blob: cada69cfef0993cc3c51bb0a3cd9b6da67c8a213 [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +000015 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
Alp Toker958027b2014-07-14 19:42:55 +000094For backward compatibility, ``__has_feature`` can also be used to test
Sean Silva709c44d2012-12-12 23:44:55 +000095for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_attribute``
113-------------------
114
115This function-like macro takes a single identifier argument that is the name of
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000116an attribute. It evaluates to 1 if the attribute is supported by the current
117compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000118
119.. code-block:: c++
120
121 #ifndef __has_attribute // Optional of course.
122 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
123 #endif
124
125 ...
126 #if __has_attribute(always_inline)
127 #define ALWAYS_INLINE __attribute__((always_inline))
128 #else
129 #define ALWAYS_INLINE
130 #endif
131 ...
132
133The attribute name can also be specified with a preceding and following ``__``
134(double underscore) to avoid interference from a macro with the same name. For
135instance, ``__always_inline__`` can be used instead of ``always_inline``.
136
Yunzhong Gaoa8c45c92014-04-12 02:25:32 +0000137``__is_identifier``
138-------------------
139
140This function-like macro takes a single identifier argument that might be either
141a reserved word or a regular identifier. It evaluates to 1 if the argument is just
142a regular identifier and not a reserved word, in the sense that it can then be
143used as the name of a user-defined function or variable. Otherwise it evaluates
144to 0. It can be used like this:
145
146.. code-block:: c++
147
148 ...
149 #ifdef __is_identifier // Compatibility with non-clang compilers.
150 #if __is_identifier(__wchar_t)
151 typedef wchar_t __wchar_t;
152 #endif
153 #endif
154
155 __wchar_t WideCharacter;
156 ...
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000157
Sean Silva709c44d2012-12-12 23:44:55 +0000158Include File Checking Macros
159============================
160
161Not all developments systems have the same include files. The
162:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
163you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000164failing ``#include`` directive. Include file checking macros must be used
165as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000166
167.. _langext-__has_include:
168
169``__has_include``
170-----------------
171
172This function-like macro takes a single file name string argument that is the
173name of an include file. It evaluates to 1 if the file can be found using the
174include paths, or 0 otherwise:
175
176.. code-block:: c++
177
178 // Note the two possible file name string formats.
179 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
180 # include "myinclude.h"
181 #endif
182
Richard Smithccfc9ff2013-07-11 00:27:05 +0000183To test for this feature, use ``#if defined(__has_include)``:
184
185.. code-block:: c++
186
Sean Silva709c44d2012-12-12 23:44:55 +0000187 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000188 #if defined(__has_include)
189 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000190 # include "myinclude.h"
191 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000192 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000193
194.. _langext-__has_include_next:
195
196``__has_include_next``
197----------------------
198
199This function-like macro takes a single file name string argument that is the
200name of an include file. It is like ``__has_include`` except that it looks for
201the second instance of the given file found in the include paths. It evaluates
202to 1 if the second instance of the file can be found using the include paths,
203or 0 otherwise:
204
205.. code-block:: c++
206
207 // Note the two possible file name string formats.
208 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
209 # include_next "myinclude.h"
210 #endif
211
212 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000213 #if defined(__has_include_next)
214 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000215 # include_next "myinclude.h"
216 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000217 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000218
219Note that ``__has_include_next``, like the GNU extension ``#include_next``
220directive, is intended for use in headers only, and will issue a warning if
221used in the top-level compilation file. A warning will also be issued if an
222absolute path is used in the file argument.
223
224``__has_warning``
225-----------------
226
227This function-like macro takes a string literal that represents a command line
228option for a warning and returns true if that is a valid warning option.
229
230.. code-block:: c++
231
232 #if __has_warning("-Wformat")
233 ...
234 #endif
235
236Builtin Macros
237==============
238
239``__BASE_FILE__``
240 Defined to a string that contains the name of the main input file passed to
241 Clang.
242
243``__COUNTER__``
244 Defined to an integer value that starts at zero and is incremented each time
245 the ``__COUNTER__`` macro is expanded.
246
247``__INCLUDE_LEVEL__``
248 Defined to an integral value that is the include depth of the file currently
249 being translated. For the main file, this value is zero.
250
251``__TIMESTAMP__``
252 Defined to the date and time of the last modification of the current source
253 file.
254
255``__clang__``
256 Defined when compiling with Clang
257
258``__clang_major__``
259 Defined to the major marketing version number of Clang (e.g., the 2 in
260 2.0.1). Note that marketing version numbers should not be used to check for
261 language features, as different vendors use different numbering schemes.
262 Instead, use the :ref:`langext-feature_check`.
263
264``__clang_minor__``
265 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
266 that marketing version numbers should not be used to check for language
267 features, as different vendors use different numbering schemes. Instead, use
268 the :ref:`langext-feature_check`.
269
270``__clang_patchlevel__``
271 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
272
273``__clang_version__``
274 Defined to a string that captures the Clang marketing version, including the
275 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
276
277.. _langext-vectors:
278
279Vectors and Extended Vectors
280============================
281
282Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
283
284OpenCL vector types are created using ``ext_vector_type`` attribute. It
285support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
286is:
287
288.. code-block:: c++
289
290 typedef float float4 __attribute__((ext_vector_type(4)));
291 typedef float float2 __attribute__((ext_vector_type(2)));
292
293 float4 foo(float2 a, float2 b) {
294 float4 c;
295 c.xz = a;
296 c.yw = b;
297 return c;
298 }
299
300Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
301
302Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
303and functions. For example:
304
305.. code-block:: c++
306
307 vector float foo(vector int a) {
308 vector int b;
309 b = vec_add(a, a) + a;
310 return (vector float)b;
311 }
312
313NEON vector types are created using ``neon_vector_type`` and
314``neon_polyvector_type`` attributes. For example:
315
316.. code-block:: c++
317
318 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
319 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
320
321 int8x8_t foo(int8x8_t a) {
322 int8x8_t v;
323 v = a;
324 return v;
325 }
326
327Vector Literals
328---------------
329
330Vector literals can be used to create vectors from a set of scalars, or
331vectors. Either parentheses or braces form can be used. In the parentheses
332form the number of literal values specified must be one, i.e. referring to a
333scalar value, or must match the size of the vector type being created. If a
334single scalar literal value is specified, the scalar literal value will be
335replicated to all the components of the vector type. In the brackets form any
336number of literals can be specified. For example:
337
338.. code-block:: c++
339
340 typedef int v4si __attribute__((__vector_size__(16)));
341 typedef float float4 __attribute__((ext_vector_type(4)));
342 typedef float float2 __attribute__((ext_vector_type(2)));
343
344 v4si vsi = (v4si){1, 2, 3, 4};
345 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
346 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
347 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
348 vector int vi3 = (vector int)(1, 2); // error
349 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
350 vector int vi5 = (vector int)(1, 2, 3, 4);
351 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
352
353Vector Operations
354-----------------
355
356The table below shows the support for each operation by vector extension. A
357dash indicates that an operation is not accepted according to a corresponding
358specification.
359
Anton Yartsev94e46f32014-09-03 17:59:21 +0000360============================== ======= ======= ======= =======
361 Opeator OpenCL AltiVec GCC NEON
362============================== ======= ======= ======= =======
363[] yes yes yes --
364unary operators +, -- yes yes yes --
365++, -- -- yes yes yes --
366+,--,*,/,% yes yes yes --
367bitwise operators &,|,^,~ yes yes yes --
368>>,<< yes yes yes --
369!, &&, || yes -- -- --
370==, !=, >, <, >=, <= yes yes -- --
371= yes yes yes yes
372:? yes -- -- --
373sizeof yes yes yes yes
374C-style cast yes yes yes no
375reinterpret_cast yes no yes no
376static_cast yes no yes no
377const_cast no no no no
378============================== ======= ======= ======= =======
Sean Silva709c44d2012-12-12 23:44:55 +0000379
Anton Yartsev94e46f32014-09-03 17:59:21 +0000380See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
Sean Silva709c44d2012-12-12 23:44:55 +0000381
382Messages on ``deprecated`` and ``unavailable`` Attributes
383=========================================================
384
385An optional string message can be added to the ``deprecated`` and
386``unavailable`` attributes. For example:
387
388.. code-block:: c++
389
390 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
391
392If the deprecated or unavailable declaration is used, the message will be
393incorporated into the appropriate diagnostic:
394
395.. code-block:: c++
396
397 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
398 [-Wdeprecated-declarations]
399 explode();
400 ^
401
402Query for this feature with
403``__has_extension(attribute_deprecated_with_message)`` and
404``__has_extension(attribute_unavailable_with_message)``.
405
406Attributes on Enumerators
407=========================
408
409Clang allows attributes to be written on individual enumerators. This allows
410enumerators to be deprecated, made unavailable, etc. The attribute must appear
411after the enumerator name and before any initializer, like so:
412
413.. code-block:: c++
414
415 enum OperationMode {
416 OM_Invalid,
417 OM_Normal,
418 OM_Terrified __attribute__((deprecated)),
419 OM_AbortOnError __attribute__((deprecated)) = 4
420 };
421
422Attributes on the ``enum`` declaration do not apply to individual enumerators.
423
424Query for this feature with ``__has_extension(enumerator_attributes)``.
425
426'User-Specified' System Frameworks
427==================================
428
429Clang provides a mechanism by which frameworks can be built in such a way that
430they will always be treated as being "system frameworks", even if they are not
431present in a system framework directory. This can be useful to system
432framework developers who want to be able to test building other applications
433with development builds of their framework, including the manner in which the
434compiler changes warning behavior for system headers.
435
436Framework developers can opt-in to this mechanism by creating a
437"``.system_framework``" file at the top-level of their framework. That is, the
438framework should have contents like:
439
440.. code-block:: none
441
442 .../TestFramework.framework
443 .../TestFramework.framework/.system_framework
444 .../TestFramework.framework/Headers
445 .../TestFramework.framework/Headers/TestFramework.h
446 ...
447
448Clang will treat the presence of this file as an indicator that the framework
449should be treated as a system framework, regardless of how it was found in the
450framework search path. For consistency, we recommend that such files never be
451included in installed versions of the framework.
452
Sean Silva709c44d2012-12-12 23:44:55 +0000453Checks for Standard Language Features
454=====================================
455
456The ``__has_feature`` macro can be used to query if certain standard language
457features are enabled. The ``__has_extension`` macro can be used to query if
458language features are available as an extension when compiling for a standard
459which does not provide them. The features which can be tested are listed here.
460
461C++98
462-----
463
464The features listed below are part of the C++98 standard. These features are
465enabled by default when compiling C++ code.
466
467C++ exceptions
468^^^^^^^^^^^^^^
469
470Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
471enabled. For example, compiling code with ``-fno-exceptions`` disables C++
472exceptions.
473
474C++ RTTI
475^^^^^^^^
476
477Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
478example, compiling code with ``-fno-rtti`` disables the use of RTTI.
479
480C++11
481-----
482
483The features listed below are part of the C++11 standard. As a result, all
484these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
485when compiling C++ code.
486
487C++11 SFINAE includes access control
488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
489
490Use ``__has_feature(cxx_access_control_sfinae)`` or
491``__has_extension(cxx_access_control_sfinae)`` to determine whether
492access-control errors (e.g., calling a private constructor) are considered to
493be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
494<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
495
496C++11 alias templates
497^^^^^^^^^^^^^^^^^^^^^
498
499Use ``__has_feature(cxx_alias_templates)`` or
500``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
501alias declarations and alias templates is enabled.
502
503C++11 alignment specifiers
504^^^^^^^^^^^^^^^^^^^^^^^^^^
505
506Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
507determine if support for alignment specifiers using ``alignas`` is enabled.
508
509C++11 attributes
510^^^^^^^^^^^^^^^^
511
512Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
513determine if support for attribute parsing with C++11's square bracket notation
514is enabled.
515
516C++11 generalized constant expressions
517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
518
519Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
520constant expressions (e.g., ``constexpr``) is enabled.
521
522C++11 ``decltype()``
523^^^^^^^^^^^^^^^^^^^^
524
525Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
526determine if support for the ``decltype()`` specifier is enabled. C++11's
527``decltype`` does not require type-completeness of a function call expression.
528Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
529``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
530support for this feature is enabled.
531
532C++11 default template arguments in function templates
533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
534
535Use ``__has_feature(cxx_default_function_template_args)`` or
536``__has_extension(cxx_default_function_template_args)`` to determine if support
537for default template arguments in function templates is enabled.
538
539C++11 ``default``\ ed functions
540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
541
542Use ``__has_feature(cxx_defaulted_functions)`` or
543``__has_extension(cxx_defaulted_functions)`` to determine if support for
544defaulted function definitions (with ``= default``) is enabled.
545
546C++11 delegating constructors
547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
548
549Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
550delegating constructors is enabled.
551
552C++11 ``deleted`` functions
553^^^^^^^^^^^^^^^^^^^^^^^^^^^
554
555Use ``__has_feature(cxx_deleted_functions)`` or
556``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
557function definitions (with ``= delete``) is enabled.
558
559C++11 explicit conversion functions
560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
561
562Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
563``explicit`` conversion functions is enabled.
564
565C++11 generalized initializers
566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
567
568Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
569generalized initializers (using braced lists and ``std::initializer_list``) is
570enabled.
571
572C++11 implicit move constructors/assignment operators
573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
574
575Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
576generate move constructors and move assignment operators where needed.
577
578C++11 inheriting constructors
579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
580
581Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000582inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000583
584C++11 inline namespaces
585^^^^^^^^^^^^^^^^^^^^^^^
586
587Use ``__has_feature(cxx_inline_namespaces)`` or
588``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
589namespaces is enabled.
590
591C++11 lambdas
592^^^^^^^^^^^^^
593
594Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
595determine if support for lambdas is enabled.
596
597C++11 local and unnamed types as template arguments
598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
599
600Use ``__has_feature(cxx_local_type_template_args)`` or
601``__has_extension(cxx_local_type_template_args)`` to determine if support for
602local and unnamed types as template arguments is enabled.
603
604C++11 noexcept
605^^^^^^^^^^^^^^
606
607Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
608determine if support for noexcept exception specifications is enabled.
609
610C++11 in-class non-static data member initialization
611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
612
613Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
614initialization of non-static data members is enabled.
615
616C++11 ``nullptr``
617^^^^^^^^^^^^^^^^^
618
619Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
620determine if support for ``nullptr`` is enabled.
621
622C++11 ``override control``
623^^^^^^^^^^^^^^^^^^^^^^^^^^
624
625Use ``__has_feature(cxx_override_control)`` or
626``__has_extension(cxx_override_control)`` to determine if support for the
627override control keywords is enabled.
628
629C++11 reference-qualified functions
630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
631
632Use ``__has_feature(cxx_reference_qualified_functions)`` or
633``__has_extension(cxx_reference_qualified_functions)`` to determine if support
634for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
635applied to ``*this``) is enabled.
636
637C++11 range-based ``for`` loop
638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
639
640Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
641determine if support for the range-based for loop is enabled.
642
643C++11 raw string literals
644^^^^^^^^^^^^^^^^^^^^^^^^^
645
646Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
647string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
648
649C++11 rvalue references
650^^^^^^^^^^^^^^^^^^^^^^^
651
652Use ``__has_feature(cxx_rvalue_references)`` or
653``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
654references is enabled.
655
656C++11 ``static_assert()``
657^^^^^^^^^^^^^^^^^^^^^^^^^
658
659Use ``__has_feature(cxx_static_assert)`` or
660``__has_extension(cxx_static_assert)`` to determine if support for compile-time
661assertions using ``static_assert`` is enabled.
662
Richard Smith25b555a2013-04-19 17:00:31 +0000663C++11 ``thread_local``
664^^^^^^^^^^^^^^^^^^^^^^
665
666Use ``__has_feature(cxx_thread_local)`` to determine if support for
667``thread_local`` variables is enabled.
668
Sean Silva709c44d2012-12-12 23:44:55 +0000669C++11 type inference
670^^^^^^^^^^^^^^^^^^^^
671
672Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
673determine C++11 type inference is supported using the ``auto`` specifier. If
674this is disabled, ``auto`` will instead be a storage class specifier, as in C
675or C++98.
676
677C++11 strongly typed enumerations
678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_strong_enums)`` or
681``__has_extension(cxx_strong_enums)`` to determine if support for strongly
682typed, scoped enumerations is enabled.
683
684C++11 trailing return type
685^^^^^^^^^^^^^^^^^^^^^^^^^^
686
687Use ``__has_feature(cxx_trailing_return)`` or
688``__has_extension(cxx_trailing_return)`` to determine if support for the
689alternate function declaration syntax with trailing return type is enabled.
690
691C++11 Unicode string literals
692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
693
694Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
695string literals is enabled.
696
697C++11 unrestricted unions
698^^^^^^^^^^^^^^^^^^^^^^^^^
699
700Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
701unrestricted unions is enabled.
702
703C++11 user-defined literals
704^^^^^^^^^^^^^^^^^^^^^^^^^^^
705
706Use ``__has_feature(cxx_user_literals)`` to determine if support for
707user-defined literals is enabled.
708
709C++11 variadic templates
710^^^^^^^^^^^^^^^^^^^^^^^^
711
712Use ``__has_feature(cxx_variadic_templates)`` or
713``__has_extension(cxx_variadic_templates)`` to determine if support for
714variadic templates is enabled.
715
Richard Smith0a715422013-05-07 19:32:56 +0000716C++1y
717-----
718
719The features listed below are part of the committee draft for the C++1y
720standard. As a result, all these features are enabled with the ``-std=c++1y``
721or ``-std=gnu++1y`` option when compiling C++ code.
722
723C++1y binary literals
724^^^^^^^^^^^^^^^^^^^^^
725
726Use ``__has_feature(cxx_binary_literals)`` or
727``__has_extension(cxx_binary_literals)`` to determine whether
728binary literals (for instance, ``0b10010``) are recognized. Clang supports this
729feature as an extension in all language modes.
730
731C++1y contextual conversions
732^^^^^^^^^^^^^^^^^^^^^^^^^^^^
733
734Use ``__has_feature(cxx_contextual_conversions)`` or
735``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
736are used when performing an implicit conversion for an array bound in a
737*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000738expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000739
740C++1y decltype(auto)
741^^^^^^^^^^^^^^^^^^^^
742
743Use ``__has_feature(cxx_decltype_auto)`` or
744``__has_extension(cxx_decltype_auto)`` to determine if support
745for the ``decltype(auto)`` placeholder type is enabled.
746
747C++1y default initializers for aggregates
748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
749
750Use ``__has_feature(cxx_aggregate_nsdmi)`` or
751``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
752for default initializers in aggregate members is enabled.
753
754C++1y generalized lambda capture
755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756
Richard Smith6d540142014-05-09 21:08:59 +0000757Use ``__has_feature(cxx_init_captures)`` or
758``__has_extension(cxx_init_captures)`` to determine if support for
Richard Smith4fb09722013-07-24 17:51:13 +0000759lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000760(for instance, ``[n(0)] { return ++n; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000761
762C++1y generic lambdas
763^^^^^^^^^^^^^^^^^^^^^
764
Richard Smith6d540142014-05-09 21:08:59 +0000765Use ``__has_feature(cxx_generic_lambdas)`` or
766``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
Richard Smith0a715422013-05-07 19:32:56 +0000767(polymorphic) lambdas is enabled
768(for instance, ``[] (auto x) { return x + 1; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000769
770C++1y relaxed constexpr
771^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_relaxed_constexpr)`` or
774``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
775declarations, local variable modification, and control flow constructs
776are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000777
778C++1y return type deduction
779^^^^^^^^^^^^^^^^^^^^^^^^^^^
780
781Use ``__has_feature(cxx_return_type_deduction)`` or
782``__has_extension(cxx_return_type_deduction)`` to determine if support
783for return type deduction for functions (using ``auto`` as a return type)
784is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000785
786C++1y runtime-sized arrays
787^^^^^^^^^^^^^^^^^^^^^^^^^^
788
789Use ``__has_feature(cxx_runtime_array)`` or
790``__has_extension(cxx_runtime_array)`` to determine if support
791for arrays of runtime bound (a restricted form of variable-length arrays)
792is enabled.
793Clang's implementation of this feature is incomplete.
794
795C++1y variable templates
796^^^^^^^^^^^^^^^^^^^^^^^^
797
798Use ``__has_feature(cxx_variable_templates)`` or
799``__has_extension(cxx_variable_templates)`` to determine if support for
800templated variable declarations is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000801
Sean Silva709c44d2012-12-12 23:44:55 +0000802C11
803---
804
805The features listed below are part of the C11 standard. As a result, all these
806features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
807compiling C code. Additionally, because these features are all
808backward-compatible, they are available as extensions in all language modes.
809
810C11 alignment specifiers
811^^^^^^^^^^^^^^^^^^^^^^^^
812
813Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
814if support for alignment specifiers using ``_Alignas`` is enabled.
815
816C11 atomic operations
817^^^^^^^^^^^^^^^^^^^^^
818
819Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
820if support for atomic types using ``_Atomic`` is enabled. Clang also provides
821:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
822the ``<stdatomic.h>`` operations on ``_Atomic`` types.
823
824C11 generic selections
825^^^^^^^^^^^^^^^^^^^^^^
826
827Use ``__has_feature(c_generic_selections)`` or
828``__has_extension(c_generic_selections)`` to determine if support for generic
829selections is enabled.
830
831As an extension, the C11 generic selection expression is available in all
832languages supported by Clang. The syntax is the same as that given in the C11
833standard.
834
835In C, type compatibility is decided according to the rules given in the
836appropriate standard, but in C++, which lacks the type compatibility rules used
837in C, types are considered compatible only if they are equivalent.
838
839C11 ``_Static_assert()``
840^^^^^^^^^^^^^^^^^^^^^^^^
841
842Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
843to determine if support for compile-time assertions using ``_Static_assert`` is
844enabled.
845
Richard Smith25b555a2013-04-19 17:00:31 +0000846C11 ``_Thread_local``
847^^^^^^^^^^^^^^^^^^^^^
848
Ed Schouten401aeba2013-09-14 16:17:20 +0000849Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
850to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000851
Alp Toker64197b92014-01-18 21:49:02 +0000852Checks for Type Trait Primitives
853================================
854
855Type trait primitives are special builtin constant expressions that can be used
856by the standard C++ library to facilitate or simplify the implementation of
857user-facing type traits in the <type_traits> header.
858
859They are not intended to be used directly by user code because they are
860implementation-defined and subject to change -- as such they're tied closely to
861the supported set of system headers, currently:
862
863* LLVM's own libc++
864* GNU libstdc++
865* The Microsoft standard C++ library
Sean Silva709c44d2012-12-12 23:44:55 +0000866
867Clang supports the `GNU C++ type traits
868<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
869`Microsoft Visual C++ Type traits
Alp Toker64197b92014-01-18 21:49:02 +0000870<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
871
872Feature detection is supported only for some of the primitives at present. User
873code should not use these checks because they bear no direct relation to the
874actual set of type traits supported by the C++ standard library.
875
876For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
877type trait primitive in the compiler. A simplistic usage example as might be
878seen in standard C++ headers follows:
Sean Silva709c44d2012-12-12 23:44:55 +0000879
880.. code-block:: c++
881
882 #if __has_extension(is_convertible_to)
883 template<typename From, typename To>
884 struct is_convertible_to {
885 static const bool value = __is_convertible_to(From, To);
886 };
887 #else
Alp Toker64197b92014-01-18 21:49:02 +0000888 // Emulate type trait for compatibility with other compilers.
Sean Silva709c44d2012-12-12 23:44:55 +0000889 #endif
890
Alp Toker64197b92014-01-18 21:49:02 +0000891The following type trait primitives are supported by Clang:
Sean Silva709c44d2012-12-12 23:44:55 +0000892
893* ``__has_nothrow_assign`` (GNU, Microsoft)
894* ``__has_nothrow_copy`` (GNU, Microsoft)
895* ``__has_nothrow_constructor`` (GNU, Microsoft)
896* ``__has_trivial_assign`` (GNU, Microsoft)
897* ``__has_trivial_copy`` (GNU, Microsoft)
898* ``__has_trivial_constructor`` (GNU, Microsoft)
899* ``__has_trivial_destructor`` (GNU, Microsoft)
900* ``__has_virtual_destructor`` (GNU, Microsoft)
901* ``__is_abstract`` (GNU, Microsoft)
902* ``__is_base_of`` (GNU, Microsoft)
903* ``__is_class`` (GNU, Microsoft)
904* ``__is_convertible_to`` (Microsoft)
905* ``__is_empty`` (GNU, Microsoft)
906* ``__is_enum`` (GNU, Microsoft)
907* ``__is_interface_class`` (Microsoft)
908* ``__is_pod`` (GNU, Microsoft)
909* ``__is_polymorphic`` (GNU, Microsoft)
910* ``__is_union`` (GNU, Microsoft)
911* ``__is_literal(type)``: Determines whether the given type is a literal type
912* ``__is_final``: Determines whether the given type is declared with a
913 ``final`` class-virt-specifier.
914* ``__underlying_type(type)``: Retrieves the underlying type for a given
915 ``enum`` type. This trait is required to implement the C++11 standard
916 library.
917* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
918 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
919 that no non-trivial functions are called as part of that assignment. This
920 trait is required to implement the C++11 standard library.
921* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
922 value of type ``type`` can be direct-initialized with arguments of types
923 ``argtypes...`` such that no non-trivial functions are called as part of
924 that initialization. This trait is required to implement the C++11 standard
925 library.
Alp Toker73287bf2014-01-20 00:24:09 +0000926* ``__is_destructible`` (MSVC 2013): partially implemented
927* ``__is_nothrow_destructible`` (MSVC 2013): partially implemented
928* ``__is_nothrow_assignable`` (MSVC 2013, clang)
929* ``__is_constructible`` (MSVC 2013, clang)
930* ``__is_nothrow_constructible`` (MSVC 2013, clang)
Sean Silva709c44d2012-12-12 23:44:55 +0000931
932Blocks
933======
934
935The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +0000936:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
937the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000938
939Query for this feature with ``__has_extension(blocks)``.
940
941Objective-C Features
942====================
943
944Related result types
945--------------------
946
947According to Cocoa conventions, Objective-C methods with certain names
948("``init``", "``alloc``", etc.) always return objects that are an instance of
949the receiving class's type. Such methods are said to have a "related result
950type", meaning that a message send to one of these methods will have the same
951static type as an instance of the receiver class. For example, given the
952following classes:
953
954.. code-block:: objc
955
956 @interface NSObject
957 + (id)alloc;
958 - (id)init;
959 @end
960
961 @interface NSArray : NSObject
962 @end
963
964and this common initialization pattern
965
966.. code-block:: objc
967
968 NSArray *array = [[NSArray alloc] init];
969
970the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
971``alloc`` implicitly has a related result type. Similarly, the type of the
972expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
973related result type and its receiver is known to have the type ``NSArray *``.
974If neither ``alloc`` nor ``init`` had a related result type, the expressions
975would have had type ``id``, as declared in the method signature.
976
977A method with a related result type can be declared by using the type
978``instancetype`` as its result type. ``instancetype`` is a contextual keyword
979that is only permitted in the result type of an Objective-C method, e.g.
980
981.. code-block:: objc
982
983 @interface A
984 + (instancetype)constructAnA;
985 @end
986
987The related result type can also be inferred for some methods. To determine
988whether a method has an inferred related result type, the first word in the
989camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
990and the method will have a related result type if its return type is compatible
991with the type of its class and if:
992
993* the first word is "``alloc``" or "``new``", and the method is a class method,
994 or
995
996* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
997 and the method is an instance method.
998
999If a method with a related result type is overridden by a subclass method, the
1000subclass method must also return a type that is compatible with the subclass
1001type. For example:
1002
1003.. code-block:: objc
1004
1005 @interface NSString : NSObject
1006 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1007 @end
1008
1009Related result types only affect the type of a message send or property access
1010via the given method. In all other respects, a method with a related result
1011type is treated the same way as method that returns ``id``.
1012
1013Use ``__has_feature(objc_instancetype)`` to determine whether the
1014``instancetype`` contextual keyword is available.
1015
1016Automatic reference counting
1017----------------------------
1018
Sean Silva173d2522013-01-02 13:07:47 +00001019Clang provides support for :doc:`automated reference counting
1020<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001021for manual ``retain``/``release``/``autorelease`` message sends. There are two
1022feature macros associated with automatic reference counting:
1023``__has_feature(objc_arc)`` indicates the availability of automated reference
1024counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1025automated reference counting also includes support for ``__weak`` pointers to
1026Objective-C objects.
1027
Sean Silva173d2522013-01-02 13:07:47 +00001028.. _objc-fixed-enum:
1029
Sean Silva709c44d2012-12-12 23:44:55 +00001030Enumerations with a fixed underlying type
1031-----------------------------------------
1032
1033Clang provides support for C++11 enumerations with a fixed underlying type
1034within Objective-C. For example, one can write an enumeration type as:
1035
1036.. code-block:: c++
1037
1038 typedef enum : unsigned char { Red, Green, Blue } Color;
1039
1040This specifies that the underlying type, which is used to store the enumeration
1041value, is ``unsigned char``.
1042
1043Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1044underlying types is available in Objective-C.
1045
1046Interoperability with C++11 lambdas
1047-----------------------------------
1048
1049Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1050permitting a lambda to be implicitly converted to a block pointer with the
1051corresponding signature. For example, consider an API such as ``NSArray``'s
1052array-sorting method:
1053
1054.. code-block:: objc
1055
1056 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1057
1058``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1059(^)(id, id)``, and parameters of this type are generally provided with block
1060literals as arguments. However, one can also use a C++11 lambda so long as it
1061provides the same signature (in this case, accepting two parameters of type
1062``id`` and returning an ``NSComparisonResult``):
1063
1064.. code-block:: objc
1065
1066 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1067 @"String 02"];
1068 const NSStringCompareOptions comparisonOptions
1069 = NSCaseInsensitiveSearch | NSNumericSearch |
1070 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1071 NSLocale *currentLocale = [NSLocale currentLocale];
1072 NSArray *sorted
1073 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1074 NSRange string1Range = NSMakeRange(0, [s1 length]);
1075 return [s1 compare:s2 options:comparisonOptions
1076 range:string1Range locale:currentLocale];
1077 }];
1078 NSLog(@"sorted: %@", sorted);
1079
1080This code relies on an implicit conversion from the type of the lambda
1081expression (an unnamed, local class type called the *closure type*) to the
1082corresponding block pointer type. The conversion itself is expressed by a
1083conversion operator in that closure type that produces a block pointer with the
1084same signature as the lambda itself, e.g.,
1085
1086.. code-block:: objc
1087
1088 operator NSComparisonResult (^)(id, id)() const;
1089
1090This conversion function returns a new block that simply forwards the two
1091parameters to the lambda object (which it captures by copy), then returns the
1092result. The returned block is first copied (with ``Block_copy``) and then
1093autoreleased. As an optimization, if a lambda expression is immediately
1094converted to a block pointer (as in the first example, above), then the block
1095is not copied and autoreleased: rather, it is given the same lifetime as a
1096block literal written at that point in the program, which avoids the overhead
1097of copying a block to the heap in the common case.
1098
1099The conversion from a lambda to a block pointer is only available in
1100Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1101management (autorelease).
1102
1103Object Literals and Subscripting
1104--------------------------------
1105
Sean Silva173d2522013-01-02 13:07:47 +00001106Clang provides support for :doc:`Object Literals and Subscripting
1107<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001108programming patterns, makes programs more concise, and improves the safety of
1109container creation. There are several feature macros associated with object
1110literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1111availability of array literals; ``__has_feature(objc_dictionary_literals)``
1112tests the availability of dictionary literals;
1113``__has_feature(objc_subscripting)`` tests the availability of object
1114subscripting.
1115
1116Objective-C Autosynthesis of Properties
1117---------------------------------------
1118
1119Clang provides support for autosynthesis of declared properties. Using this
1120feature, clang provides default synthesis of those properties not declared
1121@dynamic and not having user provided backing getter and setter methods.
1122``__has_feature(objc_default_synthesize_properties)`` checks for availability
1123of this feature in version of clang being used.
1124
Jordan Rose32e94892012-12-15 00:37:01 +00001125.. _langext-objc-retain-release:
1126
1127Objective-C retaining behavior attributes
1128-----------------------------------------
1129
1130In Objective-C, functions and methods are generally assumed to follow the
1131`Cocoa Memory Management
1132<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1133conventions for ownership of object arguments and
1134return values. However, there are exceptions, and so Clang provides attributes
1135to allow these exceptions to be documented. This are used by ARC and the
1136`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
Aaron Ballman840cef32014-02-19 15:45:13 +00001137better described using the ``objc_method_family`` attribute instead.
Jordan Rose32e94892012-12-15 00:37:01 +00001138
1139**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1140``ns_returns_autoreleased``, ``cf_returns_retained``, and
1141``cf_returns_not_retained`` attributes can be placed on methods and functions
1142that return Objective-C or CoreFoundation objects. They are commonly placed at
1143the end of a function prototype or method declaration:
1144
1145.. code-block:: objc
1146
1147 id foo() __attribute__((ns_returns_retained));
1148
1149 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1150
1151The ``*_returns_retained`` attributes specify that the returned object has a +1
1152retain count. The ``*_returns_not_retained`` attributes specify that the return
1153object has a +0 retain count, even if the normal convention for its selector
1154would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1155+0, but is guaranteed to live at least as long as the next flush of an
1156autorelease pool.
1157
1158**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1159an parameter declaration; they specify that the argument is expected to have a
1160+1 retain count, which will be balanced in some way by the function or method.
1161The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1162method; it specifies that the method expects its ``self`` parameter to have a
1163+1 retain count, which it will balance in some way.
1164
1165.. code-block:: objc
1166
1167 void foo(__attribute__((ns_consumed)) NSString *string);
1168
1169 - (void) bar __attribute__((ns_consumes_self));
1170 - (void) baz:(id) __attribute__((ns_consumed)) x;
1171
1172Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1173<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1174
1175Query for these features with ``__has_attribute(ns_consumed)``,
1176``__has_attribute(ns_returns_retained)``, etc.
1177
1178
Ted Kremenek84342d62013-10-15 04:28:42 +00001179Objective-C++ ABI: protocol-qualifier mangling of parameters
1180------------------------------------------------------------
1181
1182Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1183type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1184parameters to be differentiated from those with the regular unqualified ``id``
1185type.
1186
1187This was a non-backward compatible mangling change to the ABI. This change
1188allows proper overloading, and also prevents mangling conflicts with template
1189parameters of protocol-qualified type.
1190
1191Query the presence of this new mangling with
1192``__has_feature(objc_protocol_qualifier_mangling)``.
1193
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001194.. _langext-overloading:
1195
Sean Silva709c44d2012-12-12 23:44:55 +00001196Initializer lists for complex numbers in C
1197==========================================
1198
1199clang supports an extension which allows the following in C:
1200
1201.. code-block:: c++
1202
1203 #include <math.h>
1204 #include <complex.h>
1205 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1206
1207This construct is useful because there is no way to separately initialize the
1208real and imaginary parts of a complex variable in standard C, given that clang
1209does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1210``__imag__`` extensions from gcc, which help in some cases, but are not usable
1211in static initializers.)
1212
1213Note that this extension does not allow eliding the braces; the meaning of the
1214following two lines is different:
1215
1216.. code-block:: c++
1217
1218 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1219 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1220
1221This extension also works in C++ mode, as far as that goes, but does not apply
1222to the C++ ``std::complex``. (In C++11, list initialization allows the same
1223syntax to be used with ``std::complex`` with the same meaning.)
1224
1225Builtin Functions
1226=================
1227
1228Clang supports a number of builtin library functions with the same syntax as
1229GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1230``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
1231``__sync_fetch_and_add``, etc. In addition to the GCC builtins, Clang supports
1232a number of builtins that GCC does not, which are listed here.
1233
1234Please note that Clang does not and will not support all of the GCC builtins
1235for vector operations. Instead of using builtins, you should use the functions
1236defined in target-specific header files like ``<xmmintrin.h>``, which define
1237portable wrappers for these. Many of the Clang versions of these functions are
1238implemented directly in terms of :ref:`extended vector support
1239<langext-vectors>` instead of builtins, in order to reduce the number of
1240builtins that we need to implement.
1241
1242``__builtin_readcyclecounter``
1243------------------------------
1244
1245``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1246a similar low-latency, high-accuracy clock) on those targets that support it.
1247
1248**Syntax**:
1249
1250.. code-block:: c++
1251
1252 __builtin_readcyclecounter()
1253
1254**Example of Use**:
1255
1256.. code-block:: c++
1257
1258 unsigned long long t0 = __builtin_readcyclecounter();
1259 do_something();
1260 unsigned long long t1 = __builtin_readcyclecounter();
1261 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1262
1263**Description**:
1264
1265The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1266which may be either global or process/thread-specific depending on the target.
1267As the backing counters often overflow quickly (on the order of seconds) this
1268should only be used for timing small intervals. When not supported by the
1269target, the return value is always zero. This builtin takes no arguments and
1270produces an unsigned long long result.
1271
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001272Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1273that even if present, its use may depend on run-time privilege or other OS
1274controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001275
1276.. _langext-__builtin_shufflevector:
1277
1278``__builtin_shufflevector``
1279---------------------------
1280
1281``__builtin_shufflevector`` is used to express generic vector
1282permutation/shuffle/swizzle operations. This builtin is also very important
1283for the implementation of various target-specific header files like
1284``<xmmintrin.h>``.
1285
1286**Syntax**:
1287
1288.. code-block:: c++
1289
1290 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1291
1292**Examples**:
1293
1294.. code-block:: c++
1295
Craig Topper50ad5b72013-08-03 17:40:38 +00001296 // identity operation - return 4-element vector v1.
1297 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001298
1299 // "Splat" element 0 of V1 into a 4-element result.
1300 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1301
1302 // Reverse 4-element vector V1.
1303 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1304
1305 // Concatenate every other element of 4-element vectors V1 and V2.
1306 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1307
1308 // Concatenate every other element of 8-element vectors V1 and V2.
1309 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1310
Craig Topper50ad5b72013-08-03 17:40:38 +00001311 // Shuffle v1 with some elements being undefined
1312 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1313
Sean Silva709c44d2012-12-12 23:44:55 +00001314**Description**:
1315
1316The first two arguments to ``__builtin_shufflevector`` are vectors that have
1317the same element type. The remaining arguments are a list of integers that
1318specify the elements indices of the first two vectors that should be extracted
1319and returned in a new vector. These element indices are numbered sequentially
1320starting with the first vector, continuing into the second vector. Thus, if
1321``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001322``vec2``. An index of -1 can be used to indicate that the corresponding element
1323in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001324
1325The result of ``__builtin_shufflevector`` is a vector with the same element
1326type as ``vec1``/``vec2`` but that has an element count equal to the number of
1327indices specified.
1328
1329Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1330
Anton Yartsev94e46f32014-09-03 17:59:21 +00001331.. _langext-__builtin_convertvector:
1332
Hal Finkelc4d7c822013-09-18 03:29:45 +00001333``__builtin_convertvector``
1334---------------------------
1335
1336``__builtin_convertvector`` is used to express generic vector
1337type-conversion operations. The input vector and the output vector
1338type must have the same number of elements.
1339
1340**Syntax**:
1341
1342.. code-block:: c++
1343
1344 __builtin_convertvector(src_vec, dst_vec_type)
1345
1346**Examples**:
1347
1348.. code-block:: c++
1349
1350 typedef double vector4double __attribute__((__vector_size__(32)));
1351 typedef float vector4float __attribute__((__vector_size__(16)));
1352 typedef short vector4short __attribute__((__vector_size__(8)));
1353 vector4float vf; vector4short vs;
1354
1355 // convert from a vector of 4 floats to a vector of 4 doubles.
1356 __builtin_convertvector(vf, vector4double)
1357 // equivalent to:
1358 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1359
1360 // convert from a vector of 4 shorts to a vector of 4 floats.
1361 __builtin_convertvector(vs, vector4float)
1362 // equivalent to:
Yunzhong Gao637cb90b2014-09-02 19:24:14 +00001363 (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
Hal Finkelc4d7c822013-09-18 03:29:45 +00001364
1365**Description**:
1366
1367The first argument to ``__builtin_convertvector`` is a vector, and the second
1368argument is a vector type with the same number of elements as the first
1369argument.
1370
1371The result of ``__builtin_convertvector`` is a vector with the same element
1372type as the second argument, with a value defined in terms of the action of a
1373C-style cast applied to each element of the first argument.
1374
1375Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1376
Sean Silva709c44d2012-12-12 23:44:55 +00001377``__builtin_unreachable``
1378-------------------------
1379
1380``__builtin_unreachable`` is used to indicate that a specific point in the
1381program cannot be reached, even if the compiler might otherwise think it can.
1382This is useful to improve optimization and eliminates certain warnings. For
1383example, without the ``__builtin_unreachable`` in the example below, the
1384compiler assumes that the inline asm can fall through and prints a "function
1385declared '``noreturn``' should not return" warning.
1386
1387**Syntax**:
1388
1389.. code-block:: c++
1390
1391 __builtin_unreachable()
1392
1393**Example of use**:
1394
1395.. code-block:: c++
1396
1397 void myabort(void) __attribute__((noreturn));
1398 void myabort(void) {
1399 asm("int3");
1400 __builtin_unreachable();
1401 }
1402
1403**Description**:
1404
1405The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1406Since it has undefined behavior, it is a statement that it is never reached and
1407the optimizer can take advantage of this to produce better code. This builtin
1408takes no arguments and produces a void result.
1409
1410Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1411
1412``__sync_swap``
1413---------------
1414
1415``__sync_swap`` is used to atomically swap integers or pointers in memory.
1416
1417**Syntax**:
1418
1419.. code-block:: c++
1420
1421 type __sync_swap(type *ptr, type value, ...)
1422
1423**Example of Use**:
1424
1425.. code-block:: c++
1426
1427 int old_value = __sync_swap(&value, new_value);
1428
1429**Description**:
1430
1431The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1432atomic intrinsics to allow code to atomically swap the current value with the
1433new value. More importantly, it helps developers write more efficient and
1434correct code by avoiding expensive loops around
1435``__sync_bool_compare_and_swap()`` or relying on the platform specific
1436implementation details of ``__sync_lock_test_and_set()``. The
1437``__sync_swap()`` builtin is a full barrier.
1438
Richard Smith6cbd65d2013-07-11 02:27:57 +00001439``__builtin_addressof``
1440-----------------------
1441
1442``__builtin_addressof`` performs the functionality of the built-in ``&``
1443operator, ignoring any ``operator&`` overload. This is useful in constant
1444expressions in C++11, where there is no other way to take the address of an
1445object that overloads ``operator&``.
1446
1447**Example of use**:
1448
1449.. code-block:: c++
1450
1451 template<typename T> constexpr T *addressof(T &value) {
1452 return __builtin_addressof(value);
1453 }
1454
Richard Smith760520b2014-06-03 23:27:44 +00001455``__builtin_operator_new`` and ``__builtin_operator_delete``
1456------------------------------------------------------------
1457
1458``__builtin_operator_new`` allocates memory just like a non-placement non-class
1459*new-expression*. This is exactly like directly calling the normal
1460non-placement ``::operator new``, except that it allows certain optimizations
1461that the C++ standard does not permit for a direct function call to
1462``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
1463merging allocations).
1464
1465Likewise, ``__builtin_operator_delete`` deallocates memory just like a
1466non-class *delete-expression*, and is exactly like directly calling the normal
1467``::operator delete``, except that it permits optimizations. Only the unsized
1468form of ``__builtin_operator_delete`` is currently available.
1469
1470These builtins are intended for use in the implementation of ``std::allocator``
1471and other similar allocation libraries, and are only available in C++.
1472
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001473Multiprecision Arithmetic Builtins
1474----------------------------------
1475
1476Clang provides a set of builtins which expose multiprecision arithmetic in a
1477manner amenable to C. They all have the following form:
1478
1479.. code-block:: c
1480
1481 unsigned x = ..., y = ..., carryin = ..., carryout;
1482 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1483
1484Thus one can form a multiprecision addition chain in the following manner:
1485
1486.. code-block:: c
1487
1488 unsigned *x, *y, *z, carryin=0, carryout;
1489 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1490 carryin = carryout;
1491 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1492 carryin = carryout;
1493 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1494 carryin = carryout;
1495 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1496
1497The complete list of builtins are:
1498
1499.. code-block:: c
1500
Michael Gottesman15343992013-06-18 20:40:40 +00001501 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001502 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1503 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1504 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1505 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001506 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001507 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1508 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1509 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1510 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1511
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001512Checked Arithmetic Builtins
1513---------------------------
1514
1515Clang provides a set of builtins that implement checked arithmetic for security
1516critical applications in a manner that is fast and easily expressable in C. As
1517an example of their usage:
1518
1519.. code-block:: c
1520
1521 errorcode_t security_critical_application(...) {
1522 unsigned x, y, result;
1523 ...
1524 if (__builtin_umul_overflow(x, y, &result))
1525 return kErrorCodeHackers;
1526 ...
1527 use_multiply(result);
1528 ...
1529 }
1530
1531A complete enumeration of the builtins are:
1532
1533.. code-block:: c
1534
1535 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1536 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1537 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1538 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1539 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1540 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1541 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1542 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1543 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1544 bool __builtin_sadd_overflow (int x, int y, int *sum);
1545 bool __builtin_saddl_overflow (long x, long y, long *sum);
1546 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1547 bool __builtin_ssub_overflow (int x, int y, int *diff);
1548 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1549 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1550 bool __builtin_smul_overflow (int x, int y, int *prod);
1551 bool __builtin_smull_overflow (long x, long y, long *prod);
1552 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1553
1554
Sean Silva709c44d2012-12-12 23:44:55 +00001555.. _langext-__c11_atomic:
1556
1557__c11_atomic builtins
1558---------------------
1559
1560Clang provides a set of builtins which are intended to be used to implement
1561C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1562``_explicit`` form of the corresponding C11 operation, and are named with a
1563``__c11_`` prefix. The supported operations are:
1564
1565* ``__c11_atomic_init``
1566* ``__c11_atomic_thread_fence``
1567* ``__c11_atomic_signal_fence``
1568* ``__c11_atomic_is_lock_free``
1569* ``__c11_atomic_store``
1570* ``__c11_atomic_load``
1571* ``__c11_atomic_exchange``
1572* ``__c11_atomic_compare_exchange_strong``
1573* ``__c11_atomic_compare_exchange_weak``
1574* ``__c11_atomic_fetch_add``
1575* ``__c11_atomic_fetch_sub``
1576* ``__c11_atomic_fetch_and``
1577* ``__c11_atomic_fetch_or``
1578* ``__c11_atomic_fetch_xor``
1579
Tim Northover6aacd492013-07-16 09:47:53 +00001580Low-level ARM exclusive memory builtins
1581---------------------------------------
1582
1583Clang provides overloaded builtins giving direct access to the three key ARM
1584instructions for implementing atomic operations.
1585
1586.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001587
Tim Northover6aacd492013-07-16 09:47:53 +00001588 T __builtin_arm_ldrex(const volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001589 T __builtin_arm_ldaex(const volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001590 int __builtin_arm_strex(T val, volatile T *addr);
Tim Northover3acd6bd2014-07-02 12:56:02 +00001591 int __builtin_arm_stlex(T val, volatile T *addr);
Tim Northover6aacd492013-07-16 09:47:53 +00001592 void __builtin_arm_clrex(void);
1593
1594The types ``T`` currently supported are:
Tim Northover573cbee2014-05-24 12:52:07 +00001595* Integer types with width at most 64 bits (or 128 bits on AArch64).
Tim Northover6aacd492013-07-16 09:47:53 +00001596* Floating-point types
1597* Pointer types.
1598
1599Note that the compiler does not guarantee it will not insert stores which clear
Tim Northover3acd6bd2014-07-02 12:56:02 +00001600the exclusive monitor in between an ``ldrex`` type operation and its paired
1601``strex``. In practice this is only usually a risk when the extra store is on
1602the same cache line as the variable being modified and Clang will only insert
1603stack stores on its own, so it is best not to use these operations on variables
1604with automatic storage duration.
Tim Northover6aacd492013-07-16 09:47:53 +00001605
1606Also, loads and stores may be implicit in code written between the ``ldrex`` and
1607``strex``. Clang will not necessarily mitigate the effects of these either, so
1608care should be exercised.
1609
1610For these reasons the higher level atomic primitives should be preferred where
1611possible.
1612
Sean Silva709c44d2012-12-12 23:44:55 +00001613Non-standard C++11 Attributes
1614=============================
1615
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001616Clang's non-standard C++11 attributes live in the ``clang`` attribute
1617namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001618
Aaron Ballman68893db2014-02-19 23:21:40 +00001619Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001620are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1621``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1622(see the list of `GCC function attributes
1623<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1624attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1625`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001626<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001627implementation, these attributes must appertain to the *declarator-id* in a
1628declaration, which means they must go either at the start of the declaration or
1629immediately after the name being declared.
1630
1631For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1632also applies the GNU ``noreturn`` attribute to ``f``.
1633
1634.. code-block:: c++
1635
1636 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1637
Sean Silva709c44d2012-12-12 23:44:55 +00001638Target-Specific Extensions
1639==========================
1640
1641Clang supports some language features conditionally on some targets.
1642
Yi Kong4de26fb2014-07-23 09:25:02 +00001643ARM/AArch64 Language Extensions
1644-------------------------------
1645
1646Memory Barrier Intrinsics
1647^^^^^^^^^^^^^^^^^^^^^^^^^
1648Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
1649in the `ARM C Language Extensions Release 2.0
1650<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
1651Note that these intrinsics are implemented as motion barriers that block
1652reordering of memory accesses and side effect instructions. Other instructions
1653like simple arithmatic may be reordered around the intrinsic. If you expect to
1654have no reordering at all, use inline assembly instead.
1655
Sean Silva709c44d2012-12-12 23:44:55 +00001656X86/X86-64 Language Extensions
1657------------------------------
1658
1659The X86 backend has these language extensions:
1660
1661Memory references off the GS segment
1662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
1664Annotating a pointer with address space #256 causes it to be code generated
1665relative to the X86 GS segment register, and address space #257 causes it to be
1666relative to the X86 FS segment. Note that this is a very very low-level
1667feature that should only be used if you know what you're doing (for example in
1668an OS kernel).
1669
1670Here is an example:
1671
1672.. code-block:: c++
1673
1674 #define GS_RELATIVE __attribute__((address_space(256)))
1675 int foo(int GS_RELATIVE *P) {
1676 return *P;
1677 }
1678
1679Which compiles to (on X86-32):
1680
1681.. code-block:: gas
1682
1683 _foo:
1684 movl 4(%esp), %eax
1685 movl %gs:(%eax), %eax
1686 ret
1687
Jordan Rose32e94892012-12-15 00:37:01 +00001688Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001689==============================
Sean Silva709c44d2012-12-12 23:44:55 +00001690
1691Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00001692invariants and rules for static analysis tools, such as the `Clang Static
1693Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1694in the analyzer's `list of source-level annotations
1695<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00001696
Sean Silva709c44d2012-12-12 23:44:55 +00001697
Jordan Rose32e94892012-12-15 00:37:01 +00001698Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001699===============================
Sean Silva709c44d2012-12-12 23:44:55 +00001700
Sean Silva709c44d2012-12-12 23:44:55 +00001701Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001702with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00001703
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001704Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1705with :doc:`ThreadSanitizer`.
1706
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001707Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1708with :doc:`MemorySanitizer`.
Dario Domizioli33c17872014-05-28 14:06:38 +00001709
1710
1711Extensions for selectively disabling optimization
1712=================================================
1713
1714Clang provides a mechanism for selectively disabling optimizations in functions
1715and methods.
1716
1717To disable optimizations in a single function definition, the GNU-style or C++11
1718non-standard attribute ``optnone`` can be used.
1719
1720.. code-block:: c++
1721
1722 // The following functions will not be optimized.
1723 // GNU-style attribute
1724 __attribute__((optnone)) int foo() {
1725 // ... code
1726 }
1727 // C++11 attribute
1728 [[clang::optnone]] int bar() {
1729 // ... code
1730 }
1731
1732To facilitate disabling optimization for a range of function definitions, a
1733range-based pragma is provided. Its syntax is ``#pragma clang optimize``
1734followed by ``off`` or ``on``.
1735
1736All function definitions in the region between an ``off`` and the following
1737``on`` will be decorated with the ``optnone`` attribute unless doing so would
1738conflict with explicit attributes already present on the function (e.g. the
1739ones that control inlining).
1740
1741.. code-block:: c++
1742
1743 #pragma clang optimize off
1744 // This function will be decorated with optnone.
1745 int foo() {
1746 // ... code
1747 }
1748
1749 // optnone conflicts with always_inline, so bar() will not be decorated.
1750 __attribute__((always_inline)) int bar() {
1751 // ... code
1752 }
1753 #pragma clang optimize on
1754
1755If no ``on`` is found to close an ``off`` region, the end of the region is the
1756end of the compilation unit.
1757
1758Note that a stray ``#pragma clang optimize on`` does not selectively enable
1759additional optimizations when compiling at low optimization levels. This feature
1760can only be used to selectively disable optimizations.
1761
1762The pragma has an effect on functions only at the point of their definition; for
1763function templates, this means that the state of the pragma at the point of an
1764instantiation is not necessarily relevant. Consider the following example:
1765
1766.. code-block:: c++
1767
1768 template<typename T> T twice(T t) {
1769 return 2 * t;
1770 }
1771
1772 #pragma clang optimize off
1773 template<typename T> T thrice(T t) {
1774 return 3 * t;
1775 }
1776
1777 int container(int a, int b) {
1778 return twice(a) + thrice(b);
1779 }
1780 #pragma clang optimize on
1781
1782In this example, the definition of the template function ``twice`` is outside
1783the pragma region, whereas the definition of ``thrice`` is inside the region.
1784The ``container`` function is also in the region and will not be optimized, but
1785it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
1786these two instantiations, ``twice`` will be optimized (because its definition
1787was outside the region) and ``thrice`` will not be optimized.
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001788
1789Extensions for loop hint optimizations
1790======================================
1791
1792The ``#pragma clang loop`` directive is used to specify hints for optimizing the
1793subsequent for, while, do-while, or c++11 range-based for loop. The directive
Eli Bendersky778268d2014-06-19 18:12:44 +00001794provides options for vectorization, interleaving, and unrolling. Loop hints can
1795be specified before any loop and will be ignored if the optimization is not safe
1796to apply.
1797
1798Vectorization and Interleaving
1799------------------------------
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001800
1801A vectorized loop performs multiple iterations of the original loop
1802in parallel using vector instructions. The instruction set of the target
1803processor determines which vector instructions are available and their vector
1804widths. This restricts the types of loops that can be vectorized. The vectorizer
1805automatically determines if the loop is safe and profitable to vectorize. A
1806vector instruction cost model is used to select the vector width.
1807
1808Interleaving multiple loop iterations allows modern processors to further
1809improve instruction-level parallelism (ILP) using advanced hardware features,
1810such as multiple execution units and out-of-order execution. The vectorizer uses
1811a cost model that depends on the register pressure and generated code size to
1812select the interleaving count.
1813
1814Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
1815by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
1816manually enable vectorization or interleaving.
1817
1818.. code-block:: c++
1819
1820 #pragma clang loop vectorize(enable)
1821 #pragma clang loop interleave(enable)
1822 for(...) {
1823 ...
1824 }
1825
1826The vector width is specified by ``vectorize_width(_value_)`` and the interleave
1827count is specified by ``interleave_count(_value_)``, where
1828_value_ is a positive integer. This is useful for specifying the optimal
1829width/count of the set of target architectures supported by your application.
1830
1831.. code-block:: c++
1832
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001833 #pragma clang loop vectorize_width(2)
1834 #pragma clang loop interleave_count(2)
1835 for(...) {
1836 ...
1837 }
1838
1839Specifying a width/count of 1 disables the optimization, and is equivalent to
1840``vectorize(disable)`` or ``interleave(disable)``.
1841
Eli Bendersky778268d2014-06-19 18:12:44 +00001842Loop Unrolling
1843--------------
1844
1845Unrolling a loop reduces the loop control overhead and exposes more
1846opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
1847eliminates the loop and replaces it with an enumerated sequence of loop
1848iterations. Full unrolling is only possible if the loop trip count is known at
1849compile time. Partial unrolling replicates the loop body within the loop and
1850reduces the trip count.
1851
Mark Heffernan450c2382014-07-23 17:31:31 +00001852If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
Eli Bendersky778268d2014-06-19 18:12:44 +00001853loop if the trip count is known at compile time. If the loop count is not known
1854or the fully unrolled code size is greater than the limit specified by the
1855`-pragma-unroll-threshold` command line option the loop will be partially
1856unrolled subject to the same limit.
1857
1858.. code-block:: c++
1859
Mark Heffernan450c2382014-07-23 17:31:31 +00001860 #pragma clang loop unroll(full)
Eli Bendersky778268d2014-06-19 18:12:44 +00001861 for(...) {
1862 ...
1863 }
1864
1865The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
1866_value_ is a positive integer. If this value is greater than the trip count the
1867loop will be fully unrolled. Otherwise the loop is partially unrolled subject
1868to the `-pragma-unroll-threshold` limit.
1869
1870.. code-block:: c++
1871
1872 #pragma clang loop unroll_count(8)
1873 for(...) {
1874 ...
1875 }
1876
1877Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
1878
1879Additional Information
1880----------------------
1881
Tyler Nowickidb2668a2014-06-18 00:51:32 +00001882For convenience multiple loop hints can be specified on a single line.
1883
1884.. code-block:: c++
1885
1886 #pragma clang loop vectorize_width(4) interleave_count(8)
1887 for(...) {
1888 ...
1889 }
1890
1891If an optimization cannot be applied any hints that apply to it will be ignored.
1892For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
1893proven safe to vectorize. To identify and diagnose optimization issues use
1894`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
1895user guide for details.