blob: 865dd30bbeb520c9552acaec4f1e81ecf523ae53 [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +000015 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
Alp Toker958027b2014-07-14 19:42:55 +000094For backward compatibility, ``__has_feature`` can also be used to test
Sean Silva709c44d2012-12-12 23:44:55 +000095for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_attribute``
113-------------------
114
115This function-like macro takes a single identifier argument that is the name of
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000116an attribute. It evaluates to 1 if the attribute is supported by the current
117compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000118
119.. code-block:: c++
120
121 #ifndef __has_attribute // Optional of course.
122 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
123 #endif
124
125 ...
126 #if __has_attribute(always_inline)
127 #define ALWAYS_INLINE __attribute__((always_inline))
128 #else
129 #define ALWAYS_INLINE
130 #endif
131 ...
132
133The attribute name can also be specified with a preceding and following ``__``
134(double underscore) to avoid interference from a macro with the same name. For
135instance, ``__always_inline__`` can be used instead of ``always_inline``.
136
Yunzhong Gaoa8c45c92014-04-12 02:25:32 +0000137``__is_identifier``
138-------------------
139
140This function-like macro takes a single identifier argument that might be either
141a reserved word or a regular identifier. It evaluates to 1 if the argument is just
142a regular identifier and not a reserved word, in the sense that it can then be
143used as the name of a user-defined function or variable. Otherwise it evaluates
144to 0. It can be used like this:
145
146.. code-block:: c++
147
148 ...
149 #ifdef __is_identifier // Compatibility with non-clang compilers.
150 #if __is_identifier(__wchar_t)
151 typedef wchar_t __wchar_t;
152 #endif
153 #endif
154
155 __wchar_t WideCharacter;
156 ...
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000157
Sean Silva709c44d2012-12-12 23:44:55 +0000158Include File Checking Macros
159============================
160
161Not all developments systems have the same include files. The
162:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
163you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000164failing ``#include`` directive. Include file checking macros must be used
165as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000166
167.. _langext-__has_include:
168
169``__has_include``
170-----------------
171
172This function-like macro takes a single file name string argument that is the
173name of an include file. It evaluates to 1 if the file can be found using the
174include paths, or 0 otherwise:
175
176.. code-block:: c++
177
178 // Note the two possible file name string formats.
179 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
180 # include "myinclude.h"
181 #endif
182
Richard Smithccfc9ff2013-07-11 00:27:05 +0000183To test for this feature, use ``#if defined(__has_include)``:
184
185.. code-block:: c++
186
Sean Silva709c44d2012-12-12 23:44:55 +0000187 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000188 #if defined(__has_include)
189 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000190 # include "myinclude.h"
191 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000192 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000193
194.. _langext-__has_include_next:
195
196``__has_include_next``
197----------------------
198
199This function-like macro takes a single file name string argument that is the
200name of an include file. It is like ``__has_include`` except that it looks for
201the second instance of the given file found in the include paths. It evaluates
202to 1 if the second instance of the file can be found using the include paths,
203or 0 otherwise:
204
205.. code-block:: c++
206
207 // Note the two possible file name string formats.
208 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
209 # include_next "myinclude.h"
210 #endif
211
212 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000213 #if defined(__has_include_next)
214 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000215 # include_next "myinclude.h"
216 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000217 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000218
219Note that ``__has_include_next``, like the GNU extension ``#include_next``
220directive, is intended for use in headers only, and will issue a warning if
221used in the top-level compilation file. A warning will also be issued if an
222absolute path is used in the file argument.
223
224``__has_warning``
225-----------------
226
227This function-like macro takes a string literal that represents a command line
228option for a warning and returns true if that is a valid warning option.
229
230.. code-block:: c++
231
232 #if __has_warning("-Wformat")
233 ...
234 #endif
235
236Builtin Macros
237==============
238
239``__BASE_FILE__``
240 Defined to a string that contains the name of the main input file passed to
241 Clang.
242
243``__COUNTER__``
244 Defined to an integer value that starts at zero and is incremented each time
245 the ``__COUNTER__`` macro is expanded.
246
247``__INCLUDE_LEVEL__``
248 Defined to an integral value that is the include depth of the file currently
249 being translated. For the main file, this value is zero.
250
251``__TIMESTAMP__``
252 Defined to the date and time of the last modification of the current source
253 file.
254
255``__clang__``
256 Defined when compiling with Clang
257
258``__clang_major__``
259 Defined to the major marketing version number of Clang (e.g., the 2 in
260 2.0.1). Note that marketing version numbers should not be used to check for
261 language features, as different vendors use different numbering schemes.
262 Instead, use the :ref:`langext-feature_check`.
263
264``__clang_minor__``
265 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
266 that marketing version numbers should not be used to check for language
267 features, as different vendors use different numbering schemes. Instead, use
268 the :ref:`langext-feature_check`.
269
270``__clang_patchlevel__``
271 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
272
273``__clang_version__``
274 Defined to a string that captures the Clang marketing version, including the
275 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
276
277.. _langext-vectors:
278
279Vectors and Extended Vectors
280============================
281
282Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
283
284OpenCL vector types are created using ``ext_vector_type`` attribute. It
285support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
286is:
287
288.. code-block:: c++
289
290 typedef float float4 __attribute__((ext_vector_type(4)));
291 typedef float float2 __attribute__((ext_vector_type(2)));
292
293 float4 foo(float2 a, float2 b) {
294 float4 c;
295 c.xz = a;
296 c.yw = b;
297 return c;
298 }
299
300Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
301
302Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
303and functions. For example:
304
305.. code-block:: c++
306
307 vector float foo(vector int a) {
308 vector int b;
309 b = vec_add(a, a) + a;
310 return (vector float)b;
311 }
312
313NEON vector types are created using ``neon_vector_type`` and
314``neon_polyvector_type`` attributes. For example:
315
316.. code-block:: c++
317
318 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
319 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
320
321 int8x8_t foo(int8x8_t a) {
322 int8x8_t v;
323 v = a;
324 return v;
325 }
326
327Vector Literals
328---------------
329
330Vector literals can be used to create vectors from a set of scalars, or
331vectors. Either parentheses or braces form can be used. In the parentheses
332form the number of literal values specified must be one, i.e. referring to a
333scalar value, or must match the size of the vector type being created. If a
334single scalar literal value is specified, the scalar literal value will be
335replicated to all the components of the vector type. In the brackets form any
336number of literals can be specified. For example:
337
338.. code-block:: c++
339
340 typedef int v4si __attribute__((__vector_size__(16)));
341 typedef float float4 __attribute__((ext_vector_type(4)));
342 typedef float float2 __attribute__((ext_vector_type(2)));
343
344 v4si vsi = (v4si){1, 2, 3, 4};
345 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
346 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
347 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
348 vector int vi3 = (vector int)(1, 2); // error
349 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
350 vector int vi5 = (vector int)(1, 2, 3, 4);
351 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
352
353Vector Operations
354-----------------
355
356The table below shows the support for each operation by vector extension. A
357dash indicates that an operation is not accepted according to a corresponding
358specification.
359
Anton Yartsev94e46f32014-09-03 17:59:21 +0000360============================== ======= ======= ======= =======
361 Opeator OpenCL AltiVec GCC NEON
362============================== ======= ======= ======= =======
363[] yes yes yes --
364unary operators +, -- yes yes yes --
365++, -- -- yes yes yes --
366+,--,*,/,% yes yes yes --
367bitwise operators &,|,^,~ yes yes yes --
368>>,<< yes yes yes --
369!, &&, || yes -- -- --
370==, !=, >, <, >=, <= yes yes -- --
371= yes yes yes yes
372:? yes -- -- --
373sizeof yes yes yes yes
374C-style cast yes yes yes no
375reinterpret_cast yes no yes no
376static_cast yes no yes no
377const_cast no no no no
378============================== ======= ======= ======= =======
Sean Silva709c44d2012-12-12 23:44:55 +0000379
Anton Yartsev94e46f32014-09-03 17:59:21 +0000380See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
Sean Silva709c44d2012-12-12 23:44:55 +0000381
382Messages on ``deprecated`` and ``unavailable`` Attributes
383=========================================================
384
385An optional string message can be added to the ``deprecated`` and
386``unavailable`` attributes. For example:
387
388.. code-block:: c++
389
390 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
391
392If the deprecated or unavailable declaration is used, the message will be
393incorporated into the appropriate diagnostic:
394
395.. code-block:: c++
396
397 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
398 [-Wdeprecated-declarations]
399 explode();
400 ^
401
402Query for this feature with
403``__has_extension(attribute_deprecated_with_message)`` and
404``__has_extension(attribute_unavailable_with_message)``.
405
406Attributes on Enumerators
407=========================
408
409Clang allows attributes to be written on individual enumerators. This allows
410enumerators to be deprecated, made unavailable, etc. The attribute must appear
411after the enumerator name and before any initializer, like so:
412
413.. code-block:: c++
414
415 enum OperationMode {
416 OM_Invalid,
417 OM_Normal,
418 OM_Terrified __attribute__((deprecated)),
419 OM_AbortOnError __attribute__((deprecated)) = 4
420 };
421
422Attributes on the ``enum`` declaration do not apply to individual enumerators.
423
424Query for this feature with ``__has_extension(enumerator_attributes)``.
425
426'User-Specified' System Frameworks
427==================================
428
429Clang provides a mechanism by which frameworks can be built in such a way that
430they will always be treated as being "system frameworks", even if they are not
431present in a system framework directory. This can be useful to system
432framework developers who want to be able to test building other applications
433with development builds of their framework, including the manner in which the
434compiler changes warning behavior for system headers.
435
436Framework developers can opt-in to this mechanism by creating a
437"``.system_framework``" file at the top-level of their framework. That is, the
438framework should have contents like:
439
440.. code-block:: none
441
442 .../TestFramework.framework
443 .../TestFramework.framework/.system_framework
444 .../TestFramework.framework/Headers
445 .../TestFramework.framework/Headers/TestFramework.h
446 ...
447
448Clang will treat the presence of this file as an indicator that the framework
449should be treated as a system framework, regardless of how it was found in the
450framework search path. For consistency, we recommend that such files never be
451included in installed versions of the framework.
452
Sean Silva709c44d2012-12-12 23:44:55 +0000453Checks for Standard Language Features
454=====================================
455
456The ``__has_feature`` macro can be used to query if certain standard language
457features are enabled. The ``__has_extension`` macro can be used to query if
458language features are available as an extension when compiling for a standard
459which does not provide them. The features which can be tested are listed here.
460
461C++98
462-----
463
464The features listed below are part of the C++98 standard. These features are
465enabled by default when compiling C++ code.
466
467C++ exceptions
468^^^^^^^^^^^^^^
469
470Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
471enabled. For example, compiling code with ``-fno-exceptions`` disables C++
472exceptions.
473
474C++ RTTI
475^^^^^^^^
476
477Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
478example, compiling code with ``-fno-rtti`` disables the use of RTTI.
479
480C++11
481-----
482
483The features listed below are part of the C++11 standard. As a result, all
484these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
485when compiling C++ code.
486
487C++11 SFINAE includes access control
488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
489
490Use ``__has_feature(cxx_access_control_sfinae)`` or
491``__has_extension(cxx_access_control_sfinae)`` to determine whether
492access-control errors (e.g., calling a private constructor) are considered to
493be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
494<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
495
496C++11 alias templates
497^^^^^^^^^^^^^^^^^^^^^
498
499Use ``__has_feature(cxx_alias_templates)`` or
500``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
501alias declarations and alias templates is enabled.
502
503C++11 alignment specifiers
504^^^^^^^^^^^^^^^^^^^^^^^^^^
505
506Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
507determine if support for alignment specifiers using ``alignas`` is enabled.
508
509C++11 attributes
510^^^^^^^^^^^^^^^^
511
512Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
513determine if support for attribute parsing with C++11's square bracket notation
514is enabled.
515
516C++11 generalized constant expressions
517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
518
519Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
520constant expressions (e.g., ``constexpr``) is enabled.
521
522C++11 ``decltype()``
523^^^^^^^^^^^^^^^^^^^^
524
525Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
526determine if support for the ``decltype()`` specifier is enabled. C++11's
527``decltype`` does not require type-completeness of a function call expression.
528Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
529``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
530support for this feature is enabled.
531
532C++11 default template arguments in function templates
533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
534
535Use ``__has_feature(cxx_default_function_template_args)`` or
536``__has_extension(cxx_default_function_template_args)`` to determine if support
537for default template arguments in function templates is enabled.
538
539C++11 ``default``\ ed functions
540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
541
542Use ``__has_feature(cxx_defaulted_functions)`` or
543``__has_extension(cxx_defaulted_functions)`` to determine if support for
544defaulted function definitions (with ``= default``) is enabled.
545
546C++11 delegating constructors
547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
548
549Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
550delegating constructors is enabled.
551
552C++11 ``deleted`` functions
553^^^^^^^^^^^^^^^^^^^^^^^^^^^
554
555Use ``__has_feature(cxx_deleted_functions)`` or
556``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
557function definitions (with ``= delete``) is enabled.
558
559C++11 explicit conversion functions
560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
561
562Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
563``explicit`` conversion functions is enabled.
564
565C++11 generalized initializers
566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
567
568Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
569generalized initializers (using braced lists and ``std::initializer_list``) is
570enabled.
571
572C++11 implicit move constructors/assignment operators
573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
574
575Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
576generate move constructors and move assignment operators where needed.
577
578C++11 inheriting constructors
579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
580
581Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000582inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000583
584C++11 inline namespaces
585^^^^^^^^^^^^^^^^^^^^^^^
586
587Use ``__has_feature(cxx_inline_namespaces)`` or
588``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
589namespaces is enabled.
590
591C++11 lambdas
592^^^^^^^^^^^^^
593
594Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
595determine if support for lambdas is enabled.
596
597C++11 local and unnamed types as template arguments
598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
599
600Use ``__has_feature(cxx_local_type_template_args)`` or
601``__has_extension(cxx_local_type_template_args)`` to determine if support for
602local and unnamed types as template arguments is enabled.
603
604C++11 noexcept
605^^^^^^^^^^^^^^
606
607Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
608determine if support for noexcept exception specifications is enabled.
609
610C++11 in-class non-static data member initialization
611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
612
613Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
614initialization of non-static data members is enabled.
615
616C++11 ``nullptr``
617^^^^^^^^^^^^^^^^^
618
619Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
620determine if support for ``nullptr`` is enabled.
621
622C++11 ``override control``
623^^^^^^^^^^^^^^^^^^^^^^^^^^
624
625Use ``__has_feature(cxx_override_control)`` or
626``__has_extension(cxx_override_control)`` to determine if support for the
627override control keywords is enabled.
628
629C++11 reference-qualified functions
630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
631
632Use ``__has_feature(cxx_reference_qualified_functions)`` or
633``__has_extension(cxx_reference_qualified_functions)`` to determine if support
634for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
635applied to ``*this``) is enabled.
636
637C++11 range-based ``for`` loop
638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
639
640Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
641determine if support for the range-based for loop is enabled.
642
643C++11 raw string literals
644^^^^^^^^^^^^^^^^^^^^^^^^^
645
646Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
647string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
648
649C++11 rvalue references
650^^^^^^^^^^^^^^^^^^^^^^^
651
652Use ``__has_feature(cxx_rvalue_references)`` or
653``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
654references is enabled.
655
656C++11 ``static_assert()``
657^^^^^^^^^^^^^^^^^^^^^^^^^
658
659Use ``__has_feature(cxx_static_assert)`` or
660``__has_extension(cxx_static_assert)`` to determine if support for compile-time
661assertions using ``static_assert`` is enabled.
662
Richard Smith25b555a2013-04-19 17:00:31 +0000663C++11 ``thread_local``
664^^^^^^^^^^^^^^^^^^^^^^
665
666Use ``__has_feature(cxx_thread_local)`` to determine if support for
667``thread_local`` variables is enabled.
668
Sean Silva709c44d2012-12-12 23:44:55 +0000669C++11 type inference
670^^^^^^^^^^^^^^^^^^^^
671
672Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
673determine C++11 type inference is supported using the ``auto`` specifier. If
674this is disabled, ``auto`` will instead be a storage class specifier, as in C
675or C++98.
676
677C++11 strongly typed enumerations
678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_strong_enums)`` or
681``__has_extension(cxx_strong_enums)`` to determine if support for strongly
682typed, scoped enumerations is enabled.
683
684C++11 trailing return type
685^^^^^^^^^^^^^^^^^^^^^^^^^^
686
687Use ``__has_feature(cxx_trailing_return)`` or
688``__has_extension(cxx_trailing_return)`` to determine if support for the
689alternate function declaration syntax with trailing return type is enabled.
690
691C++11 Unicode string literals
692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
693
694Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
695string literals is enabled.
696
697C++11 unrestricted unions
698^^^^^^^^^^^^^^^^^^^^^^^^^
699
700Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
701unrestricted unions is enabled.
702
703C++11 user-defined literals
704^^^^^^^^^^^^^^^^^^^^^^^^^^^
705
706Use ``__has_feature(cxx_user_literals)`` to determine if support for
707user-defined literals is enabled.
708
709C++11 variadic templates
710^^^^^^^^^^^^^^^^^^^^^^^^
711
712Use ``__has_feature(cxx_variadic_templates)`` or
713``__has_extension(cxx_variadic_templates)`` to determine if support for
714variadic templates is enabled.
715
Richard Smith0a715422013-05-07 19:32:56 +0000716C++1y
717-----
718
719The features listed below are part of the committee draft for the C++1y
720standard. As a result, all these features are enabled with the ``-std=c++1y``
721or ``-std=gnu++1y`` option when compiling C++ code.
722
723C++1y binary literals
724^^^^^^^^^^^^^^^^^^^^^
725
726Use ``__has_feature(cxx_binary_literals)`` or
727``__has_extension(cxx_binary_literals)`` to determine whether
728binary literals (for instance, ``0b10010``) are recognized. Clang supports this
729feature as an extension in all language modes.
730
731C++1y contextual conversions
732^^^^^^^^^^^^^^^^^^^^^^^^^^^^
733
734Use ``__has_feature(cxx_contextual_conversions)`` or
735``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
736are used when performing an implicit conversion for an array bound in a
737*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000738expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000739
740C++1y decltype(auto)
741^^^^^^^^^^^^^^^^^^^^
742
743Use ``__has_feature(cxx_decltype_auto)`` or
744``__has_extension(cxx_decltype_auto)`` to determine if support
745for the ``decltype(auto)`` placeholder type is enabled.
746
747C++1y default initializers for aggregates
748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
749
750Use ``__has_feature(cxx_aggregate_nsdmi)`` or
751``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
752for default initializers in aggregate members is enabled.
753
754C++1y generalized lambda capture
755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756
Richard Smith6d540142014-05-09 21:08:59 +0000757Use ``__has_feature(cxx_init_captures)`` or
758``__has_extension(cxx_init_captures)`` to determine if support for
Richard Smith4fb09722013-07-24 17:51:13 +0000759lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000760(for instance, ``[n(0)] { return ++n; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000761
762C++1y generic lambdas
763^^^^^^^^^^^^^^^^^^^^^
764
Richard Smith6d540142014-05-09 21:08:59 +0000765Use ``__has_feature(cxx_generic_lambdas)`` or
766``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
Richard Smith0a715422013-05-07 19:32:56 +0000767(polymorphic) lambdas is enabled
768(for instance, ``[] (auto x) { return x + 1; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000769
770C++1y relaxed constexpr
771^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_relaxed_constexpr)`` or
774``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
775declarations, local variable modification, and control flow constructs
776are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000777
778C++1y return type deduction
779^^^^^^^^^^^^^^^^^^^^^^^^^^^
780
781Use ``__has_feature(cxx_return_type_deduction)`` or
782``__has_extension(cxx_return_type_deduction)`` to determine if support
783for return type deduction for functions (using ``auto`` as a return type)
784is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000785
786C++1y runtime-sized arrays
787^^^^^^^^^^^^^^^^^^^^^^^^^^
788
789Use ``__has_feature(cxx_runtime_array)`` or
790``__has_extension(cxx_runtime_array)`` to determine if support
791for arrays of runtime bound (a restricted form of variable-length arrays)
792is enabled.
793Clang's implementation of this feature is incomplete.
794
795C++1y variable templates
796^^^^^^^^^^^^^^^^^^^^^^^^
797
798Use ``__has_feature(cxx_variable_templates)`` or
799``__has_extension(cxx_variable_templates)`` to determine if support for
800templated variable declarations is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000801
Sean Silva709c44d2012-12-12 23:44:55 +0000802C11
803---
804
805The features listed below are part of the C11 standard. As a result, all these
806features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
807compiling C code. Additionally, because these features are all
808backward-compatible, they are available as extensions in all language modes.
809
810C11 alignment specifiers
811^^^^^^^^^^^^^^^^^^^^^^^^
812
813Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
814if support for alignment specifiers using ``_Alignas`` is enabled.
815
816C11 atomic operations
817^^^^^^^^^^^^^^^^^^^^^
818
819Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
820if support for atomic types using ``_Atomic`` is enabled. Clang also provides
821:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
Hal Finkel6970ac82014-10-03 04:29:40 +0000822the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
823``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
824is available.
825
826Clang will use the system's ``<stdatomic.h>`` header when one is available, and
827will otherwise use its own. When using its own, implementations of the atomic
828operations are provided as macros. In the cases where C11 also requires a real
829function, this header provides only the declaration of that function (along
830with a shadowing macro implementation), and you must link to a library which
831provides a definition of the function if you use it instead of the macro.
Sean Silva709c44d2012-12-12 23:44:55 +0000832
833C11 generic selections
834^^^^^^^^^^^^^^^^^^^^^^
835
836Use ``__has_feature(c_generic_selections)`` or
837``__has_extension(c_generic_selections)`` to determine if support for generic
838selections is enabled.
839
840As an extension, the C11 generic selection expression is available in all
841languages supported by Clang. The syntax is the same as that given in the C11
842standard.
843
844In C, type compatibility is decided according to the rules given in the
845appropriate standard, but in C++, which lacks the type compatibility rules used
846in C, types are considered compatible only if they are equivalent.
847
848C11 ``_Static_assert()``
849^^^^^^^^^^^^^^^^^^^^^^^^
850
851Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
852to determine if support for compile-time assertions using ``_Static_assert`` is
853enabled.
854
Richard Smith25b555a2013-04-19 17:00:31 +0000855C11 ``_Thread_local``
856^^^^^^^^^^^^^^^^^^^^^
857
Ed Schouten401aeba2013-09-14 16:17:20 +0000858Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
859to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000860
Alp Toker64197b92014-01-18 21:49:02 +0000861Checks for Type Trait Primitives
862================================
863
864Type trait primitives are special builtin constant expressions that can be used
865by the standard C++ library to facilitate or simplify the implementation of
866user-facing type traits in the <type_traits> header.
867
868They are not intended to be used directly by user code because they are
869implementation-defined and subject to change -- as such they're tied closely to
870the supported set of system headers, currently:
871
872* LLVM's own libc++
873* GNU libstdc++
874* The Microsoft standard C++ library
Sean Silva709c44d2012-12-12 23:44:55 +0000875
876Clang supports the `GNU C++ type traits
877<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
878`Microsoft Visual C++ Type traits
Alp Toker64197b92014-01-18 21:49:02 +0000879<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
880
881Feature detection is supported only for some of the primitives at present. User
882code should not use these checks because they bear no direct relation to the
883actual set of type traits supported by the C++ standard library.
884
885For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
886type trait primitive in the compiler. A simplistic usage example as might be
887seen in standard C++ headers follows:
Sean Silva709c44d2012-12-12 23:44:55 +0000888
889.. code-block:: c++
890
891 #if __has_extension(is_convertible_to)
892 template<typename From, typename To>
893 struct is_convertible_to {
894 static const bool value = __is_convertible_to(From, To);
895 };
896 #else
Alp Toker64197b92014-01-18 21:49:02 +0000897 // Emulate type trait for compatibility with other compilers.
Sean Silva709c44d2012-12-12 23:44:55 +0000898 #endif
899
Alp Toker64197b92014-01-18 21:49:02 +0000900The following type trait primitives are supported by Clang:
Sean Silva709c44d2012-12-12 23:44:55 +0000901
902* ``__has_nothrow_assign`` (GNU, Microsoft)
903* ``__has_nothrow_copy`` (GNU, Microsoft)
904* ``__has_nothrow_constructor`` (GNU, Microsoft)
905* ``__has_trivial_assign`` (GNU, Microsoft)
906* ``__has_trivial_copy`` (GNU, Microsoft)
907* ``__has_trivial_constructor`` (GNU, Microsoft)
908* ``__has_trivial_destructor`` (GNU, Microsoft)
909* ``__has_virtual_destructor`` (GNU, Microsoft)
910* ``__is_abstract`` (GNU, Microsoft)
911* ``__is_base_of`` (GNU, Microsoft)
912* ``__is_class`` (GNU, Microsoft)
913* ``__is_convertible_to`` (Microsoft)
914* ``__is_empty`` (GNU, Microsoft)
915* ``__is_enum`` (GNU, Microsoft)
916* ``__is_interface_class`` (Microsoft)
917* ``__is_pod`` (GNU, Microsoft)
918* ``__is_polymorphic`` (GNU, Microsoft)
919* ``__is_union`` (GNU, Microsoft)
920* ``__is_literal(type)``: Determines whether the given type is a literal type
921* ``__is_final``: Determines whether the given type is declared with a
922 ``final`` class-virt-specifier.
923* ``__underlying_type(type)``: Retrieves the underlying type for a given
924 ``enum`` type. This trait is required to implement the C++11 standard
925 library.
926* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
927 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
928 that no non-trivial functions are called as part of that assignment. This
929 trait is required to implement the C++11 standard library.
930* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
931 value of type ``type`` can be direct-initialized with arguments of types
932 ``argtypes...`` such that no non-trivial functions are called as part of
933 that initialization. This trait is required to implement the C++11 standard
934 library.
Alp Toker73287bf2014-01-20 00:24:09 +0000935* ``__is_destructible`` (MSVC 2013): partially implemented
936* ``__is_nothrow_destructible`` (MSVC 2013): partially implemented
937* ``__is_nothrow_assignable`` (MSVC 2013, clang)
938* ``__is_constructible`` (MSVC 2013, clang)
939* ``__is_nothrow_constructible`` (MSVC 2013, clang)
Sean Silva709c44d2012-12-12 23:44:55 +0000940
941Blocks
942======
943
944The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +0000945:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
946the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000947
948Query for this feature with ``__has_extension(blocks)``.
949
950Objective-C Features
951====================
952
953Related result types
954--------------------
955
956According to Cocoa conventions, Objective-C methods with certain names
957("``init``", "``alloc``", etc.) always return objects that are an instance of
958the receiving class's type. Such methods are said to have a "related result
959type", meaning that a message send to one of these methods will have the same
960static type as an instance of the receiver class. For example, given the
961following classes:
962
963.. code-block:: objc
964
965 @interface NSObject
966 + (id)alloc;
967 - (id)init;
968 @end
969
970 @interface NSArray : NSObject
971 @end
972
973and this common initialization pattern
974
975.. code-block:: objc
976
977 NSArray *array = [[NSArray alloc] init];
978
979the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
980``alloc`` implicitly has a related result type. Similarly, the type of the
981expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
982related result type and its receiver is known to have the type ``NSArray *``.
983If neither ``alloc`` nor ``init`` had a related result type, the expressions
984would have had type ``id``, as declared in the method signature.
985
986A method with a related result type can be declared by using the type
987``instancetype`` as its result type. ``instancetype`` is a contextual keyword
988that is only permitted in the result type of an Objective-C method, e.g.
989
990.. code-block:: objc
991
992 @interface A
993 + (instancetype)constructAnA;
994 @end
995
996The related result type can also be inferred for some methods. To determine
997whether a method has an inferred related result type, the first word in the
998camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
999and the method will have a related result type if its return type is compatible
1000with the type of its class and if:
1001
1002* the first word is "``alloc``" or "``new``", and the method is a class method,
1003 or
1004
1005* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1006 and the method is an instance method.
1007
1008If a method with a related result type is overridden by a subclass method, the
1009subclass method must also return a type that is compatible with the subclass
1010type. For example:
1011
1012.. code-block:: objc
1013
1014 @interface NSString : NSObject
1015 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1016 @end
1017
1018Related result types only affect the type of a message send or property access
1019via the given method. In all other respects, a method with a related result
1020type is treated the same way as method that returns ``id``.
1021
1022Use ``__has_feature(objc_instancetype)`` to determine whether the
1023``instancetype`` contextual keyword is available.
1024
1025Automatic reference counting
1026----------------------------
1027
Sean Silva173d2522013-01-02 13:07:47 +00001028Clang provides support for :doc:`automated reference counting
1029<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001030for manual ``retain``/``release``/``autorelease`` message sends. There are two
1031feature macros associated with automatic reference counting:
1032``__has_feature(objc_arc)`` indicates the availability of automated reference
1033counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1034automated reference counting also includes support for ``__weak`` pointers to
1035Objective-C objects.
1036
Sean Silva173d2522013-01-02 13:07:47 +00001037.. _objc-fixed-enum:
1038
Sean Silva709c44d2012-12-12 23:44:55 +00001039Enumerations with a fixed underlying type
1040-----------------------------------------
1041
1042Clang provides support for C++11 enumerations with a fixed underlying type
1043within Objective-C. For example, one can write an enumeration type as:
1044
1045.. code-block:: c++
1046
1047 typedef enum : unsigned char { Red, Green, Blue } Color;
1048
1049This specifies that the underlying type, which is used to store the enumeration
1050value, is ``unsigned char``.
1051
1052Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1053underlying types is available in Objective-C.
1054
1055Interoperability with C++11 lambdas
1056-----------------------------------
1057
1058Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1059permitting a lambda to be implicitly converted to a block pointer with the
1060corresponding signature. For example, consider an API such as ``NSArray``'s
1061array-sorting method:
1062
1063.. code-block:: objc
1064
1065 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1066
1067``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1068(^)(id, id)``, and parameters of this type are generally provided with block
1069literals as arguments. However, one can also use a C++11 lambda so long as it
1070provides the same signature (in this case, accepting two parameters of type
1071``id`` and returning an ``NSComparisonResult``):
1072
1073.. code-block:: objc
1074
1075 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1076 @"String 02"];
1077 const NSStringCompareOptions comparisonOptions
1078 = NSCaseInsensitiveSearch | NSNumericSearch |
1079 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1080 NSLocale *currentLocale = [NSLocale currentLocale];
1081 NSArray *sorted
1082 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1083 NSRange string1Range = NSMakeRange(0, [s1 length]);
1084 return [s1 compare:s2 options:comparisonOptions
1085 range:string1Range locale:currentLocale];
1086 }];
1087 NSLog(@"sorted: %@", sorted);
1088
1089This code relies on an implicit conversion from the type of the lambda
1090expression (an unnamed, local class type called the *closure type*) to the
1091corresponding block pointer type. The conversion itself is expressed by a
1092conversion operator in that closure type that produces a block pointer with the
1093same signature as the lambda itself, e.g.,
1094
1095.. code-block:: objc
1096
1097 operator NSComparisonResult (^)(id, id)() const;
1098
1099This conversion function returns a new block that simply forwards the two
1100parameters to the lambda object (which it captures by copy), then returns the
1101result. The returned block is first copied (with ``Block_copy``) and then
1102autoreleased. As an optimization, if a lambda expression is immediately
1103converted to a block pointer (as in the first example, above), then the block
1104is not copied and autoreleased: rather, it is given the same lifetime as a
1105block literal written at that point in the program, which avoids the overhead
1106of copying a block to the heap in the common case.
1107
1108The conversion from a lambda to a block pointer is only available in
1109Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1110management (autorelease).
1111
1112Object Literals and Subscripting
1113--------------------------------
1114
Sean Silva173d2522013-01-02 13:07:47 +00001115Clang provides support for :doc:`Object Literals and Subscripting
1116<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001117programming patterns, makes programs more concise, and improves the safety of
1118container creation. There are several feature macros associated with object
1119literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1120availability of array literals; ``__has_feature(objc_dictionary_literals)``
1121tests the availability of dictionary literals;
1122``__has_feature(objc_subscripting)`` tests the availability of object
1123subscripting.
1124
1125Objective-C Autosynthesis of Properties
1126---------------------------------------
1127
1128Clang provides support for autosynthesis of declared properties. Using this
1129feature, clang provides default synthesis of those properties not declared
1130@dynamic and not having user provided backing getter and setter methods.
1131``__has_feature(objc_default_synthesize_properties)`` checks for availability
1132of this feature in version of clang being used.
1133
Jordan Rose32e94892012-12-15 00:37:01 +00001134.. _langext-objc-retain-release:
1135
1136Objective-C retaining behavior attributes
1137-----------------------------------------
1138
1139In Objective-C, functions and methods are generally assumed to follow the
1140`Cocoa Memory Management
1141<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1142conventions for ownership of object arguments and
1143return values. However, there are exceptions, and so Clang provides attributes
1144to allow these exceptions to be documented. This are used by ARC and the
1145`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
Aaron Ballman840cef32014-02-19 15:45:13 +00001146better described using the ``objc_method_family`` attribute instead.
Jordan Rose32e94892012-12-15 00:37:01 +00001147
1148**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1149``ns_returns_autoreleased``, ``cf_returns_retained``, and
1150``cf_returns_not_retained`` attributes can be placed on methods and functions
1151that return Objective-C or CoreFoundation objects. They are commonly placed at
1152the end of a function prototype or method declaration:
1153
1154.. code-block:: objc
1155
1156 id foo() __attribute__((ns_returns_retained));
1157
1158 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1159
1160The ``*_returns_retained`` attributes specify that the returned object has a +1
1161retain count. The ``*_returns_not_retained`` attributes specify that the return
1162object has a +0 retain count, even if the normal convention for its selector
1163would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1164+0, but is guaranteed to live at least as long as the next flush of an
1165autorelease pool.
1166
1167**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1168an parameter declaration; they specify that the argument is expected to have a
1169+1 retain count, which will be balanced in some way by the function or method.
1170The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1171method; it specifies that the method expects its ``self`` parameter to have a
1172+1 retain count, which it will balance in some way.
1173
1174.. code-block:: objc
1175
1176 void foo(__attribute__((ns_consumed)) NSString *string);
1177
1178 - (void) bar __attribute__((ns_consumes_self));
1179 - (void) baz:(id) __attribute__((ns_consumed)) x;
1180
1181Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1182<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1183
1184Query for these features with ``__has_attribute(ns_consumed)``,
1185``__has_attribute(ns_returns_retained)``, etc.
1186
1187
Ted Kremenek84342d62013-10-15 04:28:42 +00001188Objective-C++ ABI: protocol-qualifier mangling of parameters
1189------------------------------------------------------------
1190
1191Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1192type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1193parameters to be differentiated from those with the regular unqualified ``id``
1194type.
1195
1196This was a non-backward compatible mangling change to the ABI. This change
1197allows proper overloading, and also prevents mangling conflicts with template
1198parameters of protocol-qualified type.
1199
1200Query the presence of this new mangling with
1201``__has_feature(objc_protocol_qualifier_mangling)``.
1202
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001203.. _langext-overloading:
1204
Sean Silva709c44d2012-12-12 23:44:55 +00001205Initializer lists for complex numbers in C
1206==========================================
1207
1208clang supports an extension which allows the following in C:
1209
1210.. code-block:: c++
1211
1212 #include <math.h>
1213 #include <complex.h>
1214 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1215
1216This construct is useful because there is no way to separately initialize the
1217real and imaginary parts of a complex variable in standard C, given that clang
1218does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1219``__imag__`` extensions from gcc, which help in some cases, but are not usable
1220in static initializers.)
1221
1222Note that this extension does not allow eliding the braces; the meaning of the
1223following two lines is different:
1224
1225.. code-block:: c++
1226
1227 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1228 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1229
1230This extension also works in C++ mode, as far as that goes, but does not apply
1231to the C++ ``std::complex``. (In C++11, list initialization allows the same
1232syntax to be used with ``std::complex`` with the same meaning.)
1233
1234Builtin Functions
1235=================
1236
1237Clang supports a number of builtin library functions with the same syntax as
1238GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1239``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
Hal Finkelbcc06082014-09-07 22:58:14 +00001240``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
1241the GCC builtins, Clang supports a number of builtins that GCC does not, which
1242are listed here.
Sean Silva709c44d2012-12-12 23:44:55 +00001243
1244Please note that Clang does not and will not support all of the GCC builtins
1245for vector operations. Instead of using builtins, you should use the functions
1246defined in target-specific header files like ``<xmmintrin.h>``, which define
1247portable wrappers for these. Many of the Clang versions of these functions are
1248implemented directly in terms of :ref:`extended vector support
1249<langext-vectors>` instead of builtins, in order to reduce the number of
1250builtins that we need to implement.
1251
Hal Finkelbcc06082014-09-07 22:58:14 +00001252``__builtin_assume``
1253------------------------------
1254
1255``__builtin_assume`` is used to provide the optimizer with a boolean
1256invariant that is defined to be true.
1257
1258**Syntax**:
1259
1260.. code-block:: c++
1261
1262 __builtin_assume(bool)
1263
1264**Example of Use**:
1265
1266.. code-block:: c++
1267
1268 int foo(int x) {
1269 __builtin_assume(x != 0);
1270
1271 // The optimizer may short-circuit this check using the invariant.
1272 if (x == 0)
1273 return do_something();
1274
1275 return do_something_else();
1276 }
1277
1278**Description**:
1279
1280The boolean argument to this function is defined to be true. The optimizer may
1281analyze the form of the expression provided as the argument and deduce from
1282that information used to optimize the program. If the condition is violated
1283during execution, the behavior is undefined. The argument itself is never
1284evaluated, so any side effects of the expression will be discarded.
1285
1286Query for this feature with ``__has_builtin(__builtin_assume)``.
1287
Sean Silva709c44d2012-12-12 23:44:55 +00001288``__builtin_readcyclecounter``
1289------------------------------
1290
1291``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1292a similar low-latency, high-accuracy clock) on those targets that support it.
1293
1294**Syntax**:
1295
1296.. code-block:: c++
1297
1298 __builtin_readcyclecounter()
1299
1300**Example of Use**:
1301
1302.. code-block:: c++
1303
1304 unsigned long long t0 = __builtin_readcyclecounter();
1305 do_something();
1306 unsigned long long t1 = __builtin_readcyclecounter();
1307 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1308
1309**Description**:
1310
1311The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1312which may be either global or process/thread-specific depending on the target.
1313As the backing counters often overflow quickly (on the order of seconds) this
1314should only be used for timing small intervals. When not supported by the
1315target, the return value is always zero. This builtin takes no arguments and
1316produces an unsigned long long result.
1317
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001318Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1319that even if present, its use may depend on run-time privilege or other OS
1320controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001321
1322.. _langext-__builtin_shufflevector:
1323
1324``__builtin_shufflevector``
1325---------------------------
1326
1327``__builtin_shufflevector`` is used to express generic vector
1328permutation/shuffle/swizzle operations. This builtin is also very important
1329for the implementation of various target-specific header files like
1330``<xmmintrin.h>``.
1331
1332**Syntax**:
1333
1334.. code-block:: c++
1335
1336 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1337
1338**Examples**:
1339
1340.. code-block:: c++
1341
Craig Topper50ad5b72013-08-03 17:40:38 +00001342 // identity operation - return 4-element vector v1.
1343 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001344
1345 // "Splat" element 0 of V1 into a 4-element result.
1346 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1347
1348 // Reverse 4-element vector V1.
1349 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1350
1351 // Concatenate every other element of 4-element vectors V1 and V2.
1352 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1353
1354 // Concatenate every other element of 8-element vectors V1 and V2.
1355 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1356
Craig Topper50ad5b72013-08-03 17:40:38 +00001357 // Shuffle v1 with some elements being undefined
1358 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1359
Sean Silva709c44d2012-12-12 23:44:55 +00001360**Description**:
1361
1362The first two arguments to ``__builtin_shufflevector`` are vectors that have
1363the same element type. The remaining arguments are a list of integers that
1364specify the elements indices of the first two vectors that should be extracted
1365and returned in a new vector. These element indices are numbered sequentially
1366starting with the first vector, continuing into the second vector. Thus, if
1367``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001368``vec2``. An index of -1 can be used to indicate that the corresponding element
1369in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001370
1371The result of ``__builtin_shufflevector`` is a vector with the same element
1372type as ``vec1``/``vec2`` but that has an element count equal to the number of
1373indices specified.
1374
1375Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1376
Anton Yartsev94e46f32014-09-03 17:59:21 +00001377.. _langext-__builtin_convertvector:
1378
Hal Finkelc4d7c822013-09-18 03:29:45 +00001379``__builtin_convertvector``
1380---------------------------
1381
1382``__builtin_convertvector`` is used to express generic vector
1383type-conversion operations. The input vector and the output vector
1384type must have the same number of elements.
1385
1386**Syntax**:
1387
1388.. code-block:: c++
1389
1390 __builtin_convertvector(src_vec, dst_vec_type)
1391
1392**Examples**:
1393
1394.. code-block:: c++
1395
1396 typedef double vector4double __attribute__((__vector_size__(32)));
1397 typedef float vector4float __attribute__((__vector_size__(16)));
1398 typedef short vector4short __attribute__((__vector_size__(8)));
1399 vector4float vf; vector4short vs;
1400
1401 // convert from a vector of 4 floats to a vector of 4 doubles.
1402 __builtin_convertvector(vf, vector4double)
1403 // equivalent to:
1404 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1405
1406 // convert from a vector of 4 shorts to a vector of 4 floats.
1407 __builtin_convertvector(vs, vector4float)
1408 // equivalent to:
Yunzhong Gao637cb90b2014-09-02 19:24:14 +00001409 (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
Hal Finkelc4d7c822013-09-18 03:29:45 +00001410
1411**Description**:
1412
1413The first argument to ``__builtin_convertvector`` is a vector, and the second
1414argument is a vector type with the same number of elements as the first
1415argument.
1416
1417The result of ``__builtin_convertvector`` is a vector with the same element
1418type as the second argument, with a value defined in terms of the action of a
1419C-style cast applied to each element of the first argument.
1420
1421Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1422
Sean Silva709c44d2012-12-12 23:44:55 +00001423``__builtin_unreachable``
1424-------------------------
1425
1426``__builtin_unreachable`` is used to indicate that a specific point in the
1427program cannot be reached, even if the compiler might otherwise think it can.
1428This is useful to improve optimization and eliminates certain warnings. For
1429example, without the ``__builtin_unreachable`` in the example below, the
1430compiler assumes that the inline asm can fall through and prints a "function
1431declared '``noreturn``' should not return" warning.
1432
1433**Syntax**:
1434
1435.. code-block:: c++
1436
1437 __builtin_unreachable()
1438
1439**Example of use**:
1440
1441.. code-block:: c++
1442
1443 void myabort(void) __attribute__((noreturn));
1444 void myabort(void) {
1445 asm("int3");
1446 __builtin_unreachable();
1447 }
1448
1449**Description**:
1450
1451The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1452Since it has undefined behavior, it is a statement that it is never reached and
1453the optimizer can take advantage of this to produce better code. This builtin
1454takes no arguments and produces a void result.
1455
1456Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1457
1458``__sync_swap``
1459---------------
1460
1461``__sync_swap`` is used to atomically swap integers or pointers in memory.
1462
1463**Syntax**:
1464
1465.. code-block:: c++
1466
1467 type __sync_swap(type *ptr, type value, ...)
1468
1469**Example of Use**:
1470
1471.. code-block:: c++
1472
1473 int old_value = __sync_swap(&value, new_value);
1474
1475**Description**:
1476
1477The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1478atomic intrinsics to allow code to atomically swap the current value with the
1479new value. More importantly, it helps developers write more efficient and
1480correct code by avoiding expensive loops around
1481``__sync_bool_compare_and_swap()`` or relying on the platform specific
1482implementation details of ``__sync_lock_test_and_set()``. The
1483``__sync_swap()`` builtin is a full barrier.
1484
Richard Smith6cbd65d2013-07-11 02:27:57 +00001485``__builtin_addressof``
1486-----------------------
1487
1488``__builtin_addressof`` performs the functionality of the built-in ``&``
1489operator, ignoring any ``operator&`` overload. This is useful in constant
1490expressions in C++11, where there is no other way to take the address of an
1491object that overloads ``operator&``.
1492
1493**Example of use**:
1494
1495.. code-block:: c++
1496
1497 template<typename T> constexpr T *addressof(T &value) {
1498 return __builtin_addressof(value);
1499 }
1500
Richard Smith760520b2014-06-03 23:27:44 +00001501``__builtin_operator_new`` and ``__builtin_operator_delete``
1502------------------------------------------------------------
1503
1504``__builtin_operator_new`` allocates memory just like a non-placement non-class
1505*new-expression*. This is exactly like directly calling the normal
1506non-placement ``::operator new``, except that it allows certain optimizations
1507that the C++ standard does not permit for a direct function call to
1508``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
1509merging allocations).
1510
1511Likewise, ``__builtin_operator_delete`` deallocates memory just like a
1512non-class *delete-expression*, and is exactly like directly calling the normal
1513``::operator delete``, except that it permits optimizations. Only the unsized
1514form of ``__builtin_operator_delete`` is currently available.
1515
1516These builtins are intended for use in the implementation of ``std::allocator``
1517and other similar allocation libraries, and are only available in C++.
1518
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001519Multiprecision Arithmetic Builtins
1520----------------------------------
1521
1522Clang provides a set of builtins which expose multiprecision arithmetic in a
1523manner amenable to C. They all have the following form:
1524
1525.. code-block:: c
1526
1527 unsigned x = ..., y = ..., carryin = ..., carryout;
1528 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1529
1530Thus one can form a multiprecision addition chain in the following manner:
1531
1532.. code-block:: c
1533
1534 unsigned *x, *y, *z, carryin=0, carryout;
1535 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1536 carryin = carryout;
1537 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1538 carryin = carryout;
1539 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1540 carryin = carryout;
1541 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1542
1543The complete list of builtins are:
1544
1545.. code-block:: c
1546
Michael Gottesman15343992013-06-18 20:40:40 +00001547 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001548 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1549 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1550 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1551 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001552 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001553 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1554 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1555 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1556 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1557
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001558Checked Arithmetic Builtins
1559---------------------------
1560
1561Clang provides a set of builtins that implement checked arithmetic for security
1562critical applications in a manner that is fast and easily expressable in C. As
1563an example of their usage:
1564
1565.. code-block:: c
1566
1567 errorcode_t security_critical_application(...) {
1568 unsigned x, y, result;
1569 ...
1570 if (__builtin_umul_overflow(x, y, &result))
1571 return kErrorCodeHackers;
1572 ...
1573 use_multiply(result);
1574 ...
1575 }
1576
1577A complete enumeration of the builtins are:
1578
1579.. code-block:: c
1580
1581 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1582 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1583 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1584 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1585 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1586 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1587 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1588 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1589 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1590 bool __builtin_sadd_overflow (int x, int y, int *sum);
1591 bool __builtin_saddl_overflow (long x, long y, long *sum);
1592 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1593 bool __builtin_ssub_overflow (int x, int y, int *diff);
1594 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1595 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1596 bool __builtin_smul_overflow (int x, int y, int *prod);
1597 bool __builtin_smull_overflow (long x, long y, long *prod);
1598 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1599
1600
Sean Silva709c44d2012-12-12 23:44:55 +00001601.. _langext-__c11_atomic:
1602
1603__c11_atomic builtins
1604---------------------
1605
1606Clang provides a set of builtins which are intended to be used to implement
1607C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1608``_explicit`` form of the corresponding C11 operation, and are named with a
Hal Finkel6970ac82014-10-03 04:29:40 +00001609``__c11_`` prefix. The supported operations, and the differences from
1610the corresponding C11 operations, are:
Sean Silva709c44d2012-12-12 23:44:55 +00001611
1612* ``__c11_atomic_init``
1613* ``__c11_atomic_thread_fence``
1614* ``__c11_atomic_signal_fence``
Hal Finkel6970ac82014-10-03 04:29:40 +00001615* ``__c11_atomic_is_lock_free`` (The argument is the size of the
Dan Liewfe726862014-10-03 12:36:20 +00001616 ``_Atomic(...)`` object, instead of its address)
Sean Silva709c44d2012-12-12 23:44:55 +00001617* ``__c11_atomic_store``
1618* ``__c11_atomic_load``
1619* ``__c11_atomic_exchange``
1620* ``__c11_atomic_compare_exchange_strong``
1621* ``__c11_atomic_compare_exchange_weak``
1622* ``__c11_atomic_fetch_add``
1623* ``__c11_atomic_fetch_sub``
1624* ``__c11_atomic_fetch_and``
1625* ``__c11_atomic_fetch_or``
1626* ``__c11_atomic_fetch_xor``
1627
Hal Finkel6970ac82014-10-03 04:29:40 +00001628The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
JF Bastiene6ccacf2014-10-10 16:09:48 +00001629``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
Hal Finkel6970ac82014-10-03 04:29:40 +00001630provided, with values corresponding to the enumerators of C11's
1631``memory_order`` enumeration.
1632
Tim Northover6aacd492013-07-16 09:47:53 +00001633Low-level ARM exclusive memory builtins
1634---------------------------------------
1635
1636Clang provides overloaded builtins giving direct access to the three key ARM
1637instructions for implementing atomic operations.
1638
1639.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001640
Tim Northover6aacd492013-07-16 09:47:53 +00001641 T __builtin_arm_ldrex(const volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001642 T __builtin_arm_ldaex(const volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001643 int __builtin_arm_strex(T val, volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001644 int __builtin_arm_stlex(T val, volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001645 void __builtin_arm_clrex(void);
1646
1647The types ``T`` currently supported are:
Tim Northover573cbee2014-05-24 12:52:07 +00001648* Integer types with width at most 64 bits (or 128 bits on AArch64).
Tim Northover6aacd492013-07-16 09:47:53 +00001649* Floating-point types
1650* Pointer types.
1651
1652Note that the compiler does not guarantee it will not insert stores which clear
Tim Northover3acd6bd2014-07-02 12:56:02 +00001653the exclusive monitor in between an ``ldrex`` type operation and its paired
1654``strex``. In practice this is only usually a risk when the extra store is on
1655the same cache line as the variable being modified and Clang will only insert
1656stack stores on its own, so it is best not to use these operations on variables
1657with automatic storage duration.
Tim Northover6aacd492013-07-16 09:47:53 +00001658
1659Also, loads and stores may be implicit in code written between the ``ldrex`` and
1660``strex``. Clang will not necessarily mitigate the effects of these either, so
1661care should be exercised.
1662
1663For these reasons the higher level atomic primitives should be preferred where
1664possible.
1665
Sean Silva709c44d2012-12-12 23:44:55 +00001666Non-standard C++11 Attributes
1667=============================
1668
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001669Clang's non-standard C++11 attributes live in the ``clang`` attribute
1670namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001671
Aaron Ballman68893db2014-02-19 23:21:40 +00001672Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001673are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1674``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1675(see the list of `GCC function attributes
1676<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1677attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1678`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001679<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001680implementation, these attributes must appertain to the *declarator-id* in a
1681declaration, which means they must go either at the start of the declaration or
1682immediately after the name being declared.
1683
1684For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1685also applies the GNU ``noreturn`` attribute to ``f``.
1686
1687.. code-block:: c++
1688
1689 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1690
Sean Silva709c44d2012-12-12 23:44:55 +00001691Target-Specific Extensions
1692==========================
1693
1694Clang supports some language features conditionally on some targets.
1695
Yi Kong4de26fb2014-07-23 09:25:02 +00001696ARM/AArch64 Language Extensions
1697-------------------------------
1698
1699Memory Barrier Intrinsics
1700^^^^^^^^^^^^^^^^^^^^^^^^^
1701Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
1702in the `ARM C Language Extensions Release 2.0
1703<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
1704Note that these intrinsics are implemented as motion barriers that block
1705reordering of memory accesses and side effect instructions. Other instructions
1706like simple arithmatic may be reordered around the intrinsic. If you expect to
1707have no reordering at all, use inline assembly instead.
1708
Sean Silva709c44d2012-12-12 23:44:55 +00001709X86/X86-64 Language Extensions
1710------------------------------
1711
1712The X86 backend has these language extensions:
1713
1714Memory references off the GS segment
1715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1716
1717Annotating a pointer with address space #256 causes it to be code generated
1718relative to the X86 GS segment register, and address space #257 causes it to be
1719relative to the X86 FS segment. Note that this is a very very low-level
1720feature that should only be used if you know what you're doing (for example in
1721an OS kernel).
1722
1723Here is an example:
1724
1725.. code-block:: c++
1726
1727 #define GS_RELATIVE __attribute__((address_space(256)))
1728 int foo(int GS_RELATIVE *P) {
1729 return *P;
1730 }
1731
1732Which compiles to (on X86-32):
1733
1734.. code-block:: gas
1735
1736 _foo:
1737 movl 4(%esp), %eax
1738 movl %gs:(%eax), %eax
1739 ret
1740
Jordan Rose32e94892012-12-15 00:37:01 +00001741Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001742==============================
Sean Silva709c44d2012-12-12 23:44:55 +00001743
1744Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00001745invariants and rules for static analysis tools, such as the `Clang Static
1746Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1747in the analyzer's `list of source-level annotations
1748<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00001749
Sean Silva709c44d2012-12-12 23:44:55 +00001750
Jordan Rose32e94892012-12-15 00:37:01 +00001751Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001752===============================
Sean Silva709c44d2012-12-12 23:44:55 +00001753
Sean Silva709c44d2012-12-12 23:44:55 +00001754Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001755with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00001756
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001757Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1758with :doc:`ThreadSanitizer`.
1759
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001760Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1761with :doc:`MemorySanitizer`.
Dario Domizioli33c17872014-05-28 14:06:38 +00001762
1763
1764Extensions for selectively disabling optimization
1765=================================================
1766
1767Clang provides a mechanism for selectively disabling optimizations in functions
1768and methods.
1769
1770To disable optimizations in a single function definition, the GNU-style or C++11
1771non-standard attribute ``optnone`` can be used.
1772
1773.. code-block:: c++
1774
1775 // The following functions will not be optimized.
1776 // GNU-style attribute
1777 __attribute__((optnone)) int foo() {
1778 // ... code
1779 }
1780 // C++11 attribute
1781 [[clang::optnone]] int bar() {
1782 // ... code
1783 }
1784
1785To facilitate disabling optimization for a range of function definitions, a
1786range-based pragma is provided. Its syntax is ``#pragma clang optimize``
1787followed by ``off`` or ``on``.
1788
1789All function definitions in the region between an ``off`` and the following
1790``on`` will be decorated with the ``optnone`` attribute unless doing so would
1791conflict with explicit attributes already present on the function (e.g. the
1792ones that control inlining).
1793
1794.. code-block:: c++
1795
1796 #pragma clang optimize off
1797 // This function will be decorated with optnone.
1798 int foo() {
1799 // ... code
1800 }
1801
1802 // optnone conflicts with always_inline, so bar() will not be decorated.
1803 __attribute__((always_inline)) int bar() {
1804 // ... code
1805 }
1806 #pragma clang optimize on
1807
1808If no ``on`` is found to close an ``off`` region, the end of the region is the
1809end of the compilation unit.
1810
1811Note that a stray ``#pragma clang optimize on`` does not selectively enable
1812additional optimizations when compiling at low optimization levels. This feature
1813can only be used to selectively disable optimizations.
1814
1815The pragma has an effect on functions only at the point of their definition; for
1816function templates, this means that the state of the pragma at the point of an
1817instantiation is not necessarily relevant. Consider the following example:
1818
1819.. code-block:: c++
1820
1821 template<typename T> T twice(T t) {
1822 return 2 * t;
1823 }
1824
1825 #pragma clang optimize off
1826 template<typename T> T thrice(T t) {
1827 return 3 * t;
1828 }
1829
1830 int container(int a, int b) {
1831 return twice(a) + thrice(b);
1832 }
1833 #pragma clang optimize on
1834
1835In this example, the definition of the template function ``twice`` is outside
1836the pragma region, whereas the definition of ``thrice`` is inside the region.
1837The ``container`` function is also in the region and will not be optimized, but
1838it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
1839these two instantiations, ``twice`` will be optimized (because its definition
1840was outside the region) and ``thrice`` will not be optimized.
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001841
1842Extensions for loop hint optimizations
1843======================================
1844
1845The ``#pragma clang loop`` directive is used to specify hints for optimizing the
1846subsequent for, while, do-while, or c++11 range-based for loop. The directive
Eli Bendersky778268d2014-06-19 18:12:44 +00001847provides options for vectorization, interleaving, and unrolling. Loop hints can
1848be specified before any loop and will be ignored if the optimization is not safe
1849to apply.
1850
1851Vectorization and Interleaving
1852------------------------------
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001853
1854A vectorized loop performs multiple iterations of the original loop
1855in parallel using vector instructions. The instruction set of the target
1856processor determines which vector instructions are available and their vector
1857widths. This restricts the types of loops that can be vectorized. The vectorizer
1858automatically determines if the loop is safe and profitable to vectorize. A
1859vector instruction cost model is used to select the vector width.
1860
1861Interleaving multiple loop iterations allows modern processors to further
1862improve instruction-level parallelism (ILP) using advanced hardware features,
1863such as multiple execution units and out-of-order execution. The vectorizer uses
1864a cost model that depends on the register pressure and generated code size to
1865select the interleaving count.
1866
1867Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
1868by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
1869manually enable vectorization or interleaving.
1870
1871.. code-block:: c++
1872
1873 #pragma clang loop vectorize(enable)
1874 #pragma clang loop interleave(enable)
1875 for(...) {
1876 ...
1877 }
1878
1879The vector width is specified by ``vectorize_width(_value_)`` and the interleave
1880count is specified by ``interleave_count(_value_)``, where
1881_value_ is a positive integer. This is useful for specifying the optimal
1882width/count of the set of target architectures supported by your application.
1883
1884.. code-block:: c++
1885
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001886 #pragma clang loop vectorize_width(2)
1887 #pragma clang loop interleave_count(2)
1888 for(...) {
1889 ...
1890 }
1891
1892Specifying a width/count of 1 disables the optimization, and is equivalent to
1893``vectorize(disable)`` or ``interleave(disable)``.
1894
Eli Bendersky778268d2014-06-19 18:12:44 +00001895Loop Unrolling
1896--------------
1897
1898Unrolling a loop reduces the loop control overhead and exposes more
1899opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
1900eliminates the loop and replaces it with an enumerated sequence of loop
1901iterations. Full unrolling is only possible if the loop trip count is known at
1902compile time. Partial unrolling replicates the loop body within the loop and
1903reduces the trip count.
1904
Mark Heffernan450c2382014-07-23 17:31:31 +00001905If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
Eli Bendersky778268d2014-06-19 18:12:44 +00001906loop if the trip count is known at compile time. If the loop count is not known
1907or the fully unrolled code size is greater than the limit specified by the
1908`-pragma-unroll-threshold` command line option the loop will be partially
1909unrolled subject to the same limit.
1910
1911.. code-block:: c++
1912
Mark Heffernan450c2382014-07-23 17:31:31 +00001913 #pragma clang loop unroll(full)
Eli Bendersky778268d2014-06-19 18:12:44 +00001914 for(...) {
1915 ...
1916 }
1917
1918The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
1919_value_ is a positive integer. If this value is greater than the trip count the
1920loop will be fully unrolled. Otherwise the loop is partially unrolled subject
1921to the `-pragma-unroll-threshold` limit.
1922
1923.. code-block:: c++
1924
1925 #pragma clang loop unroll_count(8)
1926 for(...) {
1927 ...
1928 }
1929
1930Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
1931
1932Additional Information
1933----------------------
1934
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001935For convenience multiple loop hints can be specified on a single line.
1936
1937.. code-block:: c++
1938
1939 #pragma clang loop vectorize_width(4) interleave_count(8)
1940 for(...) {
1941 ...
1942 }
1943
1944If an optimization cannot be applied any hints that apply to it will be ignored.
1945For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
1946proven safe to vectorize. To identify and diagnose optimization issues use
1947`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
1948user guide for details.