Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 1 | //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The LoopPredication pass tries to convert loop variant range checks to loop |
| 11 | // invariant by widening checks across loop iterations. For example, it will |
| 12 | // convert |
| 13 | // |
| 14 | // for (i = 0; i < n; i++) { |
| 15 | // guard(i < len); |
| 16 | // ... |
| 17 | // } |
| 18 | // |
| 19 | // to |
| 20 | // |
| 21 | // for (i = 0; i < n; i++) { |
| 22 | // guard(n - 1 < len); |
| 23 | // ... |
| 24 | // } |
| 25 | // |
| 26 | // After this transformation the condition of the guard is loop invariant, so |
| 27 | // loop-unswitch can later unswitch the loop by this condition which basically |
| 28 | // predicates the loop by the widened condition: |
| 29 | // |
| 30 | // if (n - 1 < len) |
| 31 | // for (i = 0; i < n; i++) { |
| 32 | // ... |
| 33 | // } |
| 34 | // else |
| 35 | // deoptimize |
| 36 | // |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 37 | // It's tempting to rely on SCEV here, but it has proven to be problematic. |
| 38 | // Generally the facts SCEV provides about the increment step of add |
| 39 | // recurrences are true if the backedge of the loop is taken, which implicitly |
| 40 | // assumes that the guard doesn't fail. Using these facts to optimize the |
| 41 | // guard results in a circular logic where the guard is optimized under the |
| 42 | // assumption that it never fails. |
| 43 | // |
| 44 | // For example, in the loop below the induction variable will be marked as nuw |
| 45 | // basing on the guard. Basing on nuw the guard predicate will be considered |
| 46 | // monotonic. Given a monotonic condition it's tempting to replace the induction |
| 47 | // variable in the condition with its value on the last iteration. But this |
| 48 | // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. |
| 49 | // |
| 50 | // for (int i = b; i != e; i++) |
| 51 | // guard(i u< len) |
| 52 | // |
| 53 | // One of the ways to reason about this problem is to use an inductive proof |
| 54 | // approach. Given the loop: |
| 55 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 56 | // if (B(0)) { |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 57 | // do { |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 58 | // I = PHI(0, I.INC) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 59 | // I.INC = I + Step |
| 60 | // guard(G(I)); |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 61 | // } while (B(I)); |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 62 | // } |
| 63 | // |
| 64 | // where B(x) and G(x) are predicates that map integers to booleans, we want a |
| 65 | // loop invariant expression M such the following program has the same semantics |
| 66 | // as the above: |
| 67 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 68 | // if (B(0)) { |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 69 | // do { |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 70 | // I = PHI(0, I.INC) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 71 | // I.INC = I + Step |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 72 | // guard(G(0) && M); |
| 73 | // } while (B(I)); |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 74 | // } |
| 75 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 76 | // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 77 | // |
| 78 | // Informal proof that the transformation above is correct: |
| 79 | // |
| 80 | // By the definition of guards we can rewrite the guard condition to: |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 81 | // G(I) && G(0) && M |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 82 | // |
| 83 | // Let's prove that for each iteration of the loop: |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 84 | // G(0) && M => G(I) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 85 | // And the condition above can be simplified to G(Start) && M. |
| 86 | // |
| 87 | // Induction base. |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 88 | // G(0) && M => G(0) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 89 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 90 | // Induction step. Assuming G(0) && M => G(I) on the subsequent |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 91 | // iteration: |
| 92 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 93 | // B(I) is true because it's the backedge condition. |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 94 | // G(I) is true because the backedge is guarded by this condition. |
| 95 | // |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 96 | // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 97 | // |
| 98 | // Note that we can use anything stronger than M, i.e. any condition which |
| 99 | // implies M. |
| 100 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 101 | // When S = 1 (i.e. forward iterating loop), the transformation is supported |
| 102 | // when: |
Artur Pilipenko | b4527e1 | 2017-10-12 20:40:27 +0000 | [diff] [blame] | 103 | // * The loop has a single latch with the condition of the form: |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 104 | // B(X) = latchStart + X <pred> latchLimit, |
| 105 | // where <pred> is u<, u<=, s<, or s<=. |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 106 | // * The guard condition is of the form |
| 107 | // G(X) = guardStart + X u< guardLimit |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 108 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 109 | // For the ult latch comparison case M is: |
| 110 | // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => |
| 111 | // guardStart + X + 1 u< guardLimit |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 112 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 113 | // The only way the antecedent can be true and the consequent can be false is |
| 114 | // if |
| 115 | // X == guardLimit - 1 - guardStart |
| 116 | // (and guardLimit is non-zero, but we won't use this latter fact). |
| 117 | // If X == guardLimit - 1 - guardStart then the second half of the antecedent is |
| 118 | // latchStart + guardLimit - 1 - guardStart u< latchLimit |
| 119 | // and its negation is |
| 120 | // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 121 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 122 | // In other words, if |
| 123 | // latchLimit u<= latchStart + guardLimit - 1 - guardStart |
| 124 | // then: |
| 125 | // (the ranges below are written in ConstantRange notation, where [A, B) is the |
| 126 | // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 127 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 128 | // forall X . guardStart + X u< guardLimit && |
| 129 | // latchStart + X u< latchLimit => |
| 130 | // guardStart + X + 1 u< guardLimit |
| 131 | // == forall X . guardStart + X u< guardLimit && |
| 132 | // latchStart + X u< latchStart + guardLimit - 1 - guardStart => |
| 133 | // guardStart + X + 1 u< guardLimit |
| 134 | // == forall X . (guardStart + X) in [0, guardLimit) && |
| 135 | // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => |
| 136 | // (guardStart + X + 1) in [0, guardLimit) |
| 137 | // == forall X . X in [-guardStart, guardLimit - guardStart) && |
| 138 | // X in [-latchStart, guardLimit - 1 - guardStart) => |
| 139 | // X in [-guardStart - 1, guardLimit - guardStart - 1) |
| 140 | // == true |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 141 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 142 | // So the widened condition is: |
| 143 | // guardStart u< guardLimit && |
| 144 | // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
| 145 | // Similarly for ule condition the widened condition is: |
| 146 | // guardStart u< guardLimit && |
| 147 | // latchStart + guardLimit - 1 - guardStart u> latchLimit |
| 148 | // For slt condition the widened condition is: |
| 149 | // guardStart u< guardLimit && |
| 150 | // latchStart + guardLimit - 1 - guardStart s>= latchLimit |
| 151 | // For sle condition the widened condition is: |
| 152 | // guardStart u< guardLimit && |
| 153 | // latchStart + guardLimit - 1 - guardStart s> latchLimit |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 154 | // |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 155 | // When S = -1 (i.e. reverse iterating loop), the transformation is supported |
| 156 | // when: |
| 157 | // * The loop has a single latch with the condition of the form: |
| 158 | // B(X) = X <pred> latchLimit, where <pred> is u> or s>. |
| 159 | // * The guard condition is of the form |
| 160 | // G(X) = X - 1 u< guardLimit |
| 161 | // |
| 162 | // For the ugt latch comparison case M is: |
| 163 | // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit |
| 164 | // |
| 165 | // The only way the antecedent can be true and the consequent can be false is if |
| 166 | // X == 1. |
| 167 | // If X == 1 then the second half of the antecedent is |
| 168 | // 1 u> latchLimit, and its negation is latchLimit u>= 1. |
| 169 | // |
| 170 | // So the widened condition is: |
| 171 | // guardStart u< guardLimit && latchLimit u>= 1. |
| 172 | // Similarly for sgt condition the widened condition is: |
| 173 | // guardStart u< guardLimit && latchLimit s>= 1. |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 174 | //===----------------------------------------------------------------------===// |
| 175 | |
| 176 | #include "llvm/Transforms/Scalar/LoopPredication.h" |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 177 | #include "llvm/Analysis/LoopInfo.h" |
| 178 | #include "llvm/Analysis/LoopPass.h" |
| 179 | #include "llvm/Analysis/ScalarEvolution.h" |
| 180 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 181 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 182 | #include "llvm/IR/Function.h" |
| 183 | #include "llvm/IR/GlobalValue.h" |
| 184 | #include "llvm/IR/IntrinsicInst.h" |
| 185 | #include "llvm/IR/Module.h" |
| 186 | #include "llvm/IR/PatternMatch.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 187 | #include "llvm/Pass.h" |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 188 | #include "llvm/Support/Debug.h" |
| 189 | #include "llvm/Transforms/Scalar.h" |
| 190 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 191 | |
| 192 | #define DEBUG_TYPE "loop-predication" |
| 193 | |
| 194 | using namespace llvm; |
| 195 | |
Anna Thomas | 1d02b13 | 2017-11-02 21:21:02 +0000 | [diff] [blame] | 196 | static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", |
| 197 | cl::Hidden, cl::init(true)); |
| 198 | |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 199 | static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", |
| 200 | cl::Hidden, cl::init(true)); |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 201 | namespace { |
| 202 | class LoopPredication { |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 203 | /// Represents an induction variable check: |
| 204 | /// icmp Pred, <induction variable>, <loop invariant limit> |
| 205 | struct LoopICmp { |
| 206 | ICmpInst::Predicate Pred; |
| 207 | const SCEVAddRecExpr *IV; |
| 208 | const SCEV *Limit; |
Artur Pilipenko | c488dfa | 2017-05-22 12:01:32 +0000 | [diff] [blame] | 209 | LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, |
| 210 | const SCEV *Limit) |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 211 | : Pred(Pred), IV(IV), Limit(Limit) {} |
| 212 | LoopICmp() {} |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 213 | void dump() { |
| 214 | dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV |
| 215 | << ", Limit = " << *Limit << "\n"; |
| 216 | } |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 217 | }; |
Artur Pilipenko | c488dfa | 2017-05-22 12:01:32 +0000 | [diff] [blame] | 218 | |
| 219 | ScalarEvolution *SE; |
| 220 | |
| 221 | Loop *L; |
| 222 | const DataLayout *DL; |
| 223 | BasicBlock *Preheader; |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 224 | LoopICmp LatchCheck; |
Artur Pilipenko | c488dfa | 2017-05-22 12:01:32 +0000 | [diff] [blame] | 225 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 226 | bool isSupportedStep(const SCEV* Step); |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 227 | Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { |
| 228 | return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), |
| 229 | ICI->getOperand(1)); |
| 230 | } |
| 231 | Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, |
| 232 | Value *RHS); |
| 233 | |
| 234 | Optional<LoopICmp> parseLoopLatchICmp(); |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 235 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 236 | bool CanExpand(const SCEV* S); |
Artur Pilipenko | 6780ba6 | 2017-05-19 14:00:58 +0000 | [diff] [blame] | 237 | Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, |
| 238 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
| 239 | Instruction *InsertAt); |
| 240 | |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 241 | Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, |
| 242 | IRBuilder<> &Builder); |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 243 | Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, |
| 244 | LoopICmp RangeCheck, |
| 245 | SCEVExpander &Expander, |
| 246 | IRBuilder<> &Builder); |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 247 | Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, |
| 248 | LoopICmp RangeCheck, |
| 249 | SCEVExpander &Expander, |
| 250 | IRBuilder<> &Builder); |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 251 | bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); |
| 252 | |
Anna Thomas | 1d02b13 | 2017-11-02 21:21:02 +0000 | [diff] [blame] | 253 | // When the IV type is wider than the range operand type, we can still do loop |
| 254 | // predication, by generating SCEVs for the range and latch that are of the |
| 255 | // same type. We achieve this by generating a SCEV truncate expression for the |
| 256 | // latch IV. This is done iff truncation of the IV is a safe operation, |
| 257 | // without loss of information. |
| 258 | // Another way to achieve this is by generating a wider type SCEV for the |
| 259 | // range check operand, however, this needs a more involved check that |
| 260 | // operands do not overflow. This can lead to loss of information when the |
| 261 | // range operand is of the form: add i32 %offset, %iv. We need to prove that |
| 262 | // sext(x + y) is same as sext(x) + sext(y). |
| 263 | // This function returns true if we can safely represent the IV type in |
| 264 | // the RangeCheckType without loss of information. |
| 265 | bool isSafeToTruncateWideIVType(Type *RangeCheckType); |
| 266 | // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do |
| 267 | // so. |
| 268 | Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 269 | public: |
| 270 | LoopPredication(ScalarEvolution *SE) : SE(SE){}; |
| 271 | bool runOnLoop(Loop *L); |
| 272 | }; |
| 273 | |
| 274 | class LoopPredicationLegacyPass : public LoopPass { |
| 275 | public: |
| 276 | static char ID; |
| 277 | LoopPredicationLegacyPass() : LoopPass(ID) { |
| 278 | initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 279 | } |
| 280 | |
| 281 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 282 | getLoopAnalysisUsage(AU); |
| 283 | } |
| 284 | |
| 285 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| 286 | if (skipLoop(L)) |
| 287 | return false; |
| 288 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 289 | LoopPredication LP(SE); |
| 290 | return LP.runOnLoop(L); |
| 291 | } |
| 292 | }; |
| 293 | |
| 294 | char LoopPredicationLegacyPass::ID = 0; |
| 295 | } // end namespace llvm |
| 296 | |
| 297 | INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", |
| 298 | "Loop predication", false, false) |
| 299 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| 300 | INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", |
| 301 | "Loop predication", false, false) |
| 302 | |
| 303 | Pass *llvm::createLoopPredicationPass() { |
| 304 | return new LoopPredicationLegacyPass(); |
| 305 | } |
| 306 | |
| 307 | PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, |
| 308 | LoopStandardAnalysisResults &AR, |
| 309 | LPMUpdater &U) { |
| 310 | LoopPredication LP(&AR.SE); |
| 311 | if (!LP.runOnLoop(&L)) |
| 312 | return PreservedAnalyses::all(); |
| 313 | |
| 314 | return getLoopPassPreservedAnalyses(); |
| 315 | } |
| 316 | |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 317 | Optional<LoopPredication::LoopICmp> |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 318 | LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, |
| 319 | Value *RHS) { |
Artur Pilipenko | a6c27804 | 2017-05-19 14:02:46 +0000 | [diff] [blame] | 320 | const SCEV *LHSS = SE->getSCEV(LHS); |
| 321 | if (isa<SCEVCouldNotCompute>(LHSS)) |
| 322 | return None; |
| 323 | const SCEV *RHSS = SE->getSCEV(RHS); |
| 324 | if (isa<SCEVCouldNotCompute>(RHSS)) |
| 325 | return None; |
| 326 | |
| 327 | // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV |
| 328 | if (SE->isLoopInvariant(LHSS, L)) { |
| 329 | std::swap(LHS, RHS); |
| 330 | std::swap(LHSS, RHSS); |
| 331 | Pred = ICmpInst::getSwappedPredicate(Pred); |
| 332 | } |
| 333 | |
| 334 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); |
| 335 | if (!AR || AR->getLoop() != L) |
| 336 | return None; |
| 337 | |
| 338 | return LoopICmp(Pred, AR, RHSS); |
| 339 | } |
| 340 | |
Artur Pilipenko | 6780ba6 | 2017-05-19 14:00:58 +0000 | [diff] [blame] | 341 | Value *LoopPredication::expandCheck(SCEVExpander &Expander, |
| 342 | IRBuilder<> &Builder, |
| 343 | ICmpInst::Predicate Pred, const SCEV *LHS, |
| 344 | const SCEV *RHS, Instruction *InsertAt) { |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 345 | // TODO: we can check isLoopEntryGuardedByCond before emitting the check |
| 346 | |
Artur Pilipenko | 6780ba6 | 2017-05-19 14:00:58 +0000 | [diff] [blame] | 347 | Type *Ty = LHS->getType(); |
| 348 | assert(Ty == RHS->getType() && "expandCheck operands have different types?"); |
Artur Pilipenko | ead69ee | 2017-10-12 21:21:17 +0000 | [diff] [blame] | 349 | |
| 350 | if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) |
| 351 | return Builder.getTrue(); |
| 352 | |
Artur Pilipenko | 6780ba6 | 2017-05-19 14:00:58 +0000 | [diff] [blame] | 353 | Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); |
| 354 | Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); |
| 355 | return Builder.CreateICmp(Pred, LHSV, RHSV); |
| 356 | } |
| 357 | |
Anna Thomas | 1d02b13 | 2017-11-02 21:21:02 +0000 | [diff] [blame] | 358 | Optional<LoopPredication::LoopICmp> |
| 359 | LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { |
| 360 | |
| 361 | auto *LatchType = LatchCheck.IV->getType(); |
| 362 | if (RangeCheckType == LatchType) |
| 363 | return LatchCheck; |
| 364 | // For now, bail out if latch type is narrower than range type. |
| 365 | if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) |
| 366 | return None; |
| 367 | if (!isSafeToTruncateWideIVType(RangeCheckType)) |
| 368 | return None; |
| 369 | // We can now safely identify the truncated version of the IV and limit for |
| 370 | // RangeCheckType. |
| 371 | LoopICmp NewLatchCheck; |
| 372 | NewLatchCheck.Pred = LatchCheck.Pred; |
| 373 | NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( |
| 374 | SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); |
| 375 | if (!NewLatchCheck.IV) |
| 376 | return None; |
| 377 | NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); |
| 378 | DEBUG(dbgs() << "IV of type: " << *LatchType |
| 379 | << "can be represented as range check type:" << *RangeCheckType |
| 380 | << "\n"); |
| 381 | DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); |
| 382 | DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); |
| 383 | return NewLatchCheck; |
| 384 | } |
| 385 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 386 | bool LoopPredication::isSupportedStep(const SCEV* Step) { |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 387 | return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 388 | } |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 389 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 390 | bool LoopPredication::CanExpand(const SCEV* S) { |
| 391 | return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); |
| 392 | } |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 393 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 394 | Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( |
| 395 | LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, |
| 396 | SCEVExpander &Expander, IRBuilder<> &Builder) { |
| 397 | auto *Ty = RangeCheck.IV->getType(); |
| 398 | // Generate the widened condition for the forward loop: |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 399 | // guardStart u< guardLimit && |
| 400 | // latchLimit <pred> guardLimit - 1 - guardStart + latchStart |
Artur Pilipenko | b4527e1 | 2017-10-12 20:40:27 +0000 | [diff] [blame] | 401 | // where <pred> depends on the latch condition predicate. See the file |
| 402 | // header comment for the reasoning. |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 403 | // guardLimit - guardStart + latchStart - 1 |
| 404 | const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| 405 | const SCEV *GuardLimit = RangeCheck.Limit; |
| 406 | const SCEV *LatchStart = LatchCheck.IV->getStart(); |
| 407 | const SCEV *LatchLimit = LatchCheck.Limit; |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 408 | |
| 409 | // guardLimit - guardStart + latchStart - 1 |
| 410 | const SCEV *RHS = |
| 411 | SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), |
| 412 | SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 413 | if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || |
| 414 | !CanExpand(LatchLimit) || !CanExpand(RHS)) { |
| 415 | DEBUG(dbgs() << "Can't expand limit check!\n"); |
| 416 | return None; |
| 417 | } |
Artur Pilipenko | b4527e1 | 2017-10-12 20:40:27 +0000 | [diff] [blame] | 418 | ICmpInst::Predicate LimitCheckPred; |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 419 | switch (LatchCheck.Pred) { |
Artur Pilipenko | b4527e1 | 2017-10-12 20:40:27 +0000 | [diff] [blame] | 420 | case ICmpInst::ICMP_ULT: |
| 421 | LimitCheckPred = ICmpInst::ICMP_ULE; |
| 422 | break; |
| 423 | case ICmpInst::ICMP_ULE: |
| 424 | LimitCheckPred = ICmpInst::ICMP_ULT; |
| 425 | break; |
| 426 | case ICmpInst::ICMP_SLT: |
| 427 | LimitCheckPred = ICmpInst::ICMP_SLE; |
| 428 | break; |
| 429 | case ICmpInst::ICMP_SLE: |
| 430 | LimitCheckPred = ICmpInst::ICMP_SLT; |
| 431 | break; |
| 432 | default: |
| 433 | llvm_unreachable("Unsupported loop latch!"); |
| 434 | } |
Artur Pilipenko | aab2866 | 2017-05-19 14:00:04 +0000 | [diff] [blame] | 435 | |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 436 | DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); |
| 437 | DEBUG(dbgs() << "RHS: " << *RHS << "\n"); |
| 438 | DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); |
| 439 | |
Artur Pilipenko | 0860bfc | 2017-02-27 15:44:49 +0000 | [diff] [blame] | 440 | Instruction *InsertAt = Preheader->getTerminator(); |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 441 | auto *LimitCheck = |
| 442 | expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 443 | auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, |
Artur Pilipenko | 8aadc64 | 2017-10-27 14:46:17 +0000 | [diff] [blame] | 444 | GuardStart, GuardLimit, InsertAt); |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 445 | return Builder.CreateAnd(FirstIterationCheck, LimitCheck); |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 446 | } |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 447 | |
| 448 | Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( |
| 449 | LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, |
| 450 | SCEVExpander &Expander, IRBuilder<> &Builder) { |
| 451 | auto *Ty = RangeCheck.IV->getType(); |
| 452 | const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| 453 | const SCEV *GuardLimit = RangeCheck.Limit; |
| 454 | const SCEV *LatchLimit = LatchCheck.Limit; |
| 455 | if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || |
| 456 | !CanExpand(LatchLimit)) { |
| 457 | DEBUG(dbgs() << "Can't expand limit check!\n"); |
| 458 | return None; |
| 459 | } |
| 460 | // The decrement of the latch check IV should be the same as the |
| 461 | // rangeCheckIV. |
| 462 | auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); |
| 463 | if (RangeCheck.IV != PostDecLatchCheckIV) { |
| 464 | DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " |
| 465 | << *PostDecLatchCheckIV |
| 466 | << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); |
| 467 | return None; |
| 468 | } |
| 469 | |
| 470 | // Generate the widened condition for CountDownLoop: |
| 471 | // guardStart u< guardLimit && |
| 472 | // latchLimit <pred> 1. |
| 473 | // See the header comment for reasoning of the checks. |
| 474 | Instruction *InsertAt = Preheader->getTerminator(); |
| 475 | auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred) |
| 476 | ? ICmpInst::ICMP_SGE |
| 477 | : ICmpInst::ICMP_UGE; |
| 478 | auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, |
| 479 | GuardStart, GuardLimit, InsertAt); |
| 480 | auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, |
| 481 | SE->getOne(Ty), InsertAt); |
| 482 | return Builder.CreateAnd(FirstIterationCheck, LimitCheck); |
| 483 | } |
| 484 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 485 | /// If ICI can be widened to a loop invariant condition emits the loop |
| 486 | /// invariant condition in the loop preheader and return it, otherwise |
| 487 | /// returns None. |
| 488 | Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, |
| 489 | SCEVExpander &Expander, |
| 490 | IRBuilder<> &Builder) { |
| 491 | DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); |
| 492 | DEBUG(ICI->dump()); |
| 493 | |
| 494 | // parseLoopStructure guarantees that the latch condition is: |
| 495 | // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. |
| 496 | // We are looking for the range checks of the form: |
| 497 | // i u< guardLimit |
| 498 | auto RangeCheck = parseLoopICmp(ICI); |
| 499 | if (!RangeCheck) { |
| 500 | DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); |
| 501 | return None; |
| 502 | } |
| 503 | DEBUG(dbgs() << "Guard check:\n"); |
| 504 | DEBUG(RangeCheck->dump()); |
| 505 | if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { |
| 506 | DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred |
| 507 | << ")!\n"); |
| 508 | return None; |
| 509 | } |
| 510 | auto *RangeCheckIV = RangeCheck->IV; |
| 511 | if (!RangeCheckIV->isAffine()) { |
| 512 | DEBUG(dbgs() << "Range check IV is not affine!\n"); |
| 513 | return None; |
| 514 | } |
| 515 | auto *Step = RangeCheckIV->getStepRecurrence(*SE); |
| 516 | // We cannot just compare with latch IV step because the latch and range IVs |
| 517 | // may have different types. |
| 518 | if (!isSupportedStep(Step)) { |
| 519 | DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); |
| 520 | return None; |
| 521 | } |
| 522 | auto *Ty = RangeCheckIV->getType(); |
| 523 | auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); |
| 524 | if (!CurrLatchCheckOpt) { |
| 525 | DEBUG(dbgs() << "Failed to generate a loop latch check " |
| 526 | "corresponding to range type: " |
| 527 | << *Ty << "\n"); |
| 528 | return None; |
| 529 | } |
| 530 | |
| 531 | LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 532 | // At this point, the range and latch step should have the same type, but need |
| 533 | // not have the same value (we support both 1 and -1 steps). |
| 534 | assert(Step->getType() == |
| 535 | CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && |
| 536 | "Range and latch steps should be of same type!"); |
| 537 | if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { |
| 538 | DEBUG(dbgs() << "Range and latch have different step values!\n"); |
| 539 | return None; |
| 540 | } |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 541 | |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 542 | if (Step->isOne()) |
| 543 | return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, |
| 544 | Expander, Builder); |
| 545 | else { |
| 546 | assert(Step->isAllOnesValue() && "Step should be -1!"); |
| 547 | return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, |
| 548 | Expander, Builder); |
| 549 | } |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 550 | } |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 551 | |
| 552 | bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, |
| 553 | SCEVExpander &Expander) { |
| 554 | DEBUG(dbgs() << "Processing guard:\n"); |
| 555 | DEBUG(Guard->dump()); |
| 556 | |
| 557 | IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); |
| 558 | |
| 559 | // The guard condition is expected to be in form of: |
| 560 | // cond1 && cond2 && cond3 ... |
| 561 | // Iterate over subconditions looking for for icmp conditions which can be |
| 562 | // widened across loop iterations. Widening these conditions remember the |
| 563 | // resulting list of subconditions in Checks vector. |
| 564 | SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); |
| 565 | SmallPtrSet<Value *, 4> Visited; |
| 566 | |
| 567 | SmallVector<Value *, 4> Checks; |
| 568 | |
| 569 | unsigned NumWidened = 0; |
| 570 | do { |
| 571 | Value *Condition = Worklist.pop_back_val(); |
| 572 | if (!Visited.insert(Condition).second) |
| 573 | continue; |
| 574 | |
| 575 | Value *LHS, *RHS; |
| 576 | using namespace llvm::PatternMatch; |
| 577 | if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { |
| 578 | Worklist.push_back(LHS); |
| 579 | Worklist.push_back(RHS); |
| 580 | continue; |
| 581 | } |
| 582 | |
| 583 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { |
| 584 | if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { |
| 585 | Checks.push_back(NewRangeCheck.getValue()); |
| 586 | NumWidened++; |
| 587 | continue; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | // Save the condition as is if we can't widen it |
| 592 | Checks.push_back(Condition); |
| 593 | } while (Worklist.size() != 0); |
| 594 | |
| 595 | if (NumWidened == 0) |
| 596 | return false; |
| 597 | |
| 598 | // Emit the new guard condition |
| 599 | Builder.SetInsertPoint(Guard); |
| 600 | Value *LastCheck = nullptr; |
| 601 | for (auto *Check : Checks) |
| 602 | if (!LastCheck) |
| 603 | LastCheck = Check; |
| 604 | else |
| 605 | LastCheck = Builder.CreateAnd(LastCheck, Check); |
| 606 | Guard->setOperand(0, LastCheck); |
| 607 | |
| 608 | DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); |
| 609 | return true; |
| 610 | } |
| 611 | |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 612 | Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { |
| 613 | using namespace PatternMatch; |
| 614 | |
| 615 | BasicBlock *LoopLatch = L->getLoopLatch(); |
| 616 | if (!LoopLatch) { |
| 617 | DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); |
| 618 | return None; |
| 619 | } |
| 620 | |
| 621 | ICmpInst::Predicate Pred; |
| 622 | Value *LHS, *RHS; |
| 623 | BasicBlock *TrueDest, *FalseDest; |
| 624 | |
| 625 | if (!match(LoopLatch->getTerminator(), |
| 626 | m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, |
| 627 | FalseDest))) { |
| 628 | DEBUG(dbgs() << "Failed to match the latch terminator!\n"); |
| 629 | return None; |
| 630 | } |
| 631 | assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && |
| 632 | "One of the latch's destinations must be the header"); |
| 633 | if (TrueDest != L->getHeader()) |
| 634 | Pred = ICmpInst::getInversePredicate(Pred); |
| 635 | |
| 636 | auto Result = parseLoopICmp(Pred, LHS, RHS); |
| 637 | if (!Result) { |
| 638 | DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); |
| 639 | return None; |
| 640 | } |
| 641 | |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 642 | // Check affine first, so if it's not we don't try to compute the step |
| 643 | // recurrence. |
| 644 | if (!Result->IV->isAffine()) { |
| 645 | DEBUG(dbgs() << "The induction variable is not affine!\n"); |
| 646 | return None; |
| 647 | } |
| 648 | |
| 649 | auto *Step = Result->IV->getStepRecurrence(*SE); |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 650 | if (!isSupportedStep(Step)) { |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 651 | DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); |
| 652 | return None; |
| 653 | } |
| 654 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 655 | auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { |
Anna Thomas | 7b36043 | 2017-12-04 15:11:48 +0000 | [diff] [blame^] | 656 | if (Step->isOne()) { |
| 657 | return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && |
| 658 | Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; |
| 659 | } else { |
| 660 | assert(Step->isAllOnesValue() && "Step should be -1!"); |
| 661 | return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT; |
| 662 | } |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 663 | }; |
| 664 | |
| 665 | if (IsUnsupportedPredicate(Step, Result->Pred)) { |
| 666 | DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred |
| 667 | << ")!\n"); |
| 668 | return None; |
| 669 | } |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 670 | return Result; |
| 671 | } |
| 672 | |
Anna Thomas | 1d02b13 | 2017-11-02 21:21:02 +0000 | [diff] [blame] | 673 | // Returns true if its safe to truncate the IV to RangeCheckType. |
| 674 | bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { |
| 675 | if (!EnableIVTruncation) |
| 676 | return false; |
| 677 | assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > |
| 678 | DL->getTypeSizeInBits(RangeCheckType) && |
| 679 | "Expected latch check IV type to be larger than range check operand " |
| 680 | "type!"); |
| 681 | // The start and end values of the IV should be known. This is to guarantee |
| 682 | // that truncating the wide type will not lose information. |
| 683 | auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); |
| 684 | auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); |
| 685 | if (!Limit || !Start) |
| 686 | return false; |
| 687 | // This check makes sure that the IV does not change sign during loop |
| 688 | // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, |
| 689 | // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the |
| 690 | // IV wraps around, and the truncation of the IV would lose the range of |
| 691 | // iterations between 2^32 and 2^64. |
| 692 | bool Increasing; |
| 693 | if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) |
| 694 | return false; |
| 695 | // The active bits should be less than the bits in the RangeCheckType. This |
| 696 | // guarantees that truncating the latch check to RangeCheckType is a safe |
| 697 | // operation. |
| 698 | auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); |
| 699 | return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && |
| 700 | Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; |
| 701 | } |
| 702 | |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 703 | bool LoopPredication::runOnLoop(Loop *Loop) { |
| 704 | L = Loop; |
| 705 | |
| 706 | DEBUG(dbgs() << "Analyzing "); |
| 707 | DEBUG(L->dump()); |
| 708 | |
| 709 | Module *M = L->getHeader()->getModule(); |
| 710 | |
| 711 | // There is nothing to do if the module doesn't use guards |
| 712 | auto *GuardDecl = |
| 713 | M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); |
| 714 | if (!GuardDecl || GuardDecl->use_empty()) |
| 715 | return false; |
| 716 | |
| 717 | DL = &M->getDataLayout(); |
| 718 | |
| 719 | Preheader = L->getLoopPreheader(); |
| 720 | if (!Preheader) |
| 721 | return false; |
| 722 | |
Artur Pilipenko | 889dc1e | 2017-09-22 13:13:57 +0000 | [diff] [blame] | 723 | auto LatchCheckOpt = parseLoopLatchICmp(); |
| 724 | if (!LatchCheckOpt) |
| 725 | return false; |
| 726 | LatchCheck = *LatchCheckOpt; |
| 727 | |
Anna Thomas | 6879721 | 2017-11-03 14:25:39 +0000 | [diff] [blame] | 728 | DEBUG(dbgs() << "Latch check:\n"); |
| 729 | DEBUG(LatchCheck.dump()); |
| 730 | |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 731 | // Collect all the guards into a vector and process later, so as not |
| 732 | // to invalidate the instruction iterator. |
| 733 | SmallVector<IntrinsicInst *, 4> Guards; |
| 734 | for (const auto BB : L->blocks()) |
| 735 | for (auto &I : *BB) |
| 736 | if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| 737 | if (II->getIntrinsicID() == Intrinsic::experimental_guard) |
| 738 | Guards.push_back(II); |
| 739 | |
Artur Pilipenko | 46c4e0a | 2017-05-19 13:59:34 +0000 | [diff] [blame] | 740 | if (Guards.empty()) |
| 741 | return false; |
| 742 | |
Artur Pilipenko | 8fb3d57 | 2017-01-25 16:00:44 +0000 | [diff] [blame] | 743 | SCEVExpander Expander(*SE, *DL, "loop-predication"); |
| 744 | |
| 745 | bool Changed = false; |
| 746 | for (auto *Guard : Guards) |
| 747 | Changed |= widenGuardConditions(Guard, Expander); |
| 748 | |
| 749 | return Changed; |
| 750 | } |