blob: 81894f67545c59bfe850f8dd3e18532b50955084 [file] [log] [blame]
Eugene Zelenko3b879392017-10-13 21:17:07 +00001//===- GVNSink.cpp - sink expressions into successors ---------------------===//
James Molloya9290632017-05-25 12:51:11 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file GVNSink.cpp
11/// This pass attempts to sink instructions into successors, reducing static
12/// instruction count and enabling if-conversion.
13///
14/// We use a variant of global value numbering to decide what can be sunk.
15/// Consider:
16///
17/// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
18/// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
19/// \ /
20/// [ %e = phi i32 %a2, %c2 ]
21/// [ add i32 %e, 4 ]
22///
23///
24/// GVN would number %a1 and %c1 differently because they compute different
25/// results - the VN of an instruction is a function of its opcode and the
26/// transitive closure of its operands. This is the key property for hoisting
27/// and CSE.
28///
29/// What we want when sinking however is for a numbering that is a function of
30/// the *uses* of an instruction, which allows us to answer the question "if I
31/// replace %a1 with %c1, will it contribute in an equivalent way to all
32/// successive instructions?". The PostValueTable class in GVN provides this
33/// mapping.
Eugene Zelenko3b879392017-10-13 21:17:07 +000034//
James Molloya9290632017-05-25 12:51:11 +000035//===----------------------------------------------------------------------===//
36
Eugene Zelenko3b879392017-10-13 21:17:07 +000037#include "llvm/ADT/ArrayRef.h"
James Molloya9290632017-05-25 12:51:11 +000038#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/DenseMapInfo.h"
40#include "llvm/ADT/DenseSet.h"
41#include "llvm/ADT/Hashing.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000042#include "llvm/ADT/None.h"
James Molloya9290632017-05-25 12:51:11 +000043#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/PostOrderIterator.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000045#include "llvm/ADT/STLExtras.h"
James Molloya9290632017-05-25 12:51:11 +000046#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000047#include "llvm/ADT/SmallVector.h"
James Molloya9290632017-05-25 12:51:11 +000048#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/StringExtras.h"
50#include "llvm/Analysis/GlobalsModRef.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000051#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/CFG.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/InstrTypes.h"
56#include "llvm/IR/Instruction.h"
James Molloya9290632017-05-25 12:51:11 +000057#include "llvm/IR/Instructions.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000058#include "llvm/IR/PassManager.h"
59#include "llvm/IR/Type.h"
60#include "llvm/IR/Use.h"
61#include "llvm/IR/Value.h"
62#include "llvm/Pass.h"
63#include "llvm/Support/Allocator.h"
64#include "llvm/Support/ArrayRecycler.h"
65#include "llvm/Support/AtomicOrdering.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/Compiler.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/raw_ostream.h"
James Molloya9290632017-05-25 12:51:11 +000070#include "llvm/Transforms/Scalar.h"
71#include "llvm/Transforms/Scalar/GVN.h"
72#include "llvm/Transforms/Scalar/GVNExpression.h"
73#include "llvm/Transforms/Utils/BasicBlockUtils.h"
74#include "llvm/Transforms/Utils/Local.h"
Eugene Zelenko3b879392017-10-13 21:17:07 +000075#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <cstdint>
79#include <iterator>
80#include <utility>
81
James Molloya9290632017-05-25 12:51:11 +000082using namespace llvm;
83
84#define DEBUG_TYPE "gvn-sink"
85
86STATISTIC(NumRemoved, "Number of instructions removed");
87
Frederich Munchdceb6122017-06-14 19:16:22 +000088namespace llvm {
89namespace GVNExpression {
90
91LLVM_DUMP_METHOD void Expression::dump() const {
92 print(dbgs());
93 dbgs() << "\n";
94}
95
Eugene Zelenko3b879392017-10-13 21:17:07 +000096} // end namespace GVNExpression
97} // end namespace llvm
Frederich Munchdceb6122017-06-14 19:16:22 +000098
James Molloya9290632017-05-25 12:51:11 +000099namespace {
100
101static bool isMemoryInst(const Instruction *I) {
102 return isa<LoadInst>(I) || isa<StoreInst>(I) ||
103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
105}
106
107/// Iterates through instructions in a set of blocks in reverse order from the
108/// first non-terminator. For example (assume all blocks have size n):
109/// LockstepReverseIterator I([B1, B2, B3]);
110/// *I-- = [B1[n], B2[n], B3[n]];
111/// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
112/// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
113/// ...
114///
115/// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
116/// to
117/// determine which blocks are still going and the order they appear in the
118/// list returned by operator*.
119class LockstepReverseIterator {
120 ArrayRef<BasicBlock *> Blocks;
121 SmallPtrSet<BasicBlock *, 4> ActiveBlocks;
122 SmallVector<Instruction *, 4> Insts;
123 bool Fail;
124
125public:
126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
127 reset();
128 }
129
130 void reset() {
131 Fail = false;
132 ActiveBlocks.clear();
133 for (BasicBlock *BB : Blocks)
134 ActiveBlocks.insert(BB);
135 Insts.clear();
136 for (BasicBlock *BB : Blocks) {
137 if (BB->size() <= 1) {
138 // Block wasn't big enough - only contained a terminator.
139 ActiveBlocks.erase(BB);
140 continue;
141 }
142 Insts.push_back(BB->getTerminator()->getPrevNode());
143 }
144 if (Insts.empty())
145 Fail = true;
146 }
147
148 bool isValid() const { return !Fail; }
149 ArrayRef<Instruction *> operator*() const { return Insts; }
150 SmallPtrSet<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
151
152 void restrictToBlocks(SmallPtrSetImpl<BasicBlock *> &Blocks) {
153 for (auto II = Insts.begin(); II != Insts.end();) {
154 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
155 Blocks.end()) {
156 ActiveBlocks.erase((*II)->getParent());
157 II = Insts.erase(II);
158 } else {
159 ++II;
160 }
161 }
162 }
163
164 void operator--() {
165 if (Fail)
166 return;
167 SmallVector<Instruction *, 4> NewInsts;
168 for (auto *Inst : Insts) {
169 if (Inst == &Inst->getParent()->front())
170 ActiveBlocks.erase(Inst->getParent());
171 else
172 NewInsts.push_back(Inst->getPrevNode());
173 }
174 if (NewInsts.empty()) {
175 Fail = true;
176 return;
177 }
178 Insts = NewInsts;
179 }
180};
181
182//===----------------------------------------------------------------------===//
183
184/// Candidate solution for sinking. There may be different ways to
185/// sink instructions, differing in the number of instructions sunk,
186/// the number of predecessors sunk from and the number of PHIs
187/// required.
188struct SinkingInstructionCandidate {
189 unsigned NumBlocks;
190 unsigned NumInstructions;
191 unsigned NumPHIs;
192 unsigned NumMemoryInsts;
193 int Cost = -1;
194 SmallVector<BasicBlock *, 4> Blocks;
195
196 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
197 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
198 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
199 Cost = (NumInstructions * (NumBlocks - 1)) -
200 (NumExtraPHIs *
201 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
202 - SplitEdgeCost;
203 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000204
Galina Kistanovae1289582017-06-08 17:27:40 +0000205 bool operator>(const SinkingInstructionCandidate &Other) const {
206 return Cost > Other.Cost;
James Molloya9290632017-05-25 12:51:11 +0000207 }
208};
209
James Molloy2a237f12017-05-25 13:11:18 +0000210#ifndef NDEBUG
Eugene Zelenko3b879392017-10-13 21:17:07 +0000211raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
James Molloya9290632017-05-25 12:51:11 +0000212 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
213 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
214 return OS;
215}
James Molloy2a237f12017-05-25 13:11:18 +0000216#endif
James Molloya9290632017-05-25 12:51:11 +0000217
218//===----------------------------------------------------------------------===//
219
220/// Describes a PHI node that may or may not exist. These track the PHIs
221/// that must be created if we sunk a sequence of instructions. It provides
222/// a hash function for efficient equality comparisons.
223class ModelledPHI {
224 SmallVector<Value *, 4> Values;
225 SmallVector<BasicBlock *, 4> Blocks;
226
227public:
Eugene Zelenko3b879392017-10-13 21:17:07 +0000228 ModelledPHI() = default;
229
James Molloya9290632017-05-25 12:51:11 +0000230 ModelledPHI(const PHINode *PN) {
Daniel Berlin064cb682017-09-20 00:07:27 +0000231 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
232 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
James Molloya9290632017-05-25 12:51:11 +0000233 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
Daniel Berlin064cb682017-09-20 00:07:27 +0000234 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
235 std::sort(Ops.begin(), Ops.end());
236 for (auto &P : Ops) {
237 Blocks.push_back(P.first);
238 Values.push_back(P.second);
239 }
James Molloya9290632017-05-25 12:51:11 +0000240 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000241
James Molloya9290632017-05-25 12:51:11 +0000242 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
243 /// without the same ID.
244 /// \note This is specifically for DenseMapInfo - do not use this!
James Molloydc2d64b2017-05-25 13:14:10 +0000245 static ModelledPHI createDummy(size_t ID) {
James Molloya9290632017-05-25 12:51:11 +0000246 ModelledPHI M;
247 M.Values.push_back(reinterpret_cast<Value*>(ID));
248 return M;
249 }
250
251 /// Create a PHI from an array of incoming values and incoming blocks.
252 template <typename VArray, typename BArray>
253 ModelledPHI(const VArray &V, const BArray &B) {
254 std::copy(V.begin(), V.end(), std::back_inserter(Values));
255 std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
256 }
257
258 /// Create a PHI from [I[OpNum] for I in Insts].
259 template <typename BArray>
260 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
261 std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
262 for (auto *I : Insts)
263 Values.push_back(I->getOperand(OpNum));
264 }
265
266 /// Restrict the PHI's contents down to only \c NewBlocks.
267 /// \c NewBlocks must be a subset of \c this->Blocks.
268 void restrictToBlocks(const SmallPtrSetImpl<BasicBlock *> &NewBlocks) {
269 auto BI = Blocks.begin();
270 auto VI = Values.begin();
271 while (BI != Blocks.end()) {
272 assert(VI != Values.end());
273 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
274 NewBlocks.end()) {
275 BI = Blocks.erase(BI);
276 VI = Values.erase(VI);
277 } else {
278 ++BI;
279 ++VI;
280 }
281 }
282 assert(Blocks.size() == NewBlocks.size());
283 }
284
285 ArrayRef<Value *> getValues() const { return Values; }
286
287 bool areAllIncomingValuesSame() const {
Eugene Zelenko3b879392017-10-13 21:17:07 +0000288 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
James Molloya9290632017-05-25 12:51:11 +0000289 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000290
James Molloya9290632017-05-25 12:51:11 +0000291 bool areAllIncomingValuesSameType() const {
Eugene Zelenko3b879392017-10-13 21:17:07 +0000292 return llvm::all_of(
James Molloya9290632017-05-25 12:51:11 +0000293 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
294 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000295
James Molloya9290632017-05-25 12:51:11 +0000296 bool areAnyIncomingValuesConstant() const {
Eugene Zelenko3b879392017-10-13 21:17:07 +0000297 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
James Molloya9290632017-05-25 12:51:11 +0000298 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000299
James Molloya9290632017-05-25 12:51:11 +0000300 // Hash functor
301 unsigned hash() const {
302 return (unsigned)hash_combine_range(Values.begin(), Values.end());
303 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000304
James Molloya9290632017-05-25 12:51:11 +0000305 bool operator==(const ModelledPHI &Other) const {
306 return Values == Other.Values && Blocks == Other.Blocks;
307 }
308};
309
310template <typename ModelledPHI> struct DenseMapInfo {
311 static inline ModelledPHI &getEmptyKey() {
312 static ModelledPHI Dummy = ModelledPHI::createDummy(0);
313 return Dummy;
314 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000315
James Molloya9290632017-05-25 12:51:11 +0000316 static inline ModelledPHI &getTombstoneKey() {
317 static ModelledPHI Dummy = ModelledPHI::createDummy(1);
318 return Dummy;
319 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000320
James Molloya9290632017-05-25 12:51:11 +0000321 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000322
James Molloya9290632017-05-25 12:51:11 +0000323 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
324 return LHS == RHS;
325 }
326};
327
Eugene Zelenko3b879392017-10-13 21:17:07 +0000328using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
James Molloya9290632017-05-25 12:51:11 +0000329
330//===----------------------------------------------------------------------===//
331// ValueTable
332//===----------------------------------------------------------------------===//
333// This is a value number table where the value number is a function of the
334// *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
335// that the program would be equivalent if we replaced A with PHI(A, B).
336//===----------------------------------------------------------------------===//
337
338/// A GVN expression describing how an instruction is used. The operands
339/// field of BasicExpression is used to store uses, not operands.
340///
341/// This class also contains fields for discriminators used when determining
342/// equivalence of instructions with sideeffects.
343class InstructionUseExpr : public GVNExpression::BasicExpression {
344 unsigned MemoryUseOrder = -1;
345 bool Volatile = false;
346
347public:
348 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
349 BumpPtrAllocator &A)
350 : GVNExpression::BasicExpression(I->getNumUses()) {
351 allocateOperands(R, A);
352 setOpcode(I->getOpcode());
353 setType(I->getType());
354
355 for (auto &U : I->uses())
356 op_push_back(U.getUser());
357 std::sort(op_begin(), op_end());
358 }
Eugene Zelenko3b879392017-10-13 21:17:07 +0000359
James Molloya9290632017-05-25 12:51:11 +0000360 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
361 void setVolatile(bool V) { Volatile = V; }
362
Eugene Zelenko3b879392017-10-13 21:17:07 +0000363 hash_code getHashValue() const override {
James Molloya9290632017-05-25 12:51:11 +0000364 return hash_combine(GVNExpression::BasicExpression::getHashValue(),
365 MemoryUseOrder, Volatile);
366 }
367
368 template <typename Function> hash_code getHashValue(Function MapFn) {
369 hash_code H =
370 hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
371 for (auto *V : operands())
372 H = hash_combine(H, MapFn(V));
373 return H;
374 }
375};
376
377class ValueTable {
378 DenseMap<Value *, uint32_t> ValueNumbering;
379 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
380 DenseMap<size_t, uint32_t> HashNumbering;
381 BumpPtrAllocator Allocator;
382 ArrayRecycler<Value *> Recycler;
Eugene Zelenko3b879392017-10-13 21:17:07 +0000383 uint32_t nextValueNumber = 1;
James Molloya9290632017-05-25 12:51:11 +0000384
385 /// Create an expression for I based on its opcode and its uses. If I
386 /// touches or reads memory, the expression is also based upon its memory
387 /// order - see \c getMemoryUseOrder().
388 InstructionUseExpr *createExpr(Instruction *I) {
389 InstructionUseExpr *E =
390 new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
391 if (isMemoryInst(I))
392 E->setMemoryUseOrder(getMemoryUseOrder(I));
393
394 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
395 CmpInst::Predicate Predicate = C->getPredicate();
396 E->setOpcode((C->getOpcode() << 8) | Predicate);
397 }
398 return E;
399 }
400
401 /// Helper to compute the value number for a memory instruction
402 /// (LoadInst/StoreInst), including checking the memory ordering and
403 /// volatility.
404 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
405 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
406 return nullptr;
407 InstructionUseExpr *E = createExpr(I);
408 E->setVolatile(I->isVolatile());
409 return E;
410 }
411
412public:
Eugene Zelenko3b879392017-10-13 21:17:07 +0000413 ValueTable() = default;
414
James Molloya9290632017-05-25 12:51:11 +0000415 /// Returns the value number for the specified value, assigning
416 /// it a new number if it did not have one before.
417 uint32_t lookupOrAdd(Value *V) {
418 auto VI = ValueNumbering.find(V);
419 if (VI != ValueNumbering.end())
420 return VI->second;
421
422 if (!isa<Instruction>(V)) {
423 ValueNumbering[V] = nextValueNumber;
424 return nextValueNumber++;
425 }
426
427 Instruction *I = cast<Instruction>(V);
428 InstructionUseExpr *exp = nullptr;
429 switch (I->getOpcode()) {
430 case Instruction::Load:
431 exp = createMemoryExpr(cast<LoadInst>(I));
432 break;
433 case Instruction::Store:
434 exp = createMemoryExpr(cast<StoreInst>(I));
435 break;
436 case Instruction::Call:
437 case Instruction::Invoke:
438 case Instruction::Add:
439 case Instruction::FAdd:
440 case Instruction::Sub:
441 case Instruction::FSub:
442 case Instruction::Mul:
443 case Instruction::FMul:
444 case Instruction::UDiv:
445 case Instruction::SDiv:
446 case Instruction::FDiv:
447 case Instruction::URem:
448 case Instruction::SRem:
449 case Instruction::FRem:
450 case Instruction::Shl:
451 case Instruction::LShr:
452 case Instruction::AShr:
453 case Instruction::And:
454 case Instruction::Or:
455 case Instruction::Xor:
456 case Instruction::ICmp:
457 case Instruction::FCmp:
458 case Instruction::Trunc:
459 case Instruction::ZExt:
460 case Instruction::SExt:
461 case Instruction::FPToUI:
462 case Instruction::FPToSI:
463 case Instruction::UIToFP:
464 case Instruction::SIToFP:
465 case Instruction::FPTrunc:
466 case Instruction::FPExt:
467 case Instruction::PtrToInt:
468 case Instruction::IntToPtr:
469 case Instruction::BitCast:
470 case Instruction::Select:
471 case Instruction::ExtractElement:
472 case Instruction::InsertElement:
473 case Instruction::ShuffleVector:
474 case Instruction::InsertValue:
475 case Instruction::GetElementPtr:
476 exp = createExpr(I);
477 break;
478 default:
479 break;
480 }
481
482 if (!exp) {
483 ValueNumbering[V] = nextValueNumber;
484 return nextValueNumber++;
485 }
486
487 uint32_t e = ExpressionNumbering[exp];
488 if (!e) {
489 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
490 auto I = HashNumbering.find(H);
491 if (I != HashNumbering.end()) {
492 e = I->second;
493 } else {
494 e = nextValueNumber++;
495 HashNumbering[H] = e;
496 ExpressionNumbering[exp] = e;
497 }
498 }
499 ValueNumbering[V] = e;
500 return e;
501 }
502
503 /// Returns the value number of the specified value. Fails if the value has
504 /// not yet been numbered.
505 uint32_t lookup(Value *V) const {
506 auto VI = ValueNumbering.find(V);
507 assert(VI != ValueNumbering.end() && "Value not numbered?");
508 return VI->second;
509 }
510
511 /// Removes all value numberings and resets the value table.
512 void clear() {
513 ValueNumbering.clear();
514 ExpressionNumbering.clear();
515 HashNumbering.clear();
516 Recycler.clear(Allocator);
517 nextValueNumber = 1;
518 }
519
James Molloya9290632017-05-25 12:51:11 +0000520 /// \c Inst uses or touches memory. Return an ID describing the memory state
521 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
522 /// the exact same memory operations happen after I1 and I2.
523 ///
524 /// This is a very hard problem in general, so we use domain-specific
525 /// knowledge that we only ever check for equivalence between blocks sharing a
526 /// single immediate successor that is common, and when determining if I1 ==
527 /// I2 we will have already determined that next(I1) == next(I2). This
528 /// inductive property allows us to simply return the value number of the next
529 /// instruction that defines memory.
530 uint32_t getMemoryUseOrder(Instruction *Inst) {
531 auto *BB = Inst->getParent();
532 for (auto I = std::next(Inst->getIterator()), E = BB->end();
533 I != E && !I->isTerminator(); ++I) {
534 if (!isMemoryInst(&*I))
535 continue;
536 if (isa<LoadInst>(&*I))
537 continue;
538 CallInst *CI = dyn_cast<CallInst>(&*I);
539 if (CI && CI->onlyReadsMemory())
540 continue;
541 InvokeInst *II = dyn_cast<InvokeInst>(&*I);
542 if (II && II->onlyReadsMemory())
543 continue;
544 return lookupOrAdd(&*I);
545 }
546 return 0;
547 }
548};
549
550//===----------------------------------------------------------------------===//
551
552class GVNSink {
553public:
Eugene Zelenko3b879392017-10-13 21:17:07 +0000554 GVNSink() = default;
555
James Molloya9290632017-05-25 12:51:11 +0000556 bool run(Function &F) {
557 DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() << "\n");
558
559 unsigned NumSunk = 0;
560 ReversePostOrderTraversal<Function*> RPOT(&F);
561 for (auto *N : RPOT)
562 NumSunk += sinkBB(N);
563
564 return NumSunk > 0;
565 }
566
567private:
568 ValueTable VN;
569
570 bool isInstructionBlacklisted(Instruction *I) {
571 // These instructions may change or break semantics if moved.
572 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
573 I->getType()->isTokenTy())
574 return true;
575 return false;
576 }
577
578 /// The main heuristic function. Analyze the set of instructions pointed to by
579 /// LRI and return a candidate solution if these instructions can be sunk, or
580 /// None otherwise.
581 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
582 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
583 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
584
585 /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
586 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
587 SmallPtrSetImpl<Value *> &PHIContents) {
588 for (auto &I : *BB) {
589 auto *PN = dyn_cast<PHINode>(&I);
590 if (!PN)
591 return;
592
593 auto MPHI = ModelledPHI(PN);
594 PHIs.insert(MPHI);
595 for (auto *V : MPHI.getValues())
596 PHIContents.insert(V);
597 }
598 }
599
600 /// The main instruction sinking driver. Set up state and try and sink
601 /// instructions into BBEnd from its predecessors.
602 unsigned sinkBB(BasicBlock *BBEnd);
603
604 /// Perform the actual mechanics of sinking an instruction from Blocks into
605 /// BBEnd, which is their only successor.
606 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
607
608 /// Remove PHIs that all have the same incoming value.
609 void foldPointlessPHINodes(BasicBlock *BB) {
610 auto I = BB->begin();
611 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
Eugene Zelenko3b879392017-10-13 21:17:07 +0000612 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
613 return V == PN->getIncomingValue(0);
614 }))
James Molloya9290632017-05-25 12:51:11 +0000615 continue;
616 if (PN->getIncomingValue(0) != PN)
617 PN->replaceAllUsesWith(PN->getIncomingValue(0));
618 else
619 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
620 PN->eraseFromParent();
621 }
622 }
623};
624
625Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
626 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
627 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
628 auto Insts = *LRI;
629 DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
630 : Insts) {
631 I->dump();
632 } dbgs() << " ]\n";);
633
634 DenseMap<uint32_t, unsigned> VNums;
635 for (auto *I : Insts) {
636 uint32_t N = VN.lookupOrAdd(I);
637 DEBUG(dbgs() << " VN=" << utohexstr(N) << " for" << *I << "\n");
638 if (N == ~0U)
639 return None;
640 VNums[N]++;
641 }
642 unsigned VNumToSink =
643 std::max_element(VNums.begin(), VNums.end(),
644 [](const std::pair<uint32_t, unsigned> &I,
645 const std::pair<uint32_t, unsigned> &J) {
646 return I.second < J.second;
647 })
648 ->first;
649
650 if (VNums[VNumToSink] == 1)
651 // Can't sink anything!
652 return None;
653
654 // Now restrict the number of incoming blocks down to only those with
655 // VNumToSink.
656 auto &ActivePreds = LRI.getActiveBlocks();
657 unsigned InitialActivePredSize = ActivePreds.size();
658 SmallVector<Instruction *, 4> NewInsts;
659 for (auto *I : Insts) {
660 if (VN.lookup(I) != VNumToSink)
661 ActivePreds.erase(I->getParent());
662 else
663 NewInsts.push_back(I);
664 }
665 for (auto *I : NewInsts)
666 if (isInstructionBlacklisted(I))
667 return None;
668
669 // If we've restricted the incoming blocks, restrict all needed PHIs also
670 // to that set.
671 bool RecomputePHIContents = false;
672 if (ActivePreds.size() != InitialActivePredSize) {
673 ModelledPHISet NewNeededPHIs;
674 for (auto P : NeededPHIs) {
675 P.restrictToBlocks(ActivePreds);
676 NewNeededPHIs.insert(P);
677 }
678 NeededPHIs = NewNeededPHIs;
679 LRI.restrictToBlocks(ActivePreds);
680 RecomputePHIContents = true;
681 }
682
683 // The sunk instruction's results.
684 ModelledPHI NewPHI(NewInsts, ActivePreds);
685
686 // Does sinking this instruction render previous PHIs redundant?
687 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
688 NeededPHIs.erase(NewPHI);
689 RecomputePHIContents = true;
690 }
691
692 if (RecomputePHIContents) {
693 // The needed PHIs have changed, so recompute the set of all needed
694 // values.
695 PHIContents.clear();
696 for (auto &PHI : NeededPHIs)
697 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
698 }
699
700 // Is this instruction required by a later PHI that doesn't match this PHI?
701 // if so, we can't sink this instruction.
702 for (auto *V : NewPHI.getValues())
703 if (PHIContents.count(V))
704 // V exists in this PHI, but the whole PHI is different to NewPHI
705 // (else it would have been removed earlier). We cannot continue
706 // because this isn't representable.
707 return None;
708
709 // Which operands need PHIs?
710 // FIXME: If any of these fail, we should partition up the candidates to
711 // try and continue making progress.
712 Instruction *I0 = NewInsts[0];
713 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
714 ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
715 if (PHI.areAllIncomingValuesSame())
716 continue;
717 if (!canReplaceOperandWithVariable(I0, OpNum))
718 // We can 't create a PHI from this instruction!
719 return None;
720 if (NeededPHIs.count(PHI))
721 continue;
722 if (!PHI.areAllIncomingValuesSameType())
723 return None;
724 // Don't create indirect calls! The called value is the final operand.
725 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
726 PHI.areAnyIncomingValuesConstant())
727 return None;
728
729 NeededPHIs.reserve(NeededPHIs.size());
730 NeededPHIs.insert(PHI);
731 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
732 }
733
734 if (isMemoryInst(NewInsts[0]))
735 ++MemoryInstNum;
736
737 SinkingInstructionCandidate Cand;
738 Cand.NumInstructions = ++InstNum;
739 Cand.NumMemoryInsts = MemoryInstNum;
740 Cand.NumBlocks = ActivePreds.size();
741 Cand.NumPHIs = NeededPHIs.size();
742 for (auto *C : ActivePreds)
743 Cand.Blocks.push_back(C);
744
745 return Cand;
746}
747
748unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
749 DEBUG(dbgs() << "GVNSink: running on basic block ";
750 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
751 SmallVector<BasicBlock *, 4> Preds;
752 for (auto *B : predecessors(BBEnd)) {
753 auto *T = B->getTerminator();
754 if (isa<BranchInst>(T) || isa<SwitchInst>(T))
755 Preds.push_back(B);
756 else
757 return 0;
758 }
759 if (Preds.size() < 2)
760 return 0;
761 std::sort(Preds.begin(), Preds.end());
762
763 unsigned NumOrigPreds = Preds.size();
764 // We can only sink instructions through unconditional branches.
765 for (auto I = Preds.begin(); I != Preds.end();) {
766 if ((*I)->getTerminator()->getNumSuccessors() != 1)
767 I = Preds.erase(I);
768 else
769 ++I;
770 }
771
772 LockstepReverseIterator LRI(Preds);
773 SmallVector<SinkingInstructionCandidate, 4> Candidates;
774 unsigned InstNum = 0, MemoryInstNum = 0;
775 ModelledPHISet NeededPHIs;
776 SmallPtrSet<Value *, 4> PHIContents;
777 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
778 unsigned NumOrigPHIs = NeededPHIs.size();
779
780 while (LRI.isValid()) {
781 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
782 NeededPHIs, PHIContents);
783 if (!Cand)
784 break;
785 Cand->calculateCost(NumOrigPHIs, Preds.size());
786 Candidates.emplace_back(*Cand);
787 --LRI;
788 }
789
790 std::stable_sort(
791 Candidates.begin(), Candidates.end(),
792 [](const SinkingInstructionCandidate &A,
Galina Kistanovae1289582017-06-08 17:27:40 +0000793 const SinkingInstructionCandidate &B) { return A > B; });
James Molloya9290632017-05-25 12:51:11 +0000794 DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
795 : Candidates) dbgs()
796 << " " << C << "\n";);
797
798 // Pick the top candidate, as long it is positive!
799 if (Candidates.empty() || Candidates.front().Cost <= 0)
800 return 0;
801 auto C = Candidates.front();
802
803 DEBUG(dbgs() << " -- Sinking: " << C << "\n");
804 BasicBlock *InsertBB = BBEnd;
805 if (C.Blocks.size() < NumOrigPreds) {
806 DEBUG(dbgs() << " -- Splitting edge to "; BBEnd->printAsOperand(dbgs());
807 dbgs() << "\n");
808 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
809 if (!InsertBB) {
810 DEBUG(dbgs() << " -- FAILED to split edge!\n");
811 // Edge couldn't be split.
812 return 0;
813 }
814 }
815
816 for (unsigned I = 0; I < C.NumInstructions; ++I)
817 sinkLastInstruction(C.Blocks, InsertBB);
818
819 return C.NumInstructions;
820}
821
822void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
823 BasicBlock *BBEnd) {
824 SmallVector<Instruction *, 4> Insts;
825 for (BasicBlock *BB : Blocks)
826 Insts.push_back(BB->getTerminator()->getPrevNode());
827 Instruction *I0 = Insts.front();
828
829 SmallVector<Value *, 4> NewOperands;
830 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
Eugene Zelenko3b879392017-10-13 21:17:07 +0000831 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
James Molloya9290632017-05-25 12:51:11 +0000832 return I->getOperand(O) != I0->getOperand(O);
833 });
834 if (!NeedPHI) {
835 NewOperands.push_back(I0->getOperand(O));
836 continue;
837 }
838
839 // Create a new PHI in the successor block and populate it.
840 auto *Op = I0->getOperand(O);
841 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
842 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
843 Op->getName() + ".sink", &BBEnd->front());
844 for (auto *I : Insts)
845 PN->addIncoming(I->getOperand(O), I->getParent());
846 NewOperands.push_back(PN);
847 }
848
849 // Arbitrarily use I0 as the new "common" instruction; remap its operands
850 // and move it to the start of the successor block.
851 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
852 I0->getOperandUse(O).set(NewOperands[O]);
853 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
854
855 // Update metadata and IR flags.
856 for (auto *I : Insts)
857 if (I != I0) {
858 combineMetadataForCSE(I0, I);
859 I0->andIRFlags(I);
860 }
861
862 for (auto *I : Insts)
863 if (I != I0)
864 I->replaceAllUsesWith(I0);
865 foldPointlessPHINodes(BBEnd);
866
867 // Finally nuke all instructions apart from the common instruction.
868 for (auto *I : Insts)
869 if (I != I0)
870 I->eraseFromParent();
871
872 NumRemoved += Insts.size() - 1;
873}
874
875////////////////////////////////////////////////////////////////////////////////
876// Pass machinery / boilerplate
877
878class GVNSinkLegacyPass : public FunctionPass {
879public:
880 static char ID;
881
882 GVNSinkLegacyPass() : FunctionPass(ID) {
883 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
884 }
885
886 bool runOnFunction(Function &F) override {
887 if (skipFunction(F))
888 return false;
889 GVNSink G;
890 return G.run(F);
891 }
892
893 void getAnalysisUsage(AnalysisUsage &AU) const override {
894 AU.addPreserved<GlobalsAAWrapperPass>();
895 }
896};
Eugene Zelenko3b879392017-10-13 21:17:07 +0000897
898} // end anonymous namespace
James Molloya9290632017-05-25 12:51:11 +0000899
900PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
901 GVNSink G;
902 if (!G.run(F))
903 return PreservedAnalyses::all();
904
905 PreservedAnalyses PA;
906 PA.preserve<GlobalsAA>();
907 return PA;
908}
909
910char GVNSinkLegacyPass::ID = 0;
Eugene Zelenko3b879392017-10-13 21:17:07 +0000911
James Molloya9290632017-05-25 12:51:11 +0000912INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
913 "Early GVN sinking of Expressions", false, false)
914INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
915INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
916INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
917 "Early GVN sinking of Expressions", false, false)
918
919FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }