Instruction::Xor: {
843 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
844 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
845 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
847
848 // Output known-0 bits are known if clear or set in both the LHS & RHS.
849 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
850 // Output known-1 are known to be set if set in only one of the LHS, RHS.
851 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
852 KnownZero = KnownZeroOut;
853 return;
854 }
855 case Instruction::Select:
856 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
857 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
858 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
859 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
860
861 // Only known if known in both the LHS and RHS.
862 KnownOne &= KnownOne2;
863 KnownZero &= KnownZero2;
864 return;
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000865 case Instruction::FPTrunc:
866 case Instruction::FPExt:
867 case Instruction::FPToUI:
868 case Instruction::FPToSI:
869 case Instruction::SIToFP:
870 case Instruction::PtrToInt:
871 case Instruction::UIToFP:
872 case Instruction::IntToPtr:
873 return; // Can't work with floating point or pointers
874 case Instruction::Trunc:
875 // All these have integer operands
876 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
877 return;
878 case Instruction::BitCast: {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000879 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +0000880 if (SrcTy->isInteger()) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000881 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner4534dd592006-02-09 07:38:58 +0000882 return;
883 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000884 break;
885 }
886 case Instruction::ZExt: {
887 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +0000888 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
889 uint64_t NotIn = ~SrcTy->getBitMask();
890 uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
Chris Lattner62010c42005-10-09 06:36:35 +0000891
Reid Spencera94d3942007-01-19 21:13:56 +0000892 Mask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000893 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
894 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
895 // The top bits are known to be zero.
896 KnownZero |= NewBits;
897 return;
898 }
899 case Instruction::SExt: {
900 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +0000901 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
902 uint64_t NotIn = ~SrcTy->getBitMask();
903 uint64_t NewBits = cast<IntegerType>(I->getType())->getBitMask() & NotIn;
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000904
Reid Spencera94d3942007-01-19 21:13:56 +0000905 Mask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000906 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
907 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner92a68652006-02-07 08:05:22 +0000908
Reid Spencer6c38f0b2006-11-27 01:05:10 +0000909 // If the sign bit of the input is known set or clear, then we know the
910 // top bits of the result.
911 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
912 if (KnownZero & InSignBit) { // Input sign bit known zero
913 KnownZero |= NewBits;
914 KnownOne &= ~NewBits;
915 } else if (KnownOne & InSignBit) { // Input sign bit known set
916 KnownOne |= NewBits;
917 KnownZero &= ~NewBits;
918 } else { // Input sign bit unknown
919 KnownZero &= ~NewBits;
920 KnownOne &= ~NewBits;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000921 }
922 return;
923 }
924 case Instruction::Shl:
925 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +0000926 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
927 uint64_t ShiftAmt = SA->getZExtValue();
928 Mask >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000929 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
930 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Reid Spencere0fc4df2006-10-20 07:07:24 +0000931 KnownZero <<= ShiftAmt;
932 KnownOne <<= ShiftAmt;
933 KnownZero |= (1ULL << ShiftAmt)-1; // low bits known zero.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000934 return;
935 }
936 break;
Reid Spencerfdff9382006-11-08 06:47:33 +0000937 case Instruction::LShr:
Chris Lattner0157e7f2006-02-11 09:31:47 +0000938 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +0000939 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattner0157e7f2006-02-11 09:31:47 +0000940 // Compute the new bits that are at the top now.
Reid Spencere0fc4df2006-10-20 07:07:24 +0000941 uint64_t ShiftAmt = SA->getZExtValue();
942 uint64_t HighBits = (1ULL << ShiftAmt)-1;
943 HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000944
Reid Spencerfdff9382006-11-08 06:47:33 +0000945 // Unsigned shift right.
946 Mask <<= ShiftAmt;
947 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
948 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
949 KnownZero >>= ShiftAmt;
950 KnownOne >>= ShiftAmt;
951 KnownZero |= HighBits; // high bits known zero.
952 return;
953 }
954 break;
955 case Instruction::AShr:
956 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
957 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
958 // Compute the new bits that are at the top now.
959 uint64_t ShiftAmt = SA->getZExtValue();
960 uint64_t HighBits = (1ULL << ShiftAmt)-1;
961 HighBits <<= I->getType()->getPrimitiveSizeInBits()-ShiftAmt;
962
963 // Signed shift right.
964 Mask <<= ShiftAmt;
965 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
966 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
967 KnownZero >>= ShiftAmt;
968 KnownOne >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +0000969
Reid Spencerfdff9382006-11-08 06:47:33 +0000970 // Handle the sign bits.
971 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
972 SignBit >>= ShiftAmt; // Adjust to where it is now in the mask.
Chris Lattner0157e7f2006-02-11 09:31:47 +0000973
Reid Spencerfdff9382006-11-08 06:47:33 +0000974 if (KnownZero & SignBit) { // New bits are known zero.
975 KnownZero |= HighBits;
976 } else if (KnownOne & SignBit) { // New bits are known one.
977 KnownOne |= HighBits;
Chris Lattner4534dd592006-02-09 07:38:58 +0000978 }
979 return;
Chris Lattner62010c42005-10-09 06:36:35 +0000980 }
Chris Lattner0157e7f2006-02-11 09:31:47 +0000981 break;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000982 }
Chris Lattner92a68652006-02-07 08:05:22 +0000983}
984
985/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
986/// this predicate to simplify operations downstream. Mask is known to be zero
987/// for bits that V cannot have.
988static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner4534dd592006-02-09 07:38:58 +0000989 uint64_t KnownZero, KnownOne;
990 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
991 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
992 return (KnownZero & Mask) == Mask;
Chris Lattner0b3557f2005-09-24 23:43:33 +0000993}
994
Chris Lattnerd1bce952007-03-13 14:27:42 +0000995#if 0
Reid Spencerbb5741f2007-03-08 01:52:58 +0000996/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
997/// this predicate to simplify operations downstream. Mask is known to be zero
998/// for bits that V cannot have.
999static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
Zhou Shengbe171ee2007-03-12 16:54:56 +00001000 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Reid Spencerbb5741f2007-03-08 01:52:58 +00001001 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
1002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1003 return (KnownZero & Mask) == Mask;
1004}
Chris Lattnerd1bce952007-03-13 14:27:42 +00001005#endif
Reid Spencerbb5741f2007-03-08 01:52:58 +00001006
Chris Lattner0157e7f2006-02-11 09:31:47 +00001007/// ShrinkDemandedConstant - Check to see if the specified operand of the
1008/// specified instruction is a constant integer. If so, check to see if there
1009/// are any bits set in the constant that are not demanded. If so, shrink the
1010/// constant and return true.
1011static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1012 uint64_t Demanded) {
1013 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1014 if (!OpC) return false;
1015
1016 // If there are no bits set that aren't demanded, nothing to do.
1017 if ((~Demanded & OpC->getZExtValue()) == 0)
1018 return false;
1019
1020 // This is producing any bits that are not needed, shrink the RHS.
1021 uint64_t Val = Demanded & OpC->getZExtValue();
Zhou Sheng75b871f2007-01-11 12:24:14 +00001022 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Val));
Chris Lattner0157e7f2006-02-11 09:31:47 +00001023 return true;
1024}
1025
Reid Spencerd9281782007-03-12 17:15:10 +00001026/// ShrinkDemandedConstant - Check to see if the specified operand of the
1027/// specified instruction is a constant integer. If so, check to see if there
1028/// are any bits set in the constant that are not demanded. If so, shrink the
1029/// constant and return true.
1030static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
1031 APInt Demanded) {
1032 assert(I && "No instruction?");
1033 assert(OpNo < I->getNumOperands() && "Operand index too large");
1034
1035 // If the operand is not a constant integer, nothing to do.
1036 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
1037 if (!OpC) return false;
1038
1039 // If there are no bits set that aren't demanded, nothing to do.
1040 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
1041 if ((~Demanded & OpC->getValue()) == 0)
1042 return false;
1043
1044 // This instruction is producing bits that are not demanded. Shrink the RHS.
1045 Demanded &= OpC->getValue();
1046 I->setOperand(OpNo, ConstantInt::get(Demanded));
1047 return true;
1048}
1049
Chris Lattneree0f2802006-02-12 02:07:56 +00001050// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
1051// set of known zero and one bits, compute the maximum and minimum values that
1052// could have the specified known zero and known one bits, returning them in
1053// min/max.
1054static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
1055 uint64_t KnownZero,
1056 uint64_t KnownOne,
1057 int64_t &Min, int64_t &Max) {
Reid Spencera94d3942007-01-19 21:13:56 +00001058 uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
Chris Lattneree0f2802006-02-12 02:07:56 +00001059 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
1060
1061 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
1062
1063 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
1064 // bit if it is unknown.
1065 Min = KnownOne;
1066 Max = KnownOne|UnknownBits;
1067
1068 if (SignBit & UnknownBits) { // Sign bit is unknown
1069 Min |= SignBit;
1070 Max &= ~SignBit;
1071 }
1072
1073 // Sign extend the min/max values.
1074 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
1075 Min = (Min << ShAmt) >> ShAmt;
1076 Max = (Max << ShAmt) >> ShAmt;
1077}
1078
1079// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
1080// a set of known zero and one bits, compute the maximum and minimum values that
1081// could have the specified known zero and known one bits, returning them in
1082// min/max.
1083static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
1084 uint64_t KnownZero,
1085 uint64_t KnownOne,
1086 uint64_t &Min,
1087 uint64_t &Max) {
Reid Spencera94d3942007-01-19 21:13:56 +00001088 uint64_t TypeBits = cast<IntegerType>(Ty)->getBitMask();
Chris Lattneree0f2802006-02-12 02:07:56 +00001089 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
1090
1091 // The minimum value is when the unknown bits are all zeros.
1092 Min = KnownOne;
1093 // The maximum value is when the unknown bits are all ones.
1094 Max = KnownOne|UnknownBits;
1095}
Chris Lattner0157e7f2006-02-11 09:31:47 +00001096
1097
1098/// SimplifyDemandedBits - Look at V. At this point, we know that only the
1099/// DemandedMask bits of the result of V are ever used downstream. If we can
1100/// use this information to simplify V, do so and return true. Otherwise,
1101/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1102/// the expression (used to simplify the caller). The KnownZero/One bits may
1103/// only be accurate for those bits in the DemandedMask.
1104bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
1105 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner2590e512006-02-07 06:56:34 +00001106 unsigned Depth) {
Chris Lattnerab2f9132007-03-04 23:16:36 +00001107 const IntegerType *VTy = cast<IntegerType>(V->getType());
Zhou Sheng75b871f2007-01-11 12:24:14 +00001108 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Chris Lattner0157e7f2006-02-11 09:31:47 +00001109 // We know all of the bits for a constant!
1110 KnownOne = CI->getZExtValue() & DemandedMask;
1111 KnownZero = ~KnownOne & DemandedMask;
1112 return false;
1113 }
1114
1115 KnownZero = KnownOne = 0;
Chris Lattner2590e512006-02-07 06:56:34 +00001116 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001117 if (Depth != 0) { // Not at the root.
1118 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1119 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner2590e512006-02-07 06:56:34 +00001120 return false;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001121 }
Chris Lattner2590e512006-02-07 06:56:34 +00001122 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner0157e7f2006-02-11 09:31:47 +00001123 // just set the DemandedMask to all bits.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001124 DemandedMask = VTy->getBitMask();
Chris Lattner0157e7f2006-02-11 09:31:47 +00001125 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001126 if (V != UndefValue::get(VTy))
1127 return UpdateValueUsesWith(V, UndefValue::get(VTy));
Chris Lattner92a68652006-02-07 08:05:22 +00001128 return false;
Chris Lattner2590e512006-02-07 06:56:34 +00001129 } else if (Depth == 6) { // Limit search depth.
1130 return false;
1131 }
1132
1133 Instruction *I = dyn_cast<Instruction>(V);
1134 if (!I) return false; // Only analyze instructions.
1135
Chris Lattnerab2f9132007-03-04 23:16:36 +00001136 DemandedMask &= VTy->getBitMask();
Chris Lattnerfb296922006-05-04 17:33:35 +00001137
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001138 uint64_t KnownZero2 = 0, KnownOne2 = 0;
Chris Lattner2590e512006-02-07 06:56:34 +00001139 switch (I->getOpcode()) {
1140 default: break;
1141 case Instruction::And:
Chris Lattner0157e7f2006-02-11 09:31:47 +00001142 // If either the LHS or the RHS are Zero, the result is zero.
1143 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1144 KnownZero, KnownOne, Depth+1))
1145 return true;
1146 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1147
1148 // If something is known zero on the RHS, the bits aren't demanded on the
1149 // LHS.
1150 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
1151 KnownZero2, KnownOne2, Depth+1))
1152 return true;
1153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1154
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001155 // If all of the demanded bits are known 1 on one side, return the other.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001156 // These bits cannot contribute to the result of the 'and'.
1157 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
1158 return UpdateValueUsesWith(I, I->getOperand(0));
1159 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
1160 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001161
1162 // If all of the demanded bits in the inputs are known zeros, return zero.
1163 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
Chris Lattnerab2f9132007-03-04 23:16:36 +00001164 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001165
Chris Lattner0157e7f2006-02-11 09:31:47 +00001166 // If the RHS is a constant, see if we can simplify it.
Chris Lattner5b2edb12006-02-12 08:02:11 +00001167 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001168 return UpdateValueUsesWith(I, I);
1169
1170 // Output known-1 bits are only known if set in both the LHS & RHS.
1171 KnownOne &= KnownOne2;
1172 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1173 KnownZero |= KnownZero2;
1174 break;
1175 case Instruction::Or:
1176 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1177 KnownZero, KnownOne, Depth+1))
1178 return true;
1179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1180 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
1181 KnownZero2, KnownOne2, Depth+1))
1182 return true;
1183 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185 // If all of the demanded bits are known zero on one side, return the other.
1186 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen0add83e2006-02-18 03:20:33 +00001187 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001188 return UpdateValueUsesWith(I, I->getOperand(0));
Jeff Cohen0add83e2006-02-18 03:20:33 +00001189 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Chris Lattner0157e7f2006-02-11 09:31:47 +00001190 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner5b2edb12006-02-12 08:02:11 +00001191
1192 // If all of the potentially set bits on one side are known to be set on
1193 // the other side, just use the 'other' side.
1194 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
1195 (DemandedMask & (~KnownZero)))
1196 return UpdateValueUsesWith(I, I->getOperand(0));
Nate Begeman8a77efe2006-02-16 21:11:51 +00001197 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
1198 (DemandedMask & (~KnownZero2)))
1199 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner0157e7f2006-02-11 09:31:47 +00001200
1201 // If the RHS is a constant, see if we can simplify it.
1202 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1203 return UpdateValueUsesWith(I, I);
1204
1205 // Output known-0 bits are only known if clear in both the LHS & RHS.
1206 KnownZero &= KnownZero2;
1207 // Output known-1 are known to be set if set in either the LHS | RHS.
1208 KnownOne |= KnownOne2;
1209 break;
1210 case Instruction::Xor: {
1211 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1212 KnownZero, KnownOne, Depth+1))
1213 return true;
1214 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1216 KnownZero2, KnownOne2, Depth+1))
1217 return true;
1218 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1219
1220 // If all of the demanded bits are known zero on one side, return the other.
1221 // These bits cannot contribute to the result of the 'xor'.
1222 if ((DemandedMask & KnownZero) == DemandedMask)
1223 return UpdateValueUsesWith(I, I->getOperand(0));
1224 if ((DemandedMask & KnownZero2) == DemandedMask)
1225 return UpdateValueUsesWith(I, I->getOperand(1));
1226
1227 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1228 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1229 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1230 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1231
Chris Lattner8e9a7b72006-11-27 19:55:07 +00001232 // If all of the demanded bits are known to be zero on one side or the
1233 // other, turn this into an *inclusive* or.
Chris Lattner5b2edb12006-02-12 08:02:11 +00001234 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner8e9a7b72006-11-27 19:55:07 +00001235 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) {
1236 Instruction *Or =
1237 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1238 I->getName());
1239 InsertNewInstBefore(Or, *I);
1240 return UpdateValueUsesWith(I, Or);
Chris Lattner2590e512006-02-07 06:56:34 +00001241 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001242
Chris Lattner5b2edb12006-02-12 08:02:11 +00001243 // If all of the demanded bits on one side are known, and all of the set
1244 // bits on that side are also known to be set on the other side, turn this
1245 // into an AND, as we know the bits will be cleared.
1246 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1247 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
1248 if ((KnownOne & KnownOne2) == KnownOne) {
Chris Lattnerab2f9132007-03-04 23:16:36 +00001249 Constant *AndC = ConstantInt::get(VTy, ~KnownOne & DemandedMask);
Chris Lattner5b2edb12006-02-12 08:02:11 +00001250 Instruction *And =
1251 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1252 InsertNewInstBefore(And, *I);
1253 return UpdateValueUsesWith(I, And);
1254 }
1255 }
1256
Chris Lattner0157e7f2006-02-11 09:31:47 +00001257 // If the RHS is a constant, see if we can simplify it.
1258 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1259 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1260 return UpdateValueUsesWith(I, I);
1261
1262 KnownZero = KnownZeroOut;
1263 KnownOne = KnownOneOut;
1264 break;
1265 }
1266 case Instruction::Select:
1267 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1268 KnownZero, KnownOne, Depth+1))
1269 return true;
1270 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1271 KnownZero2, KnownOne2, Depth+1))
1272 return true;
1273 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1274 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1275
1276 // If the operands are constants, see if we can simplify them.
1277 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1278 return UpdateValueUsesWith(I, I);
1279 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1280 return UpdateValueUsesWith(I, I);
1281
1282 // Only known if known in both the LHS and RHS.
1283 KnownOne &= KnownOne2;
1284 KnownZero &= KnownZero2;
1285 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001286 case Instruction::Trunc:
1287 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1288 KnownZero, KnownOne, Depth+1))
1289 return true;
1290 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1291 break;
1292 case Instruction::BitCast:
Chris Lattner03c49532007-01-15 02:27:26 +00001293 if (!I->getOperand(0)->getType()->isInteger())
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001294 return false;
Chris Lattner850465d2006-09-16 03:14:10 +00001295
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001296 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1297 KnownZero, KnownOne, Depth+1))
1298 return true;
1299 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300 break;
1301 case Instruction::ZExt: {
1302 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +00001303 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1304 uint64_t NotIn = ~SrcTy->getBitMask();
Chris Lattnerab2f9132007-03-04 23:16:36 +00001305 uint64_t NewBits = VTy->getBitMask() & NotIn;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001306
Reid Spencera94d3942007-01-19 21:13:56 +00001307 DemandedMask &= SrcTy->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001308 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1309 KnownZero, KnownOne, Depth+1))
1310 return true;
1311 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312 // The top bits are known to be zero.
1313 KnownZero |= NewBits;
1314 break;
1315 }
1316 case Instruction::SExt: {
1317 // Compute the bits in the result that are not present in the input.
Reid Spencera94d3942007-01-19 21:13:56 +00001318 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1319 uint64_t NotIn = ~SrcTy->getBitMask();
Chris Lattnerab2f9132007-03-04 23:16:36 +00001320 uint64_t NewBits = VTy->getBitMask() & NotIn;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001321
1322 // Get the sign bit for the source type
1323 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
Reid Spencera94d3942007-01-19 21:13:56 +00001324 int64_t InputDemandedBits = DemandedMask & SrcTy->getBitMask();
Chris Lattner7d852282006-02-13 22:41:07 +00001325
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001326 // If any of the sign extended bits are demanded, we know that the sign
1327 // bit is demanded.
1328 if (NewBits & DemandedMask)
1329 InputDemandedBits |= InSignBit;
Chris Lattner7d852282006-02-13 22:41:07 +00001330
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001331 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1332 KnownZero, KnownOne, Depth+1))
1333 return true;
1334 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner0157e7f2006-02-11 09:31:47 +00001335
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001336 // If the sign bit of the input is known set or clear, then we know the
1337 // top bits of the result.
Chris Lattner2590e512006-02-07 06:56:34 +00001338
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001339 // If the input sign bit is known zero, or if the NewBits are not demanded
1340 // convert this into a zero extension.
1341 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
1342 // Convert to ZExt cast
Chris Lattnerab2f9132007-03-04 23:16:36 +00001343 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00001344 return UpdateValueUsesWith(I, NewCast);
1345 } else if (KnownOne & InSignBit) { // Input sign bit known set
1346 KnownOne |= NewBits;
1347 KnownZero &= ~NewBits;
1348 } else { // Input sign bit unknown
1349 KnownZero &= ~NewBits;
1350 KnownOne &= ~NewBits;
Chris Lattner2590e512006-02-07 06:56:34 +00001351 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001352 break;
Chris Lattner2590e512006-02-07 06:56:34 +00001353 }
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001354 case Instruction::Add:
1355 // If there is a constant on the RHS, there are a variety of xformations
1356 // we can do.
1357 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1358 // If null, this should be simplified elsewhere. Some of the xforms here
1359 // won't work if the RHS is zero.
1360 if (RHS->isNullValue())
1361 break;
1362
1363 // Figure out what the input bits are. If the top bits of the and result
1364 // are not demanded, then the add doesn't demand them from its input
1365 // either.
1366
1367 // Shift the demanded mask up so that it's at the top of the uint64_t.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001368 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001369 unsigned NLZ = CountLeadingZeros_64(DemandedMask << (64-BitWidth));
1370
1371 // If the top bit of the output is demanded, demand everything from the
1372 // input. Otherwise, we demand all the input bits except NLZ top bits.
Jeff Cohen223004c2007-01-08 20:17:17 +00001373 uint64_t InDemandedBits = ~0ULL >> (64-BitWidth+NLZ);
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001374
1375 // Find information about known zero/one bits in the input.
1376 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1377 KnownZero2, KnownOne2, Depth+1))
1378 return true;
1379
1380 // If the RHS of the add has bits set that can't affect the input, reduce
1381 // the constant.
1382 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1383 return UpdateValueUsesWith(I, I);
1384
1385 // Avoid excess work.
1386 if (KnownZero2 == 0 && KnownOne2 == 0)
1387 break;
1388
1389 // Turn it into OR if input bits are zero.
1390 if ((KnownZero2 & RHS->getZExtValue()) == RHS->getZExtValue()) {
1391 Instruction *Or =
1392 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1393 I->getName());
1394 InsertNewInstBefore(Or, *I);
1395 return UpdateValueUsesWith(I, Or);
1396 }
1397
1398 // We can say something about the output known-zero and known-one bits,
1399 // depending on potential carries from the input constant and the
1400 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1401 // bits set and the RHS constant is 0x01001, then we know we have a known
1402 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1403
1404 // To compute this, we first compute the potential carry bits. These are
1405 // the bits which may be modified. I'm not aware of a better way to do
1406 // this scan.
1407 uint64_t RHSVal = RHS->getZExtValue();
1408
1409 bool CarryIn = false;
1410 uint64_t CarryBits = 0;
1411 uint64_t CurBit = 1;
1412 for (unsigned i = 0; i != BitWidth; ++i, CurBit <<= 1) {
1413 // Record the current carry in.
1414 if (CarryIn) CarryBits |= CurBit;
1415
1416 bool CarryOut;
1417
1418 // This bit has a carry out unless it is "zero + zero" or
1419 // "zero + anything" with no carry in.
1420 if ((KnownZero2 & CurBit) && ((RHSVal & CurBit) == 0)) {
1421 CarryOut = false; // 0 + 0 has no carry out, even with carry in.
1422 } else if (!CarryIn &&
1423 ((KnownZero2 & CurBit) || ((RHSVal & CurBit) == 0))) {
1424 CarryOut = false; // 0 + anything has no carry out if no carry in.
1425 } else {
1426 // Otherwise, we have to assume we have a carry out.
1427 CarryOut = true;
1428 }
1429
1430 // This stage's carry out becomes the next stage's carry-in.
1431 CarryIn = CarryOut;
1432 }
1433
1434 // Now that we know which bits have carries, compute the known-1/0 sets.
1435
1436 // Bits are known one if they are known zero in one operand and one in the
1437 // other, and there is no input carry.
1438 KnownOne = ((KnownZero2 & RHSVal) | (KnownOne2 & ~RHSVal)) & ~CarryBits;
1439
1440 // Bits are known zero if they are known zero in both operands and there
1441 // is no input carry.
1442 KnownZero = KnownZero2 & ~RHSVal & ~CarryBits;
Chris Lattner5fdded12007-03-05 00:02:29 +00001443 } else {
1444 // If the high-bits of this ADD are not demanded, then it does not demand
1445 // the high bits of its LHS or RHS.
1446 if ((DemandedMask & VTy->getSignBit()) == 0) {
1447 // Right fill the mask of bits for this ADD to demand the most
1448 // significant bit and all those below it.
1449 unsigned NLZ = CountLeadingZeros_64(DemandedMask);
1450 uint64_t DemandedFromOps = ~0ULL >> NLZ;
1451 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1452 KnownZero2, KnownOne2, Depth+1))
1453 return true;
1454 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1455 KnownZero2, KnownOne2, Depth+1))
1456 return true;
1457 }
1458 }
1459 break;
1460 case Instruction::Sub:
1461 // If the high-bits of this SUB are not demanded, then it does not demand
1462 // the high bits of its LHS or RHS.
1463 if ((DemandedMask & VTy->getSignBit()) == 0) {
1464 // Right fill the mask of bits for this SUB to demand the most
1465 // significant bit and all those below it.
1466 unsigned NLZ = CountLeadingZeros_64(DemandedMask);
1467 uint64_t DemandedFromOps = ~0ULL >> NLZ;
1468 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1469 KnownZero2, KnownOne2, Depth+1))
1470 return true;
1471 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1472 KnownZero2, KnownOne2, Depth+1))
1473 return true;
Chris Lattner6e2c15c2006-11-09 05:12:27 +00001474 }
1475 break;
Chris Lattner2590e512006-02-07 06:56:34 +00001476 case Instruction::Shl:
Reid Spencere0fc4df2006-10-20 07:07:24 +00001477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1478 uint64_t ShiftAmt = SA->getZExtValue();
1479 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> ShiftAmt,
Chris Lattner0157e7f2006-02-11 09:31:47 +00001480 KnownZero, KnownOne, Depth+1))
1481 return true;
1482 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Reid Spencere0fc4df2006-10-20 07:07:24 +00001483 KnownZero <<= ShiftAmt;
1484 KnownOne <<= ShiftAmt;
1485 KnownZero |= (1ULL << ShiftAmt) - 1; // low bits known zero.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001486 }
Chris Lattner2590e512006-02-07 06:56:34 +00001487 break;
Reid Spencerfdff9382006-11-08 06:47:33 +00001488 case Instruction::LShr:
1489 // For a logical shift right
1490 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1491 unsigned ShiftAmt = SA->getZExtValue();
1492
1493 // Compute the new bits that are at the top now.
1494 uint64_t HighBits = (1ULL << ShiftAmt)-1;
Chris Lattnerab2f9132007-03-04 23:16:36 +00001495 HighBits <<= VTy->getBitWidth() - ShiftAmt;
1496 uint64_t TypeMask = VTy->getBitMask();
Reid Spencerfdff9382006-11-08 06:47:33 +00001497 // Unsigned shift right.
1498 if (SimplifyDemandedBits(I->getOperand(0),
1499 (DemandedMask << ShiftAmt) & TypeMask,
1500 KnownZero, KnownOne, Depth+1))
1501 return true;
1502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503 KnownZero &= TypeMask;
1504 KnownOne &= TypeMask;
1505 KnownZero >>= ShiftAmt;
1506 KnownOne >>= ShiftAmt;
1507 KnownZero |= HighBits; // high bits known zero.
1508 }
1509 break;
1510 case Instruction::AShr:
Chris Lattner420c4bc2006-09-18 04:31:40 +00001511 // If this is an arithmetic shift right and only the low-bit is set, we can
1512 // always convert this into a logical shr, even if the shift amount is
1513 // variable. The low bit of the shift cannot be an input sign bit unless
1514 // the shift amount is >= the size of the datatype, which is undefined.
Reid Spencerfdff9382006-11-08 06:47:33 +00001515 if (DemandedMask == 1) {
1516 // Perform the logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00001517 Value *NewVal = BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00001518 I->getOperand(0), I->getOperand(1), I->getName());
Reid Spencer00c482b2006-10-26 19:19:06 +00001519 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
Chris Lattner420c4bc2006-09-18 04:31:40 +00001520 return UpdateValueUsesWith(I, NewVal);
1521 }
1522
Reid Spencere0fc4df2006-10-20 07:07:24 +00001523 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1524 unsigned ShiftAmt = SA->getZExtValue();
Chris Lattner0157e7f2006-02-11 09:31:47 +00001525
1526 // Compute the new bits that are at the top now.
Reid Spencere0fc4df2006-10-20 07:07:24 +00001527 uint64_t HighBits = (1ULL << ShiftAmt)-1;
Chris Lattnerab2f9132007-03-04 23:16:36 +00001528 HighBits <<= VTy->getBitWidth() - ShiftAmt;
1529 uint64_t TypeMask = VTy->getBitMask();
Reid Spencerfdff9382006-11-08 06:47:33 +00001530 // Signed shift right.
1531 if (SimplifyDemandedBits(I->getOperand(0),
1532 (DemandedMask << ShiftAmt) & TypeMask,
1533 KnownZero, KnownOne, Depth+1))
1534 return true;
1535 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1536 KnownZero &= TypeMask;
1537 KnownOne &= TypeMask;
1538 KnownZero >>= ShiftAmt;
1539 KnownOne >>= ShiftAmt;
Chris Lattner0157e7f2006-02-11 09:31:47 +00001540
Reid Spencerfdff9382006-11-08 06:47:33 +00001541 // Handle the sign bits.
Chris Lattnerab2f9132007-03-04 23:16:36 +00001542 uint64_t SignBit = 1ULL << (VTy->getBitWidth()-1);
Reid Spencerfdff9382006-11-08 06:47:33 +00001543 SignBit >>= ShiftAmt; // Adjust to where it is now in the mask.
Chris Lattner0157e7f2006-02-11 09:31:47 +00001544
Reid Spencerfdff9382006-11-08 06:47:33 +00001545 // If the input sign bit is known to be zero, or if none of the top bits
1546 // are demanded, turn this into an unsigned shift right.
1547 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
1548 // Perform the logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00001549 Value *NewVal = BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00001550 I->getOperand(0), SA, I->getName());
Reid Spencerfdff9382006-11-08 06:47:33 +00001551 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1552 return UpdateValueUsesWith(I, NewVal);
1553 } else if (KnownOne & SignBit) { // New bits are known one.
1554 KnownOne |= HighBits;
Chris Lattner2590e512006-02-07 06:56:34 +00001555 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001556 }
Chris Lattner2590e512006-02-07 06:56:34 +00001557 break;
1558 }
Chris Lattner0157e7f2006-02-11 09:31:47 +00001559
1560 // If the client is only demanding bits that we know, return the known
1561 // constant.
1562 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
Chris Lattnerab2f9132007-03-04 23:16:36 +00001563 return UpdateValueUsesWith(I, ConstantInt::get(VTy, KnownOne));
Chris Lattner2590e512006-02-07 06:56:34 +00001564 return false;
1565}
1566
Reid Spencer1791f232007-03-12 17:25:59 +00001567/// SimplifyDemandedBits - This function attempts to replace V with a simpler
1568/// value based on the demanded bits. When this function is called, it is known
1569/// that only the bits set in DemandedMask of the result of V are ever used
1570/// downstream. Consequently, depending on the mask and V, it may be possible
1571/// to replace V with a constant or one of its operands. In such cases, this
1572/// function does the replacement and returns true. In all other cases, it
1573/// returns false after analyzing the expression and setting KnownOne and known
1574/// to be one in the expression. KnownZero contains all the bits that are known
1575/// to be zero in the expression. These are provided to potentially allow the
1576/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
1577/// the expression. KnownOne and KnownZero always follow the invariant that
1578/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
1579/// the bits in KnownOne and KnownZero may only be accurate for those bits set
1580/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
1581/// and KnownOne must all be the same.
1582bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
1583 APInt& KnownZero, APInt& KnownOne,
1584 unsigned Depth) {
1585 assert(V != 0 && "Null pointer of Value???");
1586 assert(Depth <= 6 && "Limit Search Depth");
1587 uint32_t BitWidth = DemandedMask.getBitWidth();
1588 const IntegerType *VTy = cast<IntegerType>(V->getType());
1589 assert(VTy->getBitWidth() == BitWidth &&
1590 KnownZero.getBitWidth() == BitWidth &&
1591 KnownOne.getBitWidth() == BitWidth &&
1592 "Value *V, DemandedMask, KnownZero and KnownOne \
1593 must have same BitWidth");
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1595 // We know all of the bits for a constant!
1596 KnownOne = CI->getValue() & DemandedMask;
1597 KnownZero = ~KnownOne & DemandedMask;
1598 return false;
1599 }
1600
Zhou Shengb9128442007-03-14 03:21:24 +00001601 KnownZero.clear();
1602 KnownOne.clear();
Reid Spencer1791f232007-03-12 17:25:59 +00001603 if (!V->hasOneUse()) { // Other users may use these bits.
1604 if (Depth != 0) { // Not at the root.
1605 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
1606 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
1607 return false;
1608 }
1609 // If this is the root being simplified, allow it to have multiple uses,
1610 // just set the DemandedMask to all bits.
1611 DemandedMask = APInt::getAllOnesValue(BitWidth);
1612 } else if (DemandedMask == 0) { // Not demanding any bits from V.
1613 if (V != UndefValue::get(VTy))
1614 return UpdateValueUsesWith(V, UndefValue::get(VTy));
1615 return false;
1616 } else if (Depth == 6) { // Limit search depth.
1617 return false;
1618 }
1619
1620 Instruction *I = dyn_cast<Instruction>(V);
1621 if (!I) return false; // Only analyze instructions.
1622
1623 DemandedMask &= APInt::getAllOnesValue(BitWidth);
1624
1625 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1626 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
1627 switch (I->getOpcode()) {
1628 default: break;
1629 case Instruction::And:
1630 // If either the LHS or the RHS are Zero, the result is zero.
1631 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1632 RHSKnownZero, RHSKnownOne, Depth+1))
1633 return true;
1634 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1635 "Bits known to be one AND zero?");
1636
1637 // If something is known zero on the RHS, the bits aren't demanded on the
1638 // LHS.
1639 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
1640 LHSKnownZero, LHSKnownOne, Depth+1))
1641 return true;
1642 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1643 "Bits known to be one AND zero?");
1644
1645 // If all of the demanded bits are known 1 on one side, return the other.
1646 // These bits cannot contribute to the result of the 'and'.
1647 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
1648 (DemandedMask & ~LHSKnownZero))
1649 return UpdateValueUsesWith(I, I->getOperand(0));
1650 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
1651 (DemandedMask & ~RHSKnownZero))
1652 return UpdateValueUsesWith(I, I->getOperand(1));
1653
1654 // If all of the demanded bits in the inputs are known zeros, return zero.
1655 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
1656 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
1657
1658 // If the RHS is a constant, see if we can simplify it.
1659 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
1660 return UpdateValueUsesWith(I, I);
1661
1662 // Output known-1 bits are only known if set in both the LHS & RHS.
1663 RHSKnownOne &= LHSKnownOne;
1664 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1665 RHSKnownZero |= LHSKnownZero;
1666 break;
1667 case Instruction::Or:
1668 // If either the LHS or the RHS are One, the result is One.
1669 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1670 RHSKnownZero, RHSKnownOne, Depth+1))
1671 return true;
1672 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1673 "Bits known to be one AND zero?");
1674 // If something is known one on the RHS, the bits aren't demanded on the
1675 // LHS.
1676 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
1677 LHSKnownZero, LHSKnownOne, Depth+1))
1678 return true;
1679 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1680 "Bits known to be one AND zero?");
1681
1682 // If all of the demanded bits are known zero on one side, return the other.
1683 // These bits cannot contribute to the result of the 'or'.
1684 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1685 (DemandedMask & ~LHSKnownOne))
1686 return UpdateValueUsesWith(I, I->getOperand(0));
1687 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1688 (DemandedMask & ~RHSKnownOne))
1689 return UpdateValueUsesWith(I, I->getOperand(1));
1690
1691 // If all of the potentially set bits on one side are known to be set on
1692 // the other side, just use the 'other' side.
1693 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1694 (DemandedMask & (~RHSKnownZero)))
1695 return UpdateValueUsesWith(I, I->getOperand(0));
1696 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1697 (DemandedMask & (~LHSKnownZero)))
1698 return UpdateValueUsesWith(I, I->getOperand(1));
1699
1700 // If the RHS is a constant, see if we can simplify it.
1701 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1702 return UpdateValueUsesWith(I, I);
1703
1704 // Output known-0 bits are only known if clear in both the LHS & RHS.
1705 RHSKnownZero &= LHSKnownZero;
1706 // Output known-1 are known to be set if set in either the LHS | RHS.
1707 RHSKnownOne |= LHSKnownOne;
1708 break;
1709 case Instruction::Xor: {
1710 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1711 RHSKnownZero, RHSKnownOne, Depth+1))
1712 return true;
1713 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1714 "Bits known to be one AND zero?");
1715 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1716 LHSKnownZero, LHSKnownOne, Depth+1))
1717 return true;
1718 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1719 "Bits known to be one AND zero?");
1720
1721 // If all of the demanded bits are known zero on one side, return the other.
1722 // These bits cannot contribute to the result of the 'xor'.
1723 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1724 return UpdateValueUsesWith(I, I->getOperand(0));
1725 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1726 return UpdateValueUsesWith(I, I->getOperand(1));
1727
1728 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1729 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1730 (RHSKnownOne & LHSKnownOne);
1731 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1732 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1733 (RHSKnownOne & LHSKnownZero);
1734
1735 // If all of the demanded bits are known to be zero on one side or the
1736 // other, turn this into an *inclusive* or.
1737 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1738 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1739 Instruction *Or =
1740 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1741 I->getName());
1742 InsertNewInstBefore(Or, *I);
1743 return UpdateValueUsesWith(I, Or);
1744 }
1745
1746 // If all of the demanded bits on one side are known, and all of the set
1747 // bits on that side are also known to be set on the other side, turn this
1748 // into an AND, as we know the bits will be cleared.
1749 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1750 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1751 // all known
1752 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1753 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1754 Instruction *And =
1755 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1756 InsertNewInstBefore(And, *I);
1757 return UpdateValueUsesWith(I, And);
1758 }
1759 }
1760
1761 // If the RHS is a constant, see if we can simplify it.
1762 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1763 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1764 return UpdateValueUsesWith(I, I);
1765
1766 RHSKnownZero = KnownZeroOut;
1767 RHSKnownOne = KnownOneOut;
1768 break;
1769 }
1770 case Instruction::Select:
1771 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1772 RHSKnownZero, RHSKnownOne, Depth+1))
1773 return true;
1774 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1775 LHSKnownZero, LHSKnownOne, Depth+1))
1776 return true;
1777 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1778 "Bits known to be one AND zero?");
1779 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1780 "Bits known to be one AND zero?");
1781
1782 // If the operands are constants, see if we can simplify them.
1783 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1784 return UpdateValueUsesWith(I, I);
1785 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1786 return UpdateValueUsesWith(I, I);
1787
1788 // Only known if known in both the LHS and RHS.
1789 RHSKnownOne &= LHSKnownOne;
1790 RHSKnownZero &= LHSKnownZero;
1791 break;
1792 case Instruction::Trunc: {
1793 uint32_t truncBf =
1794 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1795 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.zext(truncBf),
1796 RHSKnownZero.zext(truncBf), RHSKnownOne.zext(truncBf), Depth+1))
1797 return true;
1798 DemandedMask.trunc(BitWidth);
1799 RHSKnownZero.trunc(BitWidth);
1800 RHSKnownOne.trunc(BitWidth);
1801 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1802 "Bits known to be one AND zero?");
1803 break;
1804 }
1805 case Instruction::BitCast:
1806 if (!I->getOperand(0)->getType()->isInteger())
1807 return false;
1808
1809 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1810 RHSKnownZero, RHSKnownOne, Depth+1))
1811 return true;
1812 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1813 "Bits known to be one AND zero?");
1814 break;
1815 case Instruction::ZExt: {
1816 // Compute the bits in the result that are not present in the input.
1817 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1818 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
1819
1820 DemandedMask &= SrcTy->getMask().zext(BitWidth);
1821 uint32_t zextBf = SrcTy->getBitWidth();
1822 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.trunc(zextBf),
1823 RHSKnownZero.trunc(zextBf), RHSKnownOne.trunc(zextBf), Depth+1))
1824 return true;
1825 DemandedMask.zext(BitWidth);
1826 RHSKnownZero.zext(BitWidth);
1827 RHSKnownOne.zext(BitWidth);
1828 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1829 "Bits known to be one AND zero?");
1830 // The top bits are known to be zero.
1831 RHSKnownZero |= NewBits;
1832 break;
1833 }
1834 case Instruction::SExt: {
1835 // Compute the bits in the result that are not present in the input.
1836 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1837 APInt NewBits(APInt::getAllOnesValue(BitWidth).shl(SrcTy->getBitWidth()));
1838
1839 // Get the sign bit for the source type
1840 APInt InSignBit(APInt::getSignBit(SrcTy->getPrimitiveSizeInBits()));
1841 InSignBit.zext(BitWidth);
1842 APInt InputDemandedBits = DemandedMask &
1843 SrcTy->getMask().zext(BitWidth);
1844
1845 // If any of the sign extended bits are demanded, we know that the sign
1846 // bit is demanded.
1847 if ((NewBits & DemandedMask) != 0)
1848 InputDemandedBits |= InSignBit;
1849
1850 uint32_t sextBf = SrcTy->getBitWidth();
1851 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits.trunc(sextBf),
1852 RHSKnownZero.trunc(sextBf), RHSKnownOne.trunc(sextBf), Depth+1))
1853 return true;
1854 InputDemandedBits.zext(BitWidth);
1855 RHSKnownZero.zext(BitWidth);
1856 RHSKnownOne.zext(BitWidth);
1857 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1858 "Bits known to be one AND zero?");
1859
1860 // If the sign bit of the input is known set or clear, then we know the
1861 // top bits of the result.
1862
1863 // If the input sign bit is known zero, or if the NewBits are not demanded
1864 // convert this into a zero extension.
1865 if ((RHSKnownZero & InSignBit) != 0 || (NewBits & ~DemandedMask) == NewBits)
1866 {
1867 // Convert to ZExt cast
1868 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1869 return UpdateValueUsesWith(I, NewCast);
1870 } else if ((RHSKnownOne & InSignBit) != 0) { // Input sign bit known set
1871 RHSKnownOne |= NewBits;
1872 RHSKnownZero &= ~NewBits;
1873 } else { // Input sign bit unknown
1874 RHSKnownZero &= ~NewBits;
1875 RHSKnownOne &= ~NewBits;
1876 }
1877 break;
1878 }
1879 case Instruction::Add: {
1880 // Figure out what the input bits are. If the top bits of the and result
1881 // are not demanded, then the add doesn't demand them from its input
1882 // either.
1883 unsigned NLZ = DemandedMask.countLeadingZeros();
1884
1885 // If there is a constant on the RHS, there are a variety of xformations
1886 // we can do.
1887 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1888 // If null, this should be simplified elsewhere. Some of the xforms here
1889 // won't work if the RHS is zero.
1890 if (RHS->isZero())
1891 break;
1892
1893 // If the top bit of the output is demanded, demand everything from the
1894 // input. Otherwise, we demand all the input bits except NLZ top bits.
1895 APInt InDemandedBits(APInt::getAllOnesValue(BitWidth).lshr(NLZ));
1896
1897 // Find information about known zero/one bits in the input.
1898 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1899 LHSKnownZero, LHSKnownOne, Depth+1))
1900 return true;
1901
1902 // If the RHS of the add has bits set that can't affect the input, reduce
1903 // the constant.
1904 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1905 return UpdateValueUsesWith(I, I);
1906
1907 // Avoid excess work.
1908 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1909 break;
1910
1911 // Turn it into OR if input bits are zero.
1912 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1913 Instruction *Or =
1914 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1915 I->getName());
1916 InsertNewInstBefore(Or, *I);
1917 return UpdateValueUsesWith(I, Or);
1918 }
1919
1920 // We can say something about the output known-zero and known-one bits,
1921 // depending on potential carries from the input constant and the
1922 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1923 // bits set and the RHS constant is 0x01001, then we know we have a known
1924 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1925
1926 // To compute this, we first compute the potential carry bits. These are
1927 // the bits which may be modified. I'm not aware of a better way to do
1928 // this scan.
1929 APInt RHSVal(RHS->getValue());
1930
1931 bool CarryIn = false;
1932 APInt CarryBits(BitWidth, 0);
1933 const uint64_t *LHSKnownZeroRawVal = LHSKnownZero.getRawData(),
1934 *RHSRawVal = RHSVal.getRawData();
1935 for (uint32_t i = 0; i != RHSVal.getNumWords(); ++i) {
1936 uint64_t AddVal = ~LHSKnownZeroRawVal[i] + RHSRawVal[i],
1937 XorVal = ~LHSKnownZeroRawVal[i] ^ RHSRawVal[i];
1938 uint64_t WordCarryBits = AddVal ^ XorVal + CarryIn;
1939 if (AddVal < RHSRawVal[i])
1940 CarryIn = true;
1941 else
1942 CarryIn = false;
1943 CarryBits.setWordToValue(i, WordCarryBits);
1944 }
1945
1946 // Now that we know which bits have carries, compute the known-1/0 sets.
1947
1948 // Bits are known one if they are known zero in one operand and one in the
1949 // other, and there is no input carry.
1950 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1951 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1952
1953 // Bits are known zero if they are known zero in both operands and there
1954 // is no input carry.
1955 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1956 } else {
1957 // If the high-bits of this ADD are not demanded, then it does not demand
1958 // the high bits of its LHS or RHS.
1959 if ((DemandedMask & APInt::getSignBit(BitWidth)) == 0) {
1960 // Right fill the mask of bits for this ADD to demand the most
1961 // significant bit and all those below it.
1962 APInt DemandedFromOps = APInt::getAllOnesValue(BitWidth).lshr(NLZ);
1963 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1964 LHSKnownZero, LHSKnownOne, Depth+1))
1965 return true;
1966 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1967 LHSKnownZero, LHSKnownOne, Depth+1))
1968 return true;
1969 }
1970 }
1971 break;
1972 }
1973 case Instruction::Sub:
1974 // If the high-bits of this SUB are not demanded, then it does not demand
1975 // the high bits of its LHS or RHS.
1976 if ((DemandedMask & APInt::getSignBit(BitWidth)) == 0) {
1977 // Right fill the mask of bits for this SUB to demand the most
1978 // significant bit and all those below it.
1979 unsigned NLZ = DemandedMask.countLeadingZeros();
1980 APInt DemandedFromOps(APInt::getAllOnesValue(BitWidth).lshr(NLZ));
1981 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1982 LHSKnownZero, LHSKnownOne, Depth+1))
1983 return true;
1984 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1985 LHSKnownZero, LHSKnownOne, Depth+1))
1986 return true;
1987 }
1988 break;
1989 case Instruction::Shl:
1990 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1991 uint64_t ShiftAmt = SA->getZExtValue();
1992 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask.lshr(ShiftAmt),
1993 RHSKnownZero, RHSKnownOne, Depth+1))
1994 return true;
1995 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1996 "Bits known to be one AND zero?");
1997 RHSKnownZero <<= ShiftAmt;
1998 RHSKnownOne <<= ShiftAmt;
1999 // low bits known zero.
Zhou Shengd8c645b2007-03-14 09:07:33 +00002000 if (ShiftAmt)
2001 RHSKnownZero |= APInt::getAllOnesValue(ShiftAmt).zextOrCopy(BitWidth);
Reid Spencer1791f232007-03-12 17:25:59 +00002002 }
2003 break;
2004 case Instruction::LShr:
2005 // For a logical shift right
2006 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
2007 unsigned ShiftAmt = SA->getZExtValue();
2008
2009 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
2010 // Unsigned shift right.
2011 if (SimplifyDemandedBits(I->getOperand(0),
2012 (DemandedMask.shl(ShiftAmt)) & TypeMask,
2013 RHSKnownZero, RHSKnownOne, Depth+1))
2014 return true;
2015 assert((RHSKnownZero & RHSKnownOne) == 0 &&
2016 "Bits known to be one AND zero?");
Reid Spencer1791f232007-03-12 17:25:59 +00002017 RHSKnownZero &= TypeMask;
2018 RHSKnownOne &= TypeMask;
2019 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
2020 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
Zhou Shengd8c645b2007-03-14 09:07:33 +00002021 if (ShiftAmt) {
2022 // Compute the new bits that are at the top now.
2023 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(
2024 BitWidth - ShiftAmt));
2025 RHSKnownZero |= HighBits; // high bits known zero.
2026 }
Reid Spencer1791f232007-03-12 17:25:59 +00002027 }
2028 break;
2029 case Instruction::AShr:
2030 // If this is an arithmetic shift right and only the low-bit is set, we can
2031 // always convert this into a logical shr, even if the shift amount is
2032 // variable. The low bit of the shift cannot be an input sign bit unless
2033 // the shift amount is >= the size of the datatype, which is undefined.
2034 if (DemandedMask == 1) {
2035 // Perform the logical shift right.
2036 Value *NewVal = BinaryOperator::createLShr(
2037 I->getOperand(0), I->getOperand(1), I->getName());
2038 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
2039 return UpdateValueUsesWith(I, NewVal);
2040 }
2041
2042 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
2043 unsigned ShiftAmt = SA->getZExtValue();
2044
2045 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
2046 // Signed shift right.
2047 if (SimplifyDemandedBits(I->getOperand(0),
2048 (DemandedMask.shl(ShiftAmt)) & TypeMask,
2049 RHSKnownZero, RHSKnownOne, Depth+1))
2050 return true;
2051 assert((RHSKnownZero & RHSKnownOne) == 0 &&
2052 "Bits known to be one AND zero?");
2053 // Compute the new bits that are at the top now.
Zhou Shengd8c645b2007-03-14 09:07:33 +00002054 APInt HighBits(APInt::getAllOnesValue(BitWidth).shl(BitWidth - ShiftAmt));
Reid Spencer1791f232007-03-12 17:25:59 +00002055 RHSKnownZero &= TypeMask;
2056 RHSKnownOne &= TypeMask;
2057 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
2058 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
2059
2060 // Handle the sign bits.
2061 APInt SignBit(APInt::getSignBit(BitWidth));
2062 // Adjust to where it is now in the mask.
2063 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
2064
2065 // If the input sign bit is known to be zero, or if none of the top bits
2066 // are demanded, turn this into an unsigned shift right.
2067 if ((RHSKnownZero & SignBit) != 0 ||
2068 (HighBits & ~DemandedMask) == HighBits) {
2069 // Perform the logical shift right.
2070 Value *NewVal = BinaryOperator::createLShr(
2071 I->getOperand(0), SA, I->getName());
2072 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
2073 return UpdateValueUsesWith(I, NewVal);
2074 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
2075 RHSKnownOne |= HighBits;
2076 }
2077 }
2078 break;
2079 }
2080
2081 // If the client is only demanding bits that we know, return the known
2082 // constant.
2083 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
2084 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
2085 return false;
2086}
2087
Chris Lattner2deeaea2006-10-05 06:55:50 +00002088
2089/// SimplifyDemandedVectorElts - The specified value producecs a vector with
2090/// 64 or fewer elements. DemandedElts contains the set of elements that are
2091/// actually used by the caller. This method analyzes which elements of the
2092/// operand are undef and returns that information in UndefElts.
2093///
2094/// If the information about demanded elements can be used to simplify the
2095/// operation, the operation is simplified, then the resultant value is
2096/// returned. This returns null if no change was made.
2097Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
2098 uint64_t &UndefElts,
2099 unsigned Depth) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00002100 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002101 assert(VWidth <= 64 && "Vector too wide to analyze!");
2102 uint64_t EltMask = ~0ULL >> (64-VWidth);
2103 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
2104 "Invalid DemandedElts!");
2105
2106 if (isa<UndefValue>(V)) {
2107 // If the entire vector is undefined, just return this info.
2108 UndefElts = EltMask;
2109 return 0;
2110 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
2111 UndefElts = EltMask;
2112 return UndefValue::get(V->getType());
2113 }
2114
2115 UndefElts = 0;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002116 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
2117 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002118 Constant *Undef = UndefValue::get(EltTy);
2119
2120 std::vector<Constant*> Elts;
2121 for (unsigned i = 0; i != VWidth; ++i)
2122 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
2123 Elts.push_back(Undef);
2124 UndefElts |= (1ULL << i);
2125 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
2126 Elts.push_back(Undef);
2127 UndefElts |= (1ULL << i);
2128 } else { // Otherwise, defined.
2129 Elts.push_back(CP->getOperand(i));
2130 }
2131
2132 // If we changed the constant, return it.
Reid Spencerd84d35b2007-02-15 02:26:10 +00002133 Constant *NewCP = ConstantVector::get(Elts);
Chris Lattner2deeaea2006-10-05 06:55:50 +00002134 return NewCP != CP ? NewCP : 0;
2135 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00002136 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
Chris Lattner2deeaea2006-10-05 06:55:50 +00002137 // set to undef.
Reid Spencerd84d35b2007-02-15 02:26:10 +00002138 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002139 Constant *Zero = Constant::getNullValue(EltTy);
2140 Constant *Undef = UndefValue::get(EltTy);
2141 std::vector<Constant*> Elts;
2142 for (unsigned i = 0; i != VWidth; ++i)
2143 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
2144 UndefElts = DemandedElts ^ EltMask;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002145 return ConstantVector::get(Elts);
Chris Lattner2deeaea2006-10-05 06:55:50 +00002146 }
2147
2148 if (!V->hasOneUse()) { // Other users may use these bits.
2149 if (Depth != 0) { // Not at the root.
2150 // TODO: Just compute the UndefElts information recursively.
2151 return false;
2152 }
2153 return false;
2154 } else if (Depth == 10) { // Limit search depth.
2155 return false;
2156 }
2157
2158 Instruction *I = dyn_cast<Instruction>(V);
2159 if (!I) return false; // Only analyze instructions.
2160
2161 bool MadeChange = false;
2162 uint64_t UndefElts2;
2163 Value *TmpV;
2164 switch (I->getOpcode()) {
2165 default: break;
2166
2167 case Instruction::InsertElement: {
2168 // If this is a variable index, we don't know which element it overwrites.
2169 // demand exactly the same input as we produce.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002170 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
Chris Lattner2deeaea2006-10-05 06:55:50 +00002171 if (Idx == 0) {
2172 // Note that we can't propagate undef elt info, because we don't know
2173 // which elt is getting updated.
2174 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
2175 UndefElts2, Depth+1);
2176 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2177 break;
2178 }
2179
2180 // If this is inserting an element that isn't demanded, remove this
2181 // insertelement.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002182 unsigned IdxNo = Idx->getZExtValue();
Chris Lattner2deeaea2006-10-05 06:55:50 +00002183 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
2184 return AddSoonDeadInstToWorklist(*I, 0);
2185
2186 // Otherwise, the element inserted overwrites whatever was there, so the
2187 // input demanded set is simpler than the output set.
2188 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
2189 DemandedElts & ~(1ULL << IdxNo),
2190 UndefElts, Depth+1);
2191 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2192
2193 // The inserted element is defined.
2194 UndefElts |= 1ULL << IdxNo;
2195 break;
2196 }
2197
2198 case Instruction::And:
2199 case Instruction::Or:
2200 case Instruction::Xor:
2201 case Instruction::Add:
2202 case Instruction::Sub:
2203 case Instruction::Mul:
2204 // div/rem demand all inputs, because they don't want divide by zero.
2205 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
2206 UndefElts, Depth+1);
2207 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
2208 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
2209 UndefElts2, Depth+1);
2210 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
2211
2212 // Output elements are undefined if both are undefined. Consider things
2213 // like undef&0. The result is known zero, not undef.
2214 UndefElts &= UndefElts2;
2215 break;
2216
2217 case Instruction::Call: {
2218 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
2219 if (!II) break;
2220 switch (II->getIntrinsicID()) {
2221 default: break;
2222
2223 // Binary vector operations that work column-wise. A dest element is a
2224 // function of the corresponding input elements from the two inputs.
2225 case Intrinsic::x86_sse_sub_ss:
2226 case Intrinsic::x86_sse_mul_ss:
2227 case Intrinsic::x86_sse_min_ss:
2228 case Intrinsic::x86_sse_max_ss:
2229 case Intrinsic::x86_sse2_sub_sd:
2230 case Intrinsic::x86_sse2_mul_sd:
2231 case Intrinsic::x86_sse2_min_sd:
2232 case Intrinsic::x86_sse2_max_sd:
2233 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
2234 UndefElts, Depth+1);
2235 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
2236 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
2237 UndefElts2, Depth+1);
2238 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
2239
2240 // If only the low elt is demanded and this is a scalarizable intrinsic,
2241 // scalarize it now.
2242 if (DemandedElts == 1) {
2243 switch (II->getIntrinsicID()) {
2244 default: break;
2245 case Intrinsic::x86_sse_sub_ss:
2246 case Intrinsic::x86_sse_mul_ss:
2247 case Intrinsic::x86_sse2_sub_sd:
2248 case Intrinsic::x86_sse2_mul_sd:
2249 // TODO: Lower MIN/MAX/ABS/etc
2250 Value *LHS = II->getOperand(1);
2251 Value *RHS = II->getOperand(2);
2252 // Extract the element as scalars.
2253 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
2254 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
2255
2256 switch (II->getIntrinsicID()) {
2257 default: assert(0 && "Case stmts out of sync!");
2258 case Intrinsic::x86_sse_sub_ss:
2259 case Intrinsic::x86_sse2_sub_sd:
2260 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
2261 II->getName()), *II);
2262 break;
2263 case Intrinsic::x86_sse_mul_ss:
2264 case Intrinsic::x86_sse2_mul_sd:
2265 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
2266 II->getName()), *II);
2267 break;
2268 }
2269
2270 Instruction *New =
2271 new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
2272 II->getName());
2273 InsertNewInstBefore(New, *II);
2274 AddSoonDeadInstToWorklist(*II, 0);
2275 return New;
2276 }
2277 }
2278
2279 // Output elements are undefined if both are undefined. Consider things
2280 // like undef&0. The result is known zero, not undef.
2281 UndefElts &= UndefElts2;
2282 break;
2283 }
2284 break;
2285 }
2286 }
2287 return MadeChange ? I : 0;
2288}
2289
Reid Spencer266e42b2006-12-23 06:05:41 +00002290/// @returns true if the specified compare instruction is
2291/// true when both operands are equal...
2292/// @brief Determine if the ICmpInst returns true if both operands are equal
2293static bool isTrueWhenEqual(ICmpInst &ICI) {
2294 ICmpInst::Predicate pred = ICI.getPredicate();
2295 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
2296 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
2297 pred == ICmpInst::ICMP_SLE;
2298}
2299
Chris Lattnerb8b97502003-08-13 19:01:45 +00002300/// AssociativeOpt - Perform an optimization on an associative operator. This
2301/// function is designed to check a chain of associative operators for a
2302/// potential to apply a certain optimization. Since the optimization may be
2303/// applicable if the expression was reassociated, this checks the chain, then
2304/// reassociates the expression as necessary to expose the optimization
2305/// opportunity. This makes use of a special Functor, which must define
2306/// 'shouldApply' and 'apply' methods.
2307///
2308template<typename Functor>
2309Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
2310 unsigned Opcode = Root.getOpcode();
2311 Value *LHS = Root.getOperand(0);
2312
2313 // Quick check, see if the immediate LHS matches...
2314 if (F.shouldApply(LHS))
2315 return F.apply(Root);
2316
2317 // Otherwise, if the LHS is not of the same opcode as the root, return.
2318 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002319 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00002320 // Should we apply this transform to the RHS?
2321 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
2322
2323 // If not to the RHS, check to see if we should apply to the LHS...
2324 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
2325 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
2326 ShouldApply = true;
2327 }
2328
2329 // If the functor wants to apply the optimization to the RHS of LHSI,
2330 // reassociate the expression from ((? op A) op B) to (? op (A op B))
2331 if (ShouldApply) {
2332 BasicBlock *BB = Root.getParent();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002333
Chris Lattnerb8b97502003-08-13 19:01:45 +00002334 // Now all of the instructions are in the current basic block, go ahead
2335 // and perform the reassociation.
2336 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
2337
2338 // First move the selected RHS to the LHS of the root...
2339 Root.setOperand(0, LHSI->getOperand(1));
2340
2341 // Make what used to be the LHS of the root be the user of the root...
2342 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner284d3b02004-04-16 18:08:07 +00002343 if (&Root == TmpLHSI) {
Chris Lattner8953b902004-04-05 02:10:19 +00002344 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
2345 return 0;
2346 }
Chris Lattner284d3b02004-04-16 18:08:07 +00002347 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattnerb8b97502003-08-13 19:01:45 +00002348 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner284d3b02004-04-16 18:08:07 +00002349 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
2350 BasicBlock::iterator ARI = &Root; ++ARI;
2351 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
2352 ARI = Root;
Chris Lattnerb8b97502003-08-13 19:01:45 +00002353
2354 // Now propagate the ExtraOperand down the chain of instructions until we
2355 // get to LHSI.
2356 while (TmpLHSI != LHSI) {
2357 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner284d3b02004-04-16 18:08:07 +00002358 // Move the instruction to immediately before the chain we are
2359 // constructing to avoid breaking dominance properties.
2360 NextLHSI->getParent()->getInstList().remove(NextLHSI);
2361 BB->getInstList().insert(ARI, NextLHSI);
2362 ARI = NextLHSI;
2363
Chris Lattnerb8b97502003-08-13 19:01:45 +00002364 Value *NextOp = NextLHSI->getOperand(1);
2365 NextLHSI->setOperand(1, ExtraOperand);
2366 TmpLHSI = NextLHSI;
2367 ExtraOperand = NextOp;
2368 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002369
Chris Lattnerb8b97502003-08-13 19:01:45 +00002370 // Now that the instructions are reassociated, have the functor perform
2371 // the transformation...
2372 return F.apply(Root);
2373 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002374
Chris Lattnerb8b97502003-08-13 19:01:45 +00002375 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
2376 }
2377 return 0;
2378}
2379
2380
2381// AddRHS - Implements: X + X --> X << 1
2382struct AddRHS {
2383 Value *RHS;
2384 AddRHS(Value *rhs) : RHS(rhs) {}
2385 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2386 Instruction *apply(BinaryOperator &Add) const {
Reid Spencer0d5f9232007-02-02 14:08:20 +00002387 return BinaryOperator::createShl(Add.getOperand(0),
Reid Spencer2341c222007-02-02 02:16:23 +00002388 ConstantInt::get(Add.getType(), 1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002389 }
2390};
2391
2392// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
2393// iff C1&C2 == 0
2394struct AddMaskingAnd {
2395 Constant *C2;
2396 AddMaskingAnd(Constant *c) : C2(c) {}
2397 bool shouldApply(Value *LHS) const {
Chris Lattnerd4252a72004-07-30 07:50:03 +00002398 ConstantInt *C1;
Misha Brukmanb1c93172005-04-21 23:48:37 +00002399 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattnerd4252a72004-07-30 07:50:03 +00002400 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattnerb8b97502003-08-13 19:01:45 +00002401 }
2402 Instruction *apply(BinaryOperator &Add) const {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002403 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002404 }
2405};
2406
Chris Lattner86102b82005-01-01 16:22:27 +00002407static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner183b3362004-04-09 19:05:30 +00002408 InstCombiner *IC) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002409 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner86102b82005-01-01 16:22:27 +00002410 if (Constant *SOC = dyn_cast<Constant>(SO))
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002411 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
Misha Brukmanb1c93172005-04-21 23:48:37 +00002412
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002413 return IC->InsertNewInstBefore(CastInst::create(
2414 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
Chris Lattner86102b82005-01-01 16:22:27 +00002415 }
2416
Chris Lattner183b3362004-04-09 19:05:30 +00002417 // Figure out if the constant is the left or the right argument.
Chris Lattner86102b82005-01-01 16:22:27 +00002418 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
2419 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattnerb8b97502003-08-13 19:01:45 +00002420
Chris Lattner183b3362004-04-09 19:05:30 +00002421 if (Constant *SOC = dyn_cast<Constant>(SO)) {
2422 if (ConstIsRHS)
Chris Lattner86102b82005-01-01 16:22:27 +00002423 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
2424 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner183b3362004-04-09 19:05:30 +00002425 }
2426
2427 Value *Op0 = SO, *Op1 = ConstOperand;
2428 if (!ConstIsRHS)
2429 std::swap(Op0, Op1);
2430 Instruction *New;
Chris Lattner86102b82005-01-01 16:22:27 +00002431 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2432 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
Reid Spencer266e42b2006-12-23 06:05:41 +00002433 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2434 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
2435 SO->getName()+".cmp");
Chris Lattnerf9d96652004-04-10 19:15:56 +00002436 else {
Chris Lattner183b3362004-04-09 19:05:30 +00002437 assert(0 && "Unknown binary instruction type!");
Chris Lattnerf9d96652004-04-10 19:15:56 +00002438 abort();
2439 }
Chris Lattner86102b82005-01-01 16:22:27 +00002440 return IC->InsertNewInstBefore(New, I);
2441}
2442
2443// FoldOpIntoSelect - Given an instruction with a select as one operand and a
2444// constant as the other operand, try to fold the binary operator into the
2445// select arguments. This also works for Cast instructions, which obviously do
2446// not have a second operand.
2447static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
2448 InstCombiner *IC) {
2449 // Don't modify shared select instructions
2450 if (!SI->hasOneUse()) return 0;
2451 Value *TV = SI->getOperand(1);
2452 Value *FV = SI->getOperand(2);
2453
2454 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner374e6592005-04-21 05:43:13 +00002455 // Bool selects with constant operands can be folded to logical ops.
Reid Spencer542964f2007-01-11 18:21:29 +00002456 if (SI->getType() == Type::Int1Ty) return 0;
Chris Lattner374e6592005-04-21 05:43:13 +00002457
Chris Lattner86102b82005-01-01 16:22:27 +00002458 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
2459 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
2460
2461 return new SelectInst(SI->getCondition(), SelectTrueVal,
2462 SelectFalseVal);
2463 }
2464 return 0;
Chris Lattner183b3362004-04-09 19:05:30 +00002465}
2466
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002467
2468/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
2469/// node as operand #0, see if we can fold the instruction into the PHI (which
2470/// is only possible if all operands to the PHI are constants).
2471Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
2472 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00002473 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner04689872006-09-09 22:02:56 +00002474 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002475
Chris Lattner04689872006-09-09 22:02:56 +00002476 // Check to see if all of the operands of the PHI are constants. If there is
2477 // one non-constant value, remember the BB it is. If there is more than one
Chris Lattnerc4d8e7e2007-02-24 01:03:45 +00002478 // or if *it* is a PHI, bail out.
Chris Lattner04689872006-09-09 22:02:56 +00002479 BasicBlock *NonConstBB = 0;
2480 for (unsigned i = 0; i != NumPHIValues; ++i)
2481 if (!isa<Constant>(PN->getIncomingValue(i))) {
2482 if (NonConstBB) return 0; // More than one non-const value.
Chris Lattnerc4d8e7e2007-02-24 01:03:45 +00002483 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
Chris Lattner04689872006-09-09 22:02:56 +00002484 NonConstBB = PN->getIncomingBlock(i);
2485
2486 // If the incoming non-constant value is in I's block, we have an infinite
2487 // loop.
2488 if (NonConstBB == I.getParent())
2489 return 0;
2490 }
2491
2492 // If there is exactly one non-constant value, we can insert a copy of the
2493 // operation in that block. However, if this is a critical edge, we would be
2494 // inserting the computation one some other paths (e.g. inside a loop). Only
2495 // do this if the pred block is unconditionally branching into the phi block.
2496 if (NonConstBB) {
2497 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
2498 if (!BI || !BI->isUnconditional()) return 0;
2499 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002500
2501 // Okay, we can do the transformation: create the new PHI node.
Chris Lattner6e0123b2007-02-11 01:23:03 +00002502 PHINode *NewPN = new PHINode(I.getType(), "");
Chris Lattnerd8e20182005-01-29 00:39:08 +00002503 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002504 InsertNewInstBefore(NewPN, *PN);
Chris Lattner6e0123b2007-02-11 01:23:03 +00002505 NewPN->takeName(PN);
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002506
2507 // Next, add all of the operands to the PHI.
2508 if (I.getNumOperands() == 2) {
2509 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattner7515cab2004-11-14 19:13:23 +00002510 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +00002511 Value *InV;
2512 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer266e42b2006-12-23 06:05:41 +00002513 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2514 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
2515 else
2516 InV = ConstantExpr::get(I.getOpcode(), InC, C);
Chris Lattner04689872006-09-09 22:02:56 +00002517 } else {
2518 assert(PN->getIncomingBlock(i) == NonConstBB);
2519 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
2520 InV = BinaryOperator::create(BO->getOpcode(),
2521 PN->getIncomingValue(i), C, "phitmp",
2522 NonConstBB->getTerminator());
Reid Spencer266e42b2006-12-23 06:05:41 +00002523 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
2524 InV = CmpInst::create(CI->getOpcode(),
2525 CI->getPredicate(),
2526 PN->getIncomingValue(i), C, "phitmp",
2527 NonConstBB->getTerminator());
Chris Lattner04689872006-09-09 22:02:56 +00002528 else
2529 assert(0 && "Unknown binop!");
2530
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002531 AddToWorkList(cast<Instruction>(InV));
Chris Lattner04689872006-09-09 22:02:56 +00002532 }
2533 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002534 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002535 } else {
2536 CastInst *CI = cast<CastInst>(&I);
2537 const Type *RetTy = CI->getType();
Chris Lattner7515cab2004-11-14 19:13:23 +00002538 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner04689872006-09-09 22:02:56 +00002539 Value *InV;
2540 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002541 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Chris Lattner04689872006-09-09 22:02:56 +00002542 } else {
2543 assert(PN->getIncomingBlock(i) == NonConstBB);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002544 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
2545 I.getType(), "phitmp",
2546 NonConstBB->getTerminator());
Chris Lattnerb15e2b12007-03-02 21:28:56 +00002547 AddToWorkList(cast<Instruction>(InV));
Chris Lattner04689872006-09-09 22:02:56 +00002548 }
2549 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002550 }
2551 }
2552 return ReplaceInstUsesWith(I, NewPN);
2553}
2554
Chris Lattner113f4f42002-06-25 16:13:24 +00002555Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002556 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00002557 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002558
Chris Lattnercf4a9962004-04-10 22:01:55 +00002559 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattner81a7a232004-10-16 18:11:37 +00002560 // X + undef -> undef
2561 if (isa<UndefValue>(RHS))
2562 return ReplaceInstUsesWith(I, RHS);
2563
Chris Lattnercf4a9962004-04-10 22:01:55 +00002564 // X + 0 --> X
Chris Lattner7a002fe2006-12-02 00:13:08 +00002565 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
Chris Lattner7fde91e2005-10-17 17:56:38 +00002566 if (RHSC->isNullValue())
2567 return ReplaceInstUsesWith(I, LHS);
Chris Lattnerda1b1522005-10-17 20:18:38 +00002568 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2569 if (CFP->isExactlyValue(-0.0))
2570 return ReplaceInstUsesWith(I, LHS);
Chris Lattner7fde91e2005-10-17 17:56:38 +00002571 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002572
Chris Lattnercf4a9962004-04-10 22:01:55 +00002573 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002574 // X + (signbit) --> X ^ signbit
Chris Lattner92a68652006-02-07 08:05:22 +00002575 uint64_t Val = CI->getZExtValue();
Chris Lattner77defba2006-02-07 07:00:41 +00002576 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002577 return BinaryOperator::createXor(LHS, RHS);
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002578
2579 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2580 // (X & 254)+1 -> (X&254)|1
2581 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00002582 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00002583 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner6e2c15c2006-11-09 05:12:27 +00002584 KnownZero, KnownOne))
2585 return &I;
Chris Lattnercf4a9962004-04-10 22:01:55 +00002586 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002587
2588 if (isa<PHINode>(LHS))
2589 if (Instruction *NV = FoldOpIntoPhi(I))
2590 return NV;
Chris Lattner0b3557f2005-09-24 23:43:33 +00002591
Chris Lattner330628a2006-01-06 17:59:59 +00002592 ConstantInt *XorRHS = 0;
2593 Value *XorLHS = 0;
Chris Lattner4284f642007-01-30 22:32:46 +00002594 if (isa<ConstantInt>(RHSC) &&
2595 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
Chris Lattner0b3557f2005-09-24 23:43:33 +00002596 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
2597 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
2598 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
2599
2600 uint64_t C0080Val = 1ULL << 31;
2601 int64_t CFF80Val = -C0080Val;
2602 unsigned Size = 32;
2603 do {
2604 if (TySizeBits > Size) {
2605 bool Found = false;
2606 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2607 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2608 if (RHSSExt == CFF80Val) {
2609 if (XorRHS->getZExtValue() == C0080Val)
2610 Found = true;
2611 } else if (RHSZExt == C0080Val) {
2612 if (XorRHS->getSExtValue() == CFF80Val)
2613 Found = true;
2614 }
2615 if (Found) {
2616 // This is a sign extend if the top bits are known zero.
Chris Lattner4534dd592006-02-09 07:38:58 +00002617 uint64_t Mask = ~0ULL;
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002618 Mask <<= 64-(TySizeBits-Size);
Reid Spencera94d3942007-01-19 21:13:56 +00002619 Mask &= cast<IntegerType>(XorLHS->getType())->getBitMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00002620 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner0b3557f2005-09-24 23:43:33 +00002621 Size = 0; // Not a sign ext, but can't be any others either.
2622 goto FoundSExt;
2623 }
2624 }
2625 Size >>= 1;
2626 C0080Val >>= Size;
2627 CFF80Val >>= Size;
2628 } while (Size >= 8);
2629
2630FoundSExt:
2631 const Type *MiddleType = 0;
2632 switch (Size) {
2633 default: break;
Reid Spencerc635f472006-12-31 05:48:39 +00002634 case 32: MiddleType = Type::Int32Ty; break;
2635 case 16: MiddleType = Type::Int16Ty; break;
2636 case 8: MiddleType = Type::Int8Ty; break;
Chris Lattner0b3557f2005-09-24 23:43:33 +00002637 }
2638 if (MiddleType) {
Reid Spencerbb65ebf2006-12-12 23:36:14 +00002639 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
Chris Lattner0b3557f2005-09-24 23:43:33 +00002640 InsertNewInstBefore(NewTrunc, I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002641 return new SExtInst(NewTrunc, I.getType());
Chris Lattner0b3557f2005-09-24 23:43:33 +00002642 }
2643 }
Chris Lattnercf4a9962004-04-10 22:01:55 +00002644 }
Chris Lattner9fa53de2002-05-06 16:49:18 +00002645
Chris Lattnerb8b97502003-08-13 19:01:45 +00002646 // X + X --> X << 1
Chris Lattner03c49532007-01-15 02:27:26 +00002647 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
Chris Lattnerb8b97502003-08-13 19:01:45 +00002648 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner47060462005-04-07 17:14:51 +00002649
2650 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2651 if (RHSI->getOpcode() == Instruction::Sub)
2652 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2653 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2654 }
2655 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2656 if (LHSI->getOpcode() == Instruction::Sub)
2657 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2658 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2659 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00002660 }
Chris Lattnerede3fe02003-08-13 04:18:28 +00002661
Chris Lattner147e9752002-05-08 22:46:53 +00002662 // -A + B --> B - A
Chris Lattnerbb74e222003-03-10 23:06:50 +00002663 if (Value *V = dyn_castNegVal(LHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002664 return BinaryOperator::createSub(RHS, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002665
2666 // A + -B --> A - B
Chris Lattnerbb74e222003-03-10 23:06:50 +00002667 if (!isa<Constant>(RHS))
2668 if (Value *V = dyn_castNegVal(RHS))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002669 return BinaryOperator::createSub(LHS, V);
Chris Lattner260ab202002-04-18 17:39:14 +00002670
Misha Brukmanb1c93172005-04-21 23:48:37 +00002671
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002672 ConstantInt *C2;
2673 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2674 if (X == RHS) // X*C + X --> X * (C+1)
2675 return BinaryOperator::createMul(RHS, AddOne(C2));
2676
2677 // X*C1 + X*C2 --> X * (C1+C2)
2678 ConstantInt *C1;
2679 if (X == dyn_castFoldableMul(RHS, C1))
2680 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattner57c8d992003-02-18 19:57:07 +00002681 }
2682
2683 // X + X*C --> X * (C+1)
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002684 if (dyn_castFoldableMul(RHS, C2) == LHS)
2685 return BinaryOperator::createMul(LHS, AddOne(C2));
2686
Chris Lattner23eb8ec2007-01-05 02:17:46 +00002687 // X + ~X --> -1 since ~X = -X-1
2688 if (dyn_castNotVal(LHS) == RHS ||
2689 dyn_castNotVal(RHS) == LHS)
2690 return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType()));
2691
Chris Lattner57c8d992003-02-18 19:57:07 +00002692
Chris Lattnerb8b97502003-08-13 19:01:45 +00002693 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattnerd4252a72004-07-30 07:50:03 +00002694 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattner23eb8ec2007-01-05 02:17:46 +00002695 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2696 return R;
Chris Lattner7fb29e12003-03-11 00:12:48 +00002697
Chris Lattnerb9cde762003-10-02 15:11:26 +00002698 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner330628a2006-01-06 17:59:59 +00002699 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002700 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
2701 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
2702 return BinaryOperator::createSub(C, X);
Chris Lattnerb9cde762003-10-02 15:11:26 +00002703 }
Chris Lattnerd4252a72004-07-30 07:50:03 +00002704
Chris Lattnerbff91d92004-10-08 05:07:56 +00002705 // (X & FF00) + xx00 -> (X+xx00) & FF00
2706 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2707 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
2708 if (Anded == CRHS) {
2709 // See if all bits from the first bit set in the Add RHS up are included
2710 // in the mask. First, get the rightmost bit.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002711 uint64_t AddRHSV = CRHS->getZExtValue();
Chris Lattnerbff91d92004-10-08 05:07:56 +00002712
2713 // Form a mask of all bits from the lowest bit added through the top.
2714 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Reid Spencera94d3942007-01-19 21:13:56 +00002715 AddRHSHighBits &= C2->getType()->getBitMask();
Chris Lattnerbff91d92004-10-08 05:07:56 +00002716
2717 // See if the and mask includes all of these bits.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002718 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getZExtValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00002719
Chris Lattnerbff91d92004-10-08 05:07:56 +00002720 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2721 // Okay, the xform is safe. Insert the new add pronto.
2722 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2723 LHS->getName()), I);
2724 return BinaryOperator::createAnd(NewAdd, C2);
2725 }
2726 }
2727 }
2728
Chris Lattnerd4252a72004-07-30 07:50:03 +00002729 // Try to fold constant add into select arguments.
2730 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner86102b82005-01-01 16:22:27 +00002731 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattnerd4252a72004-07-30 07:50:03 +00002732 return R;
Chris Lattnerb9cde762003-10-02 15:11:26 +00002733 }
2734
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002735 // add (cast *A to intptrtype) B ->
2736 // cast (GEP (cast *A to sbyte*) B) ->
2737 // intptrtype
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002738 {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002739 CastInst *CI = dyn_cast<CastInst>(LHS);
2740 Value *Other = RHS;
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002741 if (!CI) {
2742 CI = dyn_cast<CastInst>(RHS);
2743 Other = LHS;
2744 }
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002745 if (CI && CI->getType()->isSized() &&
Reid Spencer8f166b02007-01-08 16:32:00 +00002746 (CI->getType()->getPrimitiveSizeInBits() ==
2747 TD->getIntPtrType()->getPrimitiveSizeInBits())
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002748 && isa<PointerType>(CI->getOperand(0)->getType())) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00002749 Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
Reid Spencerc635f472006-12-31 05:48:39 +00002750 PointerType::get(Type::Int8Ty), I);
Andrew Lenharth44cb67a2006-09-20 15:37:57 +00002751 I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00002752 return new PtrToIntInst(I2, CI->getType());
Andrew Lenharth4f339be2006-09-19 18:24:51 +00002753 }
2754 }
2755
Chris Lattner113f4f42002-06-25 16:13:24 +00002756 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00002757}
2758
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002759// isSignBit - Return true if the value represented by the constant only has the
2760// highest order bit set.
2761static bool isSignBit(ConstantInt *CI) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00002762 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00002763 return (CI->getZExtValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
Chris Lattnerbdb0ce02003-07-22 21:46:59 +00002764}
2765
Chris Lattner113f4f42002-06-25 16:13:24 +00002766Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner113f4f42002-06-25 16:13:24 +00002767 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002768
Chris Lattnere6794492002-08-12 21:17:25 +00002769 if (Op0 == Op1) // sub X, X -> 0
2770 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner260ab202002-04-18 17:39:14 +00002771
Chris Lattnere6794492002-08-12 21:17:25 +00002772 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattnerbb74e222003-03-10 23:06:50 +00002773 if (Value *V = dyn_castNegVal(Op1))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002774 return BinaryOperator::createAdd(Op0, V);
Chris Lattner9fa53de2002-05-06 16:49:18 +00002775
Chris Lattner81a7a232004-10-16 18:11:37 +00002776 if (isa<UndefValue>(Op0))
2777 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2778 if (isa<UndefValue>(Op1))
2779 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2780
Chris Lattner8f2f5982003-11-05 01:06:05 +00002781 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2782 // Replace (-1 - A) with (~A)...
Chris Lattner3082c5a2003-02-18 19:28:33 +00002783 if (C->isAllOnesValue())
2784 return BinaryOperator::createNot(Op1);
Chris Lattnerad3c4952002-05-09 01:29:19 +00002785
Chris Lattner8f2f5982003-11-05 01:06:05 +00002786 // C - ~X == X + (1+C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00002787 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00002788 if (match(Op1, m_Not(m_Value(X))))
2789 return BinaryOperator::createAdd(X,
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002790 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner27df1db2007-01-15 07:02:54 +00002791 // -(X >>u 31) -> (X >>s 31)
2792 // -(X >>s 31) -> (X >>u 31)
Chris Lattner022167f2004-03-13 00:11:49 +00002793 if (C->isNullValue()) {
Reid Spencer2341c222007-02-02 02:16:23 +00002794 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
Reid Spencerfdff9382006-11-08 06:47:33 +00002795 if (SI->getOpcode() == Instruction::LShr) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00002796 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Chris Lattner92295c52004-03-12 23:53:13 +00002797 // Check to see if we are shifting out everything but the sign bit.
Reid Spencere0fc4df2006-10-20 07:07:24 +00002798 if (CU->getZExtValue() ==
2799 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerfdff9382006-11-08 06:47:33 +00002800 // Ok, the transformation is safe. Insert AShr.
Reid Spencer2341c222007-02-02 02:16:23 +00002801 return BinaryOperator::create(Instruction::AShr,
2802 SI->getOperand(0), CU, SI->getName());
Chris Lattner92295c52004-03-12 23:53:13 +00002803 }
2804 }
Reid Spencerfdff9382006-11-08 06:47:33 +00002805 }
2806 else if (SI->getOpcode() == Instruction::AShr) {
2807 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2808 // Check to see if we are shifting out everything but the sign bit.
2809 if (CU->getZExtValue() ==
2810 SI->getType()->getPrimitiveSizeInBits()-1) {
Reid Spencerc635f472006-12-31 05:48:39 +00002811 // Ok, the transformation is safe. Insert LShr.
Reid Spencer0d5f9232007-02-02 14:08:20 +00002812 return BinaryOperator::createLShr(
Reid Spencer2341c222007-02-02 02:16:23 +00002813 SI->getOperand(0), CU, SI->getName());
Reid Spencerfdff9382006-11-08 06:47:33 +00002814 }
2815 }
2816 }
Chris Lattner022167f2004-03-13 00:11:49 +00002817 }
Chris Lattner183b3362004-04-09 19:05:30 +00002818
2819 // Try to fold constant sub into select arguments.
2820 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00002821 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002822 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002823
2824 if (isa<PHINode>(Op0))
2825 if (Instruction *NV = FoldOpIntoPhi(I))
2826 return NV;
Chris Lattner8f2f5982003-11-05 01:06:05 +00002827 }
2828
Chris Lattnera9be4492005-04-07 16:15:25 +00002829 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2830 if (Op1I->getOpcode() == Instruction::Add &&
Chris Lattner7a002fe2006-12-02 00:13:08 +00002831 !Op0->getType()->isFPOrFPVector()) {
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002832 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00002833 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002834 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattnera9be4492005-04-07 16:15:25 +00002835 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattnerc7f3c1a2005-04-07 16:28:01 +00002836 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2837 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2838 // C1-(X+C2) --> (C1-C2)-X
2839 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
2840 Op1I->getOperand(0));
2841 }
Chris Lattnera9be4492005-04-07 16:15:25 +00002842 }
2843
Chris Lattnerf95d9b92003-10-15 16:48:29 +00002844 if (Op1I->hasOneUse()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002845 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2846 // is not used by anyone else...
2847 //
Chris Lattnerc2f0aa52004-02-02 20:09:56 +00002848 if (Op1I->getOpcode() == Instruction::Sub &&
Chris Lattner7a002fe2006-12-02 00:13:08 +00002849 !Op1I->getType()->isFPOrFPVector()) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002850 // Swap the two operands of the subexpr...
2851 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2852 Op1I->setOperand(0, IIOp1);
2853 Op1I->setOperand(1, IIOp0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00002854
Chris Lattner3082c5a2003-02-18 19:28:33 +00002855 // Create the new top level add instruction...
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002856 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002857 }
2858
2859 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2860 //
2861 if (Op1I->getOpcode() == Instruction::And &&
2862 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2863 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2864
Chris Lattner396dbfe2004-06-09 05:08:07 +00002865 Value *NewNot =
2866 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002867 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002868 }
Chris Lattner57c8d992003-02-18 19:57:07 +00002869
Reid Spencer3c514952006-10-16 23:08:08 +00002870 // 0 - (X sdiv C) -> (X sdiv -C)
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002871 if (Op1I->getOpcode() == Instruction::SDiv)
Reid Spencere0fc4df2006-10-20 07:07:24 +00002872 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002873 if (CSI->isNullValue())
Chris Lattner0aee4b72004-10-06 15:08:25 +00002874 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002875 return BinaryOperator::createSDiv(Op1I->getOperand(0),
Chris Lattner0aee4b72004-10-06 15:08:25 +00002876 ConstantExpr::getNeg(DivRHS));
2877
Chris Lattner57c8d992003-02-18 19:57:07 +00002878 // X - X*C --> X * (1-C)
Reid Spencer4fdd96c2005-06-18 17:37:34 +00002879 ConstantInt *C2 = 0;
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002880 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00002881 Constant *CP1 =
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002882 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002883 return BinaryOperator::createMul(Op0, CP1);
Chris Lattner57c8d992003-02-18 19:57:07 +00002884 }
Chris Lattnerad3c4952002-05-09 01:29:19 +00002885 }
Chris Lattnera9be4492005-04-07 16:15:25 +00002886 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00002887
Chris Lattner7a002fe2006-12-02 00:13:08 +00002888 if (!Op0->getType()->isFPOrFPVector())
Chris Lattner47060462005-04-07 17:14:51 +00002889 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2890 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner411336f2005-01-19 21:50:18 +00002891 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2892 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2893 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2894 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner47060462005-04-07 17:14:51 +00002895 } else if (Op0I->getOpcode() == Instruction::Sub) {
2896 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2897 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner411336f2005-01-19 21:50:18 +00002898 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00002899
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002900 ConstantInt *C1;
2901 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2902 if (X == Op1) { // X*C - X --> X * (C-1)
2903 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
2904 return BinaryOperator::createMul(Op1, CP1);
2905 }
Chris Lattner57c8d992003-02-18 19:57:07 +00002906
Chris Lattner8c3e7b92004-11-13 19:50:12 +00002907 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2908 if (X == dyn_castFoldableMul(Op1, C2))
2909 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
2910 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00002911 return 0;
Chris Lattner260ab202002-04-18 17:39:14 +00002912}
2913
Reid Spencer266e42b2006-12-23 06:05:41 +00002914/// isSignBitCheck - Given an exploded icmp instruction, return true if it
Chris Lattnere79e8542004-02-23 06:38:22 +00002915/// really just returns true if the most significant (sign) bit is set.
Reid Spencer266e42b2006-12-23 06:05:41 +00002916static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS) {
2917 switch (pred) {
2918 case ICmpInst::ICMP_SLT:
2919 // True if LHS s< RHS and RHS == 0
2920 return RHS->isNullValue();
2921 case ICmpInst::ICMP_SLE:
2922 // True if LHS s<= RHS and RHS == -1
2923 return RHS->isAllOnesValue();
2924 case ICmpInst::ICMP_UGE:
2925 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2926 return RHS->getZExtValue() == (1ULL <<
2927 (RHS->getType()->getPrimitiveSizeInBits()-1));
2928 case ICmpInst::ICMP_UGT:
2929 // True if LHS u> RHS and RHS == high-bit-mask - 1
2930 return RHS->getZExtValue() ==
Chris Lattnerd1f46d32005-04-24 06:59:08 +00002931 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Reid Spencer266e42b2006-12-23 06:05:41 +00002932 default:
2933 return false;
Chris Lattnere79e8542004-02-23 06:38:22 +00002934 }
Chris Lattnere79e8542004-02-23 06:38:22 +00002935}
2936
Chris Lattner113f4f42002-06-25 16:13:24 +00002937Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00002938 bool Changed = SimplifyCommutative(I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00002939 Value *Op0 = I.getOperand(0);
Chris Lattner260ab202002-04-18 17:39:14 +00002940
Chris Lattner81a7a232004-10-16 18:11:37 +00002941 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2942 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2943
Chris Lattnere6794492002-08-12 21:17:25 +00002944 // Simplify mul instructions with a constant RHS...
Chris Lattner3082c5a2003-02-18 19:28:33 +00002945 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2946 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerede3fe02003-08-13 04:18:28 +00002947
2948 // ((X << C1)*C2) == (X * (C2 << C1))
Reid Spencer2341c222007-02-02 02:16:23 +00002949 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
Chris Lattnerede3fe02003-08-13 04:18:28 +00002950 if (SI->getOpcode() == Instruction::Shl)
2951 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00002952 return BinaryOperator::createMul(SI->getOperand(0),
2953 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanb1c93172005-04-21 23:48:37 +00002954
Chris Lattnercce81be2003-09-11 22:24:54 +00002955 if (CI->isNullValue())
2956 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2957 if (CI->equalsInt(1)) // X * 1 == X
2958 return ReplaceInstUsesWith(I, Op0);
2959 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner35236d82003-06-25 17:09:20 +00002960 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner31ba1292002-04-29 22:24:47 +00002961
Reid Spencere0fc4df2006-10-20 07:07:24 +00002962 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getZExtValue();
Chris Lattner22d00a82005-08-02 19:16:58 +00002963 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
2964 uint64_t C = Log2_64(Val);
Reid Spencer0d5f9232007-02-02 14:08:20 +00002965 return BinaryOperator::createShl(Op0,
Reid Spencer2341c222007-02-02 02:16:23 +00002966 ConstantInt::get(Op0->getType(), C));
Chris Lattner22d00a82005-08-02 19:16:58 +00002967 }
Robert Bocchino7b5b86c2004-07-27 21:02:21 +00002968 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattner3082c5a2003-02-18 19:28:33 +00002969 if (Op1F->isNullValue())
2970 return ReplaceInstUsesWith(I, Op1);
Chris Lattner31ba1292002-04-29 22:24:47 +00002971
Chris Lattner3082c5a2003-02-18 19:28:33 +00002972 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2973 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2974 if (Op1F->getValue() == 1.0)
2975 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2976 }
Chris Lattner32c01df2006-03-04 06:04:02 +00002977
2978 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2979 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2980 isa<ConstantInt>(Op0I->getOperand(1))) {
2981 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2982 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2983 Op1, "tmp");
2984 InsertNewInstBefore(Add, I);
2985 Value *C1C2 = ConstantExpr::getMul(Op1,
2986 cast<Constant>(Op0I->getOperand(1)));
2987 return BinaryOperator::createAdd(Add, C1C2);
2988
2989 }
Chris Lattner183b3362004-04-09 19:05:30 +00002990
2991 // Try to fold constant mul into select arguments.
2992 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00002993 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00002994 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00002995
2996 if (isa<PHINode>(Op0))
2997 if (Instruction *NV = FoldOpIntoPhi(I))
2998 return NV;
Chris Lattner260ab202002-04-18 17:39:14 +00002999 }
3000
Chris Lattner934a64cf2003-03-10 23:23:04 +00003001 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
3002 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003003 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattner934a64cf2003-03-10 23:23:04 +00003004
Chris Lattner2635b522004-02-23 05:39:21 +00003005 // If one of the operands of the multiply is a cast from a boolean value, then
3006 // we know the bool is either zero or one, so this is a 'masking' multiply.
3007 // See if we can simplify things based on how the boolean was originally
3008 // formed.
3009 CastInst *BoolCast = 0;
Reid Spencer74a528b2006-12-13 18:21:21 +00003010 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
Reid Spencer542964f2007-01-11 18:21:29 +00003011 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattner2635b522004-02-23 05:39:21 +00003012 BoolCast = CI;
3013 if (!BoolCast)
Reid Spencer74a528b2006-12-13 18:21:21 +00003014 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
Reid Spencer542964f2007-01-11 18:21:29 +00003015 if (CI->getOperand(0)->getType() == Type::Int1Ty)
Chris Lattner2635b522004-02-23 05:39:21 +00003016 BoolCast = CI;
3017 if (BoolCast) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003018 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
Chris Lattner2635b522004-02-23 05:39:21 +00003019 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
3020 const Type *SCOpTy = SCIOp0->getType();
3021
Reid Spencer266e42b2006-12-23 06:05:41 +00003022 // If the icmp is true iff the sign bit of X is set, then convert this
Chris Lattnere79e8542004-02-23 06:38:22 +00003023 // multiply into a shift/and combination.
3024 if (isa<ConstantInt>(SCIOp1) &&
Reid Spencer266e42b2006-12-23 06:05:41 +00003025 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1))) {
Chris Lattner2635b522004-02-23 05:39:21 +00003026 // Shift the X value right to turn it into "all signbits".
Reid Spencer2341c222007-02-02 02:16:23 +00003027 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
Chris Lattnerd1f46d32005-04-24 06:59:08 +00003028 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattnere79e8542004-02-23 06:38:22 +00003029 Value *V =
Reid Spencer2341c222007-02-02 02:16:23 +00003030 InsertNewInstBefore(
3031 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
Chris Lattnere79e8542004-02-23 06:38:22 +00003032 BoolCast->getOperand(0)->getName()+
3033 ".mask"), I);
Chris Lattner2635b522004-02-23 05:39:21 +00003034
3035 // If the multiply type is not the same as the source type, sign extend
3036 // or truncate to the multiply type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00003037 if (I.getType() != V->getType()) {
3038 unsigned SrcBits = V->getType()->getPrimitiveSizeInBits();
3039 unsigned DstBits = I.getType()->getPrimitiveSizeInBits();
3040 Instruction::CastOps opcode =
3041 (SrcBits == DstBits ? Instruction::BitCast :
3042 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
3043 V = InsertCastBefore(opcode, V, I.getType(), I);
3044 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003045
Chris Lattner2635b522004-02-23 05:39:21 +00003046 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003047 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattner2635b522004-02-23 05:39:21 +00003048 }
3049 }
3050 }
3051
Chris Lattner113f4f42002-06-25 16:13:24 +00003052 return Changed ? &I : 0;
Chris Lattner260ab202002-04-18 17:39:14 +00003053}
3054
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003055/// This function implements the transforms on div instructions that work
3056/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
3057/// used by the visitors to those instructions.
3058/// @brief Transforms common to all three div instructions
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003059Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003060 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner81a7a232004-10-16 18:11:37 +00003061
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003062 // undef / X -> 0
3063 if (isa<UndefValue>(Op0))
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003064 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003065
3066 // X / undef -> undef
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003067 if (isa<UndefValue>(Op1))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003068 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003069
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003070 // Handle cases involving: div X, (select Cond, Y, Z)
Chris Lattnerd79dc792006-09-09 20:26:32 +00003071 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3072 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003073 // same basic block, then we replace the select with Y, and the condition
3074 // of the select with false (if the cond value is in the same BB). If the
Chris Lattnerd79dc792006-09-09 20:26:32 +00003075 // select has uses other than the div, this allows them to be simplified
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003076 // also. Note that div X, Y is just as good as div X, 0 (undef)
Chris Lattnerd79dc792006-09-09 20:26:32 +00003077 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3078 if (ST->isNullValue()) {
3079 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3080 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003081 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Chris Lattnerd79dc792006-09-09 20:26:32 +00003082 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3083 I.setOperand(1, SI->getOperand(2));
3084 else
3085 UpdateValueUsesWith(SI, SI->getOperand(2));
3086 return &I;
3087 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003088
Chris Lattnerd79dc792006-09-09 20:26:32 +00003089 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
3090 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3091 if (ST->isNullValue()) {
3092 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3093 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003094 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Chris Lattnerd79dc792006-09-09 20:26:32 +00003095 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3096 I.setOperand(1, SI->getOperand(1));
3097 else
3098 UpdateValueUsesWith(SI, SI->getOperand(1));
3099 return &I;
3100 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003101 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003102
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003103 return 0;
3104}
Misha Brukmanb1c93172005-04-21 23:48:37 +00003105
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003106/// This function implements the transforms common to both integer division
3107/// instructions (udiv and sdiv). It is called by the visitors to those integer
3108/// division instructions.
3109/// @brief Common integer divide transforms
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003110Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003111 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3112
3113 if (Instruction *Common = commonDivTransforms(I))
3114 return Common;
3115
3116 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3117 // div X, 1 == X
3118 if (RHS->equalsInt(1))
3119 return ReplaceInstUsesWith(I, Op0);
3120
3121 // (X / C1) / C2 -> X / (C1*C2)
3122 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
3123 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
3124 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
3125 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
3126 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattner42362612005-04-08 04:03:26 +00003127 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003128
3129 if (!RHS->isNullValue()) { // avoid X udiv 0
3130 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3131 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3132 return R;
3133 if (isa<PHINode>(Op0))
3134 if (Instruction *NV = FoldOpIntoPhi(I))
3135 return NV;
3136 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003137 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00003138
Chris Lattner3082c5a2003-02-18 19:28:33 +00003139 // 0 / X == 0, we don't need to preserve faults!
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003140 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattner3082c5a2003-02-18 19:28:33 +00003141 if (LHS->equalsInt(0))
3142 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3143
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003144 return 0;
3145}
3146
3147Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
3148 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3149
3150 // Handle the integer div common cases
3151 if (Instruction *Common = commonIDivTransforms(I))
3152 return Common;
3153
3154 // X udiv C^2 -> X >> C
3155 // Check to see if this is an unsigned division with an exact power of 2,
3156 // if so, convert to a right shift.
3157 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
3158 if (uint64_t Val = C->getZExtValue()) // Don't break X / 0
3159 if (isPowerOf2_64(Val)) {
3160 uint64_t ShiftAmt = Log2_64(Val);
Reid Spencer0d5f9232007-02-02 14:08:20 +00003161 return BinaryOperator::createLShr(Op0,
Reid Spencer2341c222007-02-02 02:16:23 +00003162 ConstantInt::get(Op0->getType(), ShiftAmt));
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003163 }
3164 }
3165
3166 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Reid Spencer2341c222007-02-02 02:16:23 +00003167 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003168 if (RHSI->getOpcode() == Instruction::Shl &&
3169 isa<ConstantInt>(RHSI->getOperand(0))) {
3170 uint64_t C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
3171 if (isPowerOf2_64(C1)) {
3172 Value *N = RHSI->getOperand(1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003173 const Type *NTy = N->getType();
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003174 if (uint64_t C2 = Log2_64(C1)) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003175 Constant *C2V = ConstantInt::get(NTy, C2);
3176 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
Chris Lattner2e90b732006-02-05 07:54:04 +00003177 }
Reid Spencer0d5f9232007-02-02 14:08:20 +00003178 return BinaryOperator::createLShr(Op0, N);
Chris Lattner2e90b732006-02-05 07:54:04 +00003179 }
3180 }
Chris Lattnerdd0c1742005-11-05 07:40:31 +00003181 }
3182
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003183 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
3184 // where C1&C2 are powers of two.
Reid Spencer3939b1a2007-03-05 23:36:13 +00003185 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003186 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
Reid Spencer3939b1a2007-03-05 23:36:13 +00003187 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3188 uint64_t TVA = STO->getZExtValue(), FVA = SFO->getZExtValue();
3189 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
3190 // Compute the shift amounts
3191 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
3192 // Construct the "on true" case of the select
3193 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
3194 Instruction *TSI = BinaryOperator::createLShr(
3195 Op0, TC, SI->getName()+".t");
3196 TSI = InsertNewInstBefore(TSI, I);
3197
3198 // Construct the "on false" case of the select
3199 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
3200 Instruction *FSI = BinaryOperator::createLShr(
3201 Op0, FC, SI->getName()+".f");
3202 FSI = InsertNewInstBefore(FSI, I);
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003203
Reid Spencer3939b1a2007-03-05 23:36:13 +00003204 // construct the select instruction and return it.
3205 return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003206 }
Reid Spencer3939b1a2007-03-05 23:36:13 +00003207 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003208 return 0;
3209}
3210
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003211Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
3212 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3213
3214 // Handle the integer div common cases
3215 if (Instruction *Common = commonIDivTransforms(I))
3216 return Common;
3217
3218 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3219 // sdiv X, -1 == -X
3220 if (RHS->isAllOnesValue())
3221 return BinaryOperator::createNeg(Op0);
3222
3223 // -X/C -> X/-C
3224 if (Value *LHSNeg = dyn_castNegVal(Op0))
3225 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
3226 }
3227
3228 // If the sign bits of both operands are zero (i.e. we can prove they are
3229 // unsigned inputs), turn this into a udiv.
Chris Lattner03c49532007-01-15 02:27:26 +00003230 if (I.getType()->isInteger()) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003231 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
3232 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3233 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
3234 }
3235 }
3236
3237 return 0;
3238}
3239
3240Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
3241 return commonDivTransforms(I);
3242}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003243
Chris Lattner85dda9a2006-03-02 06:50:58 +00003244/// GetFactor - If we can prove that the specified value is at least a multiple
3245/// of some factor, return that factor.
3246static Constant *GetFactor(Value *V) {
3247 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3248 return CI;
3249
3250 // Unless we can be tricky, we know this is a multiple of 1.
3251 Constant *Result = ConstantInt::get(V->getType(), 1);
3252
3253 Instruction *I = dyn_cast<Instruction>(V);
3254 if (!I) return Result;
3255
3256 if (I->getOpcode() == Instruction::Mul) {
3257 // Handle multiplies by a constant, etc.
3258 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
3259 GetFactor(I->getOperand(1)));
3260 } else if (I->getOpcode() == Instruction::Shl) {
3261 // (X<<C) -> X * (1 << C)
3262 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
3263 ShRHS = ConstantExpr::getShl(Result, ShRHS);
3264 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
3265 }
3266 } else if (I->getOpcode() == Instruction::And) {
3267 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
3268 // X & 0xFFF0 is known to be a multiple of 16.
3269 unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue());
3270 if (Zeros != V->getType()->getPrimitiveSizeInBits())
3271 return ConstantExpr::getShl(Result,
Reid Spencer2341c222007-02-02 02:16:23 +00003272 ConstantInt::get(Result->getType(), Zeros));
Chris Lattner85dda9a2006-03-02 06:50:58 +00003273 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003274 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
Chris Lattner85dda9a2006-03-02 06:50:58 +00003275 // Only handle int->int casts.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003276 if (!CI->isIntegerCast())
3277 return Result;
3278 Value *Op = CI->getOperand(0);
3279 return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
Chris Lattner85dda9a2006-03-02 06:50:58 +00003280 }
3281 return Result;
3282}
3283
Reid Spencer7eb55b32006-11-02 01:53:59 +00003284/// This function implements the transforms on rem instructions that work
3285/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3286/// is used by the visitors to those instructions.
3287/// @brief Transforms common to all three rem instructions
3288Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003289 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Reid Spencer7eb55b32006-11-02 01:53:59 +00003290
Chris Lattner0de4a8d2006-02-28 05:30:45 +00003291 // 0 % X == 0, we don't need to preserve faults!
3292 if (Constant *LHS = dyn_cast<Constant>(Op0))
3293 if (LHS->isNullValue())
3294 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3295
3296 if (isa<UndefValue>(Op0)) // undef % X -> 0
3297 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3298 if (isa<UndefValue>(Op1))
3299 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Reid Spencer7eb55b32006-11-02 01:53:59 +00003300
3301 // Handle cases involving: rem X, (select Cond, Y, Z)
3302 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3303 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
3304 // the same basic block, then we replace the select with Y, and the
3305 // condition of the select with false (if the cond value is in the same
3306 // BB). If the select has uses other than the div, this allows them to be
3307 // simplified also.
3308 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
3309 if (ST->isNullValue()) {
3310 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3311 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003312 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
Reid Spencer7eb55b32006-11-02 01:53:59 +00003313 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3314 I.setOperand(1, SI->getOperand(2));
3315 else
3316 UpdateValueUsesWith(SI, SI->getOperand(2));
Chris Lattner7fd5f072004-07-06 07:01:22 +00003317 return &I;
3318 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003319 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
3320 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
3321 if (ST->isNullValue()) {
3322 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
3323 if (CondI && CondI->getParent() == I.getParent())
Zhou Sheng75b871f2007-01-11 12:24:14 +00003324 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
Reid Spencer7eb55b32006-11-02 01:53:59 +00003325 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
3326 I.setOperand(1, SI->getOperand(1));
3327 else
3328 UpdateValueUsesWith(SI, SI->getOperand(1));
3329 return &I;
3330 }
Chris Lattnere9ff0ea2005-11-05 07:28:37 +00003331 }
Chris Lattner7fd5f072004-07-06 07:01:22 +00003332
Reid Spencer7eb55b32006-11-02 01:53:59 +00003333 return 0;
3334}
3335
3336/// This function implements the transforms common to both integer remainder
3337/// instructions (urem and srem). It is called by the visitors to those integer
3338/// remainder instructions.
3339/// @brief Common integer remainder transforms
3340Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
3341 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3342
3343 if (Instruction *common = commonRemTransforms(I))
3344 return common;
3345
Chris Lattnerbf5b7cf2004-12-12 21:48:58 +00003346 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner0de4a8d2006-02-28 05:30:45 +00003347 // X % 0 == undef, we don't need to preserve faults!
3348 if (RHS->equalsInt(0))
3349 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3350
Chris Lattner3082c5a2003-02-18 19:28:33 +00003351 if (RHS->equalsInt(1)) // X % 1 == 0
3352 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3353
Chris Lattnerb70f1412006-02-28 05:49:21 +00003354 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
3355 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
3356 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3357 return R;
3358 } else if (isa<PHINode>(Op0I)) {
3359 if (Instruction *NV = FoldOpIntoPhi(I))
3360 return NV;
Chris Lattnerb70f1412006-02-28 05:49:21 +00003361 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003362 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
3363 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
Chris Lattner85dda9a2006-03-02 06:50:58 +00003364 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerb70f1412006-02-28 05:49:21 +00003365 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00003366 }
3367
Reid Spencer7eb55b32006-11-02 01:53:59 +00003368 return 0;
3369}
3370
3371Instruction *InstCombiner::visitURem(BinaryOperator &I) {
3372 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3373
3374 if (Instruction *common = commonIRemTransforms(I))
3375 return common;
3376
3377 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3378 // X urem C^2 -> X and C
3379 // Check to see if this is an unsigned remainder with an exact power of 2,
3380 // if so, convert to a bitwise and.
3381 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
3382 if (isPowerOf2_64(C->getZExtValue()))
3383 return BinaryOperator::createAnd(Op0, SubOne(C));
3384 }
3385
Chris Lattner2e90b732006-02-05 07:54:04 +00003386 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00003387 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3388 if (RHSI->getOpcode() == Instruction::Shl &&
3389 isa<ConstantInt>(RHSI->getOperand(0))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003390 unsigned C1 = cast<ConstantInt>(RHSI->getOperand(0))->getZExtValue();
Chris Lattner2e90b732006-02-05 07:54:04 +00003391 if (isPowerOf2_64(C1)) {
3392 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
3393 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
3394 "tmp"), I);
3395 return BinaryOperator::createAnd(Op0, Add);
3396 }
3397 }
Reid Spencer7eb55b32006-11-02 01:53:59 +00003398 }
Chris Lattnerd79dc792006-09-09 20:26:32 +00003399
Reid Spencer7eb55b32006-11-02 01:53:59 +00003400 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3401 // where C1&C2 are powers of two.
3402 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
3403 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
3404 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
3405 // STO == 0 and SFO == 0 handled above.
3406 if (isPowerOf2_64(STO->getZExtValue()) &&
3407 isPowerOf2_64(SFO->getZExtValue())) {
3408 Value *TrueAnd = InsertNewInstBefore(
3409 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
3410 Value *FalseAnd = InsertNewInstBefore(
3411 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
3412 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
3413 }
3414 }
Chris Lattner2e90b732006-02-05 07:54:04 +00003415 }
3416
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003417 return 0;
3418}
3419
Reid Spencer7eb55b32006-11-02 01:53:59 +00003420Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
3421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3422
3423 if (Instruction *common = commonIRemTransforms(I))
3424 return common;
3425
3426 if (Value *RHSNeg = dyn_castNegVal(Op1))
3427 if (!isa<ConstantInt>(RHSNeg) ||
3428 cast<ConstantInt>(RHSNeg)->getSExtValue() > 0) {
3429 // X % -Y -> X % Y
3430 AddUsesToWorkList(I);
3431 I.setOperand(1, RHSNeg);
3432 return &I;
3433 }
3434
3435 // If the top bits of both operands are zero (i.e. we can prove they are
3436 // unsigned inputs), turn this into a urem.
3437 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
3438 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
3439 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3440 return BinaryOperator::createURem(Op0, Op1, I.getName());
3441 }
3442
3443 return 0;
3444}
3445
3446Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00003447 return commonRemTransforms(I);
3448}
3449
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003450// isMaxValueMinusOne - return true if this is Max-1
Reid Spencer266e42b2006-12-23 06:05:41 +00003451static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
3452 if (isSigned) {
3453 // Calculate 0111111111..11111
3454 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
3455 int64_t Val = INT64_MAX; // All ones
3456 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
3457 return C->getSExtValue() == Val-1;
3458 }
Reid Spencera94d3942007-01-19 21:13:56 +00003459 return C->getZExtValue() == C->getType()->getBitMask()-1;
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003460}
3461
3462// isMinValuePlusOne - return true if this is Min+1
Reid Spencer266e42b2006-12-23 06:05:41 +00003463static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
3464 if (isSigned) {
3465 // Calculate 1111111111000000000000
3466 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
3467 int64_t Val = -1; // All ones
3468 Val <<= TypeBits-1; // Shift over to the right spot
3469 return C->getSExtValue() == Val+1;
3470 }
3471 return C->getZExtValue() == 1; // unsigned
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003472}
3473
Chris Lattner35167c32004-06-09 07:59:58 +00003474// isOneBitSet - Return true if there is exactly one bit set in the specified
3475// constant.
3476static bool isOneBitSet(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003477 uint64_t V = CI->getZExtValue();
Chris Lattner35167c32004-06-09 07:59:58 +00003478 return V && (V & (V-1)) == 0;
3479}
3480
Chris Lattner8fc5af42004-09-23 21:46:38 +00003481#if 0 // Currently unused
3482// isLowOnes - Return true if the constant is of the form 0+1+.
3483static bool isLowOnes(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003484 uint64_t V = CI->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003485
3486 // There won't be bits set in parts that the type doesn't contain.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003487 V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003488
3489 uint64_t U = V+1; // If it is low ones, this should be a power of two.
3490 return U && V && (U & V) == 0;
3491}
3492#endif
3493
3494// isHighOnes - Return true if the constant is of the form 1+0+.
3495// This is the same as lowones(~X).
3496static bool isHighOnes(const ConstantInt *CI) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003497 uint64_t V = ~CI->getZExtValue();
Chris Lattner2c14cf72005-08-07 07:03:10 +00003498 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattner8fc5af42004-09-23 21:46:38 +00003499
3500 // There won't be bits set in parts that the type doesn't contain.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003501 V &= ConstantInt::getAllOnesValue(CI->getType())->getZExtValue();
Chris Lattner8fc5af42004-09-23 21:46:38 +00003502
3503 uint64_t U = V+1; // If it is low ones, this should be a power of two.
3504 return U && V && (U & V) == 0;
3505}
3506
Reid Spencer266e42b2006-12-23 06:05:41 +00003507/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
Chris Lattner3ac7c262003-08-13 20:16:26 +00003508/// are carefully arranged to allow folding of expressions such as:
3509///
3510/// (A < B) | (A > B) --> (A != B)
3511///
Reid Spencer266e42b2006-12-23 06:05:41 +00003512/// Note that this is only valid if the first and second predicates have the
3513/// same sign. Is illegal to do: (A u< B) | (A s> B)
Chris Lattner3ac7c262003-08-13 20:16:26 +00003514///
Reid Spencer266e42b2006-12-23 06:05:41 +00003515/// Three bits are used to represent the condition, as follows:
3516/// 0 A > B
3517/// 1 A == B
3518/// 2 A < B
3519///
3520/// <=> Value Definition
3521/// 000 0 Always false
3522/// 001 1 A > B
3523/// 010 2 A == B
3524/// 011 3 A >= B
3525/// 100 4 A < B
3526/// 101 5 A != B
3527/// 110 6 A <= B
3528/// 111 7 Always true
3529///
3530static unsigned getICmpCode(const ICmpInst *ICI) {
3531 switch (ICI->getPredicate()) {
Chris Lattner3ac7c262003-08-13 20:16:26 +00003532 // False -> 0
Reid Spencer266e42b2006-12-23 06:05:41 +00003533 case ICmpInst::ICMP_UGT: return 1; // 001
3534 case ICmpInst::ICMP_SGT: return 1; // 001
3535 case ICmpInst::ICMP_EQ: return 2; // 010
3536 case ICmpInst::ICMP_UGE: return 3; // 011
3537 case ICmpInst::ICMP_SGE: return 3; // 011
3538 case ICmpInst::ICMP_ULT: return 4; // 100
3539 case ICmpInst::ICMP_SLT: return 4; // 100
3540 case ICmpInst::ICMP_NE: return 5; // 101
3541 case ICmpInst::ICMP_ULE: return 6; // 110
3542 case ICmpInst::ICMP_SLE: return 6; // 110
Chris Lattner3ac7c262003-08-13 20:16:26 +00003543 // True -> 7
3544 default:
Reid Spencer266e42b2006-12-23 06:05:41 +00003545 assert(0 && "Invalid ICmp predicate!");
Chris Lattner3ac7c262003-08-13 20:16:26 +00003546 return 0;
3547 }
3548}
3549
Reid Spencer266e42b2006-12-23 06:05:41 +00003550/// getICmpValue - This is the complement of getICmpCode, which turns an
3551/// opcode and two operands into either a constant true or false, or a brand
3552/// new /// ICmp instruction. The sign is passed in to determine which kind
3553/// of predicate to use in new icmp instructions.
3554static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
3555 switch (code) {
3556 default: assert(0 && "Illegal ICmp code!");
Zhou Sheng75b871f2007-01-11 12:24:14 +00003557 case 0: return ConstantInt::getFalse();
Reid Spencer266e42b2006-12-23 06:05:41 +00003558 case 1:
3559 if (sign)
3560 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
3561 else
3562 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
3563 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
3564 case 3:
3565 if (sign)
3566 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
3567 else
3568 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
3569 case 4:
3570 if (sign)
3571 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
3572 else
3573 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
3574 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
3575 case 6:
3576 if (sign)
3577 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
3578 else
3579 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00003580 case 7: return ConstantInt::getTrue();
Chris Lattner3ac7c262003-08-13 20:16:26 +00003581 }
3582}
3583
Reid Spencer266e42b2006-12-23 06:05:41 +00003584static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
3585 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
3586 (ICmpInst::isSignedPredicate(p1) &&
3587 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
3588 (ICmpInst::isSignedPredicate(p2) &&
3589 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
3590}
3591
3592namespace {
3593// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3594struct FoldICmpLogical {
Chris Lattner3ac7c262003-08-13 20:16:26 +00003595 InstCombiner &IC;
3596 Value *LHS, *RHS;
Reid Spencer266e42b2006-12-23 06:05:41 +00003597 ICmpInst::Predicate pred;
3598 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3599 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3600 pred(ICI->getPredicate()) {}
Chris Lattner3ac7c262003-08-13 20:16:26 +00003601 bool shouldApply(Value *V) const {
Reid Spencer266e42b2006-12-23 06:05:41 +00003602 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3603 if (PredicatesFoldable(pred, ICI->getPredicate()))
3604 return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
3605 ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003606 return false;
3607 }
Reid Spencer266e42b2006-12-23 06:05:41 +00003608 Instruction *apply(Instruction &Log) const {
3609 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3610 if (ICI->getOperand(0) != LHS) {
3611 assert(ICI->getOperand(1) == LHS);
3612 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
Chris Lattner3ac7c262003-08-13 20:16:26 +00003613 }
3614
Chris Lattnerd1bce952007-03-13 14:27:42 +00003615 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
Reid Spencer266e42b2006-12-23 06:05:41 +00003616 unsigned LHSCode = getICmpCode(ICI);
Chris Lattnerd1bce952007-03-13 14:27:42 +00003617 unsigned RHSCode = getICmpCode(RHSICI);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003618 unsigned Code;
3619 switch (Log.getOpcode()) {
3620 case Instruction::And: Code = LHSCode & RHSCode; break;
3621 case Instruction::Or: Code = LHSCode | RHSCode; break;
3622 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner2caaaba2003-09-22 20:33:34 +00003623 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattner3ac7c262003-08-13 20:16:26 +00003624 }
3625
Chris Lattnerd1bce952007-03-13 14:27:42 +00003626 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3627 ICmpInst::isSignedPredicate(ICI->getPredicate());
3628
3629 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
Chris Lattner3ac7c262003-08-13 20:16:26 +00003630 if (Instruction *I = dyn_cast<Instruction>(RV))
3631 return I;
3632 // Otherwise, it's a constant boolean value...
3633 return IC.ReplaceInstUsesWith(Log, RV);
3634 }
3635};
Chris Lattnere3a63d12006-11-15 04:53:24 +00003636} // end anonymous namespace
Chris Lattner3ac7c262003-08-13 20:16:26 +00003637
Chris Lattnerba1cb382003-09-19 17:17:26 +00003638// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3639// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
Reid Spencer2341c222007-02-02 02:16:23 +00003640// guaranteed to be a binary operator.
Chris Lattnerba1cb382003-09-19 17:17:26 +00003641Instruction *InstCombiner::OptAndOp(Instruction *Op,
Zhou Sheng75b871f2007-01-11 12:24:14 +00003642 ConstantInt *OpRHS,
3643 ConstantInt *AndRHS,
Chris Lattnerba1cb382003-09-19 17:17:26 +00003644 BinaryOperator &TheAnd) {
3645 Value *X = Op->getOperand(0);
Chris Lattnerfcf21a72004-01-12 19:47:05 +00003646 Constant *Together = 0;
Reid Spencer2341c222007-02-02 02:16:23 +00003647 if (!Op->isShift())
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003648 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00003649
Chris Lattnerba1cb382003-09-19 17:17:26 +00003650 switch (Op->getOpcode()) {
3651 case Instruction::Xor:
Chris Lattner86102b82005-01-01 16:22:27 +00003652 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003653 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
Chris Lattner6e0123b2007-02-11 01:23:03 +00003654 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003655 InsertNewInstBefore(And, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003656 And->takeName(Op);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003657 return BinaryOperator::createXor(And, Together);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003658 }
3659 break;
3660 case Instruction::Or:
Chris Lattner86102b82005-01-01 16:22:27 +00003661 if (Together == AndRHS) // (X | C) & C --> C
3662 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003663
Chris Lattner86102b82005-01-01 16:22:27 +00003664 if (Op->hasOneUse() && Together != OpRHS) {
3665 // (X | C1) & C2 --> (X | (C1&C2)) & C2
Chris Lattner6e0123b2007-02-11 01:23:03 +00003666 Instruction *Or = BinaryOperator::createOr(X, Together);
Chris Lattner86102b82005-01-01 16:22:27 +00003667 InsertNewInstBefore(Or, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003668 Or->takeName(Op);
Chris Lattner86102b82005-01-01 16:22:27 +00003669 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003670 }
3671 break;
3672 case Instruction::Add:
Chris Lattnerf95d9b92003-10-15 16:48:29 +00003673 if (Op->hasOneUse()) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003674 // Adding a one to a single bit bit-field should be turned into an XOR
3675 // of the bit. First thing to check is to see if this AND is with a
3676 // single bit constant.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003677 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getZExtValue();
Chris Lattnerba1cb382003-09-19 17:17:26 +00003678
3679 // Clear bits that are not part of the constant.
Reid Spencera94d3942007-01-19 21:13:56 +00003680 AndRHSV &= AndRHS->getType()->getBitMask();
Chris Lattnerba1cb382003-09-19 17:17:26 +00003681
3682 // If there is only one bit set...
Chris Lattner35167c32004-06-09 07:59:58 +00003683 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003684 // Ok, at this point, we know that we are masking the result of the
3685 // ADD down to exactly one bit. If the constant we are adding has
3686 // no bits set below this bit, then we can eliminate the ADD.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003687 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getZExtValue();
Misha Brukmanb1c93172005-04-21 23:48:37 +00003688
Chris Lattnerba1cb382003-09-19 17:17:26 +00003689 // Check to see if any bits below the one bit set in AndRHSV are set.
3690 if ((AddRHS & (AndRHSV-1)) == 0) {
3691 // If not, the only thing that can effect the output of the AND is
3692 // the bit specified by AndRHSV. If that bit is set, the effect of
3693 // the XOR is to toggle the bit. If it is clear, then the ADD has
3694 // no effect.
3695 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3696 TheAnd.setOperand(0, X);
3697 return &TheAnd;
3698 } else {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003699 // Pull the XOR out of the AND.
Chris Lattner6e0123b2007-02-11 01:23:03 +00003700 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003701 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner6e0123b2007-02-11 01:23:03 +00003702 NewAnd->takeName(Op);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00003703 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerba1cb382003-09-19 17:17:26 +00003704 }
3705 }
3706 }
3707 }
3708 break;
Chris Lattner2da29172003-09-19 19:05:02 +00003709
3710 case Instruction::Shl: {
3711 // We know that the AND will not produce any of the bits shifted in, so if
3712 // the anded constant includes them, clear them now!
3713 //
Zhou Sheng75b871f2007-01-11 12:24:14 +00003714 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Chris Lattner7e794272004-09-24 15:21:34 +00003715 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
3716 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003717
Chris Lattner7e794272004-09-24 15:21:34 +00003718 if (CI == ShlMask) { // Masking out bits that the shift already masks
3719 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3720 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner2da29172003-09-19 19:05:02 +00003721 TheAnd.setOperand(1, CI);
3722 return &TheAnd;
3723 }
3724 break;
Misha Brukmanb1c93172005-04-21 23:48:37 +00003725 }
Reid Spencerfdff9382006-11-08 06:47:33 +00003726 case Instruction::LShr:
3727 {
Chris Lattner2da29172003-09-19 19:05:02 +00003728 // We know that the AND will not produce any of the bits shifted in, so if
3729 // the anded constant includes them, clear them now! This only applies to
3730 // unsigned shifts, because a signed shr may bring in set bits!
3731 //
Zhou Sheng75b871f2007-01-11 12:24:14 +00003732 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Reid Spencerfdff9382006-11-08 06:47:33 +00003733 Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
3734 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner7e794272004-09-24 15:21:34 +00003735
Reid Spencerfdff9382006-11-08 06:47:33 +00003736 if (CI == ShrMask) { // Masking out bits that the shift already masks.
3737 return ReplaceInstUsesWith(TheAnd, Op);
3738 } else if (CI != AndRHS) {
3739 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3740 return &TheAnd;
3741 }
3742 break;
3743 }
3744 case Instruction::AShr:
3745 // Signed shr.
3746 // See if this is shifting in some sign extension, then masking it out
3747 // with an and.
3748 if (Op->hasOneUse()) {
Zhou Sheng75b871f2007-01-11 12:24:14 +00003749 Constant *AllOne = ConstantInt::getAllOnesValue(AndRHS->getType());
Reid Spencerfdff9382006-11-08 06:47:33 +00003750 Constant *ShrMask = ConstantExpr::getLShr(AllOne, OpRHS);
Reid Spencer2a499b02006-12-13 17:19:09 +00003751 Constant *C = ConstantExpr::getAnd(AndRHS, ShrMask);
3752 if (C == AndRHS) { // Masking out bits shifted in.
Reid Spencer13bc5d72006-12-12 09:18:51 +00003753 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
Reid Spencerfdff9382006-11-08 06:47:33 +00003754 // Make the argument unsigned.
3755 Value *ShVal = Op->getOperand(0);
Reid Spencer2341c222007-02-02 02:16:23 +00003756 ShVal = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00003757 BinaryOperator::createLShr(ShVal, OpRHS,
Reid Spencer2341c222007-02-02 02:16:23 +00003758 Op->getName()), TheAnd);
Reid Spencer2a499b02006-12-13 17:19:09 +00003759 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
Chris Lattner7e794272004-09-24 15:21:34 +00003760 }
Chris Lattner2da29172003-09-19 19:05:02 +00003761 }
3762 break;
Chris Lattnerba1cb382003-09-19 17:17:26 +00003763 }
3764 return 0;
3765}
3766
Chris Lattner6d14f2a2002-08-09 23:47:40 +00003767
Chris Lattner6862fbd2004-09-29 17:40:11 +00003768/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3769/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
Reid Spencer266e42b2006-12-23 06:05:41 +00003770/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3771/// whether to treat the V, Lo and HI as signed or not. IB is the location to
Chris Lattner6862fbd2004-09-29 17:40:11 +00003772/// insert new instructions.
3773Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
Reid Spencer266e42b2006-12-23 06:05:41 +00003774 bool isSigned, bool Inside,
3775 Instruction &IB) {
Zhou Sheng75b871f2007-01-11 12:24:14 +00003776 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
Reid Spencercddc9df2007-01-12 04:24:46 +00003777 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
Chris Lattner6862fbd2004-09-29 17:40:11 +00003778 "Lo is not <= Hi in range emission code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00003779
Chris Lattner6862fbd2004-09-29 17:40:11 +00003780 if (Inside) {
3781 if (Lo == Hi) // Trivially false.
Reid Spencer266e42b2006-12-23 06:05:41 +00003782 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003783
Reid Spencer266e42b2006-12-23 06:05:41 +00003784 // V >= Min && V < Hi --> V < Hi
Zhou Sheng75b871f2007-01-11 12:24:14 +00003785 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003786 ICmpInst::Predicate pred = (isSigned ?
3787 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3788 return new ICmpInst(pred, V, Hi);
3789 }
3790
3791 // Emit V-Lo <u Hi-Lo
3792 Constant *NegLo = ConstantExpr::getNeg(Lo);
3793 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattner6862fbd2004-09-29 17:40:11 +00003794 InsertNewInstBefore(Add, IB);
Reid Spencer266e42b2006-12-23 06:05:41 +00003795 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3796 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003797 }
3798
3799 if (Lo == Hi) // Trivially true.
Reid Spencer266e42b2006-12-23 06:05:41 +00003800 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003801
Reid Spencer266e42b2006-12-23 06:05:41 +00003802 // V < Min || V >= Hi ->'V > Hi-1'
Chris Lattner6862fbd2004-09-29 17:40:11 +00003803 Hi = SubOne(cast<ConstantInt>(Hi));
Zhou Sheng75b871f2007-01-11 12:24:14 +00003804 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00003805 ICmpInst::Predicate pred = (isSigned ?
3806 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3807 return new ICmpInst(pred, V, Hi);
3808 }
Reid Spencere0fc4df2006-10-20 07:07:24 +00003809
Reid Spencer266e42b2006-12-23 06:05:41 +00003810 // Emit V-Lo > Hi-1-Lo
3811 Constant *NegLo = ConstantExpr::getNeg(Lo);
3812 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
Chris Lattner6862fbd2004-09-29 17:40:11 +00003813 InsertNewInstBefore(Add, IB);
Reid Spencer266e42b2006-12-23 06:05:41 +00003814 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3815 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00003816}
3817
Chris Lattnerb4b25302005-09-18 07:22:02 +00003818// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3819// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3820// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3821// not, since all 1s are not contiguous.
Zhou Sheng75b871f2007-01-11 12:24:14 +00003822static bool isRunOfOnes(ConstantInt *Val, unsigned &MB, unsigned &ME) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00003823 uint64_t V = Val->getZExtValue();
Chris Lattnerb4b25302005-09-18 07:22:02 +00003824 if (!isShiftedMask_64(V)) return false;
3825
3826 // look for the first zero bit after the run of ones
3827 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
3828 // look for the first non-zero bit
3829 ME = 64-CountLeadingZeros_64(V);
3830 return true;
3831}
3832
3833
3834
3835/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3836/// where isSub determines whether the operator is a sub. If we can fold one of
3837/// the following xforms:
Chris Lattneraf517572005-09-18 04:24:45 +00003838///
3839/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3840/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3841/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3842///
3843/// return (A +/- B).
3844///
3845Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
Zhou Sheng75b871f2007-01-11 12:24:14 +00003846 ConstantInt *Mask, bool isSub,
Chris Lattneraf517572005-09-18 04:24:45 +00003847 Instruction &I) {
3848 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3849 if (!LHSI || LHSI->getNumOperands() != 2 ||
3850 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3851
3852 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3853
3854 switch (LHSI->getOpcode()) {
3855 default: return 0;
3856 case Instruction::And:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003857 if (ConstantExpr::getAnd(N, Mask) == Mask) {
3858 // If the AndRHS is a power of two minus one (0+1+), this is simple.
Reid Spencere0fc4df2006-10-20 07:07:24 +00003859 if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0)
Chris Lattnerb4b25302005-09-18 07:22:02 +00003860 break;
3861
3862 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3863 // part, we don't need any explicit masks to take them out of A. If that
3864 // is all N is, ignore it.
3865 unsigned MB, ME;
3866 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Reid Spencera94d3942007-01-19 21:13:56 +00003867 uint64_t Mask = cast<IntegerType>(RHS->getType())->getBitMask();
Chris Lattnerc3ebf402006-02-07 07:27:52 +00003868 Mask >>= 64-MB+1;
3869 if (MaskedValueIsZero(RHS, Mask))
Chris Lattnerb4b25302005-09-18 07:22:02 +00003870 break;
3871 }
3872 }
Chris Lattneraf517572005-09-18 04:24:45 +00003873 return 0;
3874 case Instruction::Or:
3875 case Instruction::Xor:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003876 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
Reid Spencere0fc4df2006-10-20 07:07:24 +00003877 if ((Mask->getZExtValue() & Mask->getZExtValue()+1) == 0 &&
Chris Lattnerb4b25302005-09-18 07:22:02 +00003878 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattneraf517572005-09-18 04:24:45 +00003879 break;
3880 return 0;
3881 }
3882
3883 Instruction *New;
3884 if (isSub)
3885 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3886 else
3887 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3888 return InsertNewInstBefore(New, I);
3889}
3890
Chris Lattner113f4f42002-06-25 16:13:24 +00003891Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00003892 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00003893 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003894
Chris Lattner81a7a232004-10-16 18:11:37 +00003895 if (isa<UndefValue>(Op1)) // X & undef -> 0
3896 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3897
Chris Lattner86102b82005-01-01 16:22:27 +00003898 // and X, X = X
3899 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00003900 return ReplaceInstUsesWith(I, Op1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00003901
Chris Lattner5b2edb12006-02-12 08:02:11 +00003902 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner5997cf92006-02-08 03:25:32 +00003903 // purpose is to compute bits we don't care about.
Chris Lattner0157e7f2006-02-11 09:31:47 +00003904 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00003905 if (!isa<VectorType>(I.getType())) {
Reid Spencera94d3942007-01-19 21:13:56 +00003906 if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner120ab032007-01-18 22:16:33 +00003907 KnownZero, KnownOne))
Chris Lattner5997cf92006-02-08 03:25:32 +00003908 return &I;
Chris Lattner120ab032007-01-18 22:16:33 +00003909 } else {
Reid Spencerd84d35b2007-02-15 02:26:10 +00003910 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
Chris Lattner120ab032007-01-18 22:16:33 +00003911 if (CP->isAllOnesValue())
3912 return ReplaceInstUsesWith(I, I.getOperand(0));
3913 }
3914 }
Chris Lattner5997cf92006-02-08 03:25:32 +00003915
Zhou Sheng75b871f2007-01-11 12:24:14 +00003916 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003917 uint64_t AndRHSMask = AndRHS->getZExtValue();
Reid Spencera94d3942007-01-19 21:13:56 +00003918 uint64_t TypeMask = cast<IntegerType>(Op0->getType())->getBitMask();
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003919 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner86102b82005-01-01 16:22:27 +00003920
Chris Lattnerba1cb382003-09-19 17:17:26 +00003921 // Optimize a variety of ((val OP C1) & C2) combinations...
Reid Spencer2341c222007-02-02 02:16:23 +00003922 if (isa<BinaryOperator>(Op0)) {
Chris Lattnerba1cb382003-09-19 17:17:26 +00003923 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner86102b82005-01-01 16:22:27 +00003924 Value *Op0LHS = Op0I->getOperand(0);
3925 Value *Op0RHS = Op0I->getOperand(1);
3926 switch (Op0I->getOpcode()) {
3927 case Instruction::Xor:
3928 case Instruction::Or:
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00003929 // If the mask is only needed on one incoming arm, push it up.
3930 if (Op0I->hasOneUse()) {
3931 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3932 // Not masking anything out for the LHS, move to RHS.
3933 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3934 Op0RHS->getName()+".masked");
3935 InsertNewInstBefore(NewRHS, I);
3936 return BinaryOperator::create(
3937 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanb1c93172005-04-21 23:48:37 +00003938 }
Chris Lattnerc3ebf402006-02-07 07:27:52 +00003939 if (!isa<Constant>(Op0RHS) &&
Chris Lattner9e2c7fa2005-01-23 20:26:55 +00003940 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3941 // Not masking anything out for the RHS, move to LHS.
3942 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3943 Op0LHS->getName()+".masked");
3944 InsertNewInstBefore(NewLHS, I);
3945 return BinaryOperator::create(
3946 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3947 }
3948 }
3949
Chris Lattner86102b82005-01-01 16:22:27 +00003950 break;
Chris Lattneraf517572005-09-18 04:24:45 +00003951 case Instruction::Add:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003952 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3953 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3954 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3955 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3956 return BinaryOperator::createAnd(V, AndRHS);
3957 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3958 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattneraf517572005-09-18 04:24:45 +00003959 break;
3960
3961 case Instruction::Sub:
Chris Lattnerb4b25302005-09-18 07:22:02 +00003962 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3963 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3964 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3965 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3966 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattneraf517572005-09-18 04:24:45 +00003967 break;
Chris Lattner86102b82005-01-01 16:22:27 +00003968 }
3969
Chris Lattner16464b32003-07-23 19:25:52 +00003970 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner86102b82005-01-01 16:22:27 +00003971 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerba1cb382003-09-19 17:17:26 +00003972 return Res;
Chris Lattner86102b82005-01-01 16:22:27 +00003973 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
Chris Lattner2c14cf72005-08-07 07:03:10 +00003974 // If this is an integer truncation or change from signed-to-unsigned, and
3975 // if the source is an and/or with immediate, transform it. This
3976 // frequently occurs for bitfield accesses.
3977 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003978 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
Chris Lattner2c14cf72005-08-07 07:03:10 +00003979 CastOp->getNumOperands() == 2)
Chris Lattnerab2dc4d2006-02-08 07:34:50 +00003980 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2c14cf72005-08-07 07:03:10 +00003981 if (CastOp->getOpcode() == Instruction::And) {
3982 // Change: and (cast (and X, C1) to T), C2
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003983 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3984 // This will fold the two constants together, which may allow
3985 // other simplifications.
Reid Spencerbb65ebf2006-12-12 23:36:14 +00003986 Instruction *NewCast = CastInst::createTruncOrBitCast(
3987 CastOp->getOperand(0), I.getType(),
3988 CastOp->getName()+".shrunk");
Chris Lattner2c14cf72005-08-07 07:03:10 +00003989 NewCast = InsertNewInstBefore(NewCast, I);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003990 // trunc_or_bitcast(C1)&C2
Reid Spencerbb65ebf2006-12-12 23:36:14 +00003991 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00003992 C3 = ConstantExpr::getAnd(C3, AndRHS);
Chris Lattner2c14cf72005-08-07 07:03:10 +00003993 return BinaryOperator::createAnd(NewCast, C3);
3994 } else if (CastOp->getOpcode() == Instruction::Or) {
3995 // Change: and (cast (or X, C1) to T), C2
3996 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
Chris Lattner2dc148e2006-12-12 19:11:20 +00003997 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
Chris Lattner2c14cf72005-08-07 07:03:10 +00003998 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3999 return ReplaceInstUsesWith(I, AndRHS);
4000 }
4001 }
Chris Lattner33217db2003-07-23 19:36:21 +00004002 }
Chris Lattner183b3362004-04-09 19:05:30 +00004003
4004 // Try to fold constant and into select arguments.
4005 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004006 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004007 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004008 if (isa<PHINode>(Op0))
4009 if (Instruction *NV = FoldOpIntoPhi(I))
4010 return NV;
Chris Lattner49b47ae2003-07-23 17:57:01 +00004011 }
4012
Chris Lattnerbb74e222003-03-10 23:06:50 +00004013 Value *Op0NotVal = dyn_castNotVal(Op0);
4014 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattner3082c5a2003-02-18 19:28:33 +00004015
Chris Lattner023a4832004-06-18 06:07:51 +00004016 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
4017 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4018
Misha Brukman9c003d82004-07-30 12:50:08 +00004019 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattnerbb74e222003-03-10 23:06:50 +00004020 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004021 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
4022 I.getName()+".demorgan");
Chris Lattner49b47ae2003-07-23 17:57:01 +00004023 InsertNewInstBefore(Or, I);
Chris Lattner3082c5a2003-02-18 19:28:33 +00004024 return BinaryOperator::createNot(Or);
4025 }
Chris Lattner8b10ab32006-02-13 23:07:23 +00004026
4027 {
4028 Value *A = 0, *B = 0;
Chris Lattner8b10ab32006-02-13 23:07:23 +00004029 if (match(Op0, m_Or(m_Value(A), m_Value(B))))
4030 if (A == Op1 || B == Op1) // (A | ?) & A --> A
4031 return ReplaceInstUsesWith(I, Op1);
4032 if (match(Op1, m_Or(m_Value(A), m_Value(B))))
4033 if (A == Op0 || B == Op0) // A & (A | ?) --> A
4034 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerdcd07922006-04-01 08:03:55 +00004035
4036 if (Op0->hasOneUse() &&
4037 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4038 if (A == Op1) { // (A^B)&A -> A&(A^B)
4039 I.swapOperands(); // Simplify below
4040 std::swap(Op0, Op1);
4041 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
4042 cast<BinaryOperator>(Op0)->swapOperands();
4043 I.swapOperands(); // Simplify below
4044 std::swap(Op0, Op1);
4045 }
4046 }
4047 if (Op1->hasOneUse() &&
4048 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
4049 if (B == Op0) { // B&(A^B) -> B&(B^A)
4050 cast<BinaryOperator>(Op1)->swapOperands();
4051 std::swap(A, B);
4052 }
4053 if (A == Op0) { // A&(A^B) -> A & ~B
4054 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
4055 InsertNewInstBefore(NotB, I);
4056 return BinaryOperator::createAnd(A, NotB);
4057 }
4058 }
Chris Lattner8b10ab32006-02-13 23:07:23 +00004059 }
4060
Reid Spencer266e42b2006-12-23 06:05:41 +00004061 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
4062 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4063 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004064 return R;
4065
Chris Lattner623826c2004-09-28 21:48:02 +00004066 Value *LHSVal, *RHSVal;
4067 ConstantInt *LHSCst, *RHSCst;
Reid Spencer266e42b2006-12-23 06:05:41 +00004068 ICmpInst::Predicate LHSCC, RHSCC;
4069 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4070 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4071 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
4072 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
4073 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4074 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4075 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4076 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
Chris Lattner623826c2004-09-28 21:48:02 +00004077 // Ensure that the larger constant is on the RHS.
Reid Spencer266e42b2006-12-23 06:05:41 +00004078 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
4079 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
4080 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
4081 ICmpInst *LHS = cast<ICmpInst>(Op0);
Reid Spencercddc9df2007-01-12 04:24:46 +00004082 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
Chris Lattner623826c2004-09-28 21:48:02 +00004083 std::swap(LHS, RHS);
4084 std::swap(LHSCst, RHSCst);
4085 std::swap(LHSCC, RHSCC);
4086 }
4087
Reid Spencer266e42b2006-12-23 06:05:41 +00004088 // At this point, we know we have have two icmp instructions
Chris Lattner623826c2004-09-28 21:48:02 +00004089 // comparing a value against two constants and and'ing the result
4090 // together. Because of the above check, we know that we only have
Reid Spencer266e42b2006-12-23 06:05:41 +00004091 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
4092 // (from the FoldICmpLogical check above), that the two constants
4093 // are not equal and that the larger constant is on the RHS
Chris Lattner623826c2004-09-28 21:48:02 +00004094 assert(LHSCst != RHSCst && "Compares not folded above?");
4095
4096 switch (LHSCC) {
4097 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004098 case ICmpInst::ICMP_EQ:
Chris Lattner623826c2004-09-28 21:48:02 +00004099 switch (RHSCC) {
4100 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004101 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
4102 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
4103 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004104 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004105 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
4106 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
4107 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner623826c2004-09-28 21:48:02 +00004108 return ReplaceInstUsesWith(I, LHS);
4109 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004110 case ICmpInst::ICMP_NE:
Chris Lattner623826c2004-09-28 21:48:02 +00004111 switch (RHSCC) {
4112 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004113 case ICmpInst::ICMP_ULT:
4114 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
4115 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
4116 break; // (X != 13 & X u< 15) -> no change
4117 case ICmpInst::ICMP_SLT:
4118 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
4119 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
4120 break; // (X != 13 & X s< 15) -> no change
4121 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
4122 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
4123 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner623826c2004-09-28 21:48:02 +00004124 return ReplaceInstUsesWith(I, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004125 case ICmpInst::ICMP_NE:
4126 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
Chris Lattner623826c2004-09-28 21:48:02 +00004127 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4128 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4129 LHSVal->getName()+".off");
4130 InsertNewInstBefore(Add, I);
Chris Lattnerc8fb6de2007-01-27 23:08:34 +00004131 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
4132 ConstantInt::get(Add->getType(), 1));
Chris Lattner623826c2004-09-28 21:48:02 +00004133 }
4134 break; // (X != 13 & X != 15) -> no change
4135 }
4136 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004137 case ICmpInst::ICMP_ULT:
Chris Lattner623826c2004-09-28 21:48:02 +00004138 switch (RHSCC) {
4139 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004140 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
4141 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004142 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004143 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
4144 break;
4145 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
4146 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner623826c2004-09-28 21:48:02 +00004147 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004148 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
4149 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004150 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004151 break;
4152 case ICmpInst::ICMP_SLT:
Chris Lattner623826c2004-09-28 21:48:02 +00004153 switch (RHSCC) {
4154 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004155 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
4156 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
Zhou Sheng75b871f2007-01-11 12:24:14 +00004157 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00004158 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
4159 break;
4160 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
4161 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner623826c2004-09-28 21:48:02 +00004162 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004163 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
4164 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004165 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004166 break;
4167 case ICmpInst::ICMP_UGT:
4168 switch (RHSCC) {
4169 default: assert(0 && "Unknown integer condition code!");
4170 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
4171 return ReplaceInstUsesWith(I, LHS);
4172 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
4173 return ReplaceInstUsesWith(I, RHS);
4174 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
4175 break;
4176 case ICmpInst::ICMP_NE:
4177 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
4178 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4179 break; // (X u> 13 & X != 15) -> no change
4180 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
4181 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
4182 true, I);
4183 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
4184 break;
4185 }
4186 break;
4187 case ICmpInst::ICMP_SGT:
4188 switch (RHSCC) {
4189 default: assert(0 && "Unknown integer condition code!");
4190 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X s> 13
4191 return ReplaceInstUsesWith(I, LHS);
4192 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
4193 return ReplaceInstUsesWith(I, RHS);
4194 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
4195 break;
4196 case ICmpInst::ICMP_NE:
4197 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
4198 return new ICmpInst(LHSCC, LHSVal, RHSCst);
4199 break; // (X s> 13 & X != 15) -> no change
4200 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
4201 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
4202 true, I);
4203 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
4204 break;
4205 }
4206 break;
Chris Lattner623826c2004-09-28 21:48:02 +00004207 }
4208 }
4209 }
4210
Chris Lattner3af10532006-05-05 06:39:07 +00004211 // fold (and (cast A), (cast B)) -> (cast (and A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004212 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4213 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4214 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
4215 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004216 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004217 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004218 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4219 I.getType(), TD) &&
4220 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4221 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004222 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
4223 Op1C->getOperand(0),
4224 I.getName());
4225 InsertNewInstBefore(NewOp, I);
4226 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4227 }
Chris Lattner3af10532006-05-05 06:39:07 +00004228 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004229
4230 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
Reid Spencer2341c222007-02-02 02:16:23 +00004231 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4232 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4233 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004234 SI0->getOperand(1) == SI1->getOperand(1) &&
4235 (SI0->hasOneUse() || SI1->hasOneUse())) {
4236 Instruction *NewOp =
4237 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
4238 SI1->getOperand(0),
4239 SI0->getName()), I);
Reid Spencer2341c222007-02-02 02:16:23 +00004240 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4241 SI1->getOperand(1));
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004242 }
Chris Lattner3af10532006-05-05 06:39:07 +00004243 }
4244
Chris Lattner113f4f42002-06-25 16:13:24 +00004245 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004246}
4247
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004248/// CollectBSwapParts - Look to see if the specified value defines a single byte
4249/// in the result. If it does, and if the specified byte hasn't been filled in
4250/// yet, fill it in and return false.
Chris Lattner99c6cf62007-02-15 22:52:10 +00004251static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004252 Instruction *I = dyn_cast<Instruction>(V);
4253 if (I == 0) return true;
4254
4255 // If this is an or instruction, it is an inner node of the bswap.
4256 if (I->getOpcode() == Instruction::Or)
4257 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
4258 CollectBSwapParts(I->getOperand(1), ByteValues);
4259
4260 // If this is a shift by a constant int, and it is "24", then its operand
4261 // defines a byte. We only handle unsigned types here.
Reid Spencer2341c222007-02-02 02:16:23 +00004262 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004263 // Not shifting the entire input by N-1 bytes?
Reid Spencere0fc4df2006-10-20 07:07:24 +00004264 if (cast<ConstantInt>(I->getOperand(1))->getZExtValue() !=
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004265 8*(ByteValues.size()-1))
4266 return true;
4267
4268 unsigned DestNo;
4269 if (I->getOpcode() == Instruction::Shl) {
4270 // X << 24 defines the top byte with the lowest of the input bytes.
4271 DestNo = ByteValues.size()-1;
4272 } else {
4273 // X >>u 24 defines the low byte with the highest of the input bytes.
4274 DestNo = 0;
4275 }
4276
4277 // If the destination byte value is already defined, the values are or'd
4278 // together, which isn't a bswap (unless it's an or of the same bits).
4279 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
4280 return true;
4281 ByteValues[DestNo] = I->getOperand(0);
4282 return false;
4283 }
4284
4285 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
4286 // don't have this.
4287 Value *Shift = 0, *ShiftLHS = 0;
4288 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
4289 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
4290 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
4291 return true;
4292 Instruction *SI = cast<Instruction>(Shift);
4293
4294 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
Reid Spencere0fc4df2006-10-20 07:07:24 +00004295 if (ShiftAmt->getZExtValue() & 7 ||
4296 ShiftAmt->getZExtValue() > 8*ByteValues.size())
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004297 return true;
4298
4299 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
4300 unsigned DestByte;
4301 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
Reid Spencere0fc4df2006-10-20 07:07:24 +00004302 if (AndAmt->getZExtValue() == uint64_t(0xFF) << 8*DestByte)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004303 break;
4304 // Unknown mask for bswap.
4305 if (DestByte == ByteValues.size()) return true;
4306
Reid Spencere0fc4df2006-10-20 07:07:24 +00004307 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004308 unsigned SrcByte;
4309 if (SI->getOpcode() == Instruction::Shl)
4310 SrcByte = DestByte - ShiftBytes;
4311 else
4312 SrcByte = DestByte + ShiftBytes;
4313
4314 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
4315 if (SrcByte != ByteValues.size()-DestByte-1)
4316 return true;
4317
4318 // If the destination byte value is already defined, the values are or'd
4319 // together, which isn't a bswap (unless it's an or of the same bits).
4320 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
4321 return true;
4322 ByteValues[DestByte] = SI->getOperand(0);
4323 return false;
4324}
4325
4326/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4327/// If so, insert the new bswap intrinsic and return it.
4328Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004329 // We cannot bswap one byte.
Reid Spencerc635f472006-12-31 05:48:39 +00004330 if (I.getType() == Type::Int8Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004331 return 0;
4332
4333 /// ByteValues - For each byte of the result, we keep track of which value
4334 /// defines each byte.
Chris Lattner99c6cf62007-02-15 22:52:10 +00004335 SmallVector<Value*, 8> ByteValues;
Reid Spencer7a9c62b2007-01-12 07:05:14 +00004336 ByteValues.resize(TD->getTypeSize(I.getType()));
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004337
4338 // Try to find all the pieces corresponding to the bswap.
4339 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
4340 CollectBSwapParts(I.getOperand(1), ByteValues))
4341 return 0;
4342
4343 // Check to see if all of the bytes come from the same value.
4344 Value *V = ByteValues[0];
4345 if (V == 0) return 0; // Didn't find a byte? Must be zero.
4346
4347 // Check to make sure that all of the bytes come from the same value.
4348 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
4349 if (ByteValues[i] != V)
4350 return 0;
4351
4352 // If they do then *success* we can turn this into a bswap. Figure out what
4353 // bswap to make it into.
4354 Module *M = I.getParent()->getParent()->getParent();
Chris Lattner091b6ea2006-07-11 18:31:26 +00004355 const char *FnName = 0;
Reid Spencerc635f472006-12-31 05:48:39 +00004356 if (I.getType() == Type::Int16Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004357 FnName = "llvm.bswap.i16";
Reid Spencerc635f472006-12-31 05:48:39 +00004358 else if (I.getType() == Type::Int32Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004359 FnName = "llvm.bswap.i32";
Reid Spencerc635f472006-12-31 05:48:39 +00004360 else if (I.getType() == Type::Int64Ty)
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004361 FnName = "llvm.bswap.i64";
4362 else
4363 assert(0 && "Unknown integer type!");
Chris Lattnerfbc524f2007-01-07 06:58:05 +00004364 Constant *F = M->getOrInsertFunction(FnName, I.getType(), I.getType(), NULL);
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004365 return new CallInst(F, V);
4366}
4367
4368
Chris Lattner113f4f42002-06-25 16:13:24 +00004369Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00004370 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00004371 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004372
Chris Lattner81a7a232004-10-16 18:11:37 +00004373 if (isa<UndefValue>(Op1))
4374 return ReplaceInstUsesWith(I, // X | undef -> -1
Zhou Sheng75b871f2007-01-11 12:24:14 +00004375 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner81a7a232004-10-16 18:11:37 +00004376
Chris Lattner5b2edb12006-02-12 08:02:11 +00004377 // or X, X = X
4378 if (Op0 == Op1)
Chris Lattnere6794492002-08-12 21:17:25 +00004379 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004380
Chris Lattner5b2edb12006-02-12 08:02:11 +00004381 // See if we can simplify any instructions used by the instruction whose sole
4382 // purpose is to compute bits we don't care about.
4383 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00004384 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00004385 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00004386 KnownZero, KnownOne))
4387 return &I;
4388
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004389 // or X, -1 == -1
Zhou Sheng75b871f2007-01-11 12:24:14 +00004390 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner330628a2006-01-06 17:59:59 +00004391 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00004392 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4393 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004394 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004395 InsertNewInstBefore(Or, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00004396 Or->takeName(Op0);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004397 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
4398 }
Chris Lattner8f0d1562003-07-23 18:29:44 +00004399
Chris Lattnerd4252a72004-07-30 07:50:03 +00004400 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4401 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004402 Instruction *Or = BinaryOperator::createOr(X, RHS);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004403 InsertNewInstBefore(Or, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00004404 Or->takeName(Op0);
Chris Lattnerd4252a72004-07-30 07:50:03 +00004405 return BinaryOperator::createXor(Or,
4406 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattner8f0d1562003-07-23 18:29:44 +00004407 }
Chris Lattner183b3362004-04-09 19:05:30 +00004408
4409 // Try to fold constant and into select arguments.
4410 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004411 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004412 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004413 if (isa<PHINode>(Op0))
4414 if (Instruction *NV = FoldOpIntoPhi(I))
4415 return NV;
Chris Lattner8f0d1562003-07-23 18:29:44 +00004416 }
4417
Chris Lattner330628a2006-01-06 17:59:59 +00004418 Value *A = 0, *B = 0;
4419 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattner4294cec2005-05-07 23:49:08 +00004420
4421 if (match(Op0, m_And(m_Value(A), m_Value(B))))
4422 if (A == Op1 || B == Op1) // (A & ?) | A --> A
4423 return ReplaceInstUsesWith(I, Op1);
4424 if (match(Op1, m_And(m_Value(A), m_Value(B))))
4425 if (A == Op0 || B == Op0) // A | (A & ?) --> A
4426 return ReplaceInstUsesWith(I, Op0);
4427
Chris Lattnerb7845d62006-07-10 20:25:24 +00004428 // (A | B) | C and A | (B | C) -> bswap if possible.
4429 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004430 if (match(Op0, m_Or(m_Value(), m_Value())) ||
Chris Lattnerb7845d62006-07-10 20:25:24 +00004431 match(Op1, m_Or(m_Value(), m_Value())) ||
4432 (match(Op0, m_Shift(m_Value(), m_Value())) &&
4433 match(Op1, m_Shift(m_Value(), m_Value())))) {
Chris Lattnerc482a9e2006-06-15 19:07:26 +00004434 if (Instruction *BSwap = MatchBSwap(I))
4435 return BSwap;
4436 }
4437
Chris Lattnerb62f5082005-05-09 04:58:36 +00004438 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4439 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004440 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004441 Instruction *NOr = BinaryOperator::createOr(A, Op1);
4442 InsertNewInstBefore(NOr, I);
4443 NOr->takeName(Op0);
4444 return BinaryOperator::createXor(NOr, C1);
Chris Lattnerb62f5082005-05-09 04:58:36 +00004445 }
4446
4447 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4448 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004449 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00004450 Instruction *NOr = BinaryOperator::createOr(A, Op0);
4451 InsertNewInstBefore(NOr, I);
4452 NOr->takeName(Op0);
4453 return BinaryOperator::createXor(NOr, C1);
Chris Lattnerb62f5082005-05-09 04:58:36 +00004454 }
4455
Chris Lattner15212982005-09-18 03:42:07 +00004456 // (A & C1)|(B & C2)
Chris Lattnerd4252a72004-07-30 07:50:03 +00004457 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner15212982005-09-18 03:42:07 +00004458 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
4459
4460 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
4461 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
4462
4463
Chris Lattner01f56c62005-09-18 06:02:59 +00004464 // If we have: ((V + N) & C1) | (V & C2)
4465 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4466 // replace with V+N.
4467 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner330628a2006-01-06 17:59:59 +00004468 Value *V1 = 0, *V2 = 0;
Reid Spencere0fc4df2006-10-20 07:07:24 +00004469 if ((C2->getZExtValue() & (C2->getZExtValue()+1)) == 0 && // C2 == 0+1+
Chris Lattner01f56c62005-09-18 06:02:59 +00004470 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
4471 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004472 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004473 return ReplaceInstUsesWith(I, A);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004474 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004475 return ReplaceInstUsesWith(I, A);
4476 }
4477 // Or commutes, try both ways.
Reid Spencere0fc4df2006-10-20 07:07:24 +00004478 if ((C1->getZExtValue() & (C1->getZExtValue()+1)) == 0 &&
Chris Lattner01f56c62005-09-18 06:02:59 +00004479 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
4480 // Add commutes, try both ways.
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004481 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004482 return ReplaceInstUsesWith(I, B);
Chris Lattnerc3ebf402006-02-07 07:27:52 +00004483 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner01f56c62005-09-18 06:02:59 +00004484 return ReplaceInstUsesWith(I, B);
Chris Lattner15212982005-09-18 03:42:07 +00004485 }
4486 }
4487 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004488
4489 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
Reid Spencer2341c222007-02-02 02:16:23 +00004490 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
4491 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
4492 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004493 SI0->getOperand(1) == SI1->getOperand(1) &&
4494 (SI0->hasOneUse() || SI1->hasOneUse())) {
4495 Instruction *NewOp =
4496 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
4497 SI1->getOperand(0),
4498 SI0->getName()), I);
Reid Spencer2341c222007-02-02 02:16:23 +00004499 return BinaryOperator::create(SI1->getOpcode(), NewOp,
4500 SI1->getOperand(1));
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004501 }
4502 }
Chris Lattner812aab72003-08-12 19:11:07 +00004503
Chris Lattnerd4252a72004-07-30 07:50:03 +00004504 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
4505 if (A == Op1) // ~A | A == -1
Misha Brukmanb1c93172005-04-21 23:48:37 +00004506 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004507 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattnerd4252a72004-07-30 07:50:03 +00004508 } else {
4509 A = 0;
4510 }
Chris Lattner4294cec2005-05-07 23:49:08 +00004511 // Note, A is still live here!
Chris Lattnerd4252a72004-07-30 07:50:03 +00004512 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
4513 if (Op0 == B)
Misha Brukmanb1c93172005-04-21 23:48:37 +00004514 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004515 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3e327a42003-03-10 23:13:59 +00004516
Misha Brukman9c003d82004-07-30 12:50:08 +00004517 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattnerd4252a72004-07-30 07:50:03 +00004518 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
4519 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
4520 I.getName()+".demorgan"), I);
4521 return BinaryOperator::createNot(And);
4522 }
Chris Lattner3e327a42003-03-10 23:13:59 +00004523 }
Chris Lattner3082c5a2003-02-18 19:28:33 +00004524
Reid Spencer266e42b2006-12-23 06:05:41 +00004525 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4526 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
4527 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004528 return R;
4529
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004530 Value *LHSVal, *RHSVal;
4531 ConstantInt *LHSCst, *RHSCst;
Reid Spencer266e42b2006-12-23 06:05:41 +00004532 ICmpInst::Predicate LHSCC, RHSCC;
4533 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
4534 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
4535 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4536 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4537 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4538 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4539 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4540 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004541 // Ensure that the larger constant is on the RHS.
Reid Spencer266e42b2006-12-23 06:05:41 +00004542 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
4543 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
4544 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
4545 ICmpInst *LHS = cast<ICmpInst>(Op0);
Reid Spencercddc9df2007-01-12 04:24:46 +00004546 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004547 std::swap(LHS, RHS);
4548 std::swap(LHSCst, RHSCst);
4549 std::swap(LHSCC, RHSCC);
4550 }
4551
Reid Spencer266e42b2006-12-23 06:05:41 +00004552 // At this point, we know we have have two icmp instructions
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004553 // comparing a value against two constants and or'ing the result
4554 // together. Because of the above check, we know that we only have
Reid Spencer266e42b2006-12-23 06:05:41 +00004555 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4556 // FoldICmpLogical check above), that the two constants are not
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004557 // equal.
4558 assert(LHSCst != RHSCst && "Compares not folded above?");
4559
4560 switch (LHSCC) {
4561 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004562 case ICmpInst::ICMP_EQ:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004563 switch (RHSCC) {
4564 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004565 case ICmpInst::ICMP_EQ:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004566 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4567 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4568 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4569 LHSVal->getName()+".off");
4570 InsertNewInstBefore(Add, I);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004571 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Reid Spencer266e42b2006-12-23 06:05:41 +00004572 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004573 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004574 break; // (X == 13 | X == 15) -> no change
4575 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4576 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
Chris Lattner5c219462005-04-19 06:04:18 +00004577 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004578 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4579 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4580 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004581 return ReplaceInstUsesWith(I, RHS);
4582 }
4583 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004584 case ICmpInst::ICMP_NE:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004585 switch (RHSCC) {
4586 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004587 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4588 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4589 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004590 return ReplaceInstUsesWith(I, LHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004591 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4592 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4593 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004594 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004595 }
4596 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004597 case ICmpInst::ICMP_ULT:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004598 switch (RHSCC) {
4599 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004600 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004601 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004602 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
4603 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4604 false, I);
4605 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4606 break;
4607 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4608 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004609 return ReplaceInstUsesWith(I, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004610 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4611 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004612 }
4613 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004614 case ICmpInst::ICMP_SLT:
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004615 switch (RHSCC) {
4616 default: assert(0 && "Unknown integer condition code!");
Reid Spencer266e42b2006-12-23 06:05:41 +00004617 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4618 break;
4619 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
4620 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4621 false, I);
4622 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4623 break;
4624 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4625 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4626 return ReplaceInstUsesWith(I, RHS);
4627 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4628 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004629 }
Reid Spencer266e42b2006-12-23 06:05:41 +00004630 break;
4631 case ICmpInst::ICMP_UGT:
4632 switch (RHSCC) {
4633 default: assert(0 && "Unknown integer condition code!");
4634 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4635 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4636 return ReplaceInstUsesWith(I, LHS);
4637 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4638 break;
4639 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4640 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004641 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00004642 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4643 break;
4644 }
4645 break;
4646 case ICmpInst::ICMP_SGT:
4647 switch (RHSCC) {
4648 default: assert(0 && "Unknown integer condition code!");
4649 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4650 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4651 return ReplaceInstUsesWith(I, LHS);
4652 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4653 break;
4654 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4655 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Zhou Sheng75b871f2007-01-11 12:24:14 +00004656 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00004657 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4658 break;
4659 }
4660 break;
Chris Lattnerdcf756e2004-09-28 22:33:08 +00004661 }
4662 }
4663 }
Chris Lattner3af10532006-05-05 06:39:07 +00004664
4665 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004666 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner3af10532006-05-05 06:39:07 +00004667 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004668 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4669 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004670 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004671 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004672 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4673 I.getType(), TD) &&
4674 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4675 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004676 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4677 Op1C->getOperand(0),
4678 I.getName());
4679 InsertNewInstBefore(NewOp, I);
4680 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4681 }
Chris Lattner3af10532006-05-05 06:39:07 +00004682 }
Chris Lattner3af10532006-05-05 06:39:07 +00004683
Chris Lattner15212982005-09-18 03:42:07 +00004684
Chris Lattner113f4f42002-06-25 16:13:24 +00004685 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004686}
4687
Chris Lattnerc2076352004-02-16 01:20:27 +00004688// XorSelf - Implements: X ^ X --> 0
4689struct XorSelf {
4690 Value *RHS;
4691 XorSelf(Value *rhs) : RHS(rhs) {}
4692 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4693 Instruction *apply(BinaryOperator &Xor) const {
4694 return &Xor;
4695 }
4696};
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004697
4698
Chris Lattner113f4f42002-06-25 16:13:24 +00004699Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattnerdcf240a2003-03-10 21:43:22 +00004700 bool Changed = SimplifyCommutative(I);
Chris Lattner113f4f42002-06-25 16:13:24 +00004701 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004702
Chris Lattner81a7a232004-10-16 18:11:37 +00004703 if (isa<UndefValue>(Op1))
4704 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4705
Chris Lattnerc2076352004-02-16 01:20:27 +00004706 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4707 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
4708 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattnere6794492002-08-12 21:17:25 +00004709 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc2076352004-02-16 01:20:27 +00004710 }
Chris Lattner5b2edb12006-02-12 08:02:11 +00004711
4712 // See if we can simplify any instructions used by the instruction whose sole
4713 // purpose is to compute bits we don't care about.
4714 uint64_t KnownZero, KnownOne;
Reid Spencerd84d35b2007-02-15 02:26:10 +00004715 if (!isa<VectorType>(I.getType()) &&
Reid Spencera94d3942007-01-19 21:13:56 +00004716 SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattner5b2edb12006-02-12 08:02:11 +00004717 KnownZero, KnownOne))
4718 return &I;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004719
Zhou Sheng75b871f2007-01-11 12:24:14 +00004720 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004721 // xor (icmp A, B), true = not (icmp A, B) = !icmp A, B
4722 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Zhou Sheng75b871f2007-01-11 12:24:14 +00004723 if (RHS == ConstantInt::getTrue() && ICI->hasOneUse())
Reid Spencer266e42b2006-12-23 06:05:41 +00004724 return new ICmpInst(ICI->getInversePredicate(),
4725 ICI->getOperand(0), ICI->getOperand(1));
Chris Lattnere5806662003-11-04 23:50:51 +00004726
Reid Spencer266e42b2006-12-23 06:05:41 +00004727 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner8f2f5982003-11-05 01:06:05 +00004728 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004729 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4730 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004731 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4732 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004733 ConstantInt::get(I.getType(), 1));
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004734 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004735 }
Chris Lattner023a4832004-06-18 06:07:51 +00004736
4737 // ~(~X & Y) --> (X | ~Y)
4738 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
4739 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4740 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4741 Instruction *NotY =
Misha Brukmanb1c93172005-04-21 23:48:37 +00004742 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner023a4832004-06-18 06:07:51 +00004743 Op0I->getOperand(1)->getName()+".not");
4744 InsertNewInstBefore(NotY, I);
4745 return BinaryOperator::createOr(Op0NotVal, NotY);
4746 }
4747 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00004748
Chris Lattner97638592003-07-23 21:37:07 +00004749 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner5b2edb12006-02-12 08:02:11 +00004750 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner0f68fa62003-11-04 23:37:10 +00004751 // ~(X-c) --> (-c-1)-X
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004752 if (RHS->isAllOnesValue()) {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00004753 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4754 return BinaryOperator::createSub(
4755 ConstantExpr::getSub(NegOp0CI,
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004756 ConstantInt::get(I.getType(), 1)),
Chris Lattner0f68fa62003-11-04 23:37:10 +00004757 Op0I->getOperand(0));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00004758 }
Chris Lattnerf78df7c2006-02-26 19:57:54 +00004759 } else if (Op0I->getOpcode() == Instruction::Or) {
4760 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4761 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
4762 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4763 // Anything in both C1 and C2 is known to be zero, remove it from
4764 // NewRHS.
4765 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
4766 NewRHS = ConstantExpr::getAnd(NewRHS,
4767 ConstantExpr::getNot(CommonBits));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00004768 AddToWorkList(Op0I);
Chris Lattnerf78df7c2006-02-26 19:57:54 +00004769 I.setOperand(0, Op0I->getOperand(0));
4770 I.setOperand(1, NewRHS);
4771 return &I;
4772 }
Chris Lattner97638592003-07-23 21:37:07 +00004773 }
Chris Lattnerb8d6e402002-08-20 18:24:26 +00004774 }
Chris Lattner183b3362004-04-09 19:05:30 +00004775
4776 // Try to fold constant and into select arguments.
4777 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner86102b82005-01-01 16:22:27 +00004778 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00004779 return R;
Chris Lattner6a4adcd2004-09-29 05:07:12 +00004780 if (isa<PHINode>(Op0))
4781 if (Instruction *NV = FoldOpIntoPhi(I))
4782 return NV;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004783 }
4784
Chris Lattnerbb74e222003-03-10 23:06:50 +00004785 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00004786 if (X == Op1)
4787 return ReplaceInstUsesWith(I,
Zhou Sheng75b871f2007-01-11 12:24:14 +00004788 ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3082c5a2003-02-18 19:28:33 +00004789
Chris Lattnerbb74e222003-03-10 23:06:50 +00004790 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattner3082c5a2003-02-18 19:28:33 +00004791 if (X == Op0)
Chris Lattner07418422007-03-18 22:51:34 +00004792 return ReplaceInstUsesWith(I, ConstantInt::getAllOnesValue(I.getType()));
Chris Lattner3082c5a2003-02-18 19:28:33 +00004793
Chris Lattner07418422007-03-18 22:51:34 +00004794
4795 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4796 if (Op1I) {
4797 Value *A, *B;
4798 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4799 if (A == Op0) { // B^(B|A) == (A|B)^B
Chris Lattnerdcd07922006-04-01 08:03:55 +00004800 Op1I->swapOperands();
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004801 I.swapOperands();
4802 std::swap(Op0, Op1);
Chris Lattner07418422007-03-18 22:51:34 +00004803 } else if (B == Op0) { // B^(A|B) == (A|B)^B
Chris Lattnerdcd07922006-04-01 08:03:55 +00004804 I.swapOperands(); // Simplified below.
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004805 std::swap(Op0, Op1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00004806 }
Chris Lattner07418422007-03-18 22:51:34 +00004807 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4808 if (Op0 == A) // A^(A^B) == B
4809 return ReplaceInstUsesWith(I, B);
4810 else if (Op0 == B) // A^(B^A) == B
4811 return ReplaceInstUsesWith(I, A);
4812 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4813 if (A == Op0) // A^(A&B) -> A^(B&A)
Chris Lattnerdcd07922006-04-01 08:03:55 +00004814 Op1I->swapOperands();
Chris Lattner07418422007-03-18 22:51:34 +00004815 if (B == Op0) { // A^(B&A) -> (B&A)^A
Chris Lattnerdcd07922006-04-01 08:03:55 +00004816 I.swapOperands(); // Simplified below.
4817 std::swap(Op0, Op1);
4818 }
Chris Lattnerb36d9082004-02-16 03:54:20 +00004819 }
Chris Lattner07418422007-03-18 22:51:34 +00004820 }
4821
4822 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4823 if (Op0I) {
4824 Value *A, *B;
4825 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4826 if (A == Op1) // (B|A)^B == (A|B)^B
4827 std::swap(A, B);
4828 if (B == Op1) { // (A|B)^B == A & ~B
4829 Instruction *NotB =
4830 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4831 return BinaryOperator::createAnd(A, NotB);
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004832 }
Chris Lattner07418422007-03-18 22:51:34 +00004833 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4834 if (Op1 == A) // (A^B)^A == B
4835 return ReplaceInstUsesWith(I, B);
4836 else if (Op1 == B) // (B^A)^A == B
4837 return ReplaceInstUsesWith(I, A);
4838 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4839 if (A == Op1) // (A&B)^A -> (B&A)^A
4840 std::swap(A, B);
4841 if (B == Op1 && // (B&A)^A == ~B & A
Chris Lattner6cf49142006-04-01 22:05:01 +00004842 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Chris Lattner07418422007-03-18 22:51:34 +00004843 Instruction *N =
4844 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
Chris Lattnerdcd07922006-04-01 08:03:55 +00004845 return BinaryOperator::createAnd(N, Op1);
4846 }
Chris Lattner1bbb7b62003-03-10 18:24:17 +00004847 }
Chris Lattner07418422007-03-18 22:51:34 +00004848 }
4849
4850 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4851 if (Op0I && Op1I && Op0I->isShift() &&
4852 Op0I->getOpcode() == Op1I->getOpcode() &&
4853 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4854 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4855 Instruction *NewOp =
4856 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4857 Op1I->getOperand(0),
4858 Op0I->getName()), I);
4859 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4860 Op1I->getOperand(1));
4861 }
4862
4863 if (Op0I && Op1I) {
4864 Value *A, *B, *C, *D;
4865 // (A & B)^(A | B) -> A ^ B
4866 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4867 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4868 if ((A == C && B == D) || (A == D && B == C))
4869 return BinaryOperator::createXor(A, B);
4870 }
4871 // (A | B)^(A & B) -> A ^ B
4872 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4873 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4874 if ((A == C && B == D) || (A == D && B == C))
4875 return BinaryOperator::createXor(A, B);
4876 }
4877
4878 // (A & B)^(C & D)
4879 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4880 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4881 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4882 // (X & Y)^(X & Y) -> (Y^Z) & X
4883 Value *X = 0, *Y = 0, *Z = 0;
4884 if (A == C)
4885 X = A, Y = B, Z = D;
4886 else if (A == D)
4887 X = A, Y = B, Z = C;
4888 else if (B == C)
4889 X = B, Y = A, Z = D;
4890 else if (B == D)
4891 X = B, Y = A, Z = C;
4892
4893 if (X) {
4894 Instruction *NewOp =
4895 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4896 return BinaryOperator::createAnd(NewOp, X);
4897 }
4898 }
4899 }
4900
Reid Spencer266e42b2006-12-23 06:05:41 +00004901 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4902 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4903 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
Chris Lattner3ac7c262003-08-13 20:16:26 +00004904 return R;
4905
Chris Lattner3af10532006-05-05 06:39:07 +00004906 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004907 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner3af10532006-05-05 06:39:07 +00004908 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
Reid Spencer799b5bf2006-12-13 08:27:15 +00004909 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4910 const Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner03c49532007-01-15 02:27:26 +00004911 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
Reid Spencer799b5bf2006-12-13 08:27:15 +00004912 // Only do this if the casts both really cause code to be generated.
Reid Spencer266e42b2006-12-23 06:05:41 +00004913 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4914 I.getType(), TD) &&
4915 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4916 I.getType(), TD)) {
Reid Spencer799b5bf2006-12-13 08:27:15 +00004917 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4918 Op1C->getOperand(0),
4919 I.getName());
4920 InsertNewInstBefore(NewOp, I);
4921 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4922 }
Chris Lattner3af10532006-05-05 06:39:07 +00004923 }
Chris Lattnerf05d69a2006-11-14 07:46:50 +00004924
Chris Lattner113f4f42002-06-25 16:13:24 +00004925 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00004926}
4927
Chris Lattner6862fbd2004-09-29 17:40:11 +00004928static bool isPositive(ConstantInt *C) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00004929 return C->getSExtValue() >= 0;
Chris Lattner6862fbd2004-09-29 17:40:11 +00004930}
4931
4932/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4933/// overflowed for this type.
4934static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4935 ConstantInt *In2) {
4936 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
4937
Reid Spencerc635f472006-12-31 05:48:39 +00004938 return cast<ConstantInt>(Result)->getZExtValue() <
4939 cast<ConstantInt>(In1)->getZExtValue();
Chris Lattner6862fbd2004-09-29 17:40:11 +00004940}
4941
Chris Lattner0798af32005-01-13 20:14:25 +00004942/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4943/// code necessary to compute the offset from the base pointer (without adding
4944/// in the base pointer). Return the result as a signed integer of intptr size.
4945static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4946 TargetData &TD = IC.getTargetData();
4947 gep_type_iterator GTI = gep_type_begin(GEP);
Reid Spencer266e42b2006-12-23 06:05:41 +00004948 const Type *IntPtrTy = TD.getIntPtrType();
4949 Value *Result = Constant::getNullValue(IntPtrTy);
Chris Lattner0798af32005-01-13 20:14:25 +00004950
4951 // Build a mask for high order bits.
Chris Lattner77defba2006-02-07 07:00:41 +00004952 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner0798af32005-01-13 20:14:25 +00004953
Chris Lattner0798af32005-01-13 20:14:25 +00004954 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4955 Value *Op = GEP->getOperand(i);
Chris Lattnerd35d2102005-01-13 23:26:48 +00004956 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Reid Spencer266e42b2006-12-23 06:05:41 +00004957 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Chris Lattner0798af32005-01-13 20:14:25 +00004958 if (Constant *OpC = dyn_cast<Constant>(Op)) {
4959 if (!OpC->isNullValue()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004960 OpC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
Chris Lattner0798af32005-01-13 20:14:25 +00004961 Scale = ConstantExpr::getMul(OpC, Scale);
4962 if (Constant *RC = dyn_cast<Constant>(Result))
4963 Result = ConstantExpr::getAdd(RC, Scale);
4964 else {
4965 // Emit an add instruction.
4966 Result = IC.InsertNewInstBefore(
4967 BinaryOperator::createAdd(Result, Scale,
4968 GEP->getName()+".offs"), I);
4969 }
4970 }
4971 } else {
Chris Lattner7aa41cf2005-01-14 17:17:59 +00004972 // Convert to correct type.
Reid Spencer266e42b2006-12-23 06:05:41 +00004973 Op = IC.InsertNewInstBefore(CastInst::createSExtOrBitCast(Op, IntPtrTy,
Chris Lattner7aa41cf2005-01-14 17:17:59 +00004974 Op->getName()+".c"), I);
4975 if (Size != 1)
Chris Lattner4cb9fa32005-01-13 20:40:58 +00004976 // We'll let instcombine(mul) convert this to a shl if possible.
4977 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4978 GEP->getName()+".idx"), I);
Chris Lattner0798af32005-01-13 20:14:25 +00004979
4980 // Emit an add instruction.
Chris Lattner4cb9fa32005-01-13 20:40:58 +00004981 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner0798af32005-01-13 20:14:25 +00004982 GEP->getName()+".offs"), I);
4983 }
4984 }
4985 return Result;
4986}
4987
Reid Spencer266e42b2006-12-23 06:05:41 +00004988/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
Chris Lattner0798af32005-01-13 20:14:25 +00004989/// else. At this point we know that the GEP is on the LHS of the comparison.
Reid Spencer266e42b2006-12-23 06:05:41 +00004990Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4991 ICmpInst::Predicate Cond,
4992 Instruction &I) {
Chris Lattner0798af32005-01-13 20:14:25 +00004993 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattner81e84172005-01-13 22:25:21 +00004994
4995 if (CastInst *CI = dyn_cast<CastInst>(RHS))
4996 if (isa<PointerType>(CI->getOperand(0)->getType()))
4997 RHS = CI->getOperand(0);
4998
Chris Lattner0798af32005-01-13 20:14:25 +00004999 Value *PtrBase = GEPLHS->getOperand(0);
5000 if (PtrBase == RHS) {
5001 // As an optimization, we don't actually have to compute the actual value of
Reid Spencer266e42b2006-12-23 06:05:41 +00005002 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
5003 // each index is zero or not.
5004 if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
Chris Lattner81e84172005-01-13 22:25:21 +00005005 Instruction *InVal = 0;
Chris Lattnercd517ff2005-01-28 19:32:01 +00005006 gep_type_iterator GTI = gep_type_begin(GEPLHS);
5007 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattner81e84172005-01-13 22:25:21 +00005008 bool EmitIt = true;
5009 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
5010 if (isa<UndefValue>(C)) // undef index -> undef.
5011 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
5012 if (C->isNullValue())
5013 EmitIt = false;
Chris Lattnercd517ff2005-01-28 19:32:01 +00005014 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
5015 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanb1c93172005-04-21 23:48:37 +00005016 } else if (isa<ConstantInt>(C))
Chris Lattner81e84172005-01-13 22:25:21 +00005017 return ReplaceInstUsesWith(I, // No comparison is needed here.
Reid Spencercddc9df2007-01-12 04:24:46 +00005018 ConstantInt::get(Type::Int1Ty,
5019 Cond == ICmpInst::ICMP_NE));
Chris Lattner81e84172005-01-13 22:25:21 +00005020 }
5021
5022 if (EmitIt) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00005023 Instruction *Comp =
Reid Spencer266e42b2006-12-23 06:05:41 +00005024 new ICmpInst(Cond, GEPLHS->getOperand(i),
Chris Lattner81e84172005-01-13 22:25:21 +00005025 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
5026 if (InVal == 0)
5027 InVal = Comp;
5028 else {
5029 InVal = InsertNewInstBefore(InVal, I);
5030 InsertNewInstBefore(Comp, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005031 if (Cond == ICmpInst::ICMP_NE) // True if any are unequal
Chris Lattner81e84172005-01-13 22:25:21 +00005032 InVal = BinaryOperator::createOr(InVal, Comp);
5033 else // True if all are equal
5034 InVal = BinaryOperator::createAnd(InVal, Comp);
5035 }
5036 }
5037 }
5038
5039 if (InVal)
5040 return InVal;
5041 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005042 // No comparison is needed here, all indexes = 0
Reid Spencercddc9df2007-01-12 04:24:46 +00005043 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5044 Cond == ICmpInst::ICMP_EQ));
Chris Lattner81e84172005-01-13 22:25:21 +00005045 }
Chris Lattner0798af32005-01-13 20:14:25 +00005046
Reid Spencer266e42b2006-12-23 06:05:41 +00005047 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner0798af32005-01-13 20:14:25 +00005048 // the result to fold to a constant!
5049 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
5050 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
5051 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
Reid Spencer266e42b2006-12-23 06:05:41 +00005052 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
5053 Constant::getNullValue(Offset->getType()));
Chris Lattner0798af32005-01-13 20:14:25 +00005054 }
5055 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005056 // If the base pointers are different, but the indices are the same, just
5057 // compare the base pointer.
5058 if (PtrBase != GEPRHS->getOperand(0)) {
5059 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00005060 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattnerbd43b9d2005-04-26 14:40:41 +00005061 GEPRHS->getOperand(0)->getType();
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005062 if (IndicesTheSame)
5063 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5064 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
5065 IndicesTheSame = false;
5066 break;
5067 }
5068
5069 // If all indices are the same, just compare the base pointers.
5070 if (IndicesTheSame)
Reid Spencer266e42b2006-12-23 06:05:41 +00005071 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
5072 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005073
5074 // Otherwise, the base pointers are different and the indices are
5075 // different, bail out.
Chris Lattner0798af32005-01-13 20:14:25 +00005076 return 0;
Chris Lattnera21bf8d2005-04-25 20:17:30 +00005077 }
Chris Lattner0798af32005-01-13 20:14:25 +00005078
Chris Lattner81e84172005-01-13 22:25:21 +00005079 // If one of the GEPs has all zero indices, recurse.
5080 bool AllZeros = true;
5081 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
5082 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
5083 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
5084 AllZeros = false;
5085 break;
5086 }
5087 if (AllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005088 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
5089 ICmpInst::getSwappedPredicate(Cond), I);
Chris Lattner4fa89822005-01-14 00:20:05 +00005090
5091 // If the other GEP has all zero indices, recurse.
Chris Lattner81e84172005-01-13 22:25:21 +00005092 AllZeros = true;
5093 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5094 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
5095 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
5096 AllZeros = false;
5097 break;
5098 }
5099 if (AllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005100 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
Chris Lattner81e84172005-01-13 22:25:21 +00005101
Chris Lattner4fa89822005-01-14 00:20:05 +00005102 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
5103 // If the GEPs only differ by one index, compare it.
5104 unsigned NumDifferences = 0; // Keep track of # differences.
5105 unsigned DiffOperand = 0; // The operand that differs.
5106 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
5107 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005108 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
5109 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00005110 // Irreconcilable differences.
Chris Lattner4fa89822005-01-14 00:20:05 +00005111 NumDifferences = 2;
5112 break;
5113 } else {
5114 if (NumDifferences++) break;
5115 DiffOperand = i;
5116 }
5117 }
5118
5119 if (NumDifferences == 0) // SAME GEP?
5120 return ReplaceInstUsesWith(I, // No comparison is needed here.
Reid Spencercddc9df2007-01-12 04:24:46 +00005121 ConstantInt::get(Type::Int1Ty,
5122 Cond == ICmpInst::ICMP_EQ));
Chris Lattner4fa89822005-01-14 00:20:05 +00005123 else if (NumDifferences == 1) {
Chris Lattnerfc4429e2005-01-21 23:06:49 +00005124 Value *LHSV = GEPLHS->getOperand(DiffOperand);
5125 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Reid Spencer266e42b2006-12-23 06:05:41 +00005126 // Make sure we do a signed comparison here.
5127 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
Chris Lattner4fa89822005-01-14 00:20:05 +00005128 }
5129 }
5130
Reid Spencer266e42b2006-12-23 06:05:41 +00005131 // Only lower this if the icmp is the only user of the GEP or if we expect
Chris Lattner0798af32005-01-13 20:14:25 +00005132 // the result to fold to a constant!
5133 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
5134 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
5135 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5136 Value *L = EmitGEPOffset(GEPLHS, I, *this);
5137 Value *R = EmitGEPOffset(GEPRHS, I, *this);
Reid Spencer266e42b2006-12-23 06:05:41 +00005138 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
Chris Lattner0798af32005-01-13 20:14:25 +00005139 }
5140 }
5141 return 0;
5142}
5143
Reid Spencer266e42b2006-12-23 06:05:41 +00005144Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5145 bool Changed = SimplifyCompare(I);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005146 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00005147
Chris Lattner6ee923f2007-01-14 19:42:17 +00005148 // Fold trivial predicates.
5149 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
5150 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
5151 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
5152 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5153
5154 // Simplify 'fcmp pred X, X'
5155 if (Op0 == Op1) {
5156 switch (I.getPredicate()) {
5157 default: assert(0 && "Unknown predicate!");
5158 case FCmpInst::FCMP_UEQ: // True if unordered or equal
5159 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
5160 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
5161 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
5162 case FCmpInst::FCMP_OGT: // True if ordered and greater than
5163 case FCmpInst::FCMP_OLT: // True if ordered and less than
5164 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
5165 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
5166
5167 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
5168 case FCmpInst::FCMP_ULT: // True if unordered or less than
5169 case FCmpInst::FCMP_UGT: // True if unordered or greater than
5170 case FCmpInst::FCMP_UNE: // True if unordered or not equal
5171 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5172 I.setPredicate(FCmpInst::FCMP_UNO);
5173 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5174 return &I;
5175
5176 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
5177 case FCmpInst::FCMP_OEQ: // True if ordered and equal
5178 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
5179 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
5180 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5181 I.setPredicate(FCmpInst::FCMP_ORD);
5182 I.setOperand(1, Constant::getNullValue(Op0->getType()));
5183 return &I;
5184 }
5185 }
5186
Reid Spencer266e42b2006-12-23 06:05:41 +00005187 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
Reid Spencer542964f2007-01-11 18:21:29 +00005188 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Chris Lattner81a7a232004-10-16 18:11:37 +00005189
Reid Spencer266e42b2006-12-23 06:05:41 +00005190 // Handle fcmp with constant RHS
5191 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5192 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5193 switch (LHSI->getOpcode()) {
5194 case Instruction::PHI:
5195 if (Instruction *NV = FoldOpIntoPhi(I))
5196 return NV;
5197 break;
5198 case Instruction::Select:
5199 // If either operand of the select is a constant, we can fold the
5200 // comparison into the select arms, which will cause one to be
5201 // constant folded and the select turned into a bitwise or.
5202 Value *Op1 = 0, *Op2 = 0;
5203 if (LHSI->hasOneUse()) {
5204 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5205 // Fold the known value into the constant operand.
5206 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5207 // Insert a new FCmp of the other select operand.
5208 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5209 LHSI->getOperand(2), RHSC,
5210 I.getName()), I);
5211 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5212 // Fold the known value into the constant operand.
5213 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
5214 // Insert a new FCmp of the other select operand.
5215 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
5216 LHSI->getOperand(1), RHSC,
5217 I.getName()), I);
5218 }
5219 }
5220
5221 if (Op1)
5222 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
5223 break;
5224 }
5225 }
5226
5227 return Changed ? &I : 0;
5228}
5229
5230Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5231 bool Changed = SimplifyCompare(I);
5232 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5233 const Type *Ty = Op0->getType();
5234
5235 // icmp X, X
5236 if (Op0 == Op1)
Reid Spencercddc9df2007-01-12 04:24:46 +00005237 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5238 isTrueWhenEqual(I)));
Reid Spencer266e42b2006-12-23 06:05:41 +00005239
5240 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
Reid Spencer542964f2007-01-11 18:21:29 +00005241 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
Reid Spencer266e42b2006-12-23 06:05:41 +00005242
5243 // icmp of GlobalValues can never equal each other as long as they aren't
5244 // external weak linkage type.
5245 if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0))
5246 if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1))
5247 if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage())
Reid Spencercddc9df2007-01-12 04:24:46 +00005248 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5249 !isTrueWhenEqual(I)));
Reid Spencer266e42b2006-12-23 06:05:41 +00005250
5251 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
Chris Lattner15ff1e12004-11-14 07:33:16 +00005252 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005253 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
5254 isa<ConstantPointerNull>(Op0)) &&
5255 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner15ff1e12004-11-14 07:33:16 +00005256 isa<ConstantPointerNull>(Op1)))
Reid Spencercddc9df2007-01-12 04:24:46 +00005257 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5258 !isTrueWhenEqual(I)));
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005259
Reid Spencer266e42b2006-12-23 06:05:41 +00005260 // icmp's with boolean values can always be turned into bitwise operations
Reid Spencer542964f2007-01-11 18:21:29 +00005261 if (Ty == Type::Int1Ty) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005262 switch (I.getPredicate()) {
5263 default: assert(0 && "Invalid icmp instruction!");
5264 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005265 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005266 InsertNewInstBefore(Xor, I);
Chris Lattner16930792003-11-03 04:25:02 +00005267 return BinaryOperator::createNot(Xor);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005268 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005269 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
Chris Lattner4456da62004-08-11 00:50:51 +00005270 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005271
Reid Spencer266e42b2006-12-23 06:05:41 +00005272 case ICmpInst::ICMP_UGT:
5273 case ICmpInst::ICMP_SGT:
5274 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
Chris Lattner4456da62004-08-11 00:50:51 +00005275 // FALL THROUGH
Reid Spencer266e42b2006-12-23 06:05:41 +00005276 case ICmpInst::ICMP_ULT:
5277 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
Chris Lattner4456da62004-08-11 00:50:51 +00005278 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5279 InsertNewInstBefore(Not, I);
5280 return BinaryOperator::createAnd(Not, Op1);
5281 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005282 case ICmpInst::ICMP_UGE:
5283 case ICmpInst::ICMP_SGE:
5284 std::swap(Op0, Op1); // Change icmp ge -> icmp le
Chris Lattner4456da62004-08-11 00:50:51 +00005285 // FALL THROUGH
Reid Spencer266e42b2006-12-23 06:05:41 +00005286 case ICmpInst::ICMP_ULE:
5287 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
Chris Lattner4456da62004-08-11 00:50:51 +00005288 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
5289 InsertNewInstBefore(Not, I);
5290 return BinaryOperator::createOr(Not, Op1);
5291 }
5292 }
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005293 }
5294
Chris Lattner2dd01742004-06-09 04:24:29 +00005295 // See if we are doing a comparison between a constant and an instruction that
5296 // can be folded into the comparison.
Chris Lattner6d14f2a2002-08-09 23:47:40 +00005297 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005298 switch (I.getPredicate()) {
5299 default: break;
5300 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
5301 if (CI->isMinValue(false))
Zhou Sheng75b871f2007-01-11 12:24:14 +00005302 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005303 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
5304 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
5305 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
5306 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5307 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005308
Reid Spencer266e42b2006-12-23 06:05:41 +00005309 case ICmpInst::ICMP_SLT:
5310 if (CI->isMinValue(true)) // A <s MIN -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005311 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005312 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
5313 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5314 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
5315 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
5316 break;
5317
5318 case ICmpInst::ICMP_UGT:
5319 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005320 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005321 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
5322 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5323 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
5324 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5325 break;
5326
5327 case ICmpInst::ICMP_SGT:
5328 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005329 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005330 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
5331 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5332 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
5333 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
5334 break;
5335
5336 case ICmpInst::ICMP_ULE:
5337 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005338 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005339 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
5340 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5341 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
5342 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5343 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005344
Reid Spencer266e42b2006-12-23 06:05:41 +00005345 case ICmpInst::ICMP_SLE:
5346 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005347 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005348 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
5349 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5350 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
5351 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
5352 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005353
Reid Spencer266e42b2006-12-23 06:05:41 +00005354 case ICmpInst::ICMP_UGE:
5355 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005356 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005357 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
5358 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5359 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
5360 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5361 break;
5362
5363 case ICmpInst::ICMP_SGE:
5364 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
Zhou Sheng75b871f2007-01-11 12:24:14 +00005365 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005366 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
5367 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5368 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
5369 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
5370 break;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005371 }
5372
Reid Spencer266e42b2006-12-23 06:05:41 +00005373 // If we still have a icmp le or icmp ge instruction, turn it into the
5374 // appropriate icmp lt or icmp gt instruction. Since the border cases have
Chris Lattner6862fbd2004-09-29 17:40:11 +00005375 // already been handled above, this requires little checking.
5376 //
Reid Spencer266e42b2006-12-23 06:05:41 +00005377 if (I.getPredicate() == ICmpInst::ICMP_ULE)
5378 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
5379 if (I.getPredicate() == ICmpInst::ICMP_SLE)
5380 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
5381 if (I.getPredicate() == ICmpInst::ICMP_UGE)
5382 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
5383 if (I.getPredicate() == ICmpInst::ICMP_SGE)
5384 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
Chris Lattneree0f2802006-02-12 02:07:56 +00005385
5386 // See if we can fold the comparison based on bits known to be zero or one
5387 // in the input.
5388 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00005389 if (SimplifyDemandedBits(Op0, cast<IntegerType>(Ty)->getBitMask(),
Chris Lattneree0f2802006-02-12 02:07:56 +00005390 KnownZero, KnownOne, 0))
5391 return &I;
5392
5393 // Given the known and unknown bits, compute a range that the LHS could be
5394 // in.
5395 if (KnownOne | KnownZero) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005396 // Compute the Min, Max and RHS values based on the known bits. For the
5397 // EQ and NE we use unsigned values.
Reid Spencer910f23f2006-12-23 19:17:57 +00005398 uint64_t UMin = 0, UMax = 0, URHSVal = 0;
5399 int64_t SMin = 0, SMax = 0, SRHSVal = 0;
Reid Spencer266e42b2006-12-23 06:05:41 +00005400 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
5401 SRHSVal = CI->getSExtValue();
5402 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, SMin,
5403 SMax);
5404 } else {
5405 URHSVal = CI->getZExtValue();
5406 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, UMin,
5407 UMax);
5408 }
5409 switch (I.getPredicate()) { // LE/GE have been folded already.
5410 default: assert(0 && "Unknown icmp opcode!");
5411 case ICmpInst::ICMP_EQ:
5412 if (UMax < URHSVal || UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005413 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005414 break;
5415 case ICmpInst::ICMP_NE:
5416 if (UMax < URHSVal || UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005417 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005418 break;
5419 case ICmpInst::ICMP_ULT:
5420 if (UMax < URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005421 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005422 if (UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005423 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005424 break;
5425 case ICmpInst::ICMP_UGT:
5426 if (UMin > URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005427 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005428 if (UMax < URHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005429 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005430 break;
5431 case ICmpInst::ICMP_SLT:
5432 if (SMax < SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005433 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005434 if (SMin > SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005435 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005436 break;
5437 case ICmpInst::ICMP_SGT:
5438 if (SMin > SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005439 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00005440 if (SMax < SRHSVal)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005441 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005442 break;
Chris Lattneree0f2802006-02-12 02:07:56 +00005443 }
5444 }
5445
Reid Spencer266e42b2006-12-23 06:05:41 +00005446 // Since the RHS is a ConstantInt (CI), if the left hand side is an
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005447 // instruction, see if that instruction also has constants so that the
Reid Spencer266e42b2006-12-23 06:05:41 +00005448 // instruction can be folded into the icmp
Chris Lattnere1e10e12004-05-25 06:32:08 +00005449 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005450 switch (LHSI->getOpcode()) {
5451 case Instruction::And:
5452 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5453 LHSI->getOperand(0)->hasOneUse()) {
Chris Lattner4922a0e2006-09-18 05:27:43 +00005454 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5455
Reid Spencer266e42b2006-12-23 06:05:41 +00005456 // If the LHS is an AND of a truncating cast, we can widen the
Chris Lattner4922a0e2006-09-18 05:27:43 +00005457 // and/compare to be the input width without changing the value
5458 // produced, eliminating a cast.
5459 if (CastInst *Cast = dyn_cast<CastInst>(LHSI->getOperand(0))) {
5460 // We can do this transformation if either the AND constant does not
5461 // have its sign bit set or if it is an equality comparison.
5462 // Extending a relational comparison when we're checking the sign
5463 // bit would not work.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00005464 if (Cast->hasOneUse() && isa<TruncInst>(Cast) &&
Chris Lattner4922a0e2006-09-18 05:27:43 +00005465 (I.isEquality() ||
5466 (AndCST->getZExtValue() == (uint64_t)AndCST->getSExtValue()) &&
5467 (CI->getZExtValue() == (uint64_t)CI->getSExtValue()))) {
5468 ConstantInt *NewCST;
5469 ConstantInt *NewCI;
Reid Spencerc635f472006-12-31 05:48:39 +00005470 NewCST = ConstantInt::get(Cast->getOperand(0)->getType(),
5471 AndCST->getZExtValue());
5472 NewCI = ConstantInt::get(Cast->getOperand(0)->getType(),
5473 CI->getZExtValue());
Chris Lattner4922a0e2006-09-18 05:27:43 +00005474 Instruction *NewAnd =
5475 BinaryOperator::createAnd(Cast->getOperand(0), NewCST,
5476 LHSI->getName());
5477 InsertNewInstBefore(NewAnd, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005478 return new ICmpInst(I.getPredicate(), NewAnd, NewCI);
Chris Lattner4922a0e2006-09-18 05:27:43 +00005479 }
5480 }
5481
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005482 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5483 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5484 // happens a LOT in code produced by the C front-end, for bitfield
5485 // access.
Reid Spencer2341c222007-02-02 02:16:23 +00005486 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5487 if (Shift && !Shift->isShift())
5488 Shift = 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00005489
Reid Spencere0fc4df2006-10-20 07:07:24 +00005490 ConstantInt *ShAmt;
5491 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Chris Lattneree0f2802006-02-12 02:07:56 +00005492 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5493 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005494
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005495 // We can fold this as long as we can't shift unknown bits
5496 // into the mask. This can only happen with signed shift
5497 // rights, as they sign-extend.
5498 if (ShAmt) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005499 bool CanFold = Shift->isLogicalShift();
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005500 if (!CanFold) {
5501 // To test for the bad case of the signed shr, see if any
5502 // of the bits shifted in could be tested after the mask.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005503 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getZExtValue();
Chris Lattnerc53cb9d2005-06-17 01:29:28 +00005504 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
5505
Reid Spencer2341c222007-02-02 02:16:23 +00005506 Constant *OShAmt = ConstantInt::get(AndTy, ShAmtVal);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005507 Constant *ShVal =
Chris Lattneree0f2802006-02-12 02:07:56 +00005508 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
5509 OShAmt);
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005510 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
5511 CanFold = true;
5512 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005513
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005514 if (CanFold) {
Chris Lattner6afc02f2004-09-28 17:54:07 +00005515 Constant *NewCst;
5516 if (Shift->getOpcode() == Instruction::Shl)
Reid Spencerfdff9382006-11-08 06:47:33 +00005517 NewCst = ConstantExpr::getLShr(CI, ShAmt);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005518 else
5519 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005520
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005521 // Check to see if we are shifting out any of the bits being
5522 // compared.
5523 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
5524 // If we shifted bits out, the fold is not going to work out.
5525 // As a special case, check to see if this means that the
5526 // result is always true or false now.
Reid Spencer266e42b2006-12-23 06:05:41 +00005527 if (I.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005528 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005529 if (I.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005530 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005531 } else {
5532 I.setOperand(1, NewCst);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005533 Constant *NewAndCST;
5534 if (Shift->getOpcode() == Instruction::Shl)
Reid Spencerfdff9382006-11-08 06:47:33 +00005535 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
Chris Lattner6afc02f2004-09-28 17:54:07 +00005536 else
5537 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5538 LHSI->setOperand(1, NewAndCST);
Reid Spencer6ff3e732007-01-04 05:23:51 +00005539 LHSI->setOperand(0, Shift->getOperand(0));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005540 AddToWorkList(Shift); // Shift is dead.
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005541 AddUsesToWorkList(I);
5542 return &I;
Chris Lattner1638de42004-07-21 19:50:44 +00005543 }
5544 }
Chris Lattner35167c32004-06-09 07:59:58 +00005545 }
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005546
5547 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5548 // preferable because it allows the C<<Y expression to be hoisted out
5549 // of a loop if Y is invariant and X is not.
5550 if (Shift && Shift->hasOneUse() && CI->isNullValue() &&
Chris Lattnerde077922006-09-18 18:27:05 +00005551 I.isEquality() && !Shift->isArithmeticShift() &&
5552 isa<Instruction>(Shift->getOperand(0))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005553 // Compute C << Y.
5554 Value *NS;
Reid Spencerfdff9382006-11-08 06:47:33 +00005555 if (Shift->getOpcode() == Instruction::LShr) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00005556 NS = BinaryOperator::createShl(AndCST,
Reid Spencer2341c222007-02-02 02:16:23 +00005557 Shift->getOperand(1), "tmp");
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005558 } else {
Reid Spencer2a499b02006-12-13 17:19:09 +00005559 // Insert a logical shift.
Reid Spencer0d5f9232007-02-02 14:08:20 +00005560 NS = BinaryOperator::createLShr(AndCST,
Reid Spencer2341c222007-02-02 02:16:23 +00005561 Shift->getOperand(1), "tmp");
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005562 }
5563 InsertNewInstBefore(cast<Instruction>(NS), I);
5564
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005565 // Compute X & (C << Y).
Reid Spencer6ff3e732007-01-04 05:23:51 +00005566 Instruction *NewAnd = BinaryOperator::createAnd(
5567 Shift->getOperand(0), NS, LHSI->getName());
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005568 InsertNewInstBefore(NewAnd, I);
5569
5570 I.setOperand(0, NewAnd);
5571 return &I;
5572 }
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005573 }
5574 break;
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005575
Reid Spencer266e42b2006-12-23 06:05:41 +00005576 case Instruction::Shl: // (icmp pred (shl X, ShAmt), CI)
Reid Spencere0fc4df2006-10-20 07:07:24 +00005577 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005578 if (I.isEquality()) {
Chris Lattner19b57f52005-06-15 20:53:31 +00005579 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
5580
5581 // Check that the shift amount is in range. If not, don't perform
5582 // undefined shifts. When the shift is visited it will be
5583 // simplified.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005584 if (ShAmt->getZExtValue() >= TypeBits)
Chris Lattner19b57f52005-06-15 20:53:31 +00005585 break;
5586
Chris Lattner272d5ca2004-09-28 18:22:15 +00005587 // If we are comparing against bits always shifted out, the
5588 // comparison cannot succeed.
Misha Brukmanb1c93172005-04-21 23:48:37 +00005589 Constant *Comp =
Reid Spencerfdff9382006-11-08 06:47:33 +00005590 ConstantExpr::getShl(ConstantExpr::getLShr(CI, ShAmt), ShAmt);
Chris Lattner272d5ca2004-09-28 18:22:15 +00005591 if (Comp != CI) {// Comparing against a bit that we know is zero.
Reid Spencer266e42b2006-12-23 06:05:41 +00005592 bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Reid Spencercddc9df2007-01-12 04:24:46 +00005593 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
Chris Lattner272d5ca2004-09-28 18:22:15 +00005594 return ReplaceInstUsesWith(I, Cst);
5595 }
5596
5597 if (LHSI->hasOneUse()) {
5598 // Otherwise strength reduce the shift into an and.
Reid Spencere0fc4df2006-10-20 07:07:24 +00005599 unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00005600 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
Reid Spencerc635f472006-12-31 05:48:39 +00005601 Constant *Mask = ConstantInt::get(CI->getType(), Val);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005602
Chris Lattner272d5ca2004-09-28 18:22:15 +00005603 Instruction *AndI =
5604 BinaryOperator::createAnd(LHSI->getOperand(0),
5605 Mask, LHSI->getName()+".mask");
5606 Value *And = InsertNewInstBefore(AndI, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005607 return new ICmpInst(I.getPredicate(), And,
Reid Spencerfdff9382006-11-08 06:47:33 +00005608 ConstantExpr::getLShr(CI, ShAmt));
Chris Lattner272d5ca2004-09-28 18:22:15 +00005609 }
5610 }
Chris Lattner272d5ca2004-09-28 18:22:15 +00005611 }
5612 break;
5613
Reid Spencer266e42b2006-12-23 06:05:41 +00005614 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
Reid Spencerfdff9382006-11-08 06:47:33 +00005615 case Instruction::AShr:
Reid Spencere0fc4df2006-10-20 07:07:24 +00005616 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005617 if (I.isEquality()) {
Chris Lattner19b57f52005-06-15 20:53:31 +00005618 // Check that the shift amount is in range. If not, don't perform
5619 // undefined shifts. When the shift is visited it will be
5620 // simplified.
Chris Lattner104002b2005-06-16 01:52:07 +00005621 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00005622 if (ShAmt->getZExtValue() >= TypeBits)
Chris Lattner19b57f52005-06-15 20:53:31 +00005623 break;
5624
Chris Lattner1023b872004-09-27 16:18:50 +00005625 // If we are comparing against bits always shifted out, the
5626 // comparison cannot succeed.
Reid Spencerfdff9382006-11-08 06:47:33 +00005627 Constant *Comp;
Reid Spencerc635f472006-12-31 05:48:39 +00005628 if (LHSI->getOpcode() == Instruction::LShr)
Reid Spencerfdff9382006-11-08 06:47:33 +00005629 Comp = ConstantExpr::getLShr(ConstantExpr::getShl(CI, ShAmt),
5630 ShAmt);
5631 else
5632 Comp = ConstantExpr::getAShr(ConstantExpr::getShl(CI, ShAmt),
5633 ShAmt);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005634
Chris Lattner1023b872004-09-27 16:18:50 +00005635 if (Comp != CI) {// Comparing against a bit that we know is zero.
Reid Spencer266e42b2006-12-23 06:05:41 +00005636 bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Reid Spencercddc9df2007-01-12 04:24:46 +00005637 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
Chris Lattner1023b872004-09-27 16:18:50 +00005638 return ReplaceInstUsesWith(I, Cst);
5639 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005640
Chris Lattner1023b872004-09-27 16:18:50 +00005641 if (LHSI->hasOneUse() || CI->isNullValue()) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00005642 unsigned ShAmtVal = (unsigned)ShAmt->getZExtValue();
Chris Lattner272d5ca2004-09-28 18:22:15 +00005643
Chris Lattner1023b872004-09-27 16:18:50 +00005644 // Otherwise strength reduce the shift into an and.
5645 uint64_t Val = ~0ULL; // All ones.
5646 Val <<= ShAmtVal; // Shift over to the right spot.
Reid Spencerc635f472006-12-31 05:48:39 +00005647 Val &= ~0ULL >> (64-TypeBits);
5648 Constant *Mask = ConstantInt::get(CI->getType(), Val);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005649
Chris Lattner1023b872004-09-27 16:18:50 +00005650 Instruction *AndI =
5651 BinaryOperator::createAnd(LHSI->getOperand(0),
5652 Mask, LHSI->getName()+".mask");
5653 Value *And = InsertNewInstBefore(AndI, I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005654 return new ICmpInst(I.getPredicate(), And,
Chris Lattner1023b872004-09-27 16:18:50 +00005655 ConstantExpr::getShl(CI, ShAmt));
5656 }
Chris Lattner1023b872004-09-27 16:18:50 +00005657 }
5658 }
5659 break;
Chris Lattner7e794272004-09-24 15:21:34 +00005660
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005661 case Instruction::SDiv:
5662 case Instruction::UDiv:
Reid Spencer266e42b2006-12-23 06:05:41 +00005663 // Fold: icmp pred ([us]div X, C1), C2 -> range test
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005664 // Fold this div into the comparison, producing a range check.
5665 // Determine, based on the divide type, what the range is being
5666 // checked. If there is an overflow on the low or high side, remember
5667 // it, otherwise compute the range [low, hi) bounding the new value.
5668 // See: InsertRangeTest above for the kinds of replacements possible.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005669 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005670 // FIXME: If the operand types don't match the type of the divide
5671 // then don't attempt this transform. The code below doesn't have the
5672 // logic to deal with a signed divide and an unsigned compare (and
5673 // vice versa). This is because (x /s C1) <s C2 produces different
5674 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5675 // (x /u C1) <u C2. Simply casting the operands and result won't
5676 // work. :( The if statement below tests that condition and bails
5677 // if it finds it.
Reid Spencer266e42b2006-12-23 06:05:41 +00005678 bool DivIsSigned = LHSI->getOpcode() == Instruction::SDiv;
5679 if (!I.isEquality() && DivIsSigned != I.isSignedPredicate())
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005680 break;
5681
5682 // Initialize the variables that will indicate the nature of the
5683 // range check.
5684 bool LoOverflow = false, HiOverflow = false;
Chris Lattner6862fbd2004-09-29 17:40:11 +00005685 ConstantInt *LoBound = 0, *HiBound = 0;
5686
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005687 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5688 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5689 // C2 (CI). By solving for X we can turn this into a range check
5690 // instead of computing a divide.
5691 ConstantInt *Prod =
5692 cast<ConstantInt>(ConstantExpr::getMul(CI, DivRHS));
Chris Lattner6862fbd2004-09-29 17:40:11 +00005693
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005694 // Determine if the product overflows by seeing if the product is
5695 // not equal to the divide. Make sure we do the same kind of divide
5696 // as in the LHS instruction that we're folding.
5697 bool ProdOV = !DivRHS->isNullValue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00005698 (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005699 ConstantExpr::getUDiv(Prod, DivRHS)) != CI;
5700
Reid Spencer266e42b2006-12-23 06:05:41 +00005701 // Get the ICmp opcode
5702 ICmpInst::Predicate predicate = I.getPredicate();
Chris Lattnera92af962004-10-11 19:40:04 +00005703
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005704 if (DivRHS->isNullValue()) {
5705 // Don't hack on divide by zeros!
Reid Spencer266e42b2006-12-23 06:05:41 +00005706 } else if (!DivIsSigned) { // udiv
Chris Lattner6862fbd2004-09-29 17:40:11 +00005707 LoBound = Prod;
5708 LoOverflow = ProdOV;
5709 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005710 } else if (isPositive(DivRHS)) { // Divisor is > 0.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005711 if (CI->isNullValue()) { // (X / pos) op 0
5712 // Can't overflow.
5713 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5714 HiBound = DivRHS;
5715 } else if (isPositive(CI)) { // (X / pos) op pos
5716 LoBound = Prod;
5717 LoOverflow = ProdOV;
5718 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
5719 } else { // (X / pos) op neg
5720 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5721 LoOverflow = AddWithOverflow(LoBound, Prod,
5722 cast<ConstantInt>(DivRHSH));
5723 HiBound = Prod;
5724 HiOverflow = ProdOV;
5725 }
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005726 } else { // Divisor is < 0.
Chris Lattner6862fbd2004-09-29 17:40:11 +00005727 if (CI->isNullValue()) { // (X / neg) op 0
5728 LoBound = AddOne(DivRHS);
5729 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner73bcba52005-06-17 02:05:55 +00005730 if (HiBound == DivRHS)
Reid Spencer7e80b0b2006-10-26 06:15:43 +00005731 LoBound = 0; // - INTMIN = INTMIN
Chris Lattner6862fbd2004-09-29 17:40:11 +00005732 } else if (isPositive(CI)) { // (X / neg) op pos
5733 HiOverflow = LoOverflow = ProdOV;
5734 if (!LoOverflow)
5735 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
5736 HiBound = AddOne(Prod);
5737 } else { // (X / neg) op neg
5738 LoBound = Prod;
5739 LoOverflow = HiOverflow = ProdOV;
5740 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
5741 }
Chris Lattner0b41e862004-10-08 19:15:44 +00005742
Chris Lattnera92af962004-10-11 19:40:04 +00005743 // Dividing by a negate swaps the condition.
Reid Spencer266e42b2006-12-23 06:05:41 +00005744 predicate = ICmpInst::getSwappedPredicate(predicate);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005745 }
5746
5747 if (LoBound) {
5748 Value *X = LHSI->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00005749 switch (predicate) {
5750 default: assert(0 && "Unhandled icmp opcode!");
5751 case ICmpInst::ICMP_EQ:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005752 if (LoOverflow && HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005753 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Chris Lattner6862fbd2004-09-29 17:40:11 +00005754 else if (HiOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005755 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5756 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005757 else if (LoOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005758 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5759 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005760 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005761 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
5762 true, I);
5763 case ICmpInst::ICMP_NE:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005764 if (LoOverflow && HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005765 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
Chris Lattner6862fbd2004-09-29 17:40:11 +00005766 else if (HiOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005767 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5768 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005769 else if (LoOverflow)
Reid Spencer266e42b2006-12-23 06:05:41 +00005770 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5771 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005772 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005773 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
5774 false, I);
5775 case ICmpInst::ICMP_ULT:
5776 case ICmpInst::ICMP_SLT:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005777 if (LoOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005778 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005779 return new ICmpInst(predicate, X, LoBound);
5780 case ICmpInst::ICMP_UGT:
5781 case ICmpInst::ICMP_SGT:
Chris Lattner6862fbd2004-09-29 17:40:11 +00005782 if (HiOverflow)
Zhou Sheng75b871f2007-01-11 12:24:14 +00005783 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00005784 if (predicate == ICmpInst::ICMP_UGT)
5785 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5786 else
5787 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner6862fbd2004-09-29 17:40:11 +00005788 }
5789 }
5790 }
5791 break;
Chris Lattnere1b4d2a2004-09-23 21:52:49 +00005792 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005793
Reid Spencer266e42b2006-12-23 06:05:41 +00005794 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
Chris Lattnerb3f24c92006-09-18 04:22:48 +00005795 if (I.isEquality()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005796 bool isICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005797
Reid Spencere0fc4df2006-10-20 07:07:24 +00005798 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5799 // the second operand is a constant, simplify a bit.
Chris Lattnerc992add2003-08-13 05:33:12 +00005800 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
5801 switch (BO->getOpcode()) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00005802 case Instruction::SRem:
5803 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5804 if (CI->isNullValue() && isa<ConstantInt>(BO->getOperand(1)) &&
5805 BO->hasOneUse()) {
5806 int64_t V = cast<ConstantInt>(BO->getOperand(1))->getSExtValue();
5807 if (V > 1 && isPowerOf2_64(V)) {
Reid Spencer7eb55b32006-11-02 01:53:59 +00005808 Value *NewRem = InsertNewInstBefore(BinaryOperator::createURem(
5809 BO->getOperand(0), BO->getOperand(1), BO->getName()), I);
Reid Spencer266e42b2006-12-23 06:05:41 +00005810 return new ICmpInst(I.getPredicate(), NewRem,
5811 Constant::getNullValue(BO->getType()));
Chris Lattner23b47b62004-07-06 07:38:18 +00005812 }
Chris Lattner22d00a82005-08-02 19:16:58 +00005813 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005814 break;
Chris Lattnerc992add2003-08-13 05:33:12 +00005815 case Instruction::Add:
Chris Lattner6e079362004-06-27 22:51:36 +00005816 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5817 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerb121ae12004-09-21 21:35:23 +00005818 if (BO->hasOneUse())
Reid Spencer266e42b2006-12-23 06:05:41 +00005819 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5820 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner6e079362004-06-27 22:51:36 +00005821 } else if (CI->isNullValue()) {
Chris Lattnerc992add2003-08-13 05:33:12 +00005822 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5823 // efficiently invertible, or if the add has just this one use.
5824 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanb1c93172005-04-21 23:48:37 +00005825
Chris Lattnerc992add2003-08-13 05:33:12 +00005826 if (Value *NegVal = dyn_castNegVal(BOp1))
Reid Spencer266e42b2006-12-23 06:05:41 +00005827 return new ICmpInst(I.getPredicate(), BOp0, NegVal);
Chris Lattnerc992add2003-08-13 05:33:12 +00005828 else if (Value *NegVal = dyn_castNegVal(BOp0))
Reid Spencer266e42b2006-12-23 06:05:41 +00005829 return new ICmpInst(I.getPredicate(), NegVal, BOp1);
Chris Lattnerf95d9b92003-10-15 16:48:29 +00005830 else if (BO->hasOneUse()) {
Chris Lattner6e0123b2007-02-11 01:23:03 +00005831 Instruction *Neg = BinaryOperator::createNeg(BOp1);
Chris Lattnerc992add2003-08-13 05:33:12 +00005832 InsertNewInstBefore(Neg, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00005833 Neg->takeName(BO);
Reid Spencer266e42b2006-12-23 06:05:41 +00005834 return new ICmpInst(I.getPredicate(), BOp0, Neg);
Chris Lattnerc992add2003-08-13 05:33:12 +00005835 }
5836 }
5837 break;
5838 case Instruction::Xor:
5839 // For the xor case, we can xor two constants together, eliminating
5840 // the explicit xor.
5841 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
Reid Spencer266e42b2006-12-23 06:05:41 +00005842 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5843 ConstantExpr::getXor(CI, BOC));
Chris Lattnerc992add2003-08-13 05:33:12 +00005844
5845 // FALLTHROUGH
5846 case Instruction::Sub:
5847 // Replace (([sub|xor] A, B) != 0) with (A != B)
5848 if (CI->isNullValue())
Reid Spencer266e42b2006-12-23 06:05:41 +00005849 return new ICmpInst(I.getPredicate(), BO->getOperand(0),
5850 BO->getOperand(1));
Chris Lattnerc992add2003-08-13 05:33:12 +00005851 break;
5852
5853 case Instruction::Or:
5854 // If bits are being or'd in that are not present in the constant we
5855 // are comparing against, then the comparison could never succeed!
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00005856 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattnerc8e7e292004-06-10 02:12:35 +00005857 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00005858 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Reid Spencercddc9df2007-01-12 04:24:46 +00005859 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5860 isICMP_NE));
Chris Lattnerc1e7cc02004-01-12 19:35:11 +00005861 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005862 break;
5863
5864 case Instruction::And:
5865 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005866 // If bits are being compared against that are and'd out, then the
5867 // comparison can never succeed!
Chris Lattnerc8e7e292004-06-10 02:12:35 +00005868 if (!ConstantExpr::getAnd(CI,
5869 ConstantExpr::getNot(BOC))->isNullValue())
Reid Spencercddc9df2007-01-12 04:24:46 +00005870 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5871 isICMP_NE));
Chris Lattnerc992add2003-08-13 05:33:12 +00005872
Chris Lattner35167c32004-06-09 07:59:58 +00005873 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattneree59d4b2004-06-10 02:33:20 +00005874 if (CI == BOC && isOneBitSet(CI))
Reid Spencer266e42b2006-12-23 06:05:41 +00005875 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
5876 ICmpInst::ICMP_NE, Op0,
5877 Constant::getNullValue(CI->getType()));
Chris Lattner35167c32004-06-09 07:59:58 +00005878
Reid Spencer266e42b2006-12-23 06:05:41 +00005879 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
Chris Lattnerc992add2003-08-13 05:33:12 +00005880 if (isSignBit(BOC)) {
5881 Value *X = BO->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00005882 Constant *Zero = Constant::getNullValue(X->getType());
5883 ICmpInst::Predicate pred = isICMP_NE ?
5884 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
5885 return new ICmpInst(pred, X, Zero);
Chris Lattnerc992add2003-08-13 05:33:12 +00005886 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00005887
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005888 // ((X & ~7) == 0) --> X < 8
Chris Lattner8fc5af42004-09-23 21:46:38 +00005889 if (CI->isNullValue() && isHighOnes(BOC)) {
5890 Value *X = BO->getOperand(0);
Chris Lattnerbfff18a2004-09-27 19:29:18 +00005891 Constant *NegX = ConstantExpr::getNeg(BOC);
Reid Spencer266e42b2006-12-23 06:05:41 +00005892 ICmpInst::Predicate pred = isICMP_NE ?
5893 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5894 return new ICmpInst(pred, X, NegX);
Chris Lattner8fc5af42004-09-23 21:46:38 +00005895 }
5896
Chris Lattnerd492a0b2003-07-23 17:02:11 +00005897 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005898 default: break;
5899 }
Chris Lattnera7942b72006-11-29 05:02:16 +00005900 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
5901 // Handle set{eq|ne} <intrinsic>, intcst.
5902 switch (II->getIntrinsicID()) {
5903 default: break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005904 case Intrinsic::bswap_i16:
5905 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005906 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005907 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005908 I.setOperand(1, ConstantInt::get(Type::Int16Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005909 ByteSwap_16(CI->getZExtValue())));
5910 return &I;
Reid Spencer266e42b2006-12-23 06:05:41 +00005911 case Intrinsic::bswap_i32:
5912 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005913 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005914 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005915 I.setOperand(1, ConstantInt::get(Type::Int32Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005916 ByteSwap_32(CI->getZExtValue())));
5917 return &I;
Reid Spencer266e42b2006-12-23 06:05:41 +00005918 case Intrinsic::bswap_i64:
5919 // icmp eq (bswap(x)), c -> icmp eq (x,bswap(c))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00005920 AddToWorkList(II); // Dead?
Chris Lattnera7942b72006-11-29 05:02:16 +00005921 I.setOperand(0, II->getOperand(1));
Reid Spencerc635f472006-12-31 05:48:39 +00005922 I.setOperand(1, ConstantInt::get(Type::Int64Ty,
Chris Lattnera7942b72006-11-29 05:02:16 +00005923 ByteSwap_64(CI->getZExtValue())));
5924 return &I;
5925 }
Chris Lattnerc992add2003-08-13 05:33:12 +00005926 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005927 } else { // Not a ICMP_EQ/ICMP_NE
5928 // If the LHS is a cast from an integral value of the same size, then
5929 // since we know the RHS is a constant, try to simlify.
Chris Lattner2b55ea32004-02-23 07:16:20 +00005930 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
5931 Value *CastOp = Cast->getOperand(0);
5932 const Type *SrcTy = CastOp->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005933 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattner03c49532007-01-15 02:27:26 +00005934 if (SrcTy->isInteger() &&
Chris Lattnerd1f46d32005-04-24 06:59:08 +00005935 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005936 // If this is an unsigned comparison, try to make the comparison use
5937 // smaller constant values.
5938 switch (I.getPredicate()) {
5939 default: break;
5940 case ICmpInst::ICMP_ULT: { // X u< 128 => X s> -1
5941 ConstantInt *CUI = cast<ConstantInt>(CI);
5942 if (CUI->getZExtValue() == 1ULL << (SrcTySize-1))
5943 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
Reid Spencer24f1a0e2007-03-01 19:33:52 +00005944 ConstantInt::get(SrcTy, -1ULL));
Reid Spencer266e42b2006-12-23 06:05:41 +00005945 break;
5946 }
5947 case ICmpInst::ICMP_UGT: { // X u> 127 => X s< 0
5948 ConstantInt *CUI = cast<ConstantInt>(CI);
5949 if (CUI->getZExtValue() == (1ULL << (SrcTySize-1))-1)
5950 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
5951 Constant::getNullValue(SrcTy));
5952 break;
5953 }
Chris Lattner2b55ea32004-02-23 07:16:20 +00005954 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005955
Chris Lattner2b55ea32004-02-23 07:16:20 +00005956 }
5957 }
Chris Lattnere967b342003-06-04 05:10:11 +00005958 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00005959 }
5960
Reid Spencer266e42b2006-12-23 06:05:41 +00005961 // Handle icmp with constant RHS
Chris Lattner77c32c32005-04-23 15:31:55 +00005962 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5963 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5964 switch (LHSI->getOpcode()) {
Chris Lattnera816eee2005-05-01 04:42:15 +00005965 case Instruction::GetElementPtr:
5966 if (RHSC->isNullValue()) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005967 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
Chris Lattnera816eee2005-05-01 04:42:15 +00005968 bool isAllZeros = true;
5969 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5970 if (!isa<Constant>(LHSI->getOperand(i)) ||
5971 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5972 isAllZeros = false;
5973 break;
5974 }
5975 if (isAllZeros)
Reid Spencer266e42b2006-12-23 06:05:41 +00005976 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Chris Lattnera816eee2005-05-01 04:42:15 +00005977 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5978 }
5979 break;
5980
Chris Lattner77c32c32005-04-23 15:31:55 +00005981 case Instruction::PHI:
5982 if (Instruction *NV = FoldOpIntoPhi(I))
5983 return NV;
5984 break;
5985 case Instruction::Select:
5986 // If either operand of the select is a constant, we can fold the
5987 // comparison into the select arms, which will cause one to be
5988 // constant folded and the select turned into a bitwise or.
5989 Value *Op1 = 0, *Op2 = 0;
5990 if (LHSI->hasOneUse()) {
5991 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5992 // Fold the known value into the constant operand.
Reid Spencer266e42b2006-12-23 06:05:41 +00005993 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5994 // Insert a new ICmp of the other select operand.
5995 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5996 LHSI->getOperand(2), RHSC,
5997 I.getName()), I);
Chris Lattner77c32c32005-04-23 15:31:55 +00005998 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5999 // Fold the known value into the constant operand.
Reid Spencer266e42b2006-12-23 06:05:41 +00006000 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
6001 // Insert a new ICmp of the other select operand.
6002 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
6003 LHSI->getOperand(1), RHSC,
6004 I.getName()), I);
Chris Lattner77c32c32005-04-23 15:31:55 +00006005 }
6006 }
Jeff Cohen82639852005-04-23 21:38:35 +00006007
Chris Lattner77c32c32005-04-23 15:31:55 +00006008 if (Op1)
6009 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
6010 break;
6011 }
6012 }
6013
Reid Spencer266e42b2006-12-23 06:05:41 +00006014 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
Chris Lattner0798af32005-01-13 20:14:25 +00006015 if (User *GEP = dyn_castGetElementPtr(Op0))
Reid Spencer266e42b2006-12-23 06:05:41 +00006016 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
Chris Lattner0798af32005-01-13 20:14:25 +00006017 return NI;
6018 if (User *GEP = dyn_castGetElementPtr(Op1))
Reid Spencer266e42b2006-12-23 06:05:41 +00006019 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
6020 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
Chris Lattner0798af32005-01-13 20:14:25 +00006021 return NI;
6022
Reid Spencer266e42b2006-12-23 06:05:41 +00006023 // Test to see if the operands of the icmp are casted versions of other
Chris Lattner64d87b02007-01-06 01:45:59 +00006024 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6025 // now.
6026 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
6027 if (isa<PointerType>(Op0->getType()) &&
6028 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
Chris Lattner16930792003-11-03 04:25:02 +00006029 // We keep moving the cast from the left operand over to the right
6030 // operand, where it can often be eliminated completely.
Chris Lattner64d87b02007-01-06 01:45:59 +00006031 Op0 = CI->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006032
Chris Lattner64d87b02007-01-06 01:45:59 +00006033 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6034 // so eliminate it as well.
6035 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
6036 Op1 = CI2->getOperand(0);
Misha Brukmanb1c93172005-04-21 23:48:37 +00006037
Chris Lattner16930792003-11-03 04:25:02 +00006038 // If Op1 is a constant, we can fold the cast into the constant.
Chris Lattner64d87b02007-01-06 01:45:59 +00006039 if (Op0->getType() != Op1->getType())
Chris Lattner16930792003-11-03 04:25:02 +00006040 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Reid Spencerbb65ebf2006-12-12 23:36:14 +00006041 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
Chris Lattner16930792003-11-03 04:25:02 +00006042 } else {
Reid Spencer266e42b2006-12-23 06:05:41 +00006043 // Otherwise, cast the RHS right before the icmp
Reid Spencer13bc5d72006-12-12 09:18:51 +00006044 Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
Chris Lattner16930792003-11-03 04:25:02 +00006045 }
Reid Spencer266e42b2006-12-23 06:05:41 +00006046 return new ICmpInst(I.getPredicate(), Op0, Op1);
Chris Lattner16930792003-11-03 04:25:02 +00006047 }
Chris Lattner64d87b02007-01-06 01:45:59 +00006048 }
6049
6050 if (isa<CastInst>(Op0)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006051 // Handle the special case of: icmp (cast bool to X), <cst>
Chris Lattner6444c372003-11-03 05:17:03 +00006052 // This comes up when you have code like
6053 // int X = A < B;
6054 // if (X) ...
6055 // For generality, we handle any zero-extension of any operand comparison
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006056 // with a constant or another cast from the same type.
6057 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
Reid Spencer266e42b2006-12-23 06:05:41 +00006058 if (Instruction *R = visitICmpInstWithCastAndCast(I))
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006059 return R;
Chris Lattner6444c372003-11-03 05:17:03 +00006060 }
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006061
Chris Lattnerb3f24c92006-09-18 04:22:48 +00006062 if (I.isEquality()) {
Chris Lattner17c7c032007-01-05 03:04:57 +00006063 Value *A, *B, *C, *D;
6064 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
6065 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
6066 Value *OtherVal = A == Op1 ? B : A;
6067 return new ICmpInst(I.getPredicate(), OtherVal,
6068 Constant::getNullValue(A->getType()));
6069 }
6070
6071 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
6072 // A^c1 == C^c2 --> A == C^(c1^c2)
6073 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
6074 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
6075 if (Op1->hasOneUse()) {
6076 Constant *NC = ConstantExpr::getXor(C1, C2);
6077 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
6078 return new ICmpInst(I.getPredicate(), A,
6079 InsertNewInstBefore(Xor, I));
6080 }
6081
6082 // A^B == A^D -> B == D
6083 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
6084 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
6085 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
6086 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
6087 }
6088 }
6089
6090 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
6091 (A == Op0 || B == Op0)) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006092 // A == (A^B) -> B == 0
6093 Value *OtherVal = A == Op0 ? B : A;
Reid Spencer266e42b2006-12-23 06:05:41 +00006094 return new ICmpInst(I.getPredicate(), OtherVal,
6095 Constant::getNullValue(A->getType()));
Chris Lattner17c7c032007-01-05 03:04:57 +00006096 }
6097 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006098 // (A-B) == A -> B == 0
Reid Spencer266e42b2006-12-23 06:05:41 +00006099 return new ICmpInst(I.getPredicate(), B,
6100 Constant::getNullValue(B->getType()));
Chris Lattner17c7c032007-01-05 03:04:57 +00006101 }
6102 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006103 // A == (A-B) -> B == 0
Reid Spencer266e42b2006-12-23 06:05:41 +00006104 return new ICmpInst(I.getPredicate(), B,
6105 Constant::getNullValue(B->getType()));
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006106 }
Chris Lattnerd12a4bf2006-11-14 06:06:06 +00006107
Chris Lattnerd12a4bf2006-11-14 06:06:06 +00006108 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6109 if (Op0->hasOneUse() && Op1->hasOneUse() &&
6110 match(Op0, m_And(m_Value(A), m_Value(B))) &&
6111 match(Op1, m_And(m_Value(C), m_Value(D)))) {
6112 Value *X = 0, *Y = 0, *Z = 0;
6113
6114 if (A == C) {
6115 X = B; Y = D; Z = A;
6116 } else if (A == D) {
6117 X = B; Y = C; Z = A;
6118 } else if (B == C) {
6119 X = A; Y = D; Z = B;
6120 } else if (B == D) {
6121 X = A; Y = C; Z = B;
6122 }
6123
6124 if (X) { // Build (X^Y) & Z
6125 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
6126 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
6127 I.setOperand(0, Op1);
6128 I.setOperand(1, Constant::getNullValue(Op1->getType()));
6129 return &I;
6130 }
6131 }
Chris Lattnerf5c8a0b2006-02-27 01:44:11 +00006132 }
Chris Lattner113f4f42002-06-25 16:13:24 +00006133 return Changed ? &I : 0;
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006134}
6135
Reid Spencer266e42b2006-12-23 06:05:41 +00006136// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006137// We only handle extending casts so far.
6138//
Reid Spencer266e42b2006-12-23 06:05:41 +00006139Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
6140 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006141 Value *LHSCIOp = LHSCI->getOperand(0);
6142 const Type *SrcTy = LHSCIOp->getType();
Reid Spencer266e42b2006-12-23 06:05:41 +00006143 const Type *DestTy = LHSCI->getType();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006144 Value *RHSCIOp;
6145
Reid Spencer266e42b2006-12-23 06:05:41 +00006146 // We only handle extension cast instructions, so far. Enforce this.
6147 if (LHSCI->getOpcode() != Instruction::ZExt &&
6148 LHSCI->getOpcode() != Instruction::SExt)
Chris Lattner03f06f12005-01-17 03:20:02 +00006149 return 0;
6150
Reid Spencer266e42b2006-12-23 06:05:41 +00006151 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
6152 bool isSignedCmp = ICI.isSignedPredicate();
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006153
Reid Spencer266e42b2006-12-23 06:05:41 +00006154 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006155 // Not an extension from the same type?
6156 RHSCIOp = CI->getOperand(0);
Reid Spencer266e42b2006-12-23 06:05:41 +00006157 if (RHSCIOp->getType() != LHSCIOp->getType())
6158 return 0;
Chris Lattner387bf3f2007-01-13 23:11:38 +00006159
6160 // If the signedness of the two compares doesn't agree (i.e. one is a sext
6161 // and the other is a zext), then we can't handle this.
6162 if (CI->getOpcode() != LHSCI->getOpcode())
6163 return 0;
6164
6165 // Likewise, if the signedness of the [sz]exts and the compare don't match,
6166 // then we can't handle this.
6167 if (isSignedExt != isSignedCmp && !ICI.isEquality())
6168 return 0;
6169
6170 // Okay, just insert a compare of the reduced operands now!
6171 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
Reid Spencer279fa252004-11-28 21:31:15 +00006172 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006173
Reid Spencer266e42b2006-12-23 06:05:41 +00006174 // If we aren't dealing with a constant on the RHS, exit early
6175 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
6176 if (!CI)
6177 return 0;
6178
6179 // Compute the constant that would happen if we truncated to SrcTy then
6180 // reextended to DestTy.
6181 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
6182 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
6183
6184 // If the re-extended constant didn't change...
6185 if (Res2 == CI) {
6186 // Make sure that sign of the Cmp and the sign of the Cast are the same.
6187 // For example, we might have:
6188 // %A = sext short %X to uint
6189 // %B = icmp ugt uint %A, 1330
6190 // It is incorrect to transform this into
6191 // %B = icmp ugt short %X, 1330
6192 // because %A may have negative value.
6193 //
6194 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
6195 // OR operation is EQ/NE.
Reid Spencer542964f2007-01-11 18:21:29 +00006196 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
Reid Spencer266e42b2006-12-23 06:05:41 +00006197 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
6198 else
6199 return 0;
6200 }
6201
6202 // The re-extended constant changed so the constant cannot be represented
6203 // in the shorter type. Consequently, we cannot emit a simple comparison.
6204
6205 // First, handle some easy cases. We know the result cannot be equal at this
6206 // point so handle the ICI.isEquality() cases
6207 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006208 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
Reid Spencer266e42b2006-12-23 06:05:41 +00006209 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006210 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
Reid Spencer266e42b2006-12-23 06:05:41 +00006211
6212 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
6213 // should have been folded away previously and not enter in here.
6214 Value *Result;
6215 if (isSignedCmp) {
6216 // We're performing a signed comparison.
6217 if (cast<ConstantInt>(CI)->getSExtValue() < 0)
Zhou Sheng75b871f2007-01-11 12:24:14 +00006218 Result = ConstantInt::getFalse(); // X < (small) --> false
Reid Spencer266e42b2006-12-23 06:05:41 +00006219 else
Zhou Sheng75b871f2007-01-11 12:24:14 +00006220 Result = ConstantInt::getTrue(); // X < (large) --> true
Reid Spencer266e42b2006-12-23 06:05:41 +00006221 } else {
6222 // We're performing an unsigned comparison.
6223 if (isSignedExt) {
6224 // We're performing an unsigned comp with a sign extended value.
6225 // This is true if the input is >= 0. [aka >s -1]
Zhou Sheng75b871f2007-01-11 12:24:14 +00006226 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
Reid Spencer266e42b2006-12-23 06:05:41 +00006227 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
6228 NegOne, ICI.getName()), ICI);
6229 } else {
6230 // Unsigned extend & unsigned compare -> always true.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006231 Result = ConstantInt::getTrue();
Reid Spencer266e42b2006-12-23 06:05:41 +00006232 }
6233 }
6234
6235 // Finally, return the value computed.
6236 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
6237 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
6238 return ReplaceInstUsesWith(ICI, Result);
6239 } else {
6240 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
6241 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
6242 "ICmp should be folded!");
6243 if (Constant *CI = dyn_cast<Constant>(Result))
6244 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
6245 else
6246 return BinaryOperator::createNot(Result);
6247 }
Chris Lattnerd1f46d32005-04-24 06:59:08 +00006248}
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006249
Reid Spencer2341c222007-02-02 02:16:23 +00006250Instruction *InstCombiner::visitShl(BinaryOperator &I) {
6251 return commonShiftTransforms(I);
6252}
6253
6254Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
6255 return commonShiftTransforms(I);
6256}
6257
6258Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
6259 return commonShiftTransforms(I);
6260}
6261
6262Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
6263 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Chris Lattner113f4f42002-06-25 16:13:24 +00006264 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006265
6266 // shl X, 0 == X and shr X, 0 == X
6267 // shl 0, X == 0 and shr 0, X == 0
Reid Spencer2341c222007-02-02 02:16:23 +00006268 if (Op1 == Constant::getNullValue(Op1->getType()) ||
Chris Lattnere6794492002-08-12 21:17:25 +00006269 Op0 == Constant::getNullValue(Op0->getType()))
6270 return ReplaceInstUsesWith(I, Op0);
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006271
Reid Spencer266e42b2006-12-23 06:05:41 +00006272 if (isa<UndefValue>(Op0)) {
6273 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
Chris Lattner67f05452004-10-16 23:28:04 +00006274 return ReplaceInstUsesWith(I, Op0);
Reid Spencer266e42b2006-12-23 06:05:41 +00006275 else // undef << X -> 0, undef >>u X -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00006276 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
6277 }
6278 if (isa<UndefValue>(Op1)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006279 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
6280 return ReplaceInstUsesWith(I, Op0);
6281 else // X << undef, X >>u undef -> 0
Chris Lattner81a7a232004-10-16 18:11:37 +00006282 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner81a7a232004-10-16 18:11:37 +00006283 }
6284
Chris Lattnerd4dee402006-11-10 23:38:52 +00006285 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
6286 if (I.getOpcode() == Instruction::AShr)
Reid Spencere0fc4df2006-10-20 07:07:24 +00006287 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
Chris Lattnerd4dee402006-11-10 23:38:52 +00006288 if (CSI->isAllOnesValue())
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006289 return ReplaceInstUsesWith(I, CSI);
6290
Chris Lattner183b3362004-04-09 19:05:30 +00006291 // Try to fold constant and into select arguments.
6292 if (isa<Constant>(Op0))
6293 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner86102b82005-01-01 16:22:27 +00006294 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner183b3362004-04-09 19:05:30 +00006295 return R;
6296
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00006297 // See if we can turn a signed shr into an unsigned shr.
Chris Lattnerb3f24c92006-09-18 04:22:48 +00006298 if (I.isArithmeticShift()) {
Chris Lattnerc3ebf402006-02-07 07:27:52 +00006299 if (MaskedValueIsZero(Op0,
6300 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006301 return BinaryOperator::createLShr(Op0, Op1, I.getName());
Chris Lattnerb18dbbf2005-05-08 17:34:56 +00006302 }
6303 }
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00006304
Reid Spencere0fc4df2006-10-20 07:07:24 +00006305 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
Reid Spencerc635f472006-12-31 05:48:39 +00006306 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
6307 return Res;
Chris Lattner14553932006-01-06 07:12:35 +00006308 return 0;
6309}
6310
Reid Spencere0fc4df2006-10-20 07:07:24 +00006311Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
Reid Spencer2341c222007-02-02 02:16:23 +00006312 BinaryOperator &I) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006313 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner14553932006-01-06 07:12:35 +00006314
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006315 // See if we can simplify any instructions used by the instruction whose sole
6316 // purpose is to compute bits we don't care about.
6317 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00006318 if (SimplifyDemandedBits(&I, cast<IntegerType>(I.getType())->getBitMask(),
Chris Lattnerf5b4ef72006-02-12 08:07:37 +00006319 KnownZero, KnownOne))
6320 return &I;
6321
Chris Lattner14553932006-01-06 07:12:35 +00006322 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
6323 // of a signed value.
6324 //
6325 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00006326 if (Op1->getZExtValue() >= TypeBits) {
Chris Lattnerd5fea612007-02-02 05:29:55 +00006327 if (I.getOpcode() != Instruction::AShr)
Chris Lattner14553932006-01-06 07:12:35 +00006328 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
6329 else {
Chris Lattnerd5fea612007-02-02 05:29:55 +00006330 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
Chris Lattner14553932006-01-06 07:12:35 +00006331 return &I;
Chris Lattnerf5ce2542004-02-23 20:30:06 +00006332 }
Chris Lattner14553932006-01-06 07:12:35 +00006333 }
6334
6335 // ((X*C1) << C2) == (X * (C1 << C2))
6336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
6337 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
6338 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
6339 return BinaryOperator::createMul(BO->getOperand(0),
6340 ConstantExpr::getShl(BOOp, Op1));
6341
6342 // Try to fold constant and into select arguments.
6343 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
6344 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
6345 return R;
6346 if (isa<PHINode>(Op0))
6347 if (Instruction *NV = FoldOpIntoPhi(I))
6348 return NV;
6349
6350 if (Op0->hasOneUse()) {
Chris Lattner14553932006-01-06 07:12:35 +00006351 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6352 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6353 Value *V1, *V2;
6354 ConstantInt *CC;
6355 switch (Op0BO->getOpcode()) {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006356 default: break;
6357 case Instruction::Add:
6358 case Instruction::And:
6359 case Instruction::Or:
Reid Spencer2f34b982007-02-02 14:41:37 +00006360 case Instruction::Xor: {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006361 // These operators commute.
6362 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006363 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6364 match(Op0BO->getOperand(1),
Chris Lattner14553932006-01-06 07:12:35 +00006365 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006366 Instruction *YS = BinaryOperator::createShl(
Chris Lattner14553932006-01-06 07:12:35 +00006367 Op0BO->getOperand(0), Op1,
Chris Lattner797dee72005-09-18 06:30:59 +00006368 Op0BO->getName());
6369 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006370 Instruction *X =
6371 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6372 Op0BO->getOperand(1)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006373 InsertNewInstBefore(X, I); // (X + (Y << C))
6374 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00006375 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00006376 return BinaryOperator::createAnd(X, C2);
6377 }
Chris Lattner14553932006-01-06 07:12:35 +00006378
Chris Lattner797dee72005-09-18 06:30:59 +00006379 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
Reid Spencer2f34b982007-02-02 14:41:37 +00006380 Value *Op0BOOp1 = Op0BO->getOperand(1);
Chris Lattnerfe53cf22007-03-05 00:11:19 +00006381 if (isLeftShift && Op0BOOp1->hasOneUse() &&
Reid Spencer2f34b982007-02-02 14:41:37 +00006382 match(Op0BOOp1,
6383 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
Chris Lattnerfe53cf22007-03-05 00:11:19 +00006384 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6385 V2 == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006386 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006387 Op0BO->getOperand(0), Op1,
6388 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006389 InsertNewInstBefore(YS, I); // (Y << C)
6390 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00006391 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00006392 V1->getName()+".mask");
6393 InsertNewInstBefore(XM, I); // X & (CC << C)
6394
6395 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6396 }
Reid Spencer2f34b982007-02-02 14:41:37 +00006397 }
Chris Lattner14553932006-01-06 07:12:35 +00006398
Reid Spencer2f34b982007-02-02 14:41:37 +00006399 // FALL THROUGH.
6400 case Instruction::Sub: {
Chris Lattner27cb9db2005-09-18 05:12:10 +00006401 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006402 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6403 match(Op0BO->getOperand(0),
Chris Lattner14553932006-01-06 07:12:35 +00006404 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006405 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006406 Op0BO->getOperand(1), Op1,
6407 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006408 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006409 Instruction *X =
Chris Lattner1df0e982006-05-31 21:14:00 +00006410 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006411 Op0BO->getOperand(0)->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006412 InsertNewInstBefore(X, I); // (X + (Y << C))
6413 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner14553932006-01-06 07:12:35 +00006414 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner797dee72005-09-18 06:30:59 +00006415 return BinaryOperator::createAnd(X, C2);
6416 }
Chris Lattner14553932006-01-06 07:12:35 +00006417
Chris Lattner1df0e982006-05-31 21:14:00 +00006418 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
Chris Lattner797dee72005-09-18 06:30:59 +00006419 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6420 match(Op0BO->getOperand(0),
6421 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner14553932006-01-06 07:12:35 +00006422 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner24cd2fa2006-02-09 07:41:14 +00006423 cast<BinaryOperator>(Op0BO->getOperand(0))
6424 ->getOperand(0)->hasOneUse()) {
Reid Spencer0d5f9232007-02-02 14:08:20 +00006425 Instruction *YS = BinaryOperator::createShl(
Reid Spencer2341c222007-02-02 02:16:23 +00006426 Op0BO->getOperand(1), Op1,
6427 Op0BO->getName());
Chris Lattner797dee72005-09-18 06:30:59 +00006428 InsertNewInstBefore(YS, I); // (Y << C)
6429 Instruction *XM =
Chris Lattner14553932006-01-06 07:12:35 +00006430 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner797dee72005-09-18 06:30:59 +00006431 V1->getName()+".mask");
6432 InsertNewInstBefore(XM, I); // X & (CC << C)
6433
Chris Lattner1df0e982006-05-31 21:14:00 +00006434 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
Chris Lattner797dee72005-09-18 06:30:59 +00006435 }
Chris Lattner14553932006-01-06 07:12:35 +00006436
Chris Lattner27cb9db2005-09-18 05:12:10 +00006437 break;
Reid Spencer2f34b982007-02-02 14:41:37 +00006438 }
Chris Lattner14553932006-01-06 07:12:35 +00006439 }
6440
6441
6442 // If the operand is an bitwise operator with a constant RHS, and the
6443 // shift is the only use, we can pull it out of the shift.
6444 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6445 bool isValid = true; // Valid only for And, Or, Xor
6446 bool highBitSet = false; // Transform if high bit of constant set?
6447
6448 switch (Op0BO->getOpcode()) {
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006449 default: isValid = false; break; // Do not perform transform!
Chris Lattner44bd3922004-10-08 03:46:20 +00006450 case Instruction::Add:
6451 isValid = isLeftShift;
6452 break;
Chris Lattnerdeaa0dd2003-08-12 21:53:41 +00006453 case Instruction::Or:
6454 case Instruction::Xor:
6455 highBitSet = false;
6456 break;
6457 case Instruction::And:
6458 highBitSet = true;
6459 break;
Chris Lattner14553932006-01-06 07:12:35 +00006460 }
6461
6462 // If this is a signed shift right, and the high bit is modified
6463 // by the logical operation, do not perform the transformation.
6464 // The highBitSet boolean indicates the value of the high bit of
6465 // the constant which would cause it to be modified for this
6466 // operation.
6467 //
Chris Lattner3e009e82007-02-05 00:57:54 +00006468 if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006469 uint64_t Val = Op0C->getZExtValue();
Chris Lattner14553932006-01-06 07:12:35 +00006470 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
6471 }
6472
6473 if (isValid) {
6474 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6475
6476 Instruction *NewShift =
Chris Lattner6e0123b2007-02-11 01:23:03 +00006477 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
Chris Lattner14553932006-01-06 07:12:35 +00006478 InsertNewInstBefore(NewShift, I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00006479 NewShift->takeName(Op0BO);
Chris Lattner14553932006-01-06 07:12:35 +00006480
6481 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6482 NewRHS);
6483 }
6484 }
6485 }
6486 }
6487
Chris Lattnereb372a02006-01-06 07:52:12 +00006488 // Find out if this is a shift of a shift by a constant.
Reid Spencer2341c222007-02-02 02:16:23 +00006489 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6490 if (ShiftOp && !ShiftOp->isShift())
6491 ShiftOp = 0;
Chris Lattnereb372a02006-01-06 07:52:12 +00006492
Reid Spencere0fc4df2006-10-20 07:07:24 +00006493 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006494 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
Reid Spencere0fc4df2006-10-20 07:07:24 +00006495 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getZExtValue();
6496 unsigned ShiftAmt2 = (unsigned)Op1->getZExtValue();
Chris Lattner3e009e82007-02-05 00:57:54 +00006497 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6498 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6499 Value *X = ShiftOp->getOperand(0);
Chris Lattnereb372a02006-01-06 07:52:12 +00006500
Chris Lattner3e009e82007-02-05 00:57:54 +00006501 unsigned AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6502 if (AmtSum > I.getType()->getPrimitiveSizeInBits())
6503 AmtSum = I.getType()->getPrimitiveSizeInBits();
6504
6505 const IntegerType *Ty = cast<IntegerType>(I.getType());
6506
6507 // Check for (X << c1) << c2 and (X >> c1) >> c2
Chris Lattner6c344e52007-02-03 23:28:07 +00006508 if (I.getOpcode() == ShiftOp->getOpcode()) {
Chris Lattner3e009e82007-02-05 00:57:54 +00006509 return BinaryOperator::create(I.getOpcode(), X,
6510 ConstantInt::get(Ty, AmtSum));
6511 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6512 I.getOpcode() == Instruction::AShr) {
6513 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6514 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6515 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6516 I.getOpcode() == Instruction::LShr) {
6517 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6518 Instruction *Shift =
6519 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6520 InsertNewInstBefore(Shift, I);
6521
6522 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
6523 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattnereb372a02006-01-06 07:52:12 +00006524 }
6525
Chris Lattner3e009e82007-02-05 00:57:54 +00006526 // Okay, if we get here, one shift must be left, and the other shift must be
6527 // right. See if the amounts are equal.
6528 if (ShiftAmt1 == ShiftAmt2) {
6529 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6530 if (I.getOpcode() == Instruction::Shl) {
Chris Lattner0a28e902007-02-05 04:09:35 +00006531 uint64_t Mask = Ty->getBitMask() << ShiftAmt1;
Chris Lattner3e009e82007-02-05 00:57:54 +00006532 return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
6533 }
6534 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6535 if (I.getOpcode() == Instruction::LShr) {
Chris Lattner0a28e902007-02-05 04:09:35 +00006536 uint64_t Mask = Ty->getBitMask() >> ShiftAmt1;
Chris Lattner3e009e82007-02-05 00:57:54 +00006537 return BinaryOperator::createAnd(X, ConstantInt::get(Ty, Mask));
6538 }
6539 // We can simplify ((X << C) >>s C) into a trunc + sext.
6540 // NOTE: we could do this for any C, but that would make 'unusual' integer
6541 // types. For now, just stick to ones well-supported by the code
6542 // generators.
6543 const Type *SExtType = 0;
6544 switch (Ty->getBitWidth() - ShiftAmt1) {
6545 case 8 : SExtType = Type::Int8Ty; break;
6546 case 16: SExtType = Type::Int16Ty; break;
6547 case 32: SExtType = Type::Int32Ty; break;
6548 default: break;
6549 }
6550 if (SExtType) {
6551 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6552 InsertNewInstBefore(NewTrunc, I);
6553 return new SExtInst(NewTrunc, Ty);
6554 }
6555 // Otherwise, we can't handle it yet.
6556 } else if (ShiftAmt1 < ShiftAmt2) {
6557 unsigned ShiftDiff = ShiftAmt2-ShiftAmt1;
Chris Lattnereb372a02006-01-06 07:52:12 +00006558
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006559 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006560 if (I.getOpcode() == Instruction::Shl) {
6561 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6562 ShiftOp->getOpcode() == Instruction::AShr);
Chris Lattner9cbfbc22006-01-07 01:32:28 +00006563 Instruction *Shift =
Chris Lattner3e009e82007-02-05 00:57:54 +00006564 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
Chris Lattner9cbfbc22006-01-07 01:32:28 +00006565 InsertNewInstBefore(Shift, I);
6566
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006567 uint64_t Mask = Ty->getBitMask() << ShiftAmt2;
Chris Lattner3e009e82007-02-05 00:57:54 +00006568 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattnereb372a02006-01-06 07:52:12 +00006569 }
Chris Lattner3e009e82007-02-05 00:57:54 +00006570
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006571 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006572 if (I.getOpcode() == Instruction::LShr) {
6573 assert(ShiftOp->getOpcode() == Instruction::Shl);
6574 Instruction *Shift =
6575 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6576 InsertNewInstBefore(Shift, I);
Chris Lattnereb372a02006-01-06 07:52:12 +00006577
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006578 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
Chris Lattner3e009e82007-02-05 00:57:54 +00006579 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
Chris Lattner27cb9db2005-09-18 05:12:10 +00006580 }
Chris Lattner3e009e82007-02-05 00:57:54 +00006581
6582 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6583 } else {
6584 assert(ShiftAmt2 < ShiftAmt1);
6585 unsigned ShiftDiff = ShiftAmt1-ShiftAmt2;
6586
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006587 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006588 if (I.getOpcode() == Instruction::Shl) {
6589 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6590 ShiftOp->getOpcode() == Instruction::AShr);
6591 Instruction *Shift =
6592 BinaryOperator::create(ShiftOp->getOpcode(), X,
6593 ConstantInt::get(Ty, ShiftDiff));
6594 InsertNewInstBefore(Shift, I);
6595
6596 uint64_t Mask = Ty->getBitMask() << ShiftAmt2;
6597 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
6598 }
6599
Chris Lattner83ac5ae92007-02-05 05:57:49 +00006600 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
Chris Lattner3e009e82007-02-05 00:57:54 +00006601 if (I.getOpcode() == Instruction::LShr) {
6602 assert(ShiftOp->getOpcode() == Instruction::Shl);
6603 Instruction *Shift =
6604 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6605 InsertNewInstBefore(Shift, I);
6606
6607 uint64_t Mask = Ty->getBitMask() >> ShiftAmt2;
6608 return BinaryOperator::createAnd(Shift, ConstantInt::get(Ty, Mask));
6609 }
6610
6611 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
Chris Lattner86102b82005-01-01 16:22:27 +00006612 }
Chris Lattnereb372a02006-01-06 07:52:12 +00006613 }
Chris Lattnerf4cdbf32002-05-06 16:14:14 +00006614 return 0;
6615}
6616
Chris Lattner48a44f72002-05-02 17:06:02 +00006617
Chris Lattner8f663e82005-10-29 04:36:15 +00006618/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6619/// expression. If so, decompose it, returning some value X, such that Val is
6620/// X*Scale+Offset.
6621///
6622static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6623 unsigned &Offset) {
Reid Spencerc635f472006-12-31 05:48:39 +00006624 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
Reid Spencere0fc4df2006-10-20 07:07:24 +00006625 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Reid Spencerc635f472006-12-31 05:48:39 +00006626 Offset = CI->getZExtValue();
6627 Scale = 1;
6628 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattner8f663e82005-10-29 04:36:15 +00006629 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
6630 if (I->getNumOperands() == 2) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006631 if (ConstantInt *CUI = dyn_cast<ConstantInt>(I->getOperand(1))) {
Reid Spencerc635f472006-12-31 05:48:39 +00006632 if (I->getOpcode() == Instruction::Shl) {
6633 // This is a value scaled by '1 << the shift amt'.
6634 Scale = 1U << CUI->getZExtValue();
6635 Offset = 0;
6636 return I->getOperand(0);
6637 } else if (I->getOpcode() == Instruction::Mul) {
6638 // This value is scaled by 'CUI'.
6639 Scale = CUI->getZExtValue();
6640 Offset = 0;
6641 return I->getOperand(0);
6642 } else if (I->getOpcode() == Instruction::Add) {
6643 // We have X+C. Check to see if we really have (X*C2)+C1,
6644 // where C1 is divisible by C2.
6645 unsigned SubScale;
6646 Value *SubVal =
6647 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6648 Offset += CUI->getZExtValue();
6649 if (SubScale > 1 && (Offset % SubScale == 0)) {
6650 Scale = SubScale;
6651 return SubVal;
Chris Lattner8f663e82005-10-29 04:36:15 +00006652 }
6653 }
6654 }
6655 }
6656 }
6657
6658 // Otherwise, we can't look past this.
6659 Scale = 1;
6660 Offset = 0;
6661 return Val;
6662}
6663
6664
Chris Lattner216be912005-10-24 06:03:58 +00006665/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6666/// try to eliminate the cast by moving the type information into the alloc.
6667Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
6668 AllocationInst &AI) {
6669 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattnerbb171802005-10-27 05:53:56 +00006670 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattner216be912005-10-24 06:03:58 +00006671
Chris Lattnerac87beb2005-10-24 06:22:12 +00006672 // Remove any uses of AI that are dead.
6673 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
Chris Lattner99c6cf62007-02-15 22:52:10 +00006674
Chris Lattnerac87beb2005-10-24 06:22:12 +00006675 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6676 Instruction *User = cast<Instruction>(*UI++);
6677 if (isInstructionTriviallyDead(User)) {
6678 while (UI != E && *UI == User)
6679 ++UI; // If this instruction uses AI more than once, don't break UI.
6680
Chris Lattnerac87beb2005-10-24 06:22:12 +00006681 ++NumDeadInst;
Bill Wendling5dbf43c2006-11-26 09:46:52 +00006682 DOUT << "IC: DCE: " << *User;
Chris Lattner51f54572007-03-02 19:59:19 +00006683 EraseInstFromFunction(*User);
Chris Lattnerac87beb2005-10-24 06:22:12 +00006684 }
6685 }
6686
Chris Lattner216be912005-10-24 06:03:58 +00006687 // Get the type really allocated and the type casted to.
6688 const Type *AllocElTy = AI.getAllocatedType();
6689 const Type *CastElTy = PTy->getElementType();
6690 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00006691
Chris Lattner945e4372007-02-14 05:52:17 +00006692 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6693 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
Chris Lattner355ecc02005-10-24 06:26:18 +00006694 if (CastElTyAlign < AllocElTyAlign) return 0;
6695
Chris Lattner46705b22005-10-24 06:35:18 +00006696 // If the allocation has multiple uses, only promote it if we are strictly
6697 // increasing the alignment of the resultant allocation. If we keep it the
6698 // same, we open the door to infinite loops of various kinds.
6699 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6700
Chris Lattner216be912005-10-24 06:03:58 +00006701 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
6702 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattnerbb171802005-10-27 05:53:56 +00006703 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner355ecc02005-10-24 06:26:18 +00006704
Chris Lattner8270c332005-10-29 03:19:53 +00006705 // See if we can satisfy the modulus by pulling a scale out of the array
6706 // size argument.
Chris Lattner8f663e82005-10-29 04:36:15 +00006707 unsigned ArraySizeScale, ArrayOffset;
6708 Value *NumElements = // See if the array size is a decomposable linear expr.
6709 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6710
Chris Lattner8270c332005-10-29 03:19:53 +00006711 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6712 // do the xform.
Chris Lattner8f663e82005-10-29 04:36:15 +00006713 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6714 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattnerb3ecf962005-10-27 06:12:00 +00006715
Chris Lattner8270c332005-10-29 03:19:53 +00006716 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6717 Value *Amt = 0;
6718 if (Scale == 1) {
6719 Amt = NumElements;
6720 } else {
Reid Spencere0fc4df2006-10-20 07:07:24 +00006721 // If the allocation size is constant, form a constant mul expression
Reid Spencerc635f472006-12-31 05:48:39 +00006722 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6723 if (isa<ConstantInt>(NumElements))
Reid Spencere0fc4df2006-10-20 07:07:24 +00006724 Amt = ConstantExpr::getMul(
6725 cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6726 // otherwise multiply the amount and the number of elements
Chris Lattner8270c332005-10-29 03:19:53 +00006727 else if (Scale != 1) {
6728 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6729 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattnerb3ecf962005-10-27 06:12:00 +00006730 }
Chris Lattnerbb171802005-10-27 05:53:56 +00006731 }
6732
Chris Lattner8f663e82005-10-29 04:36:15 +00006733 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Reid Spencerc635f472006-12-31 05:48:39 +00006734 Value *Off = ConstantInt::get(Type::Int32Ty, Offset);
Chris Lattner8f663e82005-10-29 04:36:15 +00006735 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6736 Amt = InsertNewInstBefore(Tmp, AI);
6737 }
6738
Chris Lattner216be912005-10-24 06:03:58 +00006739 AllocationInst *New;
6740 if (isa<MallocInst>(AI))
Chris Lattner6e0123b2007-02-11 01:23:03 +00006741 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
Chris Lattner216be912005-10-24 06:03:58 +00006742 else
Chris Lattner6e0123b2007-02-11 01:23:03 +00006743 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
Chris Lattner216be912005-10-24 06:03:58 +00006744 InsertNewInstBefore(New, AI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00006745 New->takeName(&AI);
Chris Lattner46705b22005-10-24 06:35:18 +00006746
6747 // If the allocation has multiple uses, insert a cast and change all things
6748 // that used it to use the new cast. This will also hack on CI, but it will
6749 // die soon.
6750 if (!AI.hasOneUse()) {
6751 AddUsesToWorkList(AI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006752 // New is the allocation instruction, pointer typed. AI is the original
6753 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6754 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
Chris Lattner46705b22005-10-24 06:35:18 +00006755 InsertNewInstBefore(NewCast, AI);
6756 AI.replaceAllUsesWith(NewCast);
6757 }
Chris Lattner216be912005-10-24 06:03:58 +00006758 return ReplaceInstUsesWith(CI, New);
6759}
6760
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006761/// CanEvaluateInDifferentType - Return true if we can take the specified value
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006762/// and return it as type Ty without inserting any new casts and without
6763/// changing the computed value. This is used by code that tries to decide
6764/// whether promoting or shrinking integer operations to wider or smaller types
6765/// will allow us to eliminate a truncate or extend.
6766///
6767/// This is a truncation operation if Ty is smaller than V->getType(), or an
6768/// extension operation if Ty is larger.
6769static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006770 int &NumCastsRemoved) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006771 // We can always evaluate constants in another type.
6772 if (isa<ConstantInt>(V))
6773 return true;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006774
6775 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006776 if (!I) return false;
6777
6778 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006779
6780 switch (I->getOpcode()) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006781 case Instruction::Add:
6782 case Instruction::Sub:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006783 case Instruction::And:
6784 case Instruction::Or:
6785 case Instruction::Xor:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006786 if (!I->hasOneUse()) return false;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006787 // These operators can all arbitrarily be extended or truncated.
6788 return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved) &&
6789 CanEvaluateInDifferentType(I->getOperand(1), Ty, NumCastsRemoved);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006790
Chris Lattner960acb02006-11-29 07:18:39 +00006791 case Instruction::Shl:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006792 if (!I->hasOneUse()) return false;
6793 // If we are truncating the result of this SHL, and if it's a shift of a
6794 // constant amount, we can always perform a SHL in a smaller type.
6795 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6796 if (Ty->getBitWidth() < OrigTy->getBitWidth() &&
6797 CI->getZExtValue() < Ty->getBitWidth())
6798 return CanEvaluateInDifferentType(I->getOperand(0), Ty,NumCastsRemoved);
6799 }
6800 break;
6801 case Instruction::LShr:
6802 if (!I->hasOneUse()) return false;
6803 // If this is a truncate of a logical shr, we can truncate it to a smaller
6804 // lshr iff we know that the bits we would otherwise be shifting in are
6805 // already zeros.
6806 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6807 if (Ty->getBitWidth() < OrigTy->getBitWidth() &&
6808 MaskedValueIsZero(I->getOperand(0),
6809 OrigTy->getBitMask() & ~Ty->getBitMask()) &&
6810 CI->getZExtValue() < Ty->getBitWidth()) {
6811 return CanEvaluateInDifferentType(I->getOperand(0), Ty, NumCastsRemoved);
6812 }
6813 }
Chris Lattner960acb02006-11-29 07:18:39 +00006814 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006815 case Instruction::Trunc:
6816 case Instruction::ZExt:
6817 case Instruction::SExt:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006818 // If this is a cast from the destination type, we can trivially eliminate
6819 // it, and this will remove a cast overall.
6820 if (I->getOperand(0)->getType() == Ty) {
Chris Lattner3fda3862006-06-28 17:34:50 +00006821 // If the first operand is itself a cast, and is eliminable, do not count
6822 // this as an eliminable cast. We would prefer to eliminate those two
6823 // casts first.
Reid Spencerde46e482006-11-02 20:25:50 +00006824 if (isa<CastInst>(I->getOperand(0)))
Chris Lattner3fda3862006-06-28 17:34:50 +00006825 return true;
6826
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006827 ++NumCastsRemoved;
6828 return true;
6829 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006830 break;
6831 default:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006832 // TODO: Can handle more cases here.
6833 break;
6834 }
6835
6836 return false;
6837}
6838
6839/// EvaluateInDifferentType - Given an expression that
6840/// CanEvaluateInDifferentType returns true for, actually insert the code to
6841/// evaluate the expression.
Reid Spencer74a528b2006-12-13 18:21:21 +00006842Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006843 bool isSigned) {
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006844 if (Constant *C = dyn_cast<Constant>(V))
Reid Spencer74a528b2006-12-13 18:21:21 +00006845 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006846
6847 // Otherwise, it must be an instruction.
6848 Instruction *I = cast<Instruction>(V);
Chris Lattnerd0622b62006-05-20 23:14:03 +00006849 Instruction *Res = 0;
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006850 switch (I->getOpcode()) {
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006851 case Instruction::Add:
6852 case Instruction::Sub:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006853 case Instruction::And:
6854 case Instruction::Or:
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006855 case Instruction::Xor:
Chris Lattner960acb02006-11-29 07:18:39 +00006856 case Instruction::AShr:
6857 case Instruction::LShr:
6858 case Instruction::Shl: {
Reid Spencer74a528b2006-12-13 18:21:21 +00006859 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006860 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
6861 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
6862 LHS, RHS, I->getName());
Chris Lattner960acb02006-11-29 07:18:39 +00006863 break;
6864 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006865 case Instruction::Trunc:
6866 case Instruction::ZExt:
6867 case Instruction::SExt:
6868 case Instruction::BitCast:
6869 // If the source type of the cast is the type we're trying for then we can
6870 // just return the source. There's no need to insert it because its not new.
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006871 if (I->getOperand(0)->getType() == Ty)
6872 return I->getOperand(0);
6873
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006874 // Some other kind of cast, which shouldn't happen, so just ..
6875 // FALL THROUGH
6876 default:
Chris Lattner1ebbe6a2006-05-13 02:06:03 +00006877 // TODO: Can handle more cases here.
6878 assert(0 && "Unreachable!");
6879 break;
6880 }
6881
6882 return InsertNewInstBefore(Res, *I);
6883}
6884
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006885/// @brief Implement the transforms common to all CastInst visitors.
6886Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Chris Lattner55d4bda2003-06-23 21:59:52 +00006887 Value *Src = CI.getOperand(0);
6888
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006889 // Casting undef to anything results in undef so might as just replace it and
6890 // get rid of the cast.
Chris Lattner81a7a232004-10-16 18:11:37 +00006891 if (isa<UndefValue>(Src)) // cast undef -> undef
6892 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
6893
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006894 // Many cases of "cast of a cast" are eliminable. If its eliminable we just
6895 // eliminate it now.
Chris Lattner86102b82005-01-01 16:22:27 +00006896 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006897 if (Instruction::CastOps opc =
6898 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
6899 // The first cast (CSrc) is eliminable so we need to fix up or replace
6900 // the second cast (CI). CSrc will then have a good chance of being dead.
6901 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
Chris Lattner650b6da2002-08-02 20:00:25 +00006902 }
6903 }
Chris Lattner03841652004-05-25 04:29:21 +00006904
Chris Lattnerd0d51602003-06-21 23:12:02 +00006905 // If casting the result of a getelementptr instruction with no offset, turn
6906 // this into a cast of the original pointer!
6907 //
Chris Lattner55d4bda2003-06-23 21:59:52 +00006908 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattnerd0d51602003-06-21 23:12:02 +00006909 bool AllZeroOperands = true;
6910 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
6911 if (!isa<Constant>(GEP->getOperand(i)) ||
6912 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
6913 AllZeroOperands = false;
6914 break;
6915 }
6916 if (AllZeroOperands) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006917 // Changing the cast operand is usually not a good idea but it is safe
6918 // here because the pointer operand is being replaced with another
6919 // pointer operand so the opcode doesn't need to change.
Chris Lattnerd0d51602003-06-21 23:12:02 +00006920 CI.setOperand(0, GEP->getOperand(0));
6921 return &CI;
6922 }
6923 }
Chris Lattnerec45a4c2006-11-21 17:05:13 +00006924
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006925 // If we are casting a malloc or alloca to a pointer to a type of the same
6926 // size, rewrite the allocation instruction to allocate the "right" type.
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006927 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattner216be912005-10-24 06:03:58 +00006928 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
6929 return V;
Chris Lattnerf4ad1652003-11-02 05:57:39 +00006930
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006931 // If we are casting a select then fold the cast into the select
Chris Lattner86102b82005-01-01 16:22:27 +00006932 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
6933 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
6934 return NV;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006935
6936 // If we are casting a PHI then fold the cast into the PHI
Chris Lattner6a4adcd2004-09-29 05:07:12 +00006937 if (isa<PHINode>(Src))
6938 if (Instruction *NV = FoldOpIntoPhi(CI))
6939 return NV;
Chris Lattnerb19a5c62006-04-12 18:09:35 +00006940
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006941 return 0;
6942}
6943
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006944/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6945/// integer types. This function implements the common transforms for all those
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006946/// cases.
6947/// @brief Implement the transforms common to CastInst with integer operands
6948Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
6949 if (Instruction *Result = commonCastTransforms(CI))
6950 return Result;
6951
6952 Value *Src = CI.getOperand(0);
6953 const Type *SrcTy = Src->getType();
6954 const Type *DestTy = CI.getType();
6955 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
6956 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
6957
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006958 // See if we can simplify any instructions used by the LHS whose sole
6959 // purpose is to compute bits we don't care about.
6960 uint64_t KnownZero = 0, KnownOne = 0;
Reid Spencera94d3942007-01-19 21:13:56 +00006961 if (SimplifyDemandedBits(&CI, cast<IntegerType>(DestTy)->getBitMask(),
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006962 KnownZero, KnownOne))
6963 return &CI;
6964
6965 // If the source isn't an instruction or has more than one use then we
6966 // can't do anything more.
Reid Spencer266e42b2006-12-23 06:05:41 +00006967 Instruction *SrcI = dyn_cast<Instruction>(Src);
6968 if (!SrcI || !Src->hasOneUse())
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006969 return 0;
6970
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006971 // Attempt to propagate the cast into the instruction for int->int casts.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006972 int NumCastsRemoved = 0;
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006973 if (!isa<BitCastInst>(CI) &&
6974 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
6975 NumCastsRemoved)) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00006976 // If this cast is a truncate, evaluting in a different type always
6977 // eliminates the cast, so it is always a win. If this is a noop-cast
6978 // this just removes a noop cast which isn't pointful, but simplifies
6979 // the code. If this is a zero-extension, we need to do an AND to
6980 // maintain the clear top-part of the computation, so we require that
6981 // the input have eliminated at least one cast. If this is a sign
6982 // extension, we insert two new casts (to do the extension) so we
6983 // require that two casts have been eliminated.
Chris Lattnerda1d04a2007-03-03 05:27:34 +00006984 bool DoXForm;
6985 switch (CI.getOpcode()) {
6986 default:
6987 // All the others use floating point so we shouldn't actually
6988 // get here because of the check above.
6989 assert(0 && "Unknown cast type");
6990 case Instruction::Trunc:
6991 DoXForm = true;
6992 break;
6993 case Instruction::ZExt:
6994 DoXForm = NumCastsRemoved >= 1;
6995 break;
6996 case Instruction::SExt:
6997 DoXForm = NumCastsRemoved >= 2;
6998 break;
6999 case Instruction::BitCast:
7000 DoXForm = false;
7001 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007002 }
7003
7004 if (DoXForm) {
Reid Spencer74a528b2006-12-13 18:21:21 +00007005 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
7006 CI.getOpcode() == Instruction::SExt);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007007 assert(Res->getType() == DestTy);
7008 switch (CI.getOpcode()) {
7009 default: assert(0 && "Unknown cast type!");
7010 case Instruction::Trunc:
7011 case Instruction::BitCast:
7012 // Just replace this cast with the result.
7013 return ReplaceInstUsesWith(CI, Res);
7014 case Instruction::ZExt: {
7015 // We need to emit an AND to clear the high bits.
7016 assert(SrcBitSize < DestBitSize && "Not a zext?");
7017 Constant *C =
Reid Spencerc635f472006-12-31 05:48:39 +00007018 ConstantInt::get(Type::Int64Ty, (1ULL << SrcBitSize)-1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007019 if (DestBitSize < 64)
7020 C = ConstantExpr::getTrunc(C, DestTy);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007021 return BinaryOperator::createAnd(Res, C);
7022 }
7023 case Instruction::SExt:
7024 // We need to emit a cast to truncate, then a cast to sext.
7025 return CastInst::create(Instruction::SExt,
Reid Spencer13bc5d72006-12-12 09:18:51 +00007026 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
7027 CI), DestTy);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007028 }
7029 }
7030 }
7031
7032 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
7033 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
7034
7035 switch (SrcI->getOpcode()) {
7036 case Instruction::Add:
7037 case Instruction::Mul:
7038 case Instruction::And:
7039 case Instruction::Or:
7040 case Instruction::Xor:
7041 // If we are discarding information, or just changing the sign,
7042 // rewrite.
7043 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
7044 // Don't insert two casts if they cannot be eliminated. We allow
7045 // two casts to be inserted if the sizes are the same. This could
7046 // only be converting signedness, which is a noop.
7047 if (DestBitSize == SrcBitSize ||
Reid Spencer266e42b2006-12-23 06:05:41 +00007048 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
7049 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer2a499b02006-12-13 17:19:09 +00007050 Instruction::CastOps opcode = CI.getOpcode();
Reid Spencer13bc5d72006-12-12 09:18:51 +00007051 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
7052 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
7053 return BinaryOperator::create(
7054 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007055 }
7056 }
7057
7058 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
7059 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
7060 SrcI->getOpcode() == Instruction::Xor &&
Zhou Sheng75b871f2007-01-11 12:24:14 +00007061 Op1 == ConstantInt::getTrue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007062 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007063 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007064 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
7065 }
7066 break;
7067 case Instruction::SDiv:
7068 case Instruction::UDiv:
7069 case Instruction::SRem:
7070 case Instruction::URem:
7071 // If we are just changing the sign, rewrite.
7072 if (DestBitSize == SrcBitSize) {
7073 // Don't insert two casts if they cannot be eliminated. We allow
7074 // two casts to be inserted if the sizes are the same. This could
7075 // only be converting signedness, which is a noop.
Reid Spencer266e42b2006-12-23 06:05:41 +00007076 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
7077 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007078 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
7079 Op0, DestTy, SrcI);
7080 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
7081 Op1, DestTy, SrcI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007082 return BinaryOperator::create(
7083 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
7084 }
7085 }
7086 break;
7087
7088 case Instruction::Shl:
7089 // Allow changing the sign of the source operand. Do not allow
7090 // changing the size of the shift, UNLESS the shift amount is a
7091 // constant. We must not change variable sized shifts to a smaller
7092 // size, because it is undefined to shift more bits out than exist
7093 // in the value.
7094 if (DestBitSize == SrcBitSize ||
7095 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007096 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
7097 Instruction::BitCast : Instruction::Trunc);
7098 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
Reid Spencer2341c222007-02-02 02:16:23 +00007099 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
Reid Spencer0d5f9232007-02-02 14:08:20 +00007100 return BinaryOperator::createShl(Op0c, Op1c);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007101 }
7102 break;
7103 case Instruction::AShr:
7104 // If this is a signed shr, and if all bits shifted in are about to be
7105 // truncated off, turn it into an unsigned shr to allow greater
7106 // simplifications.
7107 if (DestBitSize < SrcBitSize &&
7108 isa<ConstantInt>(Op1)) {
7109 unsigned ShiftAmt = cast<ConstantInt>(Op1)->getZExtValue();
7110 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
7111 // Insert the new logical shift right.
Reid Spencer0d5f9232007-02-02 14:08:20 +00007112 return BinaryOperator::createLShr(Op0, Op1);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007113 }
7114 }
7115 break;
7116
Reid Spencer266e42b2006-12-23 06:05:41 +00007117 case Instruction::ICmp:
7118 // If we are just checking for a icmp eq of a single bit and casting it
7119 // to an integer, then shift the bit to the appropriate place and then
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007120 // cast to integer to avoid the comparison.
7121 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
7122 uint64_t Op1CV = Op1C->getZExtValue();
7123 // cast (X == 0) to int --> X^1 iff X has only the low bit set.
7124 // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
7125 // cast (X == 1) to int --> X iff X has only the low bit set.
7126 // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set.
7127 // cast (X != 0) to int --> X iff X has only the low bit set.
7128 // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set.
7129 // cast (X != 1) to int --> X^1 iff X has only the low bit set.
7130 // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
7131 if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
7132 // If Op1C some other power of two, convert:
7133 uint64_t KnownZero, KnownOne;
Reid Spencera94d3942007-01-19 21:13:56 +00007134 uint64_t TypeMask = Op1C->getType()->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007135 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
Reid Spencer266e42b2006-12-23 06:05:41 +00007136
7137 // This only works for EQ and NE
7138 ICmpInst::Predicate pred = cast<ICmpInst>(SrcI)->getPredicate();
7139 if (pred != ICmpInst::ICMP_NE && pred != ICmpInst::ICMP_EQ)
7140 break;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007141
7142 if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly 1 possible 1?
Reid Spencer266e42b2006-12-23 06:05:41 +00007143 bool isNE = pred == ICmpInst::ICMP_NE;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007144 if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
7145 // (X&4) == 2 --> false
7146 // (X&4) != 2 --> true
Reid Spencercddc9df2007-01-12 04:24:46 +00007147 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007148 Res = ConstantExpr::getZExt(Res, CI.getType());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007149 return ReplaceInstUsesWith(CI, Res);
7150 }
7151
7152 unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
7153 Value *In = Op0;
7154 if (ShiftAmt) {
7155 // Perform a logical shr by shiftamt.
7156 // Insert the shift to put the result in the low bit.
7157 In = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00007158 BinaryOperator::createLShr(In,
Reid Spencer2341c222007-02-02 02:16:23 +00007159 ConstantInt::get(In->getType(), ShiftAmt),
7160 In->getName()+".lobit"), CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007161 }
7162
Reid Spencer266e42b2006-12-23 06:05:41 +00007163 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007164 Constant *One = ConstantInt::get(In->getType(), 1);
7165 In = BinaryOperator::createXor(In, One, "tmp");
7166 InsertNewInstBefore(cast<Instruction>(In), CI);
7167 }
7168
7169 if (CI.getType() == In->getType())
7170 return ReplaceInstUsesWith(CI, In);
7171 else
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007172 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007173 }
7174 }
7175 }
7176 break;
7177 }
7178 return 0;
7179}
7180
7181Instruction *InstCombiner::visitTrunc(CastInst &CI) {
Chris Lattnerd747f012006-11-29 07:04:07 +00007182 if (Instruction *Result = commonIntCastTransforms(CI))
7183 return Result;
7184
7185 Value *Src = CI.getOperand(0);
7186 const Type *Ty = CI.getType();
7187 unsigned DestBitWidth = Ty->getPrimitiveSizeInBits();
7188
7189 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
7190 switch (SrcI->getOpcode()) {
7191 default: break;
7192 case Instruction::LShr:
7193 // We can shrink lshr to something smaller if we know the bits shifted in
7194 // are already zeros.
7195 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
7196 unsigned ShAmt = ShAmtV->getZExtValue();
7197
7198 // Get a mask for the bits shifting in.
7199 uint64_t Mask = (~0ULL >> (64-ShAmt)) << DestBitWidth;
Reid Spencer13bc5d72006-12-12 09:18:51 +00007200 Value* SrcIOp0 = SrcI->getOperand(0);
7201 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
Chris Lattnerd747f012006-11-29 07:04:07 +00007202 if (ShAmt >= DestBitWidth) // All zeros.
7203 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
7204
7205 // Okay, we can shrink this. Truncate the input, then return a new
7206 // shift.
Reid Spencer2341c222007-02-02 02:16:23 +00007207 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
7208 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
7209 Ty, CI);
Reid Spencer0d5f9232007-02-02 14:08:20 +00007210 return BinaryOperator::createLShr(V1, V2);
Chris Lattnerd747f012006-11-29 07:04:07 +00007211 }
Chris Lattnerc209b582006-12-05 01:26:29 +00007212 } else { // This is a variable shr.
7213
7214 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
7215 // more LLVM instructions, but allows '1 << Y' to be hoisted if
7216 // loop-invariant and CSE'd.
Reid Spencer542964f2007-01-11 18:21:29 +00007217 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
Chris Lattnerc209b582006-12-05 01:26:29 +00007218 Value *One = ConstantInt::get(SrcI->getType(), 1);
7219
Reid Spencer2341c222007-02-02 02:16:23 +00007220 Value *V = InsertNewInstBefore(
Reid Spencer0d5f9232007-02-02 14:08:20 +00007221 BinaryOperator::createShl(One, SrcI->getOperand(1),
Reid Spencer2341c222007-02-02 02:16:23 +00007222 "tmp"), CI);
Chris Lattnerc209b582006-12-05 01:26:29 +00007223 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
7224 SrcI->getOperand(0),
7225 "tmp"), CI);
7226 Value *Zero = Constant::getNullValue(V->getType());
Reid Spencer266e42b2006-12-23 06:05:41 +00007227 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
Chris Lattnerc209b582006-12-05 01:26:29 +00007228 }
Chris Lattnerd747f012006-11-29 07:04:07 +00007229 }
7230 break;
7231 }
7232 }
7233
7234 return 0;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007235}
7236
7237Instruction *InstCombiner::visitZExt(CastInst &CI) {
7238 // If one of the common conversion will work ..
7239 if (Instruction *Result = commonIntCastTransforms(CI))
7240 return Result;
7241
7242 Value *Src = CI.getOperand(0);
7243
7244 // If this is a cast of a cast
7245 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007246 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
7247 // types and if the sizes are just right we can convert this into a logical
7248 // 'and' which will be much cheaper than the pair of casts.
7249 if (isa<TruncInst>(CSrc)) {
7250 // Get the sizes of the types involved
7251 Value *A = CSrc->getOperand(0);
7252 unsigned SrcSize = A->getType()->getPrimitiveSizeInBits();
7253 unsigned MidSize = CSrc->getType()->getPrimitiveSizeInBits();
7254 unsigned DstSize = CI.getType()->getPrimitiveSizeInBits();
7255 // If we're actually extending zero bits and the trunc is a no-op
7256 if (MidSize < DstSize && SrcSize == DstSize) {
7257 // Replace both of the casts with an And of the type mask.
Reid Spencera94d3942007-01-19 21:13:56 +00007258 uint64_t AndValue = cast<IntegerType>(CSrc->getType())->getBitMask();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007259 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
7260 Instruction *And =
7261 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
7262 // Unfortunately, if the type changed, we need to cast it back.
7263 if (And->getType() != CI.getType()) {
7264 And->setName(CSrc->getName()+".mask");
7265 InsertNewInstBefore(And, CI);
Reid Spencerbb65ebf2006-12-12 23:36:14 +00007266 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007267 }
7268 return And;
7269 }
7270 }
7271 }
7272
7273 return 0;
7274}
7275
7276Instruction *InstCombiner::visitSExt(CastInst &CI) {
7277 return commonIntCastTransforms(CI);
7278}
7279
7280Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
7281 return commonCastTransforms(CI);
7282}
7283
7284Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7285 return commonCastTransforms(CI);
7286}
7287
7288Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007289 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007290}
7291
7292Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007293 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007294}
7295
7296Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7297 return commonCastTransforms(CI);
7298}
7299
7300Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7301 return commonCastTransforms(CI);
7302}
7303
7304Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
Reid Spencerad05ee92006-11-30 23:13:36 +00007305 return commonCastTransforms(CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007306}
7307
7308Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
7309 return commonCastTransforms(CI);
7310}
7311
7312Instruction *InstCombiner::visitBitCast(CastInst &CI) {
7313
7314 // If the operands are integer typed then apply the integer transforms,
7315 // otherwise just apply the common ones.
7316 Value *Src = CI.getOperand(0);
7317 const Type *SrcTy = Src->getType();
7318 const Type *DestTy = CI.getType();
7319
Chris Lattner03c49532007-01-15 02:27:26 +00007320 if (SrcTy->isInteger() && DestTy->isInteger()) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007321 if (Instruction *Result = commonIntCastTransforms(CI))
7322 return Result;
7323 } else {
7324 if (Instruction *Result = commonCastTransforms(CI))
7325 return Result;
7326 }
7327
7328
7329 // Get rid of casts from one type to the same type. These are useless and can
7330 // be replaced by the operand.
7331 if (DestTy == Src->getType())
7332 return ReplaceInstUsesWith(CI, Src);
7333
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007334 // If the source and destination are pointers, and this cast is equivalent to
7335 // a getelementptr X, 0, 0, 0... turn it into the appropriate getelementptr.
7336 // This can enhance SROA and other transforms that want type-safe pointers.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007337 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7338 if (const PointerType *SrcPTy = dyn_cast<PointerType>(SrcTy)) {
7339 const Type *DstElTy = DstPTy->getElementType();
7340 const Type *SrcElTy = SrcPTy->getElementType();
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007341
Reid Spencerc635f472006-12-31 05:48:39 +00007342 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007343 unsigned NumZeros = 0;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007344 while (SrcElTy != DstElTy &&
7345 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7346 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7347 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007348 ++NumZeros;
7349 }
Chris Lattner6a4adcd2004-09-29 05:07:12 +00007350
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007351 // If we found a path from the src to dest, create the getelementptr now.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007352 if (SrcElTy == DstElTy) {
Chris Lattner416a8932007-01-31 20:08:52 +00007353 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
7354 return new GetElementPtrInst(Src, &Idxs[0], Idxs.size());
Chris Lattnerb19a5c62006-04-12 18:09:35 +00007355 }
7356 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007357 }
Chris Lattnerdfae8be2003-07-24 17:35:25 +00007358
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007359 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7360 if (SVI->hasOneUse()) {
7361 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7362 // a bitconvert to a vector with the same # elts.
Reid Spencerd84d35b2007-02-15 02:26:10 +00007363 if (isa<VectorType>(DestTy) &&
7364 cast<VectorType>(DestTy)->getNumElements() ==
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007365 SVI->getType()->getNumElements()) {
7366 CastInst *Tmp;
7367 // If either of the operands is a cast from CI.getType(), then
7368 // evaluating the shuffle in the casted destination's type will allow
7369 // us to eliminate at least one cast.
7370 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7371 Tmp->getOperand(0)->getType() == DestTy) ||
7372 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7373 Tmp->getOperand(0)->getType() == DestTy)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007374 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7375 SVI->getOperand(0), DestTy, &CI);
7376 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7377 SVI->getOperand(1), DestTy, &CI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007378 // Return a new shuffle vector. Use the same element ID's, as we
7379 // know the vector types match #elts.
7380 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner99155be2006-05-25 23:24:33 +00007381 }
7382 }
7383 }
7384 }
Chris Lattner260ab202002-04-18 17:39:14 +00007385 return 0;
Chris Lattnerca081252001-12-14 16:52:21 +00007386}
7387
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007388/// GetSelectFoldableOperands - We want to turn code that looks like this:
7389/// %C = or %A, %B
7390/// %D = select %cond, %C, %A
7391/// into:
7392/// %C = select %cond, %B, 0
7393/// %D = or %A, %C
7394///
7395/// Assuming that the specified instruction is an operand to the select, return
7396/// a bitmask indicating which operands of this instruction are foldable if they
7397/// equal the other incoming value of the select.
7398///
7399static unsigned GetSelectFoldableOperands(Instruction *I) {
7400 switch (I->getOpcode()) {
7401 case Instruction::Add:
7402 case Instruction::Mul:
7403 case Instruction::And:
7404 case Instruction::Or:
7405 case Instruction::Xor:
7406 return 3; // Can fold through either operand.
7407 case Instruction::Sub: // Can only fold on the amount subtracted.
7408 case Instruction::Shl: // Can only fold on the shift amount.
Reid Spencerfdff9382006-11-08 06:47:33 +00007409 case Instruction::LShr:
7410 case Instruction::AShr:
Misha Brukmanb1c93172005-04-21 23:48:37 +00007411 return 1;
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007412 default:
7413 return 0; // Cannot fold
7414 }
7415}
7416
7417/// GetSelectFoldableConstant - For the same transformation as the previous
7418/// function, return the identity constant that goes into the select.
7419static Constant *GetSelectFoldableConstant(Instruction *I) {
7420 switch (I->getOpcode()) {
7421 default: assert(0 && "This cannot happen!"); abort();
7422 case Instruction::Add:
7423 case Instruction::Sub:
7424 case Instruction::Or:
7425 case Instruction::Xor:
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007426 case Instruction::Shl:
Reid Spencerfdff9382006-11-08 06:47:33 +00007427 case Instruction::LShr:
7428 case Instruction::AShr:
Reid Spencer2341c222007-02-02 02:16:23 +00007429 return Constant::getNullValue(I->getType());
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007430 case Instruction::And:
7431 return ConstantInt::getAllOnesValue(I->getType());
7432 case Instruction::Mul:
7433 return ConstantInt::get(I->getType(), 1);
7434 }
7435}
7436
Chris Lattner411336f2005-01-19 21:50:18 +00007437/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7438/// have the same opcode and only one use each. Try to simplify this.
7439Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7440 Instruction *FI) {
7441 if (TI->getNumOperands() == 1) {
7442 // If this is a non-volatile load or a cast from the same type,
7443 // merge.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007444 if (TI->isCast()) {
Chris Lattner411336f2005-01-19 21:50:18 +00007445 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7446 return 0;
7447 } else {
7448 return 0; // unknown unary op.
7449 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007450
Chris Lattner411336f2005-01-19 21:50:18 +00007451 // Fold this by inserting a select from the input values.
7452 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
7453 FI->getOperand(0), SI.getName()+".v");
7454 InsertNewInstBefore(NewSI, SI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007455 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7456 TI->getType());
Chris Lattner411336f2005-01-19 21:50:18 +00007457 }
7458
Reid Spencer2341c222007-02-02 02:16:23 +00007459 // Only handle binary operators here.
7460 if (!isa<BinaryOperator>(TI))
Chris Lattner411336f2005-01-19 21:50:18 +00007461 return 0;
7462
7463 // Figure out if the operations have any operands in common.
7464 Value *MatchOp, *OtherOpT, *OtherOpF;
7465 bool MatchIsOpZero;
7466 if (TI->getOperand(0) == FI->getOperand(0)) {
7467 MatchOp = TI->getOperand(0);
7468 OtherOpT = TI->getOperand(1);
7469 OtherOpF = FI->getOperand(1);
7470 MatchIsOpZero = true;
7471 } else if (TI->getOperand(1) == FI->getOperand(1)) {
7472 MatchOp = TI->getOperand(1);
7473 OtherOpT = TI->getOperand(0);
7474 OtherOpF = FI->getOperand(0);
7475 MatchIsOpZero = false;
7476 } else if (!TI->isCommutative()) {
7477 return 0;
7478 } else if (TI->getOperand(0) == FI->getOperand(1)) {
7479 MatchOp = TI->getOperand(0);
7480 OtherOpT = TI->getOperand(1);
7481 OtherOpF = FI->getOperand(0);
7482 MatchIsOpZero = true;
7483 } else if (TI->getOperand(1) == FI->getOperand(0)) {
7484 MatchOp = TI->getOperand(1);
7485 OtherOpT = TI->getOperand(0);
7486 OtherOpF = FI->getOperand(1);
7487 MatchIsOpZero = true;
7488 } else {
7489 return 0;
7490 }
7491
7492 // If we reach here, they do have operations in common.
7493 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
7494 OtherOpF, SI.getName()+".v");
7495 InsertNewInstBefore(NewSI, SI);
7496
7497 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
7498 if (MatchIsOpZero)
7499 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
7500 else
7501 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
Chris Lattner411336f2005-01-19 21:50:18 +00007502 }
Reid Spencer2f34b982007-02-02 14:41:37 +00007503 assert(0 && "Shouldn't get here");
7504 return 0;
Chris Lattner411336f2005-01-19 21:50:18 +00007505}
7506
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007507Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattner533bc492004-03-30 19:37:13 +00007508 Value *CondVal = SI.getCondition();
7509 Value *TrueVal = SI.getTrueValue();
7510 Value *FalseVal = SI.getFalseValue();
7511
7512 // select true, X, Y -> X
7513 // select false, X, Y -> Y
Zhou Sheng75b871f2007-01-11 12:24:14 +00007514 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
Reid Spencercddc9df2007-01-12 04:24:46 +00007515 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
Chris Lattner533bc492004-03-30 19:37:13 +00007516
7517 // select C, X, X -> X
7518 if (TrueVal == FalseVal)
7519 return ReplaceInstUsesWith(SI, TrueVal);
7520
Chris Lattner81a7a232004-10-16 18:11:37 +00007521 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
7522 return ReplaceInstUsesWith(SI, FalseVal);
7523 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
7524 return ReplaceInstUsesWith(SI, TrueVal);
7525 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
7526 if (isa<Constant>(TrueVal))
7527 return ReplaceInstUsesWith(SI, TrueVal);
7528 else
7529 return ReplaceInstUsesWith(SI, FalseVal);
7530 }
7531
Reid Spencer542964f2007-01-11 18:21:29 +00007532 if (SI.getType() == Type::Int1Ty) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +00007533 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007534 if (C->getZExtValue()) {
Chris Lattner1c631e82004-04-08 04:43:23 +00007535 // Change: A = select B, true, C --> A = or B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007536 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007537 } else {
7538 // Change: A = select B, false, C --> A = and !B, C
7539 Value *NotCond =
7540 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7541 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007542 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007543 }
Reid Spencer7a9c62b2007-01-12 07:05:14 +00007544 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007545 if (C->getZExtValue() == false) {
Chris Lattner1c631e82004-04-08 04:43:23 +00007546 // Change: A = select B, C, false --> A = and B, C
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007547 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007548 } else {
7549 // Change: A = select B, C, true --> A = or !B, C
7550 Value *NotCond =
7551 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7552 "not."+CondVal->getName()), SI);
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00007553 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner1c631e82004-04-08 04:43:23 +00007554 }
7555 }
Zhou Sheng75b871f2007-01-11 12:24:14 +00007556 }
Chris Lattner1c631e82004-04-08 04:43:23 +00007557
Chris Lattner183b3362004-04-09 19:05:30 +00007558 // Selecting between two integer constants?
7559 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
7560 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
7561 // select C, 1, 0 -> cast C to int
Reid Spencere0fc4df2006-10-20 07:07:24 +00007562 if (FalseValC->isNullValue() && TrueValC->getZExtValue() == 1) {
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007563 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
Reid Spencere0fc4df2006-10-20 07:07:24 +00007564 } else if (TrueValC->isNullValue() && FalseValC->getZExtValue() == 1) {
Chris Lattner183b3362004-04-09 19:05:30 +00007565 // select C, 0, 1 -> cast !C to int
7566 Value *NotCond =
7567 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattnercf7baf32004-04-09 18:19:44 +00007568 "not."+CondVal->getName()), SI);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007569 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
Chris Lattnercf7baf32004-04-09 18:19:44 +00007570 }
Chris Lattner35167c32004-06-09 07:59:58 +00007571
Reid Spencer266e42b2006-12-23 06:05:41 +00007572 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
Chris Lattner380c7e92006-09-20 04:44:59 +00007573
Reid Spencer266e42b2006-12-23 06:05:41 +00007574 // (x <s 0) ? -1 : 0 -> ashr x, 31
7575 // (x >u 2147483647) ? -1 : 0 -> ashr x, 31
Chris Lattner380c7e92006-09-20 04:44:59 +00007576 if (TrueValC->isAllOnesValue() && FalseValC->isNullValue())
7577 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
7578 bool CanXForm = false;
Reid Spencer266e42b2006-12-23 06:05:41 +00007579 if (IC->isSignedPredicate())
Chris Lattner380c7e92006-09-20 04:44:59 +00007580 CanXForm = CmpCst->isNullValue() &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007581 IC->getPredicate() == ICmpInst::ICMP_SLT;
Chris Lattner380c7e92006-09-20 04:44:59 +00007582 else {
7583 unsigned Bits = CmpCst->getType()->getPrimitiveSizeInBits();
Reid Spencere0fc4df2006-10-20 07:07:24 +00007584 CanXForm = (CmpCst->getZExtValue() == ~0ULL >> (64-Bits+1)) &&
Reid Spencer266e42b2006-12-23 06:05:41 +00007585 IC->getPredicate() == ICmpInst::ICMP_UGT;
Chris Lattner380c7e92006-09-20 04:44:59 +00007586 }
7587
7588 if (CanXForm) {
7589 // The comparison constant and the result are not neccessarily the
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007590 // same width. Make an all-ones value by inserting a AShr.
Chris Lattner380c7e92006-09-20 04:44:59 +00007591 Value *X = IC->getOperand(0);
Chris Lattner380c7e92006-09-20 04:44:59 +00007592 unsigned Bits = X->getType()->getPrimitiveSizeInBits();
Reid Spencer2341c222007-02-02 02:16:23 +00007593 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
7594 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
7595 ShAmt, "ones");
Chris Lattner380c7e92006-09-20 04:44:59 +00007596 InsertNewInstBefore(SRA, SI);
7597
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007598 // Finally, convert to the type of the select RHS. We figure out
7599 // if this requires a SExt, Trunc or BitCast based on the sizes.
7600 Instruction::CastOps opc = Instruction::BitCast;
7601 unsigned SRASize = SRA->getType()->getPrimitiveSizeInBits();
7602 unsigned SISize = SI.getType()->getPrimitiveSizeInBits();
7603 if (SRASize < SISize)
7604 opc = Instruction::SExt;
7605 else if (SRASize > SISize)
7606 opc = Instruction::Trunc;
7607 return CastInst::create(opc, SRA, SI.getType());
Chris Lattner380c7e92006-09-20 04:44:59 +00007608 }
7609 }
7610
7611
7612 // If one of the constants is zero (we know they can't both be) and we
Reid Spencer266e42b2006-12-23 06:05:41 +00007613 // have a fcmp instruction with zero, and we have an 'and' with the
Chris Lattner380c7e92006-09-20 04:44:59 +00007614 // non-constant value, eliminate this whole mess. This corresponds to
7615 // cases like this: ((X & 27) ? 27 : 0)
7616 if (TrueValC->isNullValue() || FalseValC->isNullValue())
Chris Lattnerb3f24c92006-09-18 04:22:48 +00007617 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
Chris Lattner35167c32004-06-09 07:59:58 +00007618 cast<Constant>(IC->getOperand(1))->isNullValue())
7619 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
7620 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00007621 isa<ConstantInt>(ICA->getOperand(1)) &&
7622 (ICA->getOperand(1) == TrueValC ||
7623 ICA->getOperand(1) == FalseValC) &&
Chris Lattner35167c32004-06-09 07:59:58 +00007624 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
7625 // Okay, now we know that everything is set up, we just don't
Reid Spencer266e42b2006-12-23 06:05:41 +00007626 // know whether we have a icmp_ne or icmp_eq and whether the
7627 // true or false val is the zero.
Chris Lattner35167c32004-06-09 07:59:58 +00007628 bool ShouldNotVal = !TrueValC->isNullValue();
Reid Spencer266e42b2006-12-23 06:05:41 +00007629 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
Chris Lattner35167c32004-06-09 07:59:58 +00007630 Value *V = ICA;
7631 if (ShouldNotVal)
7632 V = InsertNewInstBefore(BinaryOperator::create(
7633 Instruction::Xor, V, ICA->getOperand(1)), SI);
7634 return ReplaceInstUsesWith(SI, V);
7635 }
Chris Lattner380c7e92006-09-20 04:44:59 +00007636 }
Chris Lattner533bc492004-03-30 19:37:13 +00007637 }
Chris Lattner623fba12004-04-10 22:21:27 +00007638
7639 // See if we are selecting two values based on a comparison of the two values.
Reid Spencer266e42b2006-12-23 06:05:41 +00007640 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
7641 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
Chris Lattner623fba12004-04-10 22:21:27 +00007642 // Transform (X == Y) ? X : Y -> Y
Reid Spencer266e42b2006-12-23 06:05:41 +00007643 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
Chris Lattner623fba12004-04-10 22:21:27 +00007644 return ReplaceInstUsesWith(SI, FalseVal);
7645 // Transform (X != Y) ? X : Y -> X
Reid Spencer266e42b2006-12-23 06:05:41 +00007646 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
Chris Lattner623fba12004-04-10 22:21:27 +00007647 return ReplaceInstUsesWith(SI, TrueVal);
7648 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7649
Reid Spencer266e42b2006-12-23 06:05:41 +00007650 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
Chris Lattner623fba12004-04-10 22:21:27 +00007651 // Transform (X == Y) ? Y : X -> X
Reid Spencer266e42b2006-12-23 06:05:41 +00007652 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
Chris Lattner24cf0202004-04-11 01:39:19 +00007653 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner623fba12004-04-10 22:21:27 +00007654 // Transform (X != Y) ? Y : X -> Y
Reid Spencer266e42b2006-12-23 06:05:41 +00007655 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7656 return ReplaceInstUsesWith(SI, TrueVal);
7657 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7658 }
7659 }
7660
7661 // See if we are selecting two values based on a comparison of the two values.
7662 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
7663 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
7664 // Transform (X == Y) ? X : Y -> Y
7665 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7666 return ReplaceInstUsesWith(SI, FalseVal);
7667 // Transform (X != Y) ? X : Y -> X
7668 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7669 return ReplaceInstUsesWith(SI, TrueVal);
7670 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7671
7672 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
7673 // Transform (X == Y) ? Y : X -> X
7674 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7675 return ReplaceInstUsesWith(SI, FalseVal);
7676 // Transform (X != Y) ? Y : X -> Y
7677 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
Chris Lattner24cf0202004-04-11 01:39:19 +00007678 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner623fba12004-04-10 22:21:27 +00007679 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7680 }
7681 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007682
Chris Lattnera04c9042005-01-13 22:52:24 +00007683 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
7684 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
7685 if (TI->hasOneUse() && FI->hasOneUse()) {
Chris Lattnera04c9042005-01-13 22:52:24 +00007686 Instruction *AddOp = 0, *SubOp = 0;
7687
Chris Lattner411336f2005-01-19 21:50:18 +00007688 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7689 if (TI->getOpcode() == FI->getOpcode())
7690 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
7691 return IV;
7692
7693 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7694 // even legal for FP.
Chris Lattnera04c9042005-01-13 22:52:24 +00007695 if (TI->getOpcode() == Instruction::Sub &&
7696 FI->getOpcode() == Instruction::Add) {
7697 AddOp = FI; SubOp = TI;
7698 } else if (FI->getOpcode() == Instruction::Sub &&
7699 TI->getOpcode() == Instruction::Add) {
7700 AddOp = TI; SubOp = FI;
7701 }
7702
7703 if (AddOp) {
7704 Value *OtherAddOp = 0;
7705 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
7706 OtherAddOp = AddOp->getOperand(1);
7707 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
7708 OtherAddOp = AddOp->getOperand(0);
7709 }
7710
7711 if (OtherAddOp) {
Chris Lattnerb580d262006-02-24 18:05:58 +00007712 // So at this point we know we have (Y -> OtherAddOp):
7713 // select C, (add X, Y), (sub X, Z)
7714 Value *NegVal; // Compute -Z
7715 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
7716 NegVal = ConstantExpr::getNeg(C);
7717 } else {
7718 NegVal = InsertNewInstBefore(
7719 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattnera04c9042005-01-13 22:52:24 +00007720 }
Chris Lattnerb580d262006-02-24 18:05:58 +00007721
7722 Value *NewTrueOp = OtherAddOp;
7723 Value *NewFalseOp = NegVal;
7724 if (AddOp != TI)
7725 std::swap(NewTrueOp, NewFalseOp);
7726 Instruction *NewSel =
7727 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
7728
7729 NewSel = InsertNewInstBefore(NewSel, SI);
7730 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattnera04c9042005-01-13 22:52:24 +00007731 }
7732 }
7733 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00007734
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007735 // See if we can fold the select into one of our operands.
Chris Lattner03c49532007-01-15 02:27:26 +00007736 if (SI.getType()->isInteger()) {
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007737 // See the comment above GetSelectFoldableOperands for a description of the
7738 // transformation we are doing here.
7739 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
7740 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
7741 !isa<Constant>(FalseVal))
7742 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
7743 unsigned OpToFold = 0;
7744 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
7745 OpToFold = 1;
7746 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
7747 OpToFold = 2;
7748 }
7749
7750 if (OpToFold) {
7751 Constant *C = GetSelectFoldableConstant(TVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007752 Instruction *NewSel =
Chris Lattner6e0123b2007-02-11 01:23:03 +00007753 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007754 InsertNewInstBefore(NewSel, SI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00007755 NewSel->takeName(TVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007756 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
7757 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007758 else {
7759 assert(0 && "Unknown instruction!!");
7760 }
7761 }
7762 }
Chris Lattner6862fbd2004-09-29 17:40:11 +00007763
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007764 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
7765 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
7766 !isa<Constant>(TrueVal))
7767 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
7768 unsigned OpToFold = 0;
7769 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
7770 OpToFold = 1;
7771 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
7772 OpToFold = 2;
7773 }
7774
7775 if (OpToFold) {
7776 Constant *C = GetSelectFoldableConstant(FVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007777 Instruction *NewSel =
Chris Lattner6e0123b2007-02-11 01:23:03 +00007778 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007779 InsertNewInstBefore(NewSel, SI);
Chris Lattner6e0123b2007-02-11 01:23:03 +00007780 NewSel->takeName(FVI);
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007781 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
7782 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
Reid Spencer2341c222007-02-02 02:16:23 +00007783 else
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007784 assert(0 && "Unknown instruction!!");
Chris Lattner56e4d3d2004-04-09 23:46:01 +00007785 }
7786 }
7787 }
Chris Lattnerd6f636a2005-04-24 07:30:14 +00007788
7789 if (BinaryOperator::isNot(CondVal)) {
7790 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
7791 SI.setOperand(1, FalseVal);
7792 SI.setOperand(2, TrueVal);
7793 return &SI;
7794 }
7795
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007796 return 0;
7797}
7798
Chris Lattner82f2ef22006-03-06 20:18:44 +00007799/// GetKnownAlignment - If the specified pointer has an alignment that we can
7800/// determine, return it, otherwise return 0.
7801static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
7802 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
7803 unsigned Align = GV->getAlignment();
7804 if (Align == 0 && TD)
Chris Lattner945e4372007-02-14 05:52:17 +00007805 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
Chris Lattner82f2ef22006-03-06 20:18:44 +00007806 return Align;
7807 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
7808 unsigned Align = AI->getAlignment();
7809 if (Align == 0 && TD) {
7810 if (isa<AllocaInst>(AI))
Chris Lattner945e4372007-02-14 05:52:17 +00007811 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
Chris Lattner82f2ef22006-03-06 20:18:44 +00007812 else if (isa<MallocInst>(AI)) {
7813 // Malloc returns maximally aligned memory.
Chris Lattner945e4372007-02-14 05:52:17 +00007814 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner50ee0e42007-01-20 22:35:55 +00007815 Align =
7816 std::max(Align,
Chris Lattner945e4372007-02-14 05:52:17 +00007817 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
Chris Lattner50ee0e42007-01-20 22:35:55 +00007818 Align =
7819 std::max(Align,
Chris Lattner945e4372007-02-14 05:52:17 +00007820 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007821 }
7822 }
7823 return Align;
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007824 } else if (isa<BitCastInst>(V) ||
Chris Lattner53ef5a02006-03-07 01:28:57 +00007825 (isa<ConstantExpr>(V) &&
Reid Spencer6c38f0b2006-11-27 01:05:10 +00007826 cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
Chris Lattner53ef5a02006-03-07 01:28:57 +00007827 User *CI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00007828 if (isa<PointerType>(CI->getOperand(0)->getType()))
7829 return GetKnownAlignment(CI->getOperand(0), TD);
7830 return 0;
Chris Lattner53ef5a02006-03-07 01:28:57 +00007831 } else if (isa<GetElementPtrInst>(V) ||
7832 (isa<ConstantExpr>(V) &&
7833 cast<ConstantExpr>(V)->getOpcode()==Instruction::GetElementPtr)) {
7834 User *GEPI = cast<User>(V);
Chris Lattner82f2ef22006-03-06 20:18:44 +00007835 unsigned BaseAlignment = GetKnownAlignment(GEPI->getOperand(0), TD);
7836 if (BaseAlignment == 0) return 0;
7837
7838 // If all indexes are zero, it is just the alignment of the base pointer.
7839 bool AllZeroOperands = true;
7840 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
7841 if (!isa<Constant>(GEPI->getOperand(i)) ||
7842 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
7843 AllZeroOperands = false;
7844 break;
7845 }
7846 if (AllZeroOperands)
7847 return BaseAlignment;
7848
7849 // Otherwise, if the base alignment is >= the alignment we expect for the
7850 // base pointer type, then we know that the resultant pointer is aligned at
7851 // least as much as its type requires.
7852 if (!TD) return 0;
7853
7854 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
Chris Lattner50ee0e42007-01-20 22:35:55 +00007855 const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
Chris Lattner945e4372007-02-14 05:52:17 +00007856 if (TD->getABITypeAlignment(PtrTy->getElementType())
Chris Lattner53ef5a02006-03-07 01:28:57 +00007857 <= BaseAlignment) {
7858 const Type *GEPTy = GEPI->getType();
Chris Lattner50ee0e42007-01-20 22:35:55 +00007859 const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
Chris Lattner945e4372007-02-14 05:52:17 +00007860 return TD->getABITypeAlignment(GEPPtrTy->getElementType());
Chris Lattner53ef5a02006-03-07 01:28:57 +00007861 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00007862 return 0;
7863 }
7864 return 0;
7865}
7866
Chris Lattnerb909e8b2004-03-12 05:52:32 +00007867
Chris Lattnerc66b2232006-01-13 20:11:04 +00007868/// visitCallInst - CallInst simplification. This mostly only handles folding
7869/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7870/// the heavy lifting.
7871///
Chris Lattner970c33a2003-06-19 17:00:31 +00007872Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattnerc66b2232006-01-13 20:11:04 +00007873 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
7874 if (!II) return visitCallSite(&CI);
7875
Chris Lattner51ea1272004-02-28 05:22:00 +00007876 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7877 // visitCallSite.
Chris Lattnerc66b2232006-01-13 20:11:04 +00007878 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00007879 bool Changed = false;
7880
7881 // memmove/cpy/set of zero bytes is a noop.
7882 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
7883 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
7884
Chris Lattner00648e12004-10-12 04:52:52 +00007885 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
Reid Spencere0fc4df2006-10-20 07:07:24 +00007886 if (CI->getZExtValue() == 1) {
Chris Lattner00648e12004-10-12 04:52:52 +00007887 // Replace the instruction with just byte operations. We would
7888 // transform other cases to loads/stores, but we don't know if
7889 // alignment is sufficient.
7890 }
Chris Lattner51ea1272004-02-28 05:22:00 +00007891 }
7892
Chris Lattner00648e12004-10-12 04:52:52 +00007893 // If we have a memmove and the source operation is a constant global,
7894 // then the source and dest pointers can't alias, so we can change this
7895 // into a call to memcpy.
Chris Lattner82f2ef22006-03-06 20:18:44 +00007896 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
Chris Lattner00648e12004-10-12 04:52:52 +00007897 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
7898 if (GVSrc->isConstant()) {
7899 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner681ef2f2006-03-03 01:34:17 +00007900 const char *Name;
Andrew Lenharth0ebb0b02006-11-03 22:45:50 +00007901 if (CI.getCalledFunction()->getFunctionType()->getParamType(2) ==
Reid Spencerc635f472006-12-31 05:48:39 +00007902 Type::Int32Ty)
Chris Lattner681ef2f2006-03-03 01:34:17 +00007903 Name = "llvm.memcpy.i32";
7904 else
7905 Name = "llvm.memcpy.i64";
Chris Lattnerfbc524f2007-01-07 06:58:05 +00007906 Constant *MemCpy = M->getOrInsertFunction(Name,
Chris Lattner00648e12004-10-12 04:52:52 +00007907 CI.getCalledFunction()->getFunctionType());
7908 CI.setOperand(0, MemCpy);
7909 Changed = true;
7910 }
Chris Lattner82f2ef22006-03-06 20:18:44 +00007911 }
Chris Lattner00648e12004-10-12 04:52:52 +00007912
Chris Lattner82f2ef22006-03-06 20:18:44 +00007913 // If we can determine a pointer alignment that is bigger than currently
7914 // set, update the alignment.
7915 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
7916 unsigned Alignment1 = GetKnownAlignment(MI->getOperand(1), TD);
7917 unsigned Alignment2 = GetKnownAlignment(MI->getOperand(2), TD);
7918 unsigned Align = std::min(Alignment1, Alignment2);
Reid Spencere0fc4df2006-10-20 07:07:24 +00007919 if (MI->getAlignment()->getZExtValue() < Align) {
Reid Spencerc635f472006-12-31 05:48:39 +00007920 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007921 Changed = true;
7922 }
7923 } else if (isa<MemSetInst>(MI)) {
7924 unsigned Alignment = GetKnownAlignment(MI->getDest(), TD);
Reid Spencere0fc4df2006-10-20 07:07:24 +00007925 if (MI->getAlignment()->getZExtValue() < Alignment) {
Reid Spencerc635f472006-12-31 05:48:39 +00007926 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
Chris Lattner82f2ef22006-03-06 20:18:44 +00007927 Changed = true;
7928 }
7929 }
7930
Chris Lattnerc66b2232006-01-13 20:11:04 +00007931 if (Changed) return II;
Chris Lattner503221f2006-01-13 21:28:09 +00007932 } else {
7933 switch (II->getIntrinsicID()) {
7934 default: break;
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007935 case Intrinsic::ppc_altivec_lvx:
7936 case Intrinsic::ppc_altivec_lvxl:
Chris Lattner36dd7c92006-04-17 22:26:56 +00007937 case Intrinsic::x86_sse_loadu_ps:
7938 case Intrinsic::x86_sse2_loadu_pd:
7939 case Intrinsic::x86_sse2_loadu_dq:
7940 // Turn PPC lvx -> load if the pointer is known aligned.
7941 // Turn X86 loadups -> load if the pointer is known aligned.
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007942 if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00007943 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
Chris Lattnere79d2492006-04-06 19:19:17 +00007944 PointerType::get(II->getType()), CI);
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007945 return new LoadInst(Ptr);
7946 }
7947 break;
7948 case Intrinsic::ppc_altivec_stvx:
7949 case Intrinsic::ppc_altivec_stvxl:
7950 // Turn stvx -> store if the pointer is known aligned.
7951 if (GetKnownAlignment(II->getOperand(2), TD) >= 16) {
Chris Lattnere79d2492006-04-06 19:19:17 +00007952 const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
Reid Spencer13bc5d72006-12-12 09:18:51 +00007953 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
7954 OpPtrTy, CI);
Chris Lattnerf42d0ae2006-04-02 05:30:25 +00007955 return new StoreInst(II->getOperand(1), Ptr);
7956 }
7957 break;
Chris Lattner36dd7c92006-04-17 22:26:56 +00007958 case Intrinsic::x86_sse_storeu_ps:
7959 case Intrinsic::x86_sse2_storeu_pd:
7960 case Intrinsic::x86_sse2_storeu_dq:
7961 case Intrinsic::x86_sse2_storel_dq:
7962 // Turn X86 storeu -> store if the pointer is known aligned.
7963 if (GetKnownAlignment(II->getOperand(1), TD) >= 16) {
7964 const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
Reid Spencer13bc5d72006-12-12 09:18:51 +00007965 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7966 OpPtrTy, CI);
Chris Lattner36dd7c92006-04-17 22:26:56 +00007967 return new StoreInst(II->getOperand(2), Ptr);
7968 }
7969 break;
Chris Lattner2deeaea2006-10-05 06:55:50 +00007970
7971 case Intrinsic::x86_sse_cvttss2si: {
7972 // These intrinsics only demands the 0th element of its input vector. If
7973 // we can simplify the input based on that, do so now.
7974 uint64_t UndefElts;
7975 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
7976 UndefElts)) {
7977 II->setOperand(1, V);
7978 return II;
7979 }
7980 break;
7981 }
7982
Chris Lattnere79d2492006-04-06 19:19:17 +00007983 case Intrinsic::ppc_altivec_vperm:
7984 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
Reid Spencerd84d35b2007-02-15 02:26:10 +00007985 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
Chris Lattnere79d2492006-04-06 19:19:17 +00007986 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
7987
7988 // Check that all of the elements are integer constants or undefs.
7989 bool AllEltsOk = true;
7990 for (unsigned i = 0; i != 16; ++i) {
7991 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
7992 !isa<UndefValue>(Mask->getOperand(i))) {
7993 AllEltsOk = false;
7994 break;
7995 }
7996 }
7997
7998 if (AllEltsOk) {
7999 // Cast the input vectors to byte vectors.
Reid Spencer13bc5d72006-12-12 09:18:51 +00008000 Value *Op0 = InsertCastBefore(Instruction::BitCast,
8001 II->getOperand(1), Mask->getType(), CI);
8002 Value *Op1 = InsertCastBefore(Instruction::BitCast,
8003 II->getOperand(2), Mask->getType(), CI);
Chris Lattnere79d2492006-04-06 19:19:17 +00008004 Value *Result = UndefValue::get(Op0->getType());
8005
8006 // Only extract each element once.
8007 Value *ExtractedElts[32];
8008 memset(ExtractedElts, 0, sizeof(ExtractedElts));
8009
8010 for (unsigned i = 0; i != 16; ++i) {
8011 if (isa<UndefValue>(Mask->getOperand(i)))
8012 continue;
Reid Spencere0fc4df2006-10-20 07:07:24 +00008013 unsigned Idx =cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
Chris Lattnere79d2492006-04-06 19:19:17 +00008014 Idx &= 31; // Match the hardware behavior.
8015
8016 if (ExtractedElts[Idx] == 0) {
8017 Instruction *Elt =
Chris Lattner2deeaea2006-10-05 06:55:50 +00008018 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
Chris Lattnere79d2492006-04-06 19:19:17 +00008019 InsertNewInstBefore(Elt, CI);
8020 ExtractedElts[Idx] = Elt;
8021 }
8022
8023 // Insert this value into the result vector.
Chris Lattner2deeaea2006-10-05 06:55:50 +00008024 Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
Chris Lattnere79d2492006-04-06 19:19:17 +00008025 InsertNewInstBefore(cast<Instruction>(Result), CI);
8026 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008027 return CastInst::create(Instruction::BitCast, Result, CI.getType());
Chris Lattnere79d2492006-04-06 19:19:17 +00008028 }
8029 }
8030 break;
8031
Chris Lattner503221f2006-01-13 21:28:09 +00008032 case Intrinsic::stackrestore: {
8033 // If the save is right next to the restore, remove the restore. This can
8034 // happen when variable allocas are DCE'd.
8035 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
8036 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
8037 BasicBlock::iterator BI = SS;
8038 if (&*++BI == II)
8039 return EraseInstFromFunction(CI);
8040 }
8041 }
8042
8043 // If the stack restore is in a return/unwind block and if there are no
8044 // allocas or calls between the restore and the return, nuke the restore.
8045 TerminatorInst *TI = II->getParent()->getTerminator();
8046 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
8047 BasicBlock::iterator BI = II;
8048 bool CannotRemove = false;
8049 for (++BI; &*BI != TI; ++BI) {
8050 if (isa<AllocaInst>(BI) ||
8051 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
8052 CannotRemove = true;
8053 break;
8054 }
8055 }
8056 if (!CannotRemove)
8057 return EraseInstFromFunction(CI);
8058 }
8059 break;
8060 }
8061 }
Chris Lattner00648e12004-10-12 04:52:52 +00008062 }
8063
Chris Lattnerc66b2232006-01-13 20:11:04 +00008064 return visitCallSite(II);
Chris Lattner970c33a2003-06-19 17:00:31 +00008065}
8066
8067// InvokeInst simplification
8068//
8069Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattneraec3d942003-10-07 22:32:43 +00008070 return visitCallSite(&II);
Chris Lattner970c33a2003-06-19 17:00:31 +00008071}
8072
Chris Lattneraec3d942003-10-07 22:32:43 +00008073// visitCallSite - Improvements for call and invoke instructions.
8074//
8075Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008076 bool Changed = false;
8077
8078 // If the callee is a constexpr cast of a function, attempt to move the cast
8079 // to the arguments of the call/invoke.
Chris Lattneraec3d942003-10-07 22:32:43 +00008080 if (transformConstExprCastCall(CS)) return 0;
8081
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008082 Value *Callee = CS.getCalledValue();
Chris Lattner81a7a232004-10-16 18:11:37 +00008083
Chris Lattner61d9d812005-05-13 07:09:09 +00008084 if (Function *CalleeF = dyn_cast<Function>(Callee))
8085 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
8086 Instruction *OldCall = CS.getInstruction();
8087 // If the call and callee calling conventions don't match, this call must
8088 // be unreachable, as the call is undefined.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008089 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008090 UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall);
Chris Lattner61d9d812005-05-13 07:09:09 +00008091 if (!OldCall->use_empty())
8092 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
8093 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
8094 return EraseInstFromFunction(*OldCall);
8095 return 0;
8096 }
8097
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008098 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
8099 // This instruction is not reachable, just remove it. We insert a store to
8100 // undef so that we know that this code is not reachable, despite the fact
8101 // that we can't modify the CFG here.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008102 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008103 UndefValue::get(PointerType::get(Type::Int1Ty)),
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008104 CS.getInstruction());
8105
8106 if (!CS.getInstruction()->use_empty())
8107 CS.getInstruction()->
8108 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
8109
8110 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
8111 // Don't break the CFG, insert a dummy cond branch.
8112 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
Zhou Sheng75b871f2007-01-11 12:24:14 +00008113 ConstantInt::getTrue(), II);
Chris Lattner81a7a232004-10-16 18:11:37 +00008114 }
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008115 return EraseInstFromFunction(*CS.getInstruction());
8116 }
Chris Lattner81a7a232004-10-16 18:11:37 +00008117
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008118 const PointerType *PTy = cast<PointerType>(Callee->getType());
8119 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8120 if (FTy->isVarArg()) {
8121 // See if we can optimize any arguments passed through the varargs area of
8122 // the call.
8123 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
8124 E = CS.arg_end(); I != E; ++I)
8125 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
8126 // If this cast does not effect the value passed through the varargs
8127 // area, we can eliminate the use of the cast.
8128 Value *Op = CI->getOperand(0);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008129 if (CI->isLosslessCast()) {
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008130 *I = Op;
8131 Changed = true;
8132 }
8133 }
8134 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008135
Chris Lattner75b4d1d2003-10-07 22:54:13 +00008136 return Changed ? CS.getInstruction() : 0;
Chris Lattneraec3d942003-10-07 22:32:43 +00008137}
8138
Chris Lattner970c33a2003-06-19 17:00:31 +00008139// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8140// attempt to move the cast to the arguments of the call/invoke.
8141//
8142bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8143 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8144 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008145 if (CE->getOpcode() != Instruction::BitCast ||
8146 !isa<Function>(CE->getOperand(0)))
Chris Lattner970c33a2003-06-19 17:00:31 +00008147 return false;
Reid Spencer87436872004-07-18 00:38:32 +00008148 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner970c33a2003-06-19 17:00:31 +00008149 Instruction *Caller = CS.getInstruction();
8150
8151 // Okay, this is a cast from a function to a different type. Unless doing so
8152 // would cause a type conversion of one of our arguments, change this call to
8153 // be a direct call with arguments casted to the appropriate types.
8154 //
8155 const FunctionType *FT = Callee->getFunctionType();
8156 const Type *OldRetTy = Caller->getType();
8157
Chris Lattner1f7942f2004-01-14 06:06:08 +00008158 // Check to see if we are changing the return type...
8159 if (OldRetTy != FT->getReturnType()) {
Reid Spencer5301e7c2007-01-30 20:08:39 +00008160 if (Callee->isDeclaration() && !Caller->use_empty() &&
Chris Lattner7051d752007-01-06 19:53:32 +00008161 OldRetTy != FT->getReturnType() &&
8162 // Conversion is ok if changing from pointer to int of same size.
8163 !(isa<PointerType>(FT->getReturnType()) &&
8164 TD->getIntPtrType() == OldRetTy))
Chris Lattner400f9592007-01-06 02:09:32 +00008165 return false; // Cannot transform this return value.
Chris Lattner1f7942f2004-01-14 06:06:08 +00008166
8167 // If the callsite is an invoke instruction, and the return value is used by
8168 // a PHI node in a successor, we cannot change the return type of the call
8169 // because there is no place to put the cast instruction (without breaking
8170 // the critical edge). Bail out in this case.
8171 if (!Caller->use_empty())
8172 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8173 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8174 UI != E; ++UI)
8175 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8176 if (PN->getParent() == II->getNormalDest() ||
Chris Lattnerfae8ab32004-02-08 21:44:31 +00008177 PN->getParent() == II->getUnwindDest())
Chris Lattner1f7942f2004-01-14 06:06:08 +00008178 return false;
8179 }
Chris Lattner970c33a2003-06-19 17:00:31 +00008180
8181 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8182 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008183
Chris Lattner970c33a2003-06-19 17:00:31 +00008184 CallSite::arg_iterator AI = CS.arg_begin();
8185 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8186 const Type *ParamTy = FT->getParamType(i);
Andrew Lenharthebfa24e2006-06-28 01:01:52 +00008187 const Type *ActTy = (*AI)->getType();
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008188 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
Andrew Lenharthebfa24e2006-06-28 01:01:52 +00008189 //Either we can cast directly, or we can upconvert the argument
Chris Lattner400f9592007-01-06 02:09:32 +00008190 bool isConvertible = ActTy == ParamTy ||
Chris Lattner7051d752007-01-06 19:53:32 +00008191 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
Chris Lattner03c49532007-01-15 02:27:26 +00008192 (ParamTy->isInteger() && ActTy->isInteger() &&
Reid Spencer8f166b02007-01-08 16:32:00 +00008193 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8194 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8195 && c->getSExtValue() > 0);
Reid Spencer5301e7c2007-01-30 20:08:39 +00008196 if (Callee->isDeclaration() && !isConvertible) return false;
Chris Lattner970c33a2003-06-19 17:00:31 +00008197 }
8198
8199 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
Reid Spencer5301e7c2007-01-30 20:08:39 +00008200 Callee->isDeclaration())
Chris Lattner970c33a2003-06-19 17:00:31 +00008201 return false; // Do not delete arguments unless we have a function body...
8202
8203 // Okay, we decided that this is a safe thing to do: go ahead and start
8204 // inserting cast instructions as necessary...
8205 std::vector<Value*> Args;
8206 Args.reserve(NumActualArgs);
8207
8208 AI = CS.arg_begin();
8209 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8210 const Type *ParamTy = FT->getParamType(i);
8211 if ((*AI)->getType() == ParamTy) {
8212 Args.push_back(*AI);
8213 } else {
Reid Spencer668d90f2006-12-18 08:47:13 +00008214 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
Reid Spencerc635f472006-12-31 05:48:39 +00008215 false, ParamTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008216 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008217 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
Chris Lattner970c33a2003-06-19 17:00:31 +00008218 }
8219 }
8220
8221 // If the function takes more arguments than the call was taking, add them
8222 // now...
8223 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8224 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8225
8226 // If we are removing arguments to the function, emit an obnoxious warning...
8227 if (FT->getNumParams() < NumActualArgs)
8228 if (!FT->isVarArg()) {
Bill Wendlingf3baad32006-12-07 01:30:32 +00008229 cerr << "WARNING: While resolving call to function '"
8230 << Callee->getName() << "' arguments were dropped!\n";
Chris Lattner970c33a2003-06-19 17:00:31 +00008231 } else {
8232 // Add all of the arguments in their promoted form to the arg list...
8233 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8234 const Type *PTy = getPromotedType((*AI)->getType());
8235 if (PTy != (*AI)->getType()) {
8236 // Must promote to pass through va_arg area!
Reid Spencerc635f472006-12-31 05:48:39 +00008237 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8238 PTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008239 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
Chris Lattner970c33a2003-06-19 17:00:31 +00008240 InsertNewInstBefore(Cast, *Caller);
8241 Args.push_back(Cast);
8242 } else {
8243 Args.push_back(*AI);
8244 }
8245 }
8246 }
8247
8248 if (FT->getReturnType() == Type::VoidTy)
Chris Lattner6e0123b2007-02-11 01:23:03 +00008249 Caller->setName(""); // Void type should not have a name.
Chris Lattner970c33a2003-06-19 17:00:31 +00008250
8251 Instruction *NC;
8252 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattnerfae8ab32004-02-08 21:44:31 +00008253 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattnera06a8fd2007-02-13 02:10:56 +00008254 &Args[0], Args.size(), Caller->getName(), Caller);
Chris Lattner05c703e2005-05-14 12:25:32 +00008255 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00008256 } else {
Chris Lattnera06a8fd2007-02-13 02:10:56 +00008257 NC = new CallInst(Callee, &Args[0], Args.size(), Caller->getName(), Caller);
Chris Lattner6aacb0f2005-05-06 06:48:21 +00008258 if (cast<CallInst>(Caller)->isTailCall())
8259 cast<CallInst>(NC)->setTailCall();
Chris Lattner05c703e2005-05-14 12:25:32 +00008260 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner970c33a2003-06-19 17:00:31 +00008261 }
8262
Chris Lattner6e0123b2007-02-11 01:23:03 +00008263 // Insert a cast of the return type as necessary.
Chris Lattner970c33a2003-06-19 17:00:31 +00008264 Value *NV = NC;
8265 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
8266 if (NV->getType() != Type::VoidTy) {
Reid Spencer668d90f2006-12-18 08:47:13 +00008267 const Type *CallerTy = Caller->getType();
Reid Spencerc635f472006-12-31 05:48:39 +00008268 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
8269 CallerTy, false);
Reid Spencer668d90f2006-12-18 08:47:13 +00008270 NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
Chris Lattner686767f2003-10-30 00:46:41 +00008271
8272 // If this is an invoke instruction, we should insert it after the first
8273 // non-phi, instruction in the normal successor block.
8274 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8275 BasicBlock::iterator I = II->getNormalDest()->begin();
8276 while (isa<PHINode>(I)) ++I;
8277 InsertNewInstBefore(NC, *I);
8278 } else {
8279 // Otherwise, it's a call, just insert cast right after the call instr
8280 InsertNewInstBefore(NC, *Caller);
8281 }
Chris Lattner51ea1272004-02-28 05:22:00 +00008282 AddUsersToWorkList(*Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00008283 } else {
Chris Lattnere29d6342004-10-17 21:22:38 +00008284 NV = UndefValue::get(Caller->getType());
Chris Lattner970c33a2003-06-19 17:00:31 +00008285 }
8286 }
8287
8288 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8289 Caller->replaceAllUsesWith(NV);
Chris Lattner51f54572007-03-02 19:59:19 +00008290 Caller->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +00008291 RemoveFromWorkList(Caller);
Chris Lattner970c33a2003-06-19 17:00:31 +00008292 return true;
8293}
8294
Chris Lattnercadac0c2006-11-01 04:51:18 +00008295/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8296/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8297/// and a single binop.
8298Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
8299 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
Reid Spencer2341c222007-02-02 02:16:23 +00008300 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
8301 isa<CmpInst>(FirstInst));
Chris Lattnercadac0c2006-11-01 04:51:18 +00008302 unsigned Opc = FirstInst->getOpcode();
Chris Lattnercd62f112006-11-08 19:29:23 +00008303 Value *LHSVal = FirstInst->getOperand(0);
8304 Value *RHSVal = FirstInst->getOperand(1);
8305
8306 const Type *LHSType = LHSVal->getType();
8307 const Type *RHSType = RHSVal->getType();
Chris Lattnercadac0c2006-11-01 04:51:18 +00008308
8309 // Scan to see if all operands are the same opcode, all have one use, and all
8310 // kill their operands (i.e. the operands have one use).
Chris Lattnerdc826fc2006-11-01 04:55:47 +00008311 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
Chris Lattnercadac0c2006-11-01 04:51:18 +00008312 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
Chris Lattnerdc826fc2006-11-01 04:55:47 +00008313 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
Reid Spencer266e42b2006-12-23 06:05:41 +00008314 // Verify type of the LHS matches so we don't fold cmp's of different
Chris Lattnereebea432006-11-01 07:43:41 +00008315 // types or GEP's with different index types.
8316 I->getOperand(0)->getType() != LHSType ||
8317 I->getOperand(1)->getType() != RHSType)
Chris Lattnercadac0c2006-11-01 04:51:18 +00008318 return 0;
Reid Spencer266e42b2006-12-23 06:05:41 +00008319
8320 // If they are CmpInst instructions, check their predicates
8321 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
8322 if (cast<CmpInst>(I)->getPredicate() !=
8323 cast<CmpInst>(FirstInst)->getPredicate())
8324 return 0;
Chris Lattnercd62f112006-11-08 19:29:23 +00008325
8326 // Keep track of which operand needs a phi node.
8327 if (I->getOperand(0) != LHSVal) LHSVal = 0;
8328 if (I->getOperand(1) != RHSVal) RHSVal = 0;
Chris Lattnercadac0c2006-11-01 04:51:18 +00008329 }
8330
Chris Lattner4f218d52006-11-08 19:42:28 +00008331 // Otherwise, this is safe to transform, determine if it is profitable.
8332
8333 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8334 // Indexes are often folded into load/store instructions, so we don't want to
8335 // hide them behind a phi.
8336 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
8337 return 0;
8338
Chris Lattnercadac0c2006-11-01 04:51:18 +00008339 Value *InLHS = FirstInst->getOperand(0);
Chris Lattnercadac0c2006-11-01 04:51:18 +00008340 Value *InRHS = FirstInst->getOperand(1);
Chris Lattner4f218d52006-11-08 19:42:28 +00008341 PHINode *NewLHS = 0, *NewRHS = 0;
Chris Lattnercd62f112006-11-08 19:29:23 +00008342 if (LHSVal == 0) {
8343 NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
8344 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
8345 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
Chris Lattnereebea432006-11-01 07:43:41 +00008346 InsertNewInstBefore(NewLHS, PN);
8347 LHSVal = NewLHS;
8348 }
Chris Lattnercd62f112006-11-08 19:29:23 +00008349
8350 if (RHSVal == 0) {
8351 NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
8352 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
8353 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
Chris Lattnereebea432006-11-01 07:43:41 +00008354 InsertNewInstBefore(NewRHS, PN);
8355 RHSVal = NewRHS;
8356 }
8357
Chris Lattnercd62f112006-11-08 19:29:23 +00008358 // Add all operands to the new PHIs.
8359 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8360 if (NewLHS) {
8361 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8362 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
8363 }
8364 if (NewRHS) {
8365 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
8366 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
8367 }
8368 }
8369
Chris Lattnercadac0c2006-11-01 04:51:18 +00008370 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattnereebea432006-11-01 07:43:41 +00008371 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
Reid Spencer266e42b2006-12-23 06:05:41 +00008372 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8373 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
8374 RHSVal);
Chris Lattnereebea432006-11-01 07:43:41 +00008375 else {
8376 assert(isa<GetElementPtrInst>(FirstInst));
8377 return new GetElementPtrInst(LHSVal, RHSVal);
8378 }
Chris Lattnercadac0c2006-11-01 04:51:18 +00008379}
8380
Chris Lattner14f82c72006-11-01 07:13:54 +00008381/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8382/// of the block that defines it. This means that it must be obvious the value
8383/// of the load is not changed from the point of the load to the end of the
8384/// block it is in.
Chris Lattnerc9042052007-02-01 22:30:07 +00008385///
8386/// Finally, it is safe, but not profitable, to sink a load targetting a
8387/// non-address-taken alloca. Doing so will cause us to not promote the alloca
8388/// to a register.
Chris Lattner14f82c72006-11-01 07:13:54 +00008389static bool isSafeToSinkLoad(LoadInst *L) {
8390 BasicBlock::iterator BBI = L, E = L->getParent()->end();
8391
8392 for (++BBI; BBI != E; ++BBI)
8393 if (BBI->mayWriteToMemory())
8394 return false;
Chris Lattnerc9042052007-02-01 22:30:07 +00008395
8396 // Check for non-address taken alloca. If not address-taken already, it isn't
8397 // profitable to do this xform.
8398 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
8399 bool isAddressTaken = false;
8400 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
8401 UI != E; ++UI) {
8402 if (isa<LoadInst>(UI)) continue;
8403 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
8404 // If storing TO the alloca, then the address isn't taken.
8405 if (SI->getOperand(1) == AI) continue;
8406 }
8407 isAddressTaken = true;
8408 break;
8409 }
8410
8411 if (!isAddressTaken)
8412 return false;
8413 }
8414
Chris Lattner14f82c72006-11-01 07:13:54 +00008415 return true;
8416}
8417
Chris Lattner970c33a2003-06-19 17:00:31 +00008418
Chris Lattner7515cab2004-11-14 19:13:23 +00008419// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8420// operator and they all are only used by the PHI, PHI together their
8421// inputs, and do the operation once, to the result of the PHI.
8422Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
8423 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8424
8425 // Scan the instruction, looking for input operations that can be folded away.
8426 // If all input operands to the phi are the same instruction (e.g. a cast from
8427 // the same type or "+42") we can pull the operation through the PHI, reducing
8428 // code size and simplifying code.
8429 Constant *ConstantOp = 0;
8430 const Type *CastSrcTy = 0;
Chris Lattner14f82c72006-11-01 07:13:54 +00008431 bool isVolatile = false;
Chris Lattner7515cab2004-11-14 19:13:23 +00008432 if (isa<CastInst>(FirstInst)) {
8433 CastSrcTy = FirstInst->getOperand(0)->getType();
Reid Spencer2341c222007-02-02 02:16:23 +00008434 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008435 // Can fold binop, compare or shift here if the RHS is a constant,
8436 // otherwise call FoldPHIArgBinOpIntoPHI.
Chris Lattner7515cab2004-11-14 19:13:23 +00008437 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
Chris Lattnercadac0c2006-11-01 04:51:18 +00008438 if (ConstantOp == 0)
8439 return FoldPHIArgBinOpIntoPHI(PN);
Chris Lattner14f82c72006-11-01 07:13:54 +00008440 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
8441 isVolatile = LI->isVolatile();
8442 // We can't sink the load if the loaded value could be modified between the
8443 // load and the PHI.
8444 if (LI->getParent() != PN.getIncomingBlock(0) ||
8445 !isSafeToSinkLoad(LI))
8446 return 0;
Chris Lattnereebea432006-11-01 07:43:41 +00008447 } else if (isa<GetElementPtrInst>(FirstInst)) {
Chris Lattner4f218d52006-11-08 19:42:28 +00008448 if (FirstInst->getNumOperands() == 2)
Chris Lattnereebea432006-11-01 07:43:41 +00008449 return FoldPHIArgBinOpIntoPHI(PN);
8450 // Can't handle general GEPs yet.
8451 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008452 } else {
8453 return 0; // Cannot fold this operation.
8454 }
8455
8456 // Check to see if all arguments are the same operation.
8457 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8458 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
8459 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
Reid Spencer266e42b2006-12-23 06:05:41 +00008460 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
Chris Lattner7515cab2004-11-14 19:13:23 +00008461 return 0;
8462 if (CastSrcTy) {
8463 if (I->getOperand(0)->getType() != CastSrcTy)
8464 return 0; // Cast operation must match.
Chris Lattner14f82c72006-11-01 07:13:54 +00008465 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008466 // We can't sink the load if the loaded value could be modified between
8467 // the load and the PHI.
Chris Lattner14f82c72006-11-01 07:13:54 +00008468 if (LI->isVolatile() != isVolatile ||
8469 LI->getParent() != PN.getIncomingBlock(i) ||
8470 !isSafeToSinkLoad(LI))
8471 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008472 } else if (I->getOperand(1) != ConstantOp) {
8473 return 0;
8474 }
8475 }
8476
8477 // Okay, they are all the same operation. Create a new PHI node of the
8478 // correct type, and PHI together all of the LHS's of the instructions.
8479 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
8480 PN.getName()+".in");
Chris Lattnerd8e20182005-01-29 00:39:08 +00008481 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattner46dd5a62004-11-14 19:29:34 +00008482
8483 Value *InVal = FirstInst->getOperand(0);
8484 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattner7515cab2004-11-14 19:13:23 +00008485
8486 // Add all operands to the new PHI.
Chris Lattner46dd5a62004-11-14 19:29:34 +00008487 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8488 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8489 if (NewInVal != InVal)
8490 InVal = 0;
8491 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
8492 }
8493
8494 Value *PhiVal;
8495 if (InVal) {
8496 // The new PHI unions all of the same values together. This is really
8497 // common, so we handle it intelligently here for compile-time speed.
8498 PhiVal = InVal;
8499 delete NewPN;
8500 } else {
8501 InsertNewInstBefore(NewPN, PN);
8502 PhiVal = NewPN;
8503 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008504
Chris Lattner7515cab2004-11-14 19:13:23 +00008505 // Insert and return the new operation.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008506 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
8507 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
Reid Spencerde46e482006-11-02 20:25:50 +00008508 else if (isa<LoadInst>(FirstInst))
Chris Lattner14f82c72006-11-01 07:13:54 +00008509 return new LoadInst(PhiVal, "", isVolatile);
Chris Lattner7515cab2004-11-14 19:13:23 +00008510 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattner46dd5a62004-11-14 19:29:34 +00008511 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Reid Spencer266e42b2006-12-23 06:05:41 +00008512 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8513 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
8514 PhiVal, ConstantOp);
Chris Lattner7515cab2004-11-14 19:13:23 +00008515 else
Reid Spencer2341c222007-02-02 02:16:23 +00008516 assert(0 && "Unknown operation");
Jeff Cohenb622c112007-03-05 00:00:42 +00008517 return 0;
Chris Lattner7515cab2004-11-14 19:13:23 +00008518}
Chris Lattner48a44f72002-05-02 17:06:02 +00008519
Chris Lattner71536432005-01-17 05:10:15 +00008520/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8521/// that is dead.
8522static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
8523 if (PN->use_empty()) return true;
8524 if (!PN->hasOneUse()) return false;
8525
8526 // Remember this node, and if we find the cycle, return.
8527 if (!PotentiallyDeadPHIs.insert(PN).second)
8528 return true;
8529
8530 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
8531 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008532
Chris Lattner71536432005-01-17 05:10:15 +00008533 return false;
8534}
8535
Chris Lattnerbbbdd852002-05-06 18:06:38 +00008536// PHINode simplification
8537//
Chris Lattner113f4f42002-06-25 16:13:24 +00008538Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Owen Andersonbbf89902006-07-10 22:15:25 +00008539 // If LCSSA is around, don't mess with Phi nodes
Chris Lattner8258b442007-03-04 04:27:24 +00008540 if (MustPreserveLCSSA) return 0;
Owen Andersona6968f82006-07-10 19:03:49 +00008541
Owen Andersonae8aa642006-07-10 22:03:18 +00008542 if (Value *V = PN.hasConstantValue())
8543 return ReplaceInstUsesWith(PN, V);
8544
Owen Andersonae8aa642006-07-10 22:03:18 +00008545 // If all PHI operands are the same operation, pull them through the PHI,
8546 // reducing code size.
8547 if (isa<Instruction>(PN.getIncomingValue(0)) &&
8548 PN.getIncomingValue(0)->hasOneUse())
8549 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
8550 return Result;
8551
8552 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8553 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8554 // PHI)... break the cycle.
Chris Lattnerc8dcede2007-01-15 07:30:06 +00008555 if (PN.hasOneUse()) {
8556 Instruction *PHIUser = cast<Instruction>(PN.use_back());
8557 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
Owen Andersonae8aa642006-07-10 22:03:18 +00008558 std::set<PHINode*> PotentiallyDeadPHIs;
8559 PotentiallyDeadPHIs.insert(&PN);
8560 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
8561 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8562 }
Chris Lattnerc8dcede2007-01-15 07:30:06 +00008563
8564 // If this phi has a single use, and if that use just computes a value for
8565 // the next iteration of a loop, delete the phi. This occurs with unused
8566 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8567 // common case here is good because the only other things that catch this
8568 // are induction variable analysis (sometimes) and ADCE, which is only run
8569 // late.
8570 if (PHIUser->hasOneUse() &&
8571 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
8572 PHIUser->use_back() == &PN) {
8573 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8574 }
8575 }
Owen Andersonae8aa642006-07-10 22:03:18 +00008576
Chris Lattner91daeb52003-12-19 05:58:40 +00008577 return 0;
Chris Lattnerbbbdd852002-05-06 18:06:38 +00008578}
8579
Reid Spencer13bc5d72006-12-12 09:18:51 +00008580static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
8581 Instruction *InsertPoint,
8582 InstCombiner *IC) {
Reid Spencer8f166b02007-01-08 16:32:00 +00008583 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
8584 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
Reid Spencer13bc5d72006-12-12 09:18:51 +00008585 // We must cast correctly to the pointer type. Ensure that we
8586 // sign extend the integer value if it is smaller as this is
8587 // used for address computation.
8588 Instruction::CastOps opcode =
8589 (VTySize < PtrSize ? Instruction::SExt :
8590 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
8591 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
Chris Lattner69193f92004-04-05 01:30:19 +00008592}
8593
Chris Lattner48a44f72002-05-02 17:06:02 +00008594
Chris Lattner113f4f42002-06-25 16:13:24 +00008595Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner5f667a62004-05-07 22:09:22 +00008596 Value *PtrOp = GEP.getOperand(0);
Chris Lattner471bd762003-05-22 19:07:21 +00008597 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner113f4f42002-06-25 16:13:24 +00008598 // If so, eliminate the noop.
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008599 if (GEP.getNumOperands() == 1)
Chris Lattner5f667a62004-05-07 22:09:22 +00008600 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008601
Chris Lattner81a7a232004-10-16 18:11:37 +00008602 if (isa<UndefValue>(GEP.getOperand(0)))
8603 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
8604
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008605 bool HasZeroPointerIndex = false;
8606 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
8607 HasZeroPointerIndex = C->isNullValue();
8608
8609 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner5f667a62004-05-07 22:09:22 +00008610 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattner48a44f72002-05-02 17:06:02 +00008611
Chris Lattner69193f92004-04-05 01:30:19 +00008612 // Eliminate unneeded casts for indices.
8613 bool MadeChange = false;
Chris Lattner2b2412d2004-04-07 18:38:20 +00008614 gep_type_iterator GTI = gep_type_begin(GEP);
8615 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
8616 if (isa<SequentialType>(*GTI)) {
8617 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
Chris Lattner27df1db2007-01-15 07:02:54 +00008618 if (CI->getOpcode() == Instruction::ZExt ||
8619 CI->getOpcode() == Instruction::SExt) {
8620 const Type *SrcTy = CI->getOperand(0)->getType();
8621 // We can eliminate a cast from i32 to i64 iff the target
8622 // is a 32-bit pointer target.
8623 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
8624 MadeChange = true;
8625 GEP.setOperand(i, CI->getOperand(0));
Chris Lattner69193f92004-04-05 01:30:19 +00008626 }
8627 }
8628 }
Chris Lattner2b2412d2004-04-07 18:38:20 +00008629 // If we are using a wider index than needed for this platform, shrink it
8630 // to what we need. If the incoming value needs a cast instruction,
8631 // insert it. This explicit cast can make subsequent optimizations more
8632 // obvious.
8633 Value *Op = GEP.getOperand(i);
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008634 if (TD->getTypeSize(Op->getType()) > TD->getPointerSize())
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00008635 if (Constant *C = dyn_cast<Constant>(Op)) {
Reid Spencer266e42b2006-12-23 06:05:41 +00008636 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
Chris Lattner1e9ac1a2004-04-17 18:16:10 +00008637 MadeChange = true;
8638 } else {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008639 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
8640 GEP);
Chris Lattner2b2412d2004-04-07 18:38:20 +00008641 GEP.setOperand(i, Op);
8642 MadeChange = true;
8643 }
Chris Lattner69193f92004-04-05 01:30:19 +00008644 }
8645 if (MadeChange) return &GEP;
8646
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008647 // Combine Indices - If the source pointer to this getelementptr instruction
8648 // is a getelementptr instruction, combine the indices of the two
8649 // getelementptr instructions into a single instruction.
8650 //
Chris Lattneraf6094f2007-02-15 22:48:32 +00008651 SmallVector<Value*, 8> SrcGEPOperands;
Chris Lattner0798af32005-01-13 20:14:25 +00008652 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattneraf6094f2007-02-15 22:48:32 +00008653 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
Chris Lattner57c67b02004-03-25 22:59:29 +00008654
8655 if (!SrcGEPOperands.empty()) {
Chris Lattner5f667a62004-05-07 22:09:22 +00008656 // Note that if our source is a gep chain itself that we wait for that
8657 // chain to be resolved before we perform this transformation. This
8658 // avoids us creating a TON of code in some cases.
8659 //
8660 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
8661 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
8662 return 0; // Wait until our source is folded to completion.
8663
Chris Lattneraf6094f2007-02-15 22:48:32 +00008664 SmallVector<Value*, 8> Indices;
Chris Lattner5f667a62004-05-07 22:09:22 +00008665
8666 // Find out whether the last index in the source GEP is a sequential idx.
8667 bool EndsWithSequential = false;
8668 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
8669 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattner8ec5f882004-05-08 22:41:42 +00008670 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008671
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008672 // Can we combine the two pointer arithmetics offsets?
Chris Lattner5f667a62004-05-07 22:09:22 +00008673 if (EndsWithSequential) {
Chris Lattner235af562003-03-05 22:33:14 +00008674 // Replace: gep (gep %P, long B), long A, ...
8675 // With: T = long A+B; gep %P, T, ...
8676 //
Chris Lattner5f667a62004-05-07 22:09:22 +00008677 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner69193f92004-04-05 01:30:19 +00008678 if (SO1 == Constant::getNullValue(SO1->getType())) {
8679 Sum = GO1;
8680 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
8681 Sum = SO1;
8682 } else {
8683 // If they aren't the same type, convert both to an integer of the
8684 // target's pointer size.
8685 if (SO1->getType() != GO1->getType()) {
8686 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008687 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
Chris Lattner69193f92004-04-05 01:30:19 +00008688 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008689 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
Chris Lattner69193f92004-04-05 01:30:19 +00008690 } else {
8691 unsigned PS = TD->getPointerSize();
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008692 if (TD->getTypeSize(SO1->getType()) == PS) {
Chris Lattner69193f92004-04-05 01:30:19 +00008693 // Convert GO1 to SO1's type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00008694 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008695
Reid Spencer7a9c62b2007-01-12 07:05:14 +00008696 } else if (TD->getTypeSize(GO1->getType()) == PS) {
Chris Lattner69193f92004-04-05 01:30:19 +00008697 // Convert SO1 to GO1's type.
Reid Spencer13bc5d72006-12-12 09:18:51 +00008698 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008699 } else {
8700 const Type *PT = TD->getIntPtrType();
Reid Spencer13bc5d72006-12-12 09:18:51 +00008701 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
8702 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
Chris Lattner69193f92004-04-05 01:30:19 +00008703 }
8704 }
8705 }
Chris Lattner5f667a62004-05-07 22:09:22 +00008706 if (isa<Constant>(SO1) && isa<Constant>(GO1))
8707 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
8708 else {
Chris Lattnerdf20a4d2004-06-10 02:07:29 +00008709 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
8710 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner5f667a62004-05-07 22:09:22 +00008711 }
Chris Lattner69193f92004-04-05 01:30:19 +00008712 }
Chris Lattner5f667a62004-05-07 22:09:22 +00008713
8714 // Recycle the GEP we already have if possible.
8715 if (SrcGEPOperands.size() == 2) {
8716 GEP.setOperand(0, SrcGEPOperands[0]);
8717 GEP.setOperand(1, Sum);
8718 return &GEP;
8719 } else {
8720 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8721 SrcGEPOperands.end()-1);
8722 Indices.push_back(Sum);
8723 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
8724 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00008725 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner69193f92004-04-05 01:30:19 +00008726 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanb1c93172005-04-21 23:48:37 +00008727 SrcGEPOperands.size() != 1) {
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008728 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattner57c67b02004-03-25 22:59:29 +00008729 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8730 SrcGEPOperands.end());
Chris Lattnerae7a0d32002-08-02 19:29:35 +00008731 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
8732 }
8733
8734 if (!Indices.empty())
Chris Lattnera7315132007-02-12 22:56:41 +00008735 return new GetElementPtrInst(SrcGEPOperands[0], &Indices[0],
8736 Indices.size(), GEP.getName());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008737
Chris Lattner5f667a62004-05-07 22:09:22 +00008738 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008739 // GEP of global variable. If all of the indices for this GEP are
8740 // constants, we can promote this to a constexpr instead of an instruction.
8741
8742 // Scan for nonconstants...
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008743 SmallVector<Constant*, 8> Indices;
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008744 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
8745 for (; I != E && isa<Constant>(*I); ++I)
8746 Indices.push_back(cast<Constant>(*I));
8747
8748 if (I == E) { // If they are all constants...
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008749 Constant *CE = ConstantExpr::getGetElementPtr(GV,
8750 &Indices[0],Indices.size());
Chris Lattnerc59af1d2002-08-17 22:21:59 +00008751
8752 // Replace all uses of the GEP with the new constexpr...
8753 return ReplaceInstUsesWith(GEP, CE);
8754 }
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008755 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
Chris Lattner567b81f2005-09-13 00:40:14 +00008756 if (!isa<PointerType>(X->getType())) {
8757 // Not interesting. Source pointer must be a cast from pointer.
8758 } else if (HasZeroPointerIndex) {
8759 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
8760 // into : GEP [10 x ubyte]* X, long 0, ...
8761 //
8762 // This occurs when the program declares an array extern like "int X[];"
8763 //
8764 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
8765 const PointerType *XTy = cast<PointerType>(X->getType());
8766 if (const ArrayType *XATy =
8767 dyn_cast<ArrayType>(XTy->getElementType()))
8768 if (const ArrayType *CATy =
8769 dyn_cast<ArrayType>(CPTy->getElementType()))
8770 if (CATy->getElementType() == XATy->getElementType()) {
8771 // At this point, we know that the cast source type is a pointer
8772 // to an array of the same type as the destination pointer
8773 // array. Because the array type is never stepped over (there
8774 // is a leading zero) we can fold the cast into this GEP.
8775 GEP.setOperand(0, X);
8776 return &GEP;
8777 }
8778 } else if (GEP.getNumOperands() == 2) {
8779 // Transform things like:
Chris Lattner2a893292005-09-13 18:36:04 +00008780 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
8781 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattner567b81f2005-09-13 00:40:14 +00008782 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
8783 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
8784 if (isa<ArrayType>(SrcElTy) &&
8785 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
8786 TD->getTypeSize(ResElTy)) {
8787 Value *V = InsertNewInstBefore(
Reid Spencerc635f472006-12-31 05:48:39 +00008788 new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
Chris Lattner567b81f2005-09-13 00:40:14 +00008789 GEP.getOperand(1), GEP.getName()), GEP);
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008790 // V and GEP are both pointer types --> BitCast
8791 return new BitCastInst(V, GEP.getType());
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008792 }
Chris Lattner2a893292005-09-13 18:36:04 +00008793
8794 // Transform things like:
8795 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
8796 // (where tmp = 8*tmp2) into:
8797 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
8798
8799 if (isa<ArrayType>(SrcElTy) &&
Reid Spencerc635f472006-12-31 05:48:39 +00008800 (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) {
Chris Lattner2a893292005-09-13 18:36:04 +00008801 uint64_t ArrayEltSize =
8802 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
8803
8804 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8805 // allow either a mul, shift, or constant here.
8806 Value *NewIdx = 0;
8807 ConstantInt *Scale = 0;
8808 if (ArrayEltSize == 1) {
8809 NewIdx = GEP.getOperand(1);
8810 Scale = ConstantInt::get(NewIdx->getType(), 1);
8811 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattnera393e4d2005-09-14 17:32:56 +00008812 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner2a893292005-09-13 18:36:04 +00008813 Scale = CI;
8814 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
8815 if (Inst->getOpcode() == Instruction::Shl &&
8816 isa<ConstantInt>(Inst->getOperand(1))) {
Reid Spencere0fc4df2006-10-20 07:07:24 +00008817 unsigned ShAmt =
8818 cast<ConstantInt>(Inst->getOperand(1))->getZExtValue();
Reid Spencer266e42b2006-12-23 06:05:41 +00008819 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmt);
Chris Lattner2a893292005-09-13 18:36:04 +00008820 NewIdx = Inst->getOperand(0);
8821 } else if (Inst->getOpcode() == Instruction::Mul &&
8822 isa<ConstantInt>(Inst->getOperand(1))) {
8823 Scale = cast<ConstantInt>(Inst->getOperand(1));
8824 NewIdx = Inst->getOperand(0);
8825 }
8826 }
8827
8828 // If the index will be to exactly the right offset with the scale taken
8829 // out, perform the transformation.
Reid Spencere0fc4df2006-10-20 07:07:24 +00008830 if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) {
Reid Spencerde46e482006-11-02 20:25:50 +00008831 if (isa<ConstantInt>(Scale))
Reid Spencere0fc4df2006-10-20 07:07:24 +00008832 Scale = ConstantInt::get(Scale->getType(),
8833 Scale->getZExtValue() / ArrayEltSize);
8834 if (Scale->getZExtValue() != 1) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00008835 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
8836 true /*SExt*/);
Chris Lattner2a893292005-09-13 18:36:04 +00008837 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
8838 NewIdx = InsertNewInstBefore(Sc, GEP);
8839 }
8840
8841 // Insert the new GEP instruction.
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008842 Instruction *NewGEP =
Reid Spencerc635f472006-12-31 05:48:39 +00008843 new GetElementPtrInst(X, Constant::getNullValue(Type::Int32Ty),
Chris Lattner2a893292005-09-13 18:36:04 +00008844 NewIdx, GEP.getName());
Reid Spencer6c38f0b2006-11-27 01:05:10 +00008845 NewGEP = InsertNewInstBefore(NewGEP, GEP);
8846 // The NewGEP must be pointer typed, so must the old one -> BitCast
8847 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner2a893292005-09-13 18:36:04 +00008848 }
8849 }
Chris Lattner8d0bacb2004-02-22 05:25:17 +00008850 }
Chris Lattnerca081252001-12-14 16:52:21 +00008851 }
8852
Chris Lattnerca081252001-12-14 16:52:21 +00008853 return 0;
8854}
8855
Chris Lattner1085bdf2002-11-04 16:18:53 +00008856Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
8857 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
8858 if (AI.isArrayAllocation()) // Check C != 1
Reid Spencere0fc4df2006-10-20 07:07:24 +00008859 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
8860 const Type *NewTy =
8861 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008862 AllocationInst *New = 0;
Chris Lattner1085bdf2002-11-04 16:18:53 +00008863
8864 // Create and insert the replacement instruction...
8865 if (isa<MallocInst>(AI))
Nate Begeman848622f2005-11-05 09:21:28 +00008866 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008867 else {
8868 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman848622f2005-11-05 09:21:28 +00008869 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattnera2620ac2002-11-09 00:49:43 +00008870 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00008871
8872 InsertNewInstBefore(New, AI);
Misha Brukmanb1c93172005-04-21 23:48:37 +00008873
Chris Lattner1085bdf2002-11-04 16:18:53 +00008874 // Scan to the end of the allocation instructions, to skip over a block of
8875 // allocas if possible...
8876 //
8877 BasicBlock::iterator It = New;
8878 while (isa<AllocationInst>(*It)) ++It;
8879
8880 // Now that I is pointing to the first non-allocation-inst in the block,
8881 // insert our getelementptr instruction...
8882 //
Reid Spencerc635f472006-12-31 05:48:39 +00008883 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
Chris Lattner809dfac2005-05-04 19:10:26 +00008884 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
8885 New->getName()+".sub", It);
Chris Lattner1085bdf2002-11-04 16:18:53 +00008886
8887 // Now make everything use the getelementptr instead of the original
8888 // allocation.
Chris Lattnerabb77c92004-03-19 06:08:10 +00008889 return ReplaceInstUsesWith(AI, V);
Chris Lattner81a7a232004-10-16 18:11:37 +00008890 } else if (isa<UndefValue>(AI.getArraySize())) {
8891 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner1085bdf2002-11-04 16:18:53 +00008892 }
Chris Lattnerabb77c92004-03-19 06:08:10 +00008893
8894 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
8895 // Note that we only do this for alloca's, because malloc should allocate and
8896 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanb1c93172005-04-21 23:48:37 +00008897 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattner49df6ce2004-07-02 22:55:47 +00008898 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattnerabb77c92004-03-19 06:08:10 +00008899 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8900
Chris Lattner1085bdf2002-11-04 16:18:53 +00008901 return 0;
8902}
8903
Chris Lattner8427bff2003-12-07 01:24:23 +00008904Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
8905 Value *Op = FI.getOperand(0);
8906
8907 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
8908 if (CastInst *CI = dyn_cast<CastInst>(Op))
8909 if (isa<PointerType>(CI->getOperand(0)->getType())) {
8910 FI.setOperand(0, CI->getOperand(0));
8911 return &FI;
8912 }
8913
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008914 // free undef -> unreachable.
8915 if (isa<UndefValue>(Op)) {
8916 // Insert a new store to null because we cannot modify the CFG here.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008917 new StoreInst(ConstantInt::getTrue(),
Reid Spencer542964f2007-01-11 18:21:29 +00008918 UndefValue::get(PointerType::get(Type::Int1Ty)), &FI);
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008919 return EraseInstFromFunction(FI);
8920 }
8921
Chris Lattnerf3a36602004-02-28 04:57:37 +00008922 // If we have 'free null' delete the instruction. This can happen in stl code
8923 // when lots of inlining happens.
Chris Lattner8ba9ec92004-10-18 02:59:09 +00008924 if (isa<ConstantPointerNull>(Op))
Chris Lattner51ea1272004-02-28 05:22:00 +00008925 return EraseInstFromFunction(FI);
Chris Lattnerf3a36602004-02-28 04:57:37 +00008926
Chris Lattner8427bff2003-12-07 01:24:23 +00008927 return 0;
8928}
8929
8930
Chris Lattner72684fe2005-01-31 05:51:45 +00008931/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattner35e24772004-07-13 01:49:43 +00008932static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
8933 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008934 Value *CastOp = CI->getOperand(0);
Chris Lattner35e24772004-07-13 01:49:43 +00008935
8936 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008937 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattner35e24772004-07-13 01:49:43 +00008938 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008939
Reid Spencer31a4ef42007-01-22 05:51:25 +00008940 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
Reid Spencerd84d35b2007-02-15 02:26:10 +00008941 isa<VectorType>(DestPTy)) {
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008942 // If the source is an array, the code below will not succeed. Check to
8943 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
8944 // constants.
8945 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
8946 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
8947 if (ASrcTy->getNumElements() != 0) {
Chris Lattnerf96f4a82007-01-31 04:40:53 +00008948 Value *Idxs[2];
8949 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
8950 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008951 SrcTy = cast<PointerType>(CastOp->getType());
8952 SrcPTy = SrcTy->getElementType();
8953 }
8954
Reid Spencer31a4ef42007-01-22 05:51:25 +00008955 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
Reid Spencerd84d35b2007-02-15 02:26:10 +00008956 isa<VectorType>(SrcPTy)) &&
Chris Lattnerecfa9b52005-03-29 06:37:47 +00008957 // Do not allow turning this into a load of an integer, which is then
8958 // casted to a pointer, this pessimizes pointer analysis a lot.
8959 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Reid Spencer31a4ef42007-01-22 05:51:25 +00008960 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
8961 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Misha Brukmanb1c93172005-04-21 23:48:37 +00008962
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008963 // Okay, we are casting from one integer or pointer type to another of
8964 // the same size. Instead of casting the pointer before the load, cast
8965 // the result of the loaded value.
8966 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
8967 CI->getName(),
8968 LI.isVolatile()),LI);
8969 // Now cast the result of the load.
Reid Spencerbb65ebf2006-12-12 23:36:14 +00008970 return new BitCastInst(NewLoad, LI.getType());
Chris Lattnerfe1b0b82005-01-31 04:50:46 +00008971 }
Chris Lattner35e24772004-07-13 01:49:43 +00008972 }
8973 }
8974 return 0;
8975}
8976
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00008977/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattnere6f13092004-09-19 19:18:10 +00008978/// from this value cannot trap. If it is not obviously safe to load from the
8979/// specified pointer, we do a quick local scan of the basic block containing
8980/// ScanFrom, to determine if the address is already accessed.
8981static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
8982 // If it is an alloca or global variable, it is always safe to load from.
8983 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
8984
8985 // Otherwise, be a little bit agressive by scanning the local block where we
8986 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00008987 // from/to. If so, the previous load or store would have already trapped,
8988 // so there is no harm doing an extra load (also, CSE will later eliminate
8989 // the load entirely).
Chris Lattnere6f13092004-09-19 19:18:10 +00008990 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
8991
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00008992 while (BBI != E) {
Chris Lattnere6f13092004-09-19 19:18:10 +00008993 --BBI;
8994
8995 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
8996 if (LI->getOperand(0) == V) return true;
8997 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
8998 if (SI->getOperand(1) == V) return true;
Misha Brukmanb1c93172005-04-21 23:48:37 +00008999
Alkis Evlogimenosd59cebf2004-09-20 06:42:58 +00009000 }
Chris Lattnere6f13092004-09-19 19:18:10 +00009001 return false;
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009002}
9003
Chris Lattner0f1d8a32003-06-26 05:06:25 +00009004Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
9005 Value *Op = LI.getOperand(0);
Chris Lattner7e8af382004-01-12 04:13:56 +00009006
Chris Lattnera9d84e32005-05-01 04:24:53 +00009007 // load (cast X) --> cast (load X) iff safe
Reid Spencerde46e482006-11-02 20:25:50 +00009008 if (isa<CastInst>(Op))
Chris Lattnera9d84e32005-05-01 04:24:53 +00009009 if (Instruction *Res = InstCombineLoadCast(*this, LI))
9010 return Res;
9011
9012 // None of the following transforms are legal for volatile loads.
9013 if (LI.isVolatile()) return 0;
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009014
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009015 if (&LI.getParent()->front() != &LI) {
9016 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattnere0bfdf12005-09-12 22:21:03 +00009017 // If the instruction immediately before this is a store to the same
9018 // address, do a simple form of store->load forwarding.
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009019 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9020 if (SI->getOperand(1) == LI.getOperand(0))
9021 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattnere0bfdf12005-09-12 22:21:03 +00009022 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
9023 if (LIB->getOperand(0) == LI.getOperand(0))
9024 return ReplaceInstUsesWith(LI, LIB);
Chris Lattnerb990f7d2005-09-12 22:00:15 +00009025 }
Chris Lattnera9d84e32005-05-01 04:24:53 +00009026
9027 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
9028 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
9029 isa<UndefValue>(GEPI->getOperand(0))) {
9030 // Insert a new store to null instruction before the load to indicate
9031 // that this code is not reachable. We do this instead of inserting
9032 // an unreachable instruction directly because we cannot modify the
9033 // CFG.
9034 new StoreInst(UndefValue::get(LI.getType()),
9035 Constant::getNullValue(Op->getType()), &LI);
9036 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9037 }
9038
Chris Lattner81a7a232004-10-16 18:11:37 +00009039 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattnera9d84e32005-05-01 04:24:53 +00009040 // load null/undef -> undef
9041 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner8ba9ec92004-10-18 02:59:09 +00009042 // Insert a new store to null instruction before the load to indicate that
9043 // this code is not reachable. We do this instead of inserting an
9044 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattnera9d84e32005-05-01 04:24:53 +00009045 new StoreInst(UndefValue::get(LI.getType()),
9046 Constant::getNullValue(Op->getType()), &LI);
Chris Lattner81a7a232004-10-16 18:11:37 +00009047 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner8ba9ec92004-10-18 02:59:09 +00009048 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00009049
Chris Lattner81a7a232004-10-16 18:11:37 +00009050 // Instcombine load (constant global) into the value loaded.
9051 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
Reid Spencer5301e7c2007-01-30 20:08:39 +00009052 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner81a7a232004-10-16 18:11:37 +00009053 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanb1c93172005-04-21 23:48:37 +00009054
Chris Lattner81a7a232004-10-16 18:11:37 +00009055 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
9056 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
9057 if (CE->getOpcode() == Instruction::GetElementPtr) {
9058 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Reid Spencer5301e7c2007-01-30 20:08:39 +00009059 if (GV->isConstant() && !GV->isDeclaration())
Chris Lattner0b011ec2005-09-26 05:28:06 +00009060 if (Constant *V =
9061 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattner81a7a232004-10-16 18:11:37 +00009062 return ReplaceInstUsesWith(LI, V);
Chris Lattnera9d84e32005-05-01 04:24:53 +00009063 if (CE->getOperand(0)->isNullValue()) {
9064 // Insert a new store to null instruction before the load to indicate
9065 // that this code is not reachable. We do this instead of inserting
9066 // an unreachable instruction directly because we cannot modify the
9067 // CFG.
9068 new StoreInst(UndefValue::get(LI.getType()),
9069 Constant::getNullValue(Op->getType()), &LI);
9070 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9071 }
9072
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009073 } else if (CE->isCast()) {
Chris Lattner81a7a232004-10-16 18:11:37 +00009074 if (Instruction *Res = InstCombineLoadCast(*this, LI))
9075 return Res;
9076 }
9077 }
Chris Lattnere228ee52004-04-08 20:39:49 +00009078
Chris Lattnera9d84e32005-05-01 04:24:53 +00009079 if (Op->hasOneUse()) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009080 // Change select and PHI nodes to select values instead of addresses: this
9081 // helps alias analysis out a lot, allows many others simplifications, and
9082 // exposes redundancy in the code.
9083 //
9084 // Note that we cannot do the transformation unless we know that the
9085 // introduced loads cannot trap! Something like this is valid as long as
9086 // the condition is always false: load (select bool %C, int* null, int* %G),
9087 // but it would not be valid if we transformed it to load from null
9088 // unconditionally.
9089 //
9090 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
9091 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattnere6f13092004-09-19 19:18:10 +00009092 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
9093 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009094 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner42618552004-09-20 10:15:10 +00009095 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009096 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner42618552004-09-20 10:15:10 +00009097 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009098 return new SelectInst(SI->getCondition(), V1, V2);
9099 }
9100
Chris Lattnerbdcf41a2004-09-23 15:46:00 +00009101 // load (select (cond, null, P)) -> load P
9102 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
9103 if (C->isNullValue()) {
9104 LI.setOperand(0, SI->getOperand(2));
9105 return &LI;
9106 }
9107
9108 // load (select (cond, P, null)) -> load P
9109 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
9110 if (C->isNullValue()) {
9111 LI.setOperand(0, SI->getOperand(1));
9112 return &LI;
9113 }
Chris Lattnerf62ea8e2004-09-19 18:43:46 +00009114 }
9115 }
Chris Lattner0f1d8a32003-06-26 05:06:25 +00009116 return 0;
9117}
9118
Reid Spencere928a152007-01-19 21:20:31 +00009119/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
Chris Lattner72684fe2005-01-31 05:51:45 +00009120/// when possible.
9121static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
9122 User *CI = cast<User>(SI.getOperand(1));
9123 Value *CastOp = CI->getOperand(0);
9124
9125 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9126 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9127 const Type *SrcPTy = SrcTy->getElementType();
9128
Reid Spencer31a4ef42007-01-22 05:51:25 +00009129 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
Chris Lattner72684fe2005-01-31 05:51:45 +00009130 // If the source is an array, the code below will not succeed. Check to
9131 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9132 // constants.
9133 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9134 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9135 if (ASrcTy->getNumElements() != 0) {
Chris Lattnerf96f4a82007-01-31 04:40:53 +00009136 Value* Idxs[2];
9137 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9138 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
Chris Lattner72684fe2005-01-31 05:51:45 +00009139 SrcTy = cast<PointerType>(CastOp->getType());
9140 SrcPTy = SrcTy->getElementType();
9141 }
9142
Reid Spencer9a4bed02007-01-20 23:35:48 +00009143 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
9144 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9145 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
Chris Lattner72684fe2005-01-31 05:51:45 +00009146
9147 // Okay, we are casting from one integer or pointer type to another of
Reid Spencerc050af92007-01-18 18:54:33 +00009148 // the same size. Instead of casting the pointer before
9149 // the store, cast the value to be stored.
Chris Lattner72684fe2005-01-31 05:51:45 +00009150 Value *NewCast;
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009151 Value *SIOp0 = SI.getOperand(0);
Reid Spencerc050af92007-01-18 18:54:33 +00009152 Instruction::CastOps opcode = Instruction::BitCast;
9153 const Type* CastSrcTy = SIOp0->getType();
9154 const Type* CastDstTy = SrcPTy;
9155 if (isa<PointerType>(CastDstTy)) {
9156 if (CastSrcTy->isInteger())
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009157 opcode = Instruction::IntToPtr;
Reid Spencer9a4bed02007-01-20 23:35:48 +00009158 } else if (isa<IntegerType>(CastDstTy)) {
Reid Spencer74a528b2006-12-13 18:21:21 +00009159 if (isa<PointerType>(SIOp0->getType()))
Reid Spencerbb65ebf2006-12-12 23:36:14 +00009160 opcode = Instruction::PtrToInt;
9161 }
9162 if (Constant *C = dyn_cast<Constant>(SIOp0))
Reid Spencerc050af92007-01-18 18:54:33 +00009163 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
Chris Lattner72684fe2005-01-31 05:51:45 +00009164 else
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009165 NewCast = IC.InsertNewInstBefore(
Reid Spencerc050af92007-01-18 18:54:33 +00009166 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
9167 SI);
Chris Lattner72684fe2005-01-31 05:51:45 +00009168 return new StoreInst(NewCast, CastOp);
9169 }
9170 }
9171 }
9172 return 0;
9173}
9174
Chris Lattner31f486c2005-01-31 05:36:43 +00009175Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
9176 Value *Val = SI.getOperand(0);
9177 Value *Ptr = SI.getOperand(1);
9178
9179 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner5997cf92006-02-08 03:25:32 +00009180 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00009181 ++NumCombined;
9182 return 0;
9183 }
Chris Lattnera4beeef2007-01-15 06:51:56 +00009184
9185 // If the RHS is an alloca with a single use, zapify the store, making the
9186 // alloca dead.
9187 if (Ptr->hasOneUse()) {
9188 if (isa<AllocaInst>(Ptr)) {
9189 EraseInstFromFunction(SI);
9190 ++NumCombined;
9191 return 0;
9192 }
9193
9194 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9195 if (isa<AllocaInst>(GEP->getOperand(0)) &&
9196 GEP->getOperand(0)->hasOneUse()) {
9197 EraseInstFromFunction(SI);
9198 ++NumCombined;
9199 return 0;
9200 }
9201 }
Chris Lattner31f486c2005-01-31 05:36:43 +00009202
Chris Lattner5997cf92006-02-08 03:25:32 +00009203 // Do really simple DSE, to catch cases where there are several consequtive
9204 // stores to the same location, separated by a few arithmetic operations. This
9205 // situation often occurs with bitfield accesses.
9206 BasicBlock::iterator BBI = &SI;
9207 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
9208 --ScanInsts) {
9209 --BBI;
9210
9211 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
9212 // Prev store isn't volatile, and stores to the same location?
9213 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
9214 ++NumDeadStore;
9215 ++BBI;
9216 EraseInstFromFunction(*PrevSI);
9217 continue;
9218 }
9219 break;
9220 }
9221
Chris Lattnerdab43b22006-05-26 19:19:20 +00009222 // If this is a load, we have to stop. However, if the loaded value is from
9223 // the pointer we're loading and is producing the pointer we're storing,
9224 // then *this* store is dead (X = load P; store X -> P).
9225 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9226 if (LI == Val && LI->getOperand(0) == Ptr) {
9227 EraseInstFromFunction(SI);
9228 ++NumCombined;
9229 return 0;
9230 }
9231 // Otherwise, this is a load from some other location. Stores before it
9232 // may not be dead.
9233 break;
9234 }
9235
Chris Lattner5997cf92006-02-08 03:25:32 +00009236 // Don't skip over loads or things that can modify memory.
Chris Lattnerdab43b22006-05-26 19:19:20 +00009237 if (BBI->mayWriteToMemory())
Chris Lattner5997cf92006-02-08 03:25:32 +00009238 break;
9239 }
9240
9241
9242 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner31f486c2005-01-31 05:36:43 +00009243
9244 // store X, null -> turns into 'unreachable' in SimplifyCFG
9245 if (isa<ConstantPointerNull>(Ptr)) {
9246 if (!isa<UndefValue>(Val)) {
9247 SI.setOperand(0, UndefValue::get(Val->getType()));
9248 if (Instruction *U = dyn_cast<Instruction>(Val))
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009249 AddToWorkList(U); // Dropped a use.
Chris Lattner31f486c2005-01-31 05:36:43 +00009250 ++NumCombined;
9251 }
9252 return 0; // Do not modify these!
9253 }
9254
9255 // store undef, Ptr -> noop
9256 if (isa<UndefValue>(Val)) {
Chris Lattner5997cf92006-02-08 03:25:32 +00009257 EraseInstFromFunction(SI);
Chris Lattner31f486c2005-01-31 05:36:43 +00009258 ++NumCombined;
9259 return 0;
9260 }
9261
Chris Lattner72684fe2005-01-31 05:51:45 +00009262 // If the pointer destination is a cast, see if we can fold the cast into the
9263 // source instead.
Reid Spencerde46e482006-11-02 20:25:50 +00009264 if (isa<CastInst>(Ptr))
Chris Lattner72684fe2005-01-31 05:51:45 +00009265 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9266 return Res;
9267 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
Reid Spencer6c38f0b2006-11-27 01:05:10 +00009268 if (CE->isCast())
Chris Lattner72684fe2005-01-31 05:51:45 +00009269 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9270 return Res;
9271
Chris Lattner219175c2005-09-12 23:23:25 +00009272
9273 // If this store is the last instruction in the basic block, and if the block
9274 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner5997cf92006-02-08 03:25:32 +00009275 BBI = &SI; ++BBI;
Chris Lattner219175c2005-09-12 23:23:25 +00009276 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
9277 if (BI->isUnconditional()) {
9278 // Check to see if the successor block has exactly two incoming edges. If
9279 // so, see if the other predecessor contains a store to the same location.
9280 // if so, insert a PHI node (if needed) and move the stores down.
9281 BasicBlock *Dest = BI->getSuccessor(0);
9282
9283 pred_iterator PI = pred_begin(Dest);
9284 BasicBlock *Other = 0;
9285 if (*PI != BI->getParent())
9286 Other = *PI;
9287 ++PI;
9288 if (PI != pred_end(Dest)) {
9289 if (*PI != BI->getParent())
9290 if (Other)
9291 Other = 0;
9292 else
9293 Other = *PI;
9294 if (++PI != pred_end(Dest))
9295 Other = 0;
9296 }
9297 if (Other) { // If only one other pred...
9298 BBI = Other->getTerminator();
9299 // Make sure this other block ends in an unconditional branch and that
9300 // there is an instruction before the branch.
9301 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
9302 BBI != Other->begin()) {
9303 --BBI;
9304 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
9305
9306 // If this instruction is a store to the same location.
9307 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
9308 // Okay, we know we can perform this transformation. Insert a PHI
9309 // node now if we need it.
9310 Value *MergedVal = OtherStore->getOperand(0);
9311 if (MergedVal != SI.getOperand(0)) {
9312 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
9313 PN->reserveOperandSpace(2);
9314 PN->addIncoming(SI.getOperand(0), SI.getParent());
9315 PN->addIncoming(OtherStore->getOperand(0), Other);
9316 MergedVal = InsertNewInstBefore(PN, Dest->front());
9317 }
9318
9319 // Advance to a place where it is safe to insert the new store and
9320 // insert it.
9321 BBI = Dest->begin();
9322 while (isa<PHINode>(BBI)) ++BBI;
9323 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
9324 OtherStore->isVolatile()), *BBI);
9325
9326 // Nuke the old stores.
Chris Lattner5997cf92006-02-08 03:25:32 +00009327 EraseInstFromFunction(SI);
9328 EraseInstFromFunction(*OtherStore);
Chris Lattner219175c2005-09-12 23:23:25 +00009329 ++NumCombined;
9330 return 0;
9331 }
9332 }
9333 }
9334 }
9335
Chris Lattner31f486c2005-01-31 05:36:43 +00009336 return 0;
9337}
9338
9339
Chris Lattner9eef8a72003-06-04 04:46:00 +00009340Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
9341 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4fdd96c2005-06-18 17:37:34 +00009342 Value *X = 0;
Chris Lattnerd4252a72004-07-30 07:50:03 +00009343 BasicBlock *TrueDest;
9344 BasicBlock *FalseDest;
9345 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
9346 !isa<Constant>(X)) {
9347 // Swap Destinations and condition...
9348 BI.setCondition(X);
9349 BI.setSuccessor(0, FalseDest);
9350 BI.setSuccessor(1, TrueDest);
9351 return &BI;
9352 }
9353
Reid Spencer266e42b2006-12-23 06:05:41 +00009354 // Cannonicalize fcmp_one -> fcmp_oeq
9355 FCmpInst::Predicate FPred; Value *Y;
9356 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
9357 TrueDest, FalseDest)))
9358 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
9359 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
9360 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
Reid Spencer266e42b2006-12-23 06:05:41 +00009361 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009362 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
9363 NewSCC->takeName(I);
Reid Spencer266e42b2006-12-23 06:05:41 +00009364 // Swap Destinations and condition...
9365 BI.setCondition(NewSCC);
9366 BI.setSuccessor(0, FalseDest);
9367 BI.setSuccessor(1, TrueDest);
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009368 RemoveFromWorkList(I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009369 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009370 AddToWorkList(NewSCC);
Reid Spencer266e42b2006-12-23 06:05:41 +00009371 return &BI;
9372 }
9373
9374 // Cannonicalize icmp_ne -> icmp_eq
9375 ICmpInst::Predicate IPred;
9376 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
9377 TrueDest, FalseDest)))
9378 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
9379 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
9380 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
9381 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
Reid Spencer266e42b2006-12-23 06:05:41 +00009382 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009383 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
9384 NewSCC->takeName(I);
Chris Lattnere967b342003-06-04 05:10:11 +00009385 // Swap Destinations and condition...
Chris Lattnerd4252a72004-07-30 07:50:03 +00009386 BI.setCondition(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00009387 BI.setSuccessor(0, FalseDest);
9388 BI.setSuccessor(1, TrueDest);
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009389 RemoveFromWorkList(I);
Chris Lattner6e0123b2007-02-11 01:23:03 +00009390 I->eraseFromParent();;
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009391 AddToWorkList(NewSCC);
Chris Lattnere967b342003-06-04 05:10:11 +00009392 return &BI;
9393 }
Misha Brukmanb1c93172005-04-21 23:48:37 +00009394
Chris Lattner9eef8a72003-06-04 04:46:00 +00009395 return 0;
9396}
Chris Lattner1085bdf2002-11-04 16:18:53 +00009397
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009398Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
9399 Value *Cond = SI.getCondition();
9400 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
9401 if (I->getOpcode() == Instruction::Add)
9402 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
9403 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9404 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattner81a7a232004-10-16 18:11:37 +00009405 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009406 AddRHS));
9407 SI.setOperand(0, I->getOperand(0));
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009408 AddToWorkList(I);
Chris Lattner4c9c20a2004-07-03 00:26:11 +00009409 return &SI;
9410 }
9411 }
9412 return 0;
9413}
9414
Chris Lattner6bc98652006-03-05 00:22:33 +00009415/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9416/// is to leave as a vector operation.
9417static bool CheapToScalarize(Value *V, bool isConstant) {
9418 if (isa<ConstantAggregateZero>(V))
9419 return true;
Reid Spencerd84d35b2007-02-15 02:26:10 +00009420 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
Chris Lattner6bc98652006-03-05 00:22:33 +00009421 if (isConstant) return true;
9422 // If all elts are the same, we can extract.
9423 Constant *Op0 = C->getOperand(0);
9424 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9425 if (C->getOperand(i) != Op0)
9426 return false;
9427 return true;
9428 }
9429 Instruction *I = dyn_cast<Instruction>(V);
9430 if (!I) return false;
9431
9432 // Insert element gets simplified to the inserted element or is deleted if
9433 // this is constant idx extract element and its a constant idx insertelt.
9434 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
9435 isa<ConstantInt>(I->getOperand(2)))
9436 return true;
9437 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
9438 return true;
9439 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
9440 if (BO->hasOneUse() &&
9441 (CheapToScalarize(BO->getOperand(0), isConstant) ||
9442 CheapToScalarize(BO->getOperand(1), isConstant)))
9443 return true;
Reid Spencer266e42b2006-12-23 06:05:41 +00009444 if (CmpInst *CI = dyn_cast<CmpInst>(I))
9445 if (CI->hasOneUse() &&
9446 (CheapToScalarize(CI->getOperand(0), isConstant) ||
9447 CheapToScalarize(CI->getOperand(1), isConstant)))
9448 return true;
Chris Lattner6bc98652006-03-05 00:22:33 +00009449
9450 return false;
9451}
9452
Chris Lattner945e4372007-02-14 05:52:17 +00009453/// Read and decode a shufflevector mask.
9454///
9455/// It turns undef elements into values that are larger than the number of
9456/// elements in the input.
Chris Lattner12249be2006-05-25 23:48:38 +00009457static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
9458 unsigned NElts = SVI->getType()->getNumElements();
9459 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
9460 return std::vector<unsigned>(NElts, 0);
9461 if (isa<UndefValue>(SVI->getOperand(2)))
9462 return std::vector<unsigned>(NElts, 2*NElts);
9463
9464 std::vector<unsigned> Result;
Reid Spencerd84d35b2007-02-15 02:26:10 +00009465 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
Chris Lattner12249be2006-05-25 23:48:38 +00009466 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
9467 if (isa<UndefValue>(CP->getOperand(i)))
9468 Result.push_back(NElts*2); // undef -> 8
9469 else
Reid Spencere0fc4df2006-10-20 07:07:24 +00009470 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
Chris Lattner12249be2006-05-25 23:48:38 +00009471 return Result;
9472}
9473
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009474/// FindScalarElement - Given a vector and an element number, see if the scalar
9475/// value is already around as a register, for example if it were inserted then
9476/// extracted from the vector.
9477static Value *FindScalarElement(Value *V, unsigned EltNo) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00009478 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
9479 const VectorType *PTy = cast<VectorType>(V->getType());
Chris Lattner2d37f922006-04-10 23:06:36 +00009480 unsigned Width = PTy->getNumElements();
9481 if (EltNo >= Width) // Out of range access.
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009482 return UndefValue::get(PTy->getElementType());
9483
9484 if (isa<UndefValue>(V))
9485 return UndefValue::get(PTy->getElementType());
9486 else if (isa<ConstantAggregateZero>(V))
9487 return Constant::getNullValue(PTy->getElementType());
Reid Spencerd84d35b2007-02-15 02:26:10 +00009488 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009489 return CP->getOperand(EltNo);
9490 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
9491 // If this is an insert to a variable element, we don't know what it is.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009492 if (!isa<ConstantInt>(III->getOperand(2)))
9493 return 0;
9494 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009495
9496 // If this is an insert to the element we are looking for, return the
9497 // inserted value.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009498 if (EltNo == IIElt)
9499 return III->getOperand(1);
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009500
9501 // Otherwise, the insertelement doesn't modify the value, recurse on its
9502 // vector input.
9503 return FindScalarElement(III->getOperand(0), EltNo);
Chris Lattner2d37f922006-04-10 23:06:36 +00009504 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
Chris Lattner12249be2006-05-25 23:48:38 +00009505 unsigned InEl = getShuffleMask(SVI)[EltNo];
9506 if (InEl < Width)
9507 return FindScalarElement(SVI->getOperand(0), InEl);
9508 else if (InEl < Width*2)
9509 return FindScalarElement(SVI->getOperand(1), InEl - Width);
9510 else
9511 return UndefValue::get(PTy->getElementType());
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009512 }
9513
9514 // Otherwise, we don't know.
9515 return 0;
9516}
9517
Robert Bocchinoa8352962006-01-13 22:48:06 +00009518Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009519
Chris Lattner92346c32006-03-31 18:25:14 +00009520 // If packed val is undef, replace extract with scalar undef.
9521 if (isa<UndefValue>(EI.getOperand(0)))
9522 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9523
9524 // If packed val is constant 0, replace extract with scalar 0.
9525 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
9526 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
9527
Reid Spencerd84d35b2007-02-15 02:26:10 +00009528 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
Robert Bocchinoa8352962006-01-13 22:48:06 +00009529 // If packed val is constant with uniform operands, replace EI
9530 // with that operand
Chris Lattner6bc98652006-03-05 00:22:33 +00009531 Constant *op0 = C->getOperand(0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009532 for (unsigned i = 1; i < C->getNumOperands(); ++i)
Chris Lattner6bc98652006-03-05 00:22:33 +00009533 if (C->getOperand(i) != op0) {
9534 op0 = 0;
9535 break;
9536 }
9537 if (op0)
9538 return ReplaceInstUsesWith(EI, op0);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009539 }
Chris Lattner6bc98652006-03-05 00:22:33 +00009540
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009541 // If extracting a specified index from the vector, see if we can recursively
9542 // find a previously computed scalar that was inserted into the vector.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009543 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
Chris Lattner2deeaea2006-10-05 06:55:50 +00009544 // This instruction only demands the single element from the input vector.
9545 // If the input vector has a single use, simplify it based on this use
9546 // property.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009547 uint64_t IndexVal = IdxC->getZExtValue();
Chris Lattner2deeaea2006-10-05 06:55:50 +00009548 if (EI.getOperand(0)->hasOneUse()) {
9549 uint64_t UndefElts;
9550 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
Reid Spencere0fc4df2006-10-20 07:07:24 +00009551 1 << IndexVal,
Chris Lattner2deeaea2006-10-05 06:55:50 +00009552 UndefElts)) {
9553 EI.setOperand(0, V);
9554 return &EI;
9555 }
9556 }
9557
Reid Spencere0fc4df2006-10-20 07:07:24 +00009558 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009559 return ReplaceInstUsesWith(EI, Elt);
Chris Lattner2d37f922006-04-10 23:06:36 +00009560 }
Chris Lattner8d1d8d32006-03-31 23:01:56 +00009561
Chris Lattner83f65782006-05-25 22:53:38 +00009562 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
Robert Bocchinoa8352962006-01-13 22:48:06 +00009563 if (I->hasOneUse()) {
9564 // Push extractelement into predecessor operation if legal and
9565 // profitable to do so
9566 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Chris Lattner6bc98652006-03-05 00:22:33 +00009567 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
9568 if (CheapToScalarize(BO, isConstantElt)) {
9569 ExtractElementInst *newEI0 =
9570 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
9571 EI.getName()+".lhs");
9572 ExtractElementInst *newEI1 =
9573 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
9574 EI.getName()+".rhs");
9575 InsertNewInstBefore(newEI0, EI);
9576 InsertNewInstBefore(newEI1, EI);
9577 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
9578 }
Reid Spencerde46e482006-11-02 20:25:50 +00009579 } else if (isa<LoadInst>(I)) {
Reid Spencer13bc5d72006-12-12 09:18:51 +00009580 Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
Robert Bocchinoa8352962006-01-13 22:48:06 +00009581 PointerType::get(EI.getType()), EI);
9582 GetElementPtrInst *GEP =
Reid Spencera736fdf2006-11-29 01:11:01 +00009583 new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
Robert Bocchinoa8352962006-01-13 22:48:06 +00009584 InsertNewInstBefore(GEP, EI);
9585 return new LoadInst(GEP);
Chris Lattner83f65782006-05-25 22:53:38 +00009586 }
9587 }
9588 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
9589 // Extracting the inserted element?
9590 if (IE->getOperand(2) == EI.getOperand(1))
9591 return ReplaceInstUsesWith(EI, IE->getOperand(1));
9592 // If the inserted and extracted elements are constants, they must not
9593 // be the same value, extract from the pre-inserted value instead.
9594 if (isa<Constant>(IE->getOperand(2)) &&
9595 isa<Constant>(EI.getOperand(1))) {
9596 AddUsesToWorkList(EI);
9597 EI.setOperand(0, IE->getOperand(0));
9598 return &EI;
9599 }
9600 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
9601 // If this is extracting an element from a shufflevector, figure out where
9602 // it came from and extract from the appropriate input element instead.
Reid Spencere0fc4df2006-10-20 07:07:24 +00009603 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9604 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Chris Lattner12249be2006-05-25 23:48:38 +00009605 Value *Src;
9606 if (SrcIdx < SVI->getType()->getNumElements())
9607 Src = SVI->getOperand(0);
9608 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
9609 SrcIdx -= SVI->getType()->getNumElements();
9610 Src = SVI->getOperand(1);
9611 } else {
9612 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
Chris Lattner612fa8e2006-03-30 22:02:40 +00009613 }
Chris Lattner2deeaea2006-10-05 06:55:50 +00009614 return new ExtractElementInst(Src, SrcIdx);
Robert Bocchinoa8352962006-01-13 22:48:06 +00009615 }
9616 }
Chris Lattner83f65782006-05-25 22:53:38 +00009617 }
Robert Bocchinoa8352962006-01-13 22:48:06 +00009618 return 0;
9619}
9620
Chris Lattner90951862006-04-16 00:51:47 +00009621/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9622/// elements from either LHS or RHS, return the shuffle mask and true.
9623/// Otherwise, return false.
9624static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
9625 std::vector<Constant*> &Mask) {
9626 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
9627 "Invalid CollectSingleShuffleElements");
Reid Spencerd84d35b2007-02-15 02:26:10 +00009628 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner90951862006-04-16 00:51:47 +00009629
9630 if (isa<UndefValue>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009631 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner90951862006-04-16 00:51:47 +00009632 return true;
9633 } else if (V == LHS) {
9634 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009635 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner90951862006-04-16 00:51:47 +00009636 return true;
9637 } else if (V == RHS) {
9638 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009639 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
Chris Lattner90951862006-04-16 00:51:47 +00009640 return true;
9641 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9642 // If this is an insert of an extract from some other vector, include it.
9643 Value *VecOp = IEI->getOperand(0);
9644 Value *ScalarOp = IEI->getOperand(1);
9645 Value *IdxOp = IEI->getOperand(2);
9646
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009647 if (!isa<ConstantInt>(IdxOp))
9648 return false;
Reid Spencere0fc4df2006-10-20 07:07:24 +00009649 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009650
9651 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
9652 // Okay, we can handle this if the vector we are insertinting into is
9653 // transitively ok.
9654 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9655 // If so, update the mask to reflect the inserted undef.
Reid Spencerc635f472006-12-31 05:48:39 +00009656 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
Chris Lattnerb6cb64b2006-04-27 21:14:21 +00009657 return true;
9658 }
9659 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
9660 if (isa<ConstantInt>(EI->getOperand(1)) &&
Chris Lattner90951862006-04-16 00:51:47 +00009661 EI->getOperand(0)->getType() == V->getType()) {
9662 unsigned ExtractedIdx =
Reid Spencere0fc4df2006-10-20 07:07:24 +00009663 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
Chris Lattner90951862006-04-16 00:51:47 +00009664
9665 // This must be extracting from either LHS or RHS.
9666 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
9667 // Okay, we can handle this if the vector we are insertinting into is
9668 // transitively ok.
9669 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9670 // If so, update the mask to reflect the inserted value.
9671 if (EI->getOperand(0) == LHS) {
9672 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009673 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner90951862006-04-16 00:51:47 +00009674 } else {
9675 assert(EI->getOperand(0) == RHS);
9676 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009677 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
Chris Lattner90951862006-04-16 00:51:47 +00009678
9679 }
9680 return true;
9681 }
9682 }
9683 }
9684 }
9685 }
9686 // TODO: Handle shufflevector here!
9687
9688 return false;
9689}
9690
9691/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
9692/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
9693/// that computes V and the LHS value of the shuffle.
Chris Lattner39fac442006-04-15 01:39:45 +00009694static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Chris Lattner90951862006-04-16 00:51:47 +00009695 Value *&RHS) {
Reid Spencerd84d35b2007-02-15 02:26:10 +00009696 assert(isa<VectorType>(V->getType()) &&
Chris Lattner90951862006-04-16 00:51:47 +00009697 (RHS == 0 || V->getType() == RHS->getType()) &&
Chris Lattner39fac442006-04-15 01:39:45 +00009698 "Invalid shuffle!");
Reid Spencerd84d35b2007-02-15 02:26:10 +00009699 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
Chris Lattner39fac442006-04-15 01:39:45 +00009700
9701 if (isa<UndefValue>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009702 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
Chris Lattner39fac442006-04-15 01:39:45 +00009703 return V;
9704 } else if (isa<ConstantAggregateZero>(V)) {
Reid Spencerc635f472006-12-31 05:48:39 +00009705 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
Chris Lattner39fac442006-04-15 01:39:45 +00009706 return V;
9707 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9708 // If this is an insert of an extract from some other vector, include it.
9709 Value *VecOp = IEI->getOperand(0);
9710 Value *ScalarOp = IEI->getOperand(1);
9711 Value *IdxOp = IEI->getOperand(2);
9712
9713 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9714 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9715 EI->getOperand(0)->getType() == V->getType()) {
9716 unsigned ExtractedIdx =
Reid Spencere0fc4df2006-10-20 07:07:24 +00009717 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9718 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattner39fac442006-04-15 01:39:45 +00009719
9720 // Either the extracted from or inserted into vector must be RHSVec,
9721 // otherwise we'd end up with a shuffle of three inputs.
Chris Lattner90951862006-04-16 00:51:47 +00009722 if (EI->getOperand(0) == RHS || RHS == 0) {
9723 RHS = EI->getOperand(0);
9724 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Chris Lattner39fac442006-04-15 01:39:45 +00009725 Mask[InsertedIdx & (NumElts-1)] =
Reid Spencerc635f472006-12-31 05:48:39 +00009726 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
Chris Lattner39fac442006-04-15 01:39:45 +00009727 return V;
9728 }
9729
Chris Lattner90951862006-04-16 00:51:47 +00009730 if (VecOp == RHS) {
9731 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
Chris Lattner39fac442006-04-15 01:39:45 +00009732 // Everything but the extracted element is replaced with the RHS.
9733 for (unsigned i = 0; i != NumElts; ++i) {
9734 if (i != InsertedIdx)
Reid Spencerc635f472006-12-31 05:48:39 +00009735 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
Chris Lattner39fac442006-04-15 01:39:45 +00009736 }
9737 return V;
9738 }
Chris Lattner90951862006-04-16 00:51:47 +00009739
9740 // If this insertelement is a chain that comes from exactly these two
9741 // vectors, return the vector and the effective shuffle.
9742 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
9743 return EI->getOperand(0);
9744
Chris Lattner39fac442006-04-15 01:39:45 +00009745 }
9746 }
9747 }
Chris Lattner90951862006-04-16 00:51:47 +00009748 // TODO: Handle shufflevector here!
Chris Lattner39fac442006-04-15 01:39:45 +00009749
9750 // Otherwise, can't do anything fancy. Return an identity vector.
9751 for (unsigned i = 0; i != NumElts; ++i)
Reid Spencerc635f472006-12-31 05:48:39 +00009752 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
Chris Lattner39fac442006-04-15 01:39:45 +00009753 return V;
9754}
9755
9756Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
9757 Value *VecOp = IE.getOperand(0);
9758 Value *ScalarOp = IE.getOperand(1);
9759 Value *IdxOp = IE.getOperand(2);
9760
9761 // If the inserted element was extracted from some other vector, and if the
9762 // indexes are constant, try to turn this into a shufflevector operation.
9763 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9764 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9765 EI->getOperand(0)->getType() == IE.getType()) {
9766 unsigned NumVectorElts = IE.getType()->getNumElements();
Reid Spencere0fc4df2006-10-20 07:07:24 +00009767 unsigned ExtractedIdx=cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9768 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
Chris Lattner39fac442006-04-15 01:39:45 +00009769
9770 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
9771 return ReplaceInstUsesWith(IE, VecOp);
9772
9773 if (InsertedIdx >= NumVectorElts) // Out of range insert.
9774 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
9775
9776 // If we are extracting a value from a vector, then inserting it right
9777 // back into the same place, just use the input vector.
9778 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
9779 return ReplaceInstUsesWith(IE, VecOp);
9780
9781 // We could theoretically do this for ANY input. However, doing so could
9782 // turn chains of insertelement instructions into a chain of shufflevector
9783 // instructions, and right now we do not merge shufflevectors. As such,
9784 // only do this in a situation where it is clear that there is benefit.
9785 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
9786 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
9787 // the values of VecOp, except then one read from EIOp0.
9788 // Build a new shuffle mask.
9789 std::vector<Constant*> Mask;
9790 if (isa<UndefValue>(VecOp))
Reid Spencerc635f472006-12-31 05:48:39 +00009791 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
Chris Lattner39fac442006-04-15 01:39:45 +00009792 else {
9793 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
Reid Spencerc635f472006-12-31 05:48:39 +00009794 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
Chris Lattner39fac442006-04-15 01:39:45 +00009795 NumVectorElts));
9796 }
Reid Spencerc635f472006-12-31 05:48:39 +00009797 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
Chris Lattner39fac442006-04-15 01:39:45 +00009798 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
Reid Spencerd84d35b2007-02-15 02:26:10 +00009799 ConstantVector::get(Mask));
Chris Lattner39fac442006-04-15 01:39:45 +00009800 }
9801
9802 // If this insertelement isn't used by some other insertelement, turn it
9803 // (and any insertelements it points to), into one big shuffle.
9804 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
9805 std::vector<Constant*> Mask;
Chris Lattner90951862006-04-16 00:51:47 +00009806 Value *RHS = 0;
9807 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
9808 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
9809 // We now have a shuffle of LHS, RHS, Mask.
Reid Spencerd84d35b2007-02-15 02:26:10 +00009810 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
Chris Lattner39fac442006-04-15 01:39:45 +00009811 }
9812 }
9813 }
9814
9815 return 0;
9816}
9817
9818
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009819Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
9820 Value *LHS = SVI.getOperand(0);
9821 Value *RHS = SVI.getOperand(1);
Chris Lattner12249be2006-05-25 23:48:38 +00009822 std::vector<unsigned> Mask = getShuffleMask(&SVI);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009823
9824 bool MadeChange = false;
9825
Chris Lattner2deeaea2006-10-05 06:55:50 +00009826 // Undefined shuffle mask -> undefined value.
Chris Lattner12249be2006-05-25 23:48:38 +00009827 if (isa<UndefValue>(SVI.getOperand(2)))
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009828 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
9829
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009830 // If we have shuffle(x, undef, mask) and any elements of mask refer to
Chris Lattner39fac442006-04-15 01:39:45 +00009831 // the undef, change them to undefs.
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009832 if (isa<UndefValue>(SVI.getOperand(1))) {
9833 // Scan to see if there are any references to the RHS. If so, replace them
9834 // with undef element refs and set MadeChange to true.
9835 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9836 if (Mask[i] >= e && Mask[i] != 2*e) {
9837 Mask[i] = 2*e;
9838 MadeChange = true;
9839 }
9840 }
9841
9842 if (MadeChange) {
9843 // Remap any references to RHS to use LHS.
9844 std::vector<Constant*> Elts;
9845 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9846 if (Mask[i] == 2*e)
9847 Elts.push_back(UndefValue::get(Type::Int32Ty));
9848 else
9849 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
9850 }
Reid Spencerd84d35b2007-02-15 02:26:10 +00009851 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattnerd7b6ea12007-01-05 07:36:08 +00009852 }
9853 }
Chris Lattner39fac442006-04-15 01:39:45 +00009854
Chris Lattner12249be2006-05-25 23:48:38 +00009855 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
9856 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
9857 if (LHS == RHS || isa<UndefValue>(LHS)) {
9858 if (isa<UndefValue>(LHS) && LHS == RHS) {
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009859 // shuffle(undef,undef,mask) -> undef.
9860 return ReplaceInstUsesWith(SVI, LHS);
9861 }
9862
Chris Lattner12249be2006-05-25 23:48:38 +00009863 // Remap any references to RHS to use LHS.
9864 std::vector<Constant*> Elts;
9865 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
Chris Lattner0e477162006-05-26 00:29:06 +00009866 if (Mask[i] >= 2*e)
Reid Spencerc635f472006-12-31 05:48:39 +00009867 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner0e477162006-05-26 00:29:06 +00009868 else {
9869 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
9870 (Mask[i] < e && isa<UndefValue>(LHS)))
9871 Mask[i] = 2*e; // Turn into undef.
9872 else
9873 Mask[i] &= (e-1); // Force to LHS.
Reid Spencerc635f472006-12-31 05:48:39 +00009874 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
Chris Lattner0e477162006-05-26 00:29:06 +00009875 }
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009876 }
Chris Lattner12249be2006-05-25 23:48:38 +00009877 SVI.setOperand(0, SVI.getOperand(1));
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009878 SVI.setOperand(1, UndefValue::get(RHS->getType()));
Reid Spencerd84d35b2007-02-15 02:26:10 +00009879 SVI.setOperand(2, ConstantVector::get(Elts));
Chris Lattner0e477162006-05-26 00:29:06 +00009880 LHS = SVI.getOperand(0);
9881 RHS = SVI.getOperand(1);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009882 MadeChange = true;
9883 }
9884
Chris Lattner0e477162006-05-26 00:29:06 +00009885 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
Chris Lattner12249be2006-05-25 23:48:38 +00009886 bool isLHSID = true, isRHSID = true;
Chris Lattner34cebe72006-04-16 00:03:56 +00009887
Chris Lattner12249be2006-05-25 23:48:38 +00009888 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9889 if (Mask[i] >= e*2) continue; // Ignore undef values.
9890 // Is this an identity shuffle of the LHS value?
9891 isLHSID &= (Mask[i] == i);
9892
9893 // Is this an identity shuffle of the RHS value?
9894 isRHSID &= (Mask[i]-e == i);
Chris Lattner34cebe72006-04-16 00:03:56 +00009895 }
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009896
Chris Lattner12249be2006-05-25 23:48:38 +00009897 // Eliminate identity shuffles.
9898 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
9899 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009900
Chris Lattner0e477162006-05-26 00:29:06 +00009901 // If the LHS is a shufflevector itself, see if we can combine it with this
9902 // one without producing an unusual shuffle. Here we are really conservative:
9903 // we are absolutely afraid of producing a shuffle mask not in the input
9904 // program, because the code gen may not be smart enough to turn a merged
9905 // shuffle into two specific shuffles: it may produce worse code. As such,
9906 // we only merge two shuffles if the result is one of the two input shuffle
9907 // masks. In this case, merging the shuffles just removes one instruction,
9908 // which we know is safe. This is good for things like turning:
9909 // (splat(splat)) -> splat.
9910 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
9911 if (isa<UndefValue>(RHS)) {
9912 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
9913
9914 std::vector<unsigned> NewMask;
9915 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
9916 if (Mask[i] >= 2*e)
9917 NewMask.push_back(2*e);
9918 else
9919 NewMask.push_back(LHSMask[Mask[i]]);
9920
9921 // If the result mask is equal to the src shuffle or this shuffle mask, do
9922 // the replacement.
9923 if (NewMask == LHSMask || NewMask == Mask) {
9924 std::vector<Constant*> Elts;
9925 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
9926 if (NewMask[i] >= e*2) {
Reid Spencerc635f472006-12-31 05:48:39 +00009927 Elts.push_back(UndefValue::get(Type::Int32Ty));
Chris Lattner0e477162006-05-26 00:29:06 +00009928 } else {
Reid Spencerc635f472006-12-31 05:48:39 +00009929 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
Chris Lattner0e477162006-05-26 00:29:06 +00009930 }
9931 }
9932 return new ShuffleVectorInst(LHSSVI->getOperand(0),
9933 LHSSVI->getOperand(1),
Reid Spencerd84d35b2007-02-15 02:26:10 +00009934 ConstantVector::get(Elts));
Chris Lattner0e477162006-05-26 00:29:06 +00009935 }
9936 }
9937 }
Chris Lattner4284f642007-01-30 22:32:46 +00009938
Chris Lattnerfbb77a42006-04-10 22:45:52 +00009939 return MadeChange ? &SVI : 0;
9940}
9941
9942
Robert Bocchinoa8352962006-01-13 22:48:06 +00009943
Chris Lattner39c98bb2004-12-08 23:43:58 +00009944
9945/// TryToSinkInstruction - Try to move the specified instruction from its
9946/// current block into the beginning of DestBlock, which can only happen if it's
9947/// safe to move the instruction past all of the instructions between it and the
9948/// end of its block.
9949static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
9950 assert(I->hasOneUse() && "Invariants didn't hold!");
9951
Chris Lattnerc4f67e62005-10-27 17:13:11 +00009952 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
9953 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanb1c93172005-04-21 23:48:37 +00009954
Chris Lattner39c98bb2004-12-08 23:43:58 +00009955 // Do not sink alloca instructions out of the entry block.
9956 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
9957 return false;
9958
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009959 // We can only sink load instructions if there is nothing between the load and
9960 // the end of block that could change the value.
9961 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009962 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
9963 Scan != E; ++Scan)
9964 if (Scan->mayWriteToMemory())
9965 return false;
Chris Lattnerf17a2fb2004-12-09 07:14:34 +00009966 }
Chris Lattner39c98bb2004-12-08 23:43:58 +00009967
9968 BasicBlock::iterator InsertPos = DestBlock->begin();
9969 while (isa<PHINode>(InsertPos)) ++InsertPos;
9970
Chris Lattner9f269e42005-08-08 19:11:57 +00009971 I->moveBefore(InsertPos);
Chris Lattner39c98bb2004-12-08 23:43:58 +00009972 ++NumSunkInst;
9973 return true;
9974}
9975
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009976
9977/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
9978/// all reachable code to the worklist.
9979///
9980/// This has a couple of tricks to make the code faster and more powerful. In
9981/// particular, we constant fold and DCE instructions as we go, to avoid adding
9982/// them to the worklist (this significantly speeds up instcombine on code where
9983/// many instructions are dead or constant). Additionally, if we find a branch
9984/// whose condition is a known constant, we only visit the reachable successors.
9985///
9986static void AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner7907e5f2007-02-15 19:41:52 +00009987 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerb15e2b12007-03-02 21:28:56 +00009988 InstCombiner &IC,
Chris Lattner1443bc52006-05-11 17:11:52 +00009989 const TargetData *TD) {
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009990 // We have now visited this block! If we've already been here, bail out.
Chris Lattner7907e5f2007-02-15 19:41:52 +00009991 if (!Visited.insert(BB)) return;
Chris Lattnera36ee4e2006-05-10 19:00:36 +00009992
9993 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
9994 Instruction *Inst = BBI++;
9995
9996 // DCE instruction if trivially dead.
9997 if (isInstructionTriviallyDead(Inst)) {
9998 ++NumDeadInst;
Bill Wendling5dbf43c2006-11-26 09:46:52 +00009999 DOUT << "IC: DCE: " << *Inst;
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010000 Inst->eraseFromParent();
10001 continue;
10002 }
10003
10004 // ConstantProp instruction if trivially constant.
Chris Lattnere3eda252007-01-30 23:16:15 +000010005 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010006 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010007 Inst->replaceAllUsesWith(C);
10008 ++NumConstProp;
10009 Inst->eraseFromParent();
10010 continue;
10011 }
10012
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010013 IC.AddToWorkList(Inst);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010014 }
10015
10016 // Recursively visit successors. If this is a branch or switch on a constant,
10017 // only visit the reachable successor.
10018 TerminatorInst *TI = BB->getTerminator();
10019 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
Reid Spencer7a9c62b2007-01-12 07:05:14 +000010020 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
Reid Spencercddc9df2007-01-12 04:24:46 +000010021 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010022 AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010023 return;
10024 }
10025 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
10026 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
10027 // See if this is an explicit destination.
10028 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
10029 if (SI->getCaseValue(i) == Cond) {
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010030 AddReachableCodeToWorklist(SI->getSuccessor(i), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010031 return;
10032 }
10033
10034 // Otherwise it is the default destination.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010035 AddReachableCodeToWorklist(SI->getSuccessor(0), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010036 return;
10037 }
10038 }
10039
10040 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010041 AddReachableCodeToWorklist(TI->getSuccessor(i), Visited, IC, TD);
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010042}
10043
Chris Lattner960a5432007-03-03 02:04:50 +000010044bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattner260ab202002-04-18 17:39:14 +000010045 bool Changed = false;
Chris Lattnerf4ad1652003-11-02 05:57:39 +000010046 TD = &getAnalysis<TargetData>();
Chris Lattner960a5432007-03-03 02:04:50 +000010047
10048 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
10049 << F.getNameStr() << "\n");
Chris Lattnerca081252001-12-14 16:52:21 +000010050
Chris Lattner4ed40f72005-07-07 20:40:38 +000010051 {
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010052 // Do a depth-first traversal of the function, populate the worklist with
10053 // the reachable instructions. Ignore blocks that are not reachable. Keep
10054 // track of which blocks we visit.
Chris Lattner7907e5f2007-02-15 19:41:52 +000010055 SmallPtrSet<BasicBlock*, 64> Visited;
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010056 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +000010057
Chris Lattner4ed40f72005-07-07 20:40:38 +000010058 // Do a quick scan over the function. If we find any blocks that are
10059 // unreachable, remove any instructions inside of them. This prevents
10060 // the instcombine code from having to deal with some bad special cases.
10061 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
10062 if (!Visited.count(BB)) {
10063 Instruction *Term = BB->getTerminator();
10064 while (Term != BB->begin()) { // Remove instrs bottom-up
10065 BasicBlock::iterator I = Term; --I;
Chris Lattner2d3a7a62004-04-27 15:13:33 +000010066
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010067 DOUT << "IC: DCE: " << *I;
Chris Lattner4ed40f72005-07-07 20:40:38 +000010068 ++NumDeadInst;
10069
10070 if (!I->use_empty())
10071 I->replaceAllUsesWith(UndefValue::get(I->getType()));
10072 I->eraseFromParent();
10073 }
10074 }
10075 }
Chris Lattnerca081252001-12-14 16:52:21 +000010076
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010077 while (!Worklist.empty()) {
10078 Instruction *I = RemoveOneFromWorkList();
10079 if (I == 0) continue; // skip null values.
Chris Lattnerca081252001-12-14 16:52:21 +000010080
Chris Lattner1443bc52006-05-11 17:11:52 +000010081 // Check to see if we can DCE the instruction.
Chris Lattner99f48c62002-09-02 04:59:56 +000010082 if (isInstructionTriviallyDead(I)) {
Chris Lattner1443bc52006-05-11 17:11:52 +000010083 // Add operands to the worklist.
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010084 if (I->getNumOperands() < 4)
Chris Lattner51ea1272004-02-28 05:22:00 +000010085 AddUsesToWorkList(*I);
Chris Lattner99f48c62002-09-02 04:59:56 +000010086 ++NumDeadInst;
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010087
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010088 DOUT << "IC: DCE: " << *I;
Chris Lattnercd517ff2005-01-28 19:32:01 +000010089
10090 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010091 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010092 continue;
10093 }
Chris Lattner99f48c62002-09-02 04:59:56 +000010094
Chris Lattner1443bc52006-05-11 17:11:52 +000010095 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere3eda252007-01-30 23:16:15 +000010096 if (Constant *C = ConstantFoldInstruction(I, TD)) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010097 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
Chris Lattnercd517ff2005-01-28 19:32:01 +000010098
Chris Lattner1443bc52006-05-11 17:11:52 +000010099 // Add operands to the worklist.
Chris Lattner51ea1272004-02-28 05:22:00 +000010100 AddUsesToWorkList(*I);
Chris Lattnerc6509f42002-12-05 22:41:53 +000010101 ReplaceInstUsesWith(*I, C);
10102
Chris Lattner99f48c62002-09-02 04:59:56 +000010103 ++NumConstProp;
Chris Lattnera36ee4e2006-05-10 19:00:36 +000010104 I->eraseFromParent();
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010105 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010106 continue;
Chris Lattner99f48c62002-09-02 04:59:56 +000010107 }
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010108
Chris Lattner39c98bb2004-12-08 23:43:58 +000010109 // See if we can trivially sink this instruction to a successor basic block.
10110 if (I->hasOneUse()) {
10111 BasicBlock *BB = I->getParent();
10112 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
10113 if (UserParent != BB) {
10114 bool UserIsSuccessor = false;
10115 // See if the user is one of our successors.
10116 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
10117 if (*SI == UserParent) {
10118 UserIsSuccessor = true;
10119 break;
10120 }
10121
10122 // If the user is one of our immediate successors, and if that successor
10123 // only has us as a predecessors (we'd have to split the critical edge
10124 // otherwise), we can keep going.
10125 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
10126 next(pred_begin(UserParent)) == pred_end(UserParent))
10127 // Okay, the CFG is simple enough, try to sink this instruction.
10128 Changed |= TryToSinkInstruction(I, UserParent);
10129 }
10130 }
10131
Chris Lattnerca081252001-12-14 16:52:21 +000010132 // Now that we have an instruction, try combining it to simplify it...
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010133 if (Instruction *Result = visit(*I)) {
Chris Lattner0b18c1d2002-05-10 15:38:35 +000010134 ++NumCombined;
Chris Lattner260ab202002-04-18 17:39:14 +000010135 // Should we replace the old instruction with a new one?
Chris Lattner053c0932002-05-14 15:24:07 +000010136 if (Result != I) {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010137 DOUT << "IC: Old = " << *I
10138 << " New = " << *Result;
Chris Lattner7d2a5392004-03-13 23:54:27 +000010139
Chris Lattner396dbfe2004-06-09 05:08:07 +000010140 // Everything uses the new instruction now.
10141 I->replaceAllUsesWith(Result);
10142
10143 // Push the new instruction and any users onto the worklist.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010144 AddToWorkList(Result);
Chris Lattner396dbfe2004-06-09 05:08:07 +000010145 AddUsersToWorkList(*Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010146
Chris Lattner6e0123b2007-02-11 01:23:03 +000010147 // Move the name to the new instruction first.
10148 Result->takeName(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010149
10150 // Insert the new instruction into the basic block...
10151 BasicBlock *InstParent = I->getParent();
Chris Lattner7515cab2004-11-14 19:13:23 +000010152 BasicBlock::iterator InsertPos = I;
10153
10154 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
10155 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
10156 ++InsertPos;
10157
10158 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010159
Chris Lattner63d75af2004-05-01 23:27:23 +000010160 // Make sure that we reprocess all operands now that we reduced their
10161 // use counts.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010162 AddUsesToWorkList(*I);
Chris Lattnerb643a9e2004-05-01 23:19:52 +000010163
Chris Lattner396dbfe2004-06-09 05:08:07 +000010164 // Instructions can end up on the worklist more than once. Make sure
10165 // we do not process an instruction that has been deleted.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010166 RemoveFromWorkList(I);
Chris Lattnere8ed4ef2003-10-06 17:11:01 +000010167
10168 // Erase the old instruction.
10169 InstParent->getInstList().erase(I);
Chris Lattner113f4f42002-06-25 16:13:24 +000010170 } else {
Bill Wendling5dbf43c2006-11-26 09:46:52 +000010171 DOUT << "IC: MOD = " << *I;
Chris Lattner7d2a5392004-03-13 23:54:27 +000010172
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010173 // If the instruction was modified, it's possible that it is now dead.
10174 // if so, remove it.
Chris Lattner63d75af2004-05-01 23:27:23 +000010175 if (isInstructionTriviallyDead(I)) {
10176 // Make sure we process all operands now that we are reducing their
10177 // use counts.
Chris Lattner960a5432007-03-03 02:04:50 +000010178 AddUsesToWorkList(*I);
Misha Brukmanb1c93172005-04-21 23:48:37 +000010179
Chris Lattner63d75af2004-05-01 23:27:23 +000010180 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchinoa8352962006-01-13 22:48:06 +000010181 // occurrences of this instruction.
Chris Lattnerb15e2b12007-03-02 21:28:56 +000010182 RemoveFromWorkList(I);
Chris Lattner31f486c2005-01-31 05:36:43 +000010183 I->eraseFromParent();
Chris Lattner396dbfe2004-06-09 05:08:07 +000010184 } else {
Chris Lattner960a5432007-03-03 02:04:50 +000010185 AddToWorkList(I);
10186 AddUsersToWorkList(*I);
Chris Lattnerae7a0d32002-08-02 19:29:35 +000010187 }
Chris Lattner053c0932002-05-14 15:24:07 +000010188 }
Chris Lattner260ab202002-04-18 17:39:14 +000010189 Changed = true;
Chris Lattnerca081252001-12-14 16:52:21 +000010190 }
10191 }
10192
Chris Lattner960a5432007-03-03 02:04:50 +000010193 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattner260ab202002-04-18 17:39:14 +000010194 return Changed;
Chris Lattner04805fa2002-02-26 21:46:54 +000010195}
10196
Chris Lattner960a5432007-03-03 02:04:50 +000010197
10198bool InstCombiner::runOnFunction(Function &F) {
Chris Lattner8258b442007-03-04 04:27:24 +000010199 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
10200
Chris Lattner960a5432007-03-03 02:04:50 +000010201 bool EverMadeChange = false;
10202
10203 // Iterate while there is work to do.
10204 unsigned Iteration = 0;
10205 while (DoOneIteration(F, Iteration++))
10206 EverMadeChange = true;
10207 return EverMadeChange;
10208}
10209
Brian Gaeke38b79e82004-07-27 17:43:21 +000010210FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattner260ab202002-04-18 17:39:14 +000010211 return new InstCombiner();
Chris Lattner04805fa2002-02-26 21:46:54 +000010212}
Brian Gaeke960707c2003-11-11 22:41:34 +000010213