blob: 69b3d0b7d732b164657ebe30abccb012ba472af1 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000056// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000057// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000058// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000059// I.INC = I + Step
60// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000061// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000062// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000068// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000069// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000070// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000071// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000072// guard(G(0) && M);
73// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000074// }
75//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000076// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077//
78// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000081// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000082//
83// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000084// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000085// And the condition above can be simplified to G(Start) && M.
86//
87// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000088// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000089//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000090// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000091// iteration:
92//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000093// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000094// G(I) is true because the backedge is guarded by this condition.
95//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000096// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000097//
98// Note that we can use anything stronger than M, i.e. any condition which
99// implies M.
100//
Anna Thomas7b360432017-12-04 15:11:48 +0000101// When S = 1 (i.e. forward iterating loop), the transformation is supported
102// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000103// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000104// B(X) = latchStart + X <pred> latchLimit,
105// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000106// * The guard condition is of the form
107// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000108//
Anna Thomas7b360432017-12-04 15:11:48 +0000109// For the ult latch comparison case M is:
110// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000112//
Anna Thomas7b360432017-12-04 15:11:48 +0000113// The only way the antecedent can be true and the consequent can be false is
114// if
115// X == guardLimit - 1 - guardStart
116// (and guardLimit is non-zero, but we won't use this latter fact).
117// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118// latchStart + guardLimit - 1 - guardStart u< latchLimit
119// and its negation is
120// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000121//
Anna Thomas7b360432017-12-04 15:11:48 +0000122// In other words, if
123// latchLimit u<= latchStart + guardLimit - 1 - guardStart
124// then:
125// (the ranges below are written in ConstantRange notation, where [A, B) is the
126// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000127//
Anna Thomas7b360432017-12-04 15:11:48 +0000128// forall X . guardStart + X u< guardLimit &&
129// latchStart + X u< latchLimit =>
130// guardStart + X + 1 u< guardLimit
131// == forall X . guardStart + X u< guardLimit &&
132// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133// guardStart + X + 1 u< guardLimit
134// == forall X . (guardStart + X) in [0, guardLimit) &&
135// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136// (guardStart + X + 1) in [0, guardLimit)
137// == forall X . X in [-guardStart, guardLimit - guardStart) &&
138// X in [-latchStart, guardLimit - 1 - guardStart) =>
139// X in [-guardStart - 1, guardLimit - guardStart - 1)
140// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000141//
Anna Thomas7b360432017-12-04 15:11:48 +0000142// So the widened condition is:
143// guardStart u< guardLimit &&
144// latchStart + guardLimit - 1 - guardStart u>= latchLimit
145// Similarly for ule condition the widened condition is:
146// guardStart u< guardLimit &&
147// latchStart + guardLimit - 1 - guardStart u> latchLimit
148// For slt condition the widened condition is:
149// guardStart u< guardLimit &&
150// latchStart + guardLimit - 1 - guardStart s>= latchLimit
151// For sle condition the widened condition is:
152// guardStart u< guardLimit &&
153// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000154//
Anna Thomas7b360432017-12-04 15:11:48 +0000155// When S = -1 (i.e. reverse iterating loop), the transformation is supported
156// when:
157// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000158// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000159// * The guard condition is of the form
160// G(X) = X - 1 u< guardLimit
161//
162// For the ugt latch comparison case M is:
163// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164//
165// The only way the antecedent can be true and the consequent can be false is if
166// X == 1.
167// If X == 1 then the second half of the antecedent is
168// 1 u> latchLimit, and its negation is latchLimit u>= 1.
169//
170// So the widened condition is:
171// guardStart u< guardLimit && latchLimit u>= 1.
172// Similarly for sgt condition the widened condition is:
173// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000174// For uge condition the widened condition is:
175// guardStart u< guardLimit && latchLimit u> 1.
176// For sge condition the widened condition is:
177// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000178//===----------------------------------------------------------------------===//
179
180#include "llvm/Transforms/Scalar/LoopPredication.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000181#include "llvm/Analysis/LoopInfo.h"
182#include "llvm/Analysis/LoopPass.h"
183#include "llvm/Analysis/ScalarEvolution.h"
184#include "llvm/Analysis/ScalarEvolutionExpander.h"
185#include "llvm/Analysis/ScalarEvolutionExpressions.h"
186#include "llvm/IR/Function.h"
187#include "llvm/IR/GlobalValue.h"
188#include "llvm/IR/IntrinsicInst.h"
189#include "llvm/IR/Module.h"
190#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000191#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000192#include "llvm/Support/Debug.h"
193#include "llvm/Transforms/Scalar.h"
194#include "llvm/Transforms/Utils/LoopUtils.h"
195
196#define DEBUG_TYPE "loop-predication"
197
198using namespace llvm;
199
Anna Thomas1d02b132017-11-02 21:21:02 +0000200static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
201 cl::Hidden, cl::init(true));
202
Anna Thomas7b360432017-12-04 15:11:48 +0000203static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
204 cl::Hidden, cl::init(true));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000205namespace {
206class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000207 /// Represents an induction variable check:
208 /// icmp Pred, <induction variable>, <loop invariant limit>
209 struct LoopICmp {
210 ICmpInst::Predicate Pred;
211 const SCEVAddRecExpr *IV;
212 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000213 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
214 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000215 : Pred(Pred), IV(IV), Limit(Limit) {}
216 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000217 void dump() {
218 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
219 << ", Limit = " << *Limit << "\n";
220 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000221 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000222
223 ScalarEvolution *SE;
224
225 Loop *L;
226 const DataLayout *DL;
227 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000228 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000229
Anna Thomas68797212017-11-03 14:25:39 +0000230 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000231 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
232 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
233 ICI->getOperand(1));
234 }
235 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
236 Value *RHS);
237
238 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000239
Anna Thomas68797212017-11-03 14:25:39 +0000240 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000241 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
242 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
243 Instruction *InsertAt);
244
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000245 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
246 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000247 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
248 LoopICmp RangeCheck,
249 SCEVExpander &Expander,
250 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000251 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
252 LoopICmp RangeCheck,
253 SCEVExpander &Expander,
254 IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000255 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
256
Anna Thomas1d02b132017-11-02 21:21:02 +0000257 // When the IV type is wider than the range operand type, we can still do loop
258 // predication, by generating SCEVs for the range and latch that are of the
259 // same type. We achieve this by generating a SCEV truncate expression for the
260 // latch IV. This is done iff truncation of the IV is a safe operation,
261 // without loss of information.
262 // Another way to achieve this is by generating a wider type SCEV for the
263 // range check operand, however, this needs a more involved check that
264 // operands do not overflow. This can lead to loss of information when the
265 // range operand is of the form: add i32 %offset, %iv. We need to prove that
266 // sext(x + y) is same as sext(x) + sext(y).
267 // This function returns true if we can safely represent the IV type in
268 // the RangeCheckType without loss of information.
269 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
270 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
271 // so.
272 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000273
274 // Returns the latch predicate for guard. SGT -> SGE, UGT -> UGE, SGE -> SGT,
275 // UGE -> UGT, etc.
276 ICmpInst::Predicate getLatchPredicateForGuard(ICmpInst::Predicate Pred);
277
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000278public:
279 LoopPredication(ScalarEvolution *SE) : SE(SE){};
280 bool runOnLoop(Loop *L);
281};
282
283class LoopPredicationLegacyPass : public LoopPass {
284public:
285 static char ID;
286 LoopPredicationLegacyPass() : LoopPass(ID) {
287 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
288 }
289
290 void getAnalysisUsage(AnalysisUsage &AU) const override {
291 getLoopAnalysisUsage(AU);
292 }
293
294 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
295 if (skipLoop(L))
296 return false;
297 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
298 LoopPredication LP(SE);
299 return LP.runOnLoop(L);
300 }
301};
302
303char LoopPredicationLegacyPass::ID = 0;
304} // end namespace llvm
305
306INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
307 "Loop predication", false, false)
308INITIALIZE_PASS_DEPENDENCY(LoopPass)
309INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
310 "Loop predication", false, false)
311
312Pass *llvm::createLoopPredicationPass() {
313 return new LoopPredicationLegacyPass();
314}
315
316PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
317 LoopStandardAnalysisResults &AR,
318 LPMUpdater &U) {
319 LoopPredication LP(&AR.SE);
320 if (!LP.runOnLoop(&L))
321 return PreservedAnalyses::all();
322
323 return getLoopPassPreservedAnalyses();
324}
325
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000326Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000327LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
328 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000329 const SCEV *LHSS = SE->getSCEV(LHS);
330 if (isa<SCEVCouldNotCompute>(LHSS))
331 return None;
332 const SCEV *RHSS = SE->getSCEV(RHS);
333 if (isa<SCEVCouldNotCompute>(RHSS))
334 return None;
335
336 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
337 if (SE->isLoopInvariant(LHSS, L)) {
338 std::swap(LHS, RHS);
339 std::swap(LHSS, RHSS);
340 Pred = ICmpInst::getSwappedPredicate(Pred);
341 }
342
343 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
344 if (!AR || AR->getLoop() != L)
345 return None;
346
347 return LoopICmp(Pred, AR, RHSS);
348}
349
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000350Value *LoopPredication::expandCheck(SCEVExpander &Expander,
351 IRBuilder<> &Builder,
352 ICmpInst::Predicate Pred, const SCEV *LHS,
353 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000354 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
355
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000356 Type *Ty = LHS->getType();
357 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000358
359 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
360 return Builder.getTrue();
361
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000362 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
363 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
364 return Builder.CreateICmp(Pred, LHSV, RHSV);
365}
366
Anna Thomas1d02b132017-11-02 21:21:02 +0000367Optional<LoopPredication::LoopICmp>
368LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
369
370 auto *LatchType = LatchCheck.IV->getType();
371 if (RangeCheckType == LatchType)
372 return LatchCheck;
373 // For now, bail out if latch type is narrower than range type.
374 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
375 return None;
376 if (!isSafeToTruncateWideIVType(RangeCheckType))
377 return None;
378 // We can now safely identify the truncated version of the IV and limit for
379 // RangeCheckType.
380 LoopICmp NewLatchCheck;
381 NewLatchCheck.Pred = LatchCheck.Pred;
382 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
383 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
384 if (!NewLatchCheck.IV)
385 return None;
386 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
387 DEBUG(dbgs() << "IV of type: " << *LatchType
388 << "can be represented as range check type:" << *RangeCheckType
389 << "\n");
390 DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
391 DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
392 return NewLatchCheck;
393}
394
Anna Thomas68797212017-11-03 14:25:39 +0000395bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000396 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000397}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000398
Anna Thomas68797212017-11-03 14:25:39 +0000399bool LoopPredication::CanExpand(const SCEV* S) {
400 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
401}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000402
Serguei Katkovebc90312018-02-07 06:53:37 +0000403ICmpInst::Predicate
404LoopPredication::getLatchPredicateForGuard(ICmpInst::Predicate Pred) {
405 switch (LatchCheck.Pred) {
406 case ICmpInst::ICMP_ULT:
407 return ICmpInst::ICMP_ULE;
408 case ICmpInst::ICMP_ULE:
409 return ICmpInst::ICMP_ULT;
410 case ICmpInst::ICMP_SLT:
411 return ICmpInst::ICMP_SLE;
412 case ICmpInst::ICMP_SLE:
413 return ICmpInst::ICMP_SLT;
414 case ICmpInst::ICMP_UGT:
415 return ICmpInst::ICMP_UGE;
416 case ICmpInst::ICMP_UGE:
417 return ICmpInst::ICMP_UGT;
418 case ICmpInst::ICMP_SGT:
419 return ICmpInst::ICMP_SGE;
420 case ICmpInst::ICMP_SGE:
421 return ICmpInst::ICMP_SGT;
422 default:
423 llvm_unreachable("Unsupported loop latch!");
424 }
425}
426
Anna Thomas68797212017-11-03 14:25:39 +0000427Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
428 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
429 SCEVExpander &Expander, IRBuilder<> &Builder) {
430 auto *Ty = RangeCheck.IV->getType();
431 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000432 // guardStart u< guardLimit &&
433 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000434 // where <pred> depends on the latch condition predicate. See the file
435 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000436 // guardLimit - guardStart + latchStart - 1
437 const SCEV *GuardStart = RangeCheck.IV->getStart();
438 const SCEV *GuardLimit = RangeCheck.Limit;
439 const SCEV *LatchStart = LatchCheck.IV->getStart();
440 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000441
442 // guardLimit - guardStart + latchStart - 1
443 const SCEV *RHS =
444 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
445 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000446 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
447 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
448 DEBUG(dbgs() << "Can't expand limit check!\n");
449 return None;
450 }
Serguei Katkovebc90312018-02-07 06:53:37 +0000451 auto LimitCheckPred = getLatchPredicateForGuard(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000452
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000453 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
454 DEBUG(dbgs() << "RHS: " << *RHS << "\n");
455 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
456
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000457 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000458 auto *LimitCheck =
459 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000460 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000461 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000462 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000463}
Anna Thomas7b360432017-12-04 15:11:48 +0000464
465Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
466 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
467 SCEVExpander &Expander, IRBuilder<> &Builder) {
468 auto *Ty = RangeCheck.IV->getType();
469 const SCEV *GuardStart = RangeCheck.IV->getStart();
470 const SCEV *GuardLimit = RangeCheck.Limit;
471 const SCEV *LatchLimit = LatchCheck.Limit;
472 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
473 !CanExpand(LatchLimit)) {
474 DEBUG(dbgs() << "Can't expand limit check!\n");
475 return None;
476 }
477 // The decrement of the latch check IV should be the same as the
478 // rangeCheckIV.
479 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
480 if (RangeCheck.IV != PostDecLatchCheckIV) {
481 DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
482 << *PostDecLatchCheckIV
483 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
484 return None;
485 }
486
487 // Generate the widened condition for CountDownLoop:
488 // guardStart u< guardLimit &&
489 // latchLimit <pred> 1.
490 // See the header comment for reasoning of the checks.
491 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkovc8016e72018-02-08 10:34:08 +0000492 auto LimitCheckPred = getLatchPredicateForGuard(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000493 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
494 GuardStart, GuardLimit, InsertAt);
495 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
496 SE->getOne(Ty), InsertAt);
497 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
498}
499
Anna Thomas68797212017-11-03 14:25:39 +0000500/// If ICI can be widened to a loop invariant condition emits the loop
501/// invariant condition in the loop preheader and return it, otherwise
502/// returns None.
503Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
504 SCEVExpander &Expander,
505 IRBuilder<> &Builder) {
506 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
507 DEBUG(ICI->dump());
508
509 // parseLoopStructure guarantees that the latch condition is:
510 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
511 // We are looking for the range checks of the form:
512 // i u< guardLimit
513 auto RangeCheck = parseLoopICmp(ICI);
514 if (!RangeCheck) {
515 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
516 return None;
517 }
518 DEBUG(dbgs() << "Guard check:\n");
519 DEBUG(RangeCheck->dump());
520 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
521 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
522 << ")!\n");
523 return None;
524 }
525 auto *RangeCheckIV = RangeCheck->IV;
526 if (!RangeCheckIV->isAffine()) {
527 DEBUG(dbgs() << "Range check IV is not affine!\n");
528 return None;
529 }
530 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
531 // We cannot just compare with latch IV step because the latch and range IVs
532 // may have different types.
533 if (!isSupportedStep(Step)) {
534 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
535 return None;
536 }
537 auto *Ty = RangeCheckIV->getType();
538 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
539 if (!CurrLatchCheckOpt) {
540 DEBUG(dbgs() << "Failed to generate a loop latch check "
541 "corresponding to range type: "
542 << *Ty << "\n");
543 return None;
544 }
545
546 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000547 // At this point, the range and latch step should have the same type, but need
548 // not have the same value (we support both 1 and -1 steps).
549 assert(Step->getType() ==
550 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
551 "Range and latch steps should be of same type!");
552 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
553 DEBUG(dbgs() << "Range and latch have different step values!\n");
554 return None;
555 }
Anna Thomas68797212017-11-03 14:25:39 +0000556
Anna Thomas7b360432017-12-04 15:11:48 +0000557 if (Step->isOne())
558 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
559 Expander, Builder);
560 else {
561 assert(Step->isAllOnesValue() && "Step should be -1!");
562 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
563 Expander, Builder);
564 }
Anna Thomas68797212017-11-03 14:25:39 +0000565}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000566
567bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
568 SCEVExpander &Expander) {
569 DEBUG(dbgs() << "Processing guard:\n");
570 DEBUG(Guard->dump());
571
572 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
573
574 // The guard condition is expected to be in form of:
575 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000576 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000577 // widened across loop iterations. Widening these conditions remember the
578 // resulting list of subconditions in Checks vector.
579 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
580 SmallPtrSet<Value *, 4> Visited;
581
582 SmallVector<Value *, 4> Checks;
583
584 unsigned NumWidened = 0;
585 do {
586 Value *Condition = Worklist.pop_back_val();
587 if (!Visited.insert(Condition).second)
588 continue;
589
590 Value *LHS, *RHS;
591 using namespace llvm::PatternMatch;
592 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
593 Worklist.push_back(LHS);
594 Worklist.push_back(RHS);
595 continue;
596 }
597
598 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
599 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
600 Checks.push_back(NewRangeCheck.getValue());
601 NumWidened++;
602 continue;
603 }
604 }
605
606 // Save the condition as is if we can't widen it
607 Checks.push_back(Condition);
608 } while (Worklist.size() != 0);
609
610 if (NumWidened == 0)
611 return false;
612
613 // Emit the new guard condition
614 Builder.SetInsertPoint(Guard);
615 Value *LastCheck = nullptr;
616 for (auto *Check : Checks)
617 if (!LastCheck)
618 LastCheck = Check;
619 else
620 LastCheck = Builder.CreateAnd(LastCheck, Check);
621 Guard->setOperand(0, LastCheck);
622
623 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
624 return true;
625}
626
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000627Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
628 using namespace PatternMatch;
629
630 BasicBlock *LoopLatch = L->getLoopLatch();
631 if (!LoopLatch) {
632 DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
633 return None;
634 }
635
636 ICmpInst::Predicate Pred;
637 Value *LHS, *RHS;
638 BasicBlock *TrueDest, *FalseDest;
639
640 if (!match(LoopLatch->getTerminator(),
641 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
642 FalseDest))) {
643 DEBUG(dbgs() << "Failed to match the latch terminator!\n");
644 return None;
645 }
646 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
647 "One of the latch's destinations must be the header");
648 if (TrueDest != L->getHeader())
649 Pred = ICmpInst::getInversePredicate(Pred);
650
651 auto Result = parseLoopICmp(Pred, LHS, RHS);
652 if (!Result) {
653 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
654 return None;
655 }
656
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000657 // Check affine first, so if it's not we don't try to compute the step
658 // recurrence.
659 if (!Result->IV->isAffine()) {
660 DEBUG(dbgs() << "The induction variable is not affine!\n");
661 return None;
662 }
663
664 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000665 if (!isSupportedStep(Step)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000666 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
667 return None;
668 }
669
Anna Thomas68797212017-11-03 14:25:39 +0000670 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000671 if (Step->isOne()) {
672 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
673 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
674 } else {
675 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000676 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
677 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000678 }
Anna Thomas68797212017-11-03 14:25:39 +0000679 };
680
681 if (IsUnsupportedPredicate(Step, Result->Pred)) {
682 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
683 << ")!\n");
684 return None;
685 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000686 return Result;
687}
688
Anna Thomas1d02b132017-11-02 21:21:02 +0000689// Returns true if its safe to truncate the IV to RangeCheckType.
690bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
691 if (!EnableIVTruncation)
692 return false;
693 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
694 DL->getTypeSizeInBits(RangeCheckType) &&
695 "Expected latch check IV type to be larger than range check operand "
696 "type!");
697 // The start and end values of the IV should be known. This is to guarantee
698 // that truncating the wide type will not lose information.
699 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
700 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
701 if (!Limit || !Start)
702 return false;
703 // This check makes sure that the IV does not change sign during loop
704 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
705 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
706 // IV wraps around, and the truncation of the IV would lose the range of
707 // iterations between 2^32 and 2^64.
708 bool Increasing;
709 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
710 return false;
711 // The active bits should be less than the bits in the RangeCheckType. This
712 // guarantees that truncating the latch check to RangeCheckType is a safe
713 // operation.
714 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
715 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
716 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
717}
718
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000719bool LoopPredication::runOnLoop(Loop *Loop) {
720 L = Loop;
721
722 DEBUG(dbgs() << "Analyzing ");
723 DEBUG(L->dump());
724
725 Module *M = L->getHeader()->getModule();
726
727 // There is nothing to do if the module doesn't use guards
728 auto *GuardDecl =
729 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
730 if (!GuardDecl || GuardDecl->use_empty())
731 return false;
732
733 DL = &M->getDataLayout();
734
735 Preheader = L->getLoopPreheader();
736 if (!Preheader)
737 return false;
738
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000739 auto LatchCheckOpt = parseLoopLatchICmp();
740 if (!LatchCheckOpt)
741 return false;
742 LatchCheck = *LatchCheckOpt;
743
Anna Thomas68797212017-11-03 14:25:39 +0000744 DEBUG(dbgs() << "Latch check:\n");
745 DEBUG(LatchCheck.dump());
746
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000747 // Collect all the guards into a vector and process later, so as not
748 // to invalidate the instruction iterator.
749 SmallVector<IntrinsicInst *, 4> Guards;
750 for (const auto BB : L->blocks())
751 for (auto &I : *BB)
752 if (auto *II = dyn_cast<IntrinsicInst>(&I))
753 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
754 Guards.push_back(II);
755
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000756 if (Guards.empty())
757 return false;
758
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000759 SCEVExpander Expander(*SE, *DL, "loop-predication");
760
761 bool Changed = false;
762 for (auto *Guard : Guards)
763 Changed |= widenGuardConditions(Guard, Expander);
764
765 return Changed;
766}