blob: 2e4c7b19e476edb160101620613dd87553023f96 [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000056// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000057// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000058// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000059// I.INC = I + Step
60// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000061// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000062// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000068// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000069// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000070// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000071// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000072// guard(G(0) && M);
73// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000074// }
75//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000076// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000077//
78// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000081// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000082//
83// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000084// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000085// And the condition above can be simplified to G(Start) && M.
86//
87// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000088// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000089//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000090// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000091// iteration:
92//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000093// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000094// G(I) is true because the backedge is guarded by this condition.
95//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000096// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000097//
98// Note that we can use anything stronger than M, i.e. any condition which
99// implies M.
100//
Anna Thomas7b360432017-12-04 15:11:48 +0000101// When S = 1 (i.e. forward iterating loop), the transformation is supported
102// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000103// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000104// B(X) = latchStart + X <pred> latchLimit,
105// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000106// * The guard condition is of the form
107// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000108//
Anna Thomas7b360432017-12-04 15:11:48 +0000109// For the ult latch comparison case M is:
110// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000112//
Anna Thomas7b360432017-12-04 15:11:48 +0000113// The only way the antecedent can be true and the consequent can be false is
114// if
115// X == guardLimit - 1 - guardStart
116// (and guardLimit is non-zero, but we won't use this latter fact).
117// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118// latchStart + guardLimit - 1 - guardStart u< latchLimit
119// and its negation is
120// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000121//
Anna Thomas7b360432017-12-04 15:11:48 +0000122// In other words, if
123// latchLimit u<= latchStart + guardLimit - 1 - guardStart
124// then:
125// (the ranges below are written in ConstantRange notation, where [A, B) is the
126// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000127//
Anna Thomas7b360432017-12-04 15:11:48 +0000128// forall X . guardStart + X u< guardLimit &&
129// latchStart + X u< latchLimit =>
130// guardStart + X + 1 u< guardLimit
131// == forall X . guardStart + X u< guardLimit &&
132// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133// guardStart + X + 1 u< guardLimit
134// == forall X . (guardStart + X) in [0, guardLimit) &&
135// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136// (guardStart + X + 1) in [0, guardLimit)
137// == forall X . X in [-guardStart, guardLimit - guardStart) &&
138// X in [-latchStart, guardLimit - 1 - guardStart) =>
139// X in [-guardStart - 1, guardLimit - guardStart - 1)
140// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000141//
Anna Thomas7b360432017-12-04 15:11:48 +0000142// So the widened condition is:
143// guardStart u< guardLimit &&
144// latchStart + guardLimit - 1 - guardStart u>= latchLimit
145// Similarly for ule condition the widened condition is:
146// guardStart u< guardLimit &&
147// latchStart + guardLimit - 1 - guardStart u> latchLimit
148// For slt condition the widened condition is:
149// guardStart u< guardLimit &&
150// latchStart + guardLimit - 1 - guardStart s>= latchLimit
151// For sle condition the widened condition is:
152// guardStart u< guardLimit &&
153// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000154//
Anna Thomas7b360432017-12-04 15:11:48 +0000155// When S = -1 (i.e. reverse iterating loop), the transformation is supported
156// when:
157// * The loop has a single latch with the condition of the form:
158// B(X) = X <pred> latchLimit, where <pred> is u> or s>.
159// * The guard condition is of the form
160// G(X) = X - 1 u< guardLimit
161//
162// For the ugt latch comparison case M is:
163// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164//
165// The only way the antecedent can be true and the consequent can be false is if
166// X == 1.
167// If X == 1 then the second half of the antecedent is
168// 1 u> latchLimit, and its negation is latchLimit u>= 1.
169//
170// So the widened condition is:
171// guardStart u< guardLimit && latchLimit u>= 1.
172// Similarly for sgt condition the widened condition is:
173// guardStart u< guardLimit && latchLimit s>= 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000174//===----------------------------------------------------------------------===//
175
176#include "llvm/Transforms/Scalar/LoopPredication.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000177#include "llvm/Analysis/LoopInfo.h"
178#include "llvm/Analysis/LoopPass.h"
179#include "llvm/Analysis/ScalarEvolution.h"
180#include "llvm/Analysis/ScalarEvolutionExpander.h"
181#include "llvm/Analysis/ScalarEvolutionExpressions.h"
182#include "llvm/IR/Function.h"
183#include "llvm/IR/GlobalValue.h"
184#include "llvm/IR/IntrinsicInst.h"
185#include "llvm/IR/Module.h"
186#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000187#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000188#include "llvm/Support/Debug.h"
189#include "llvm/Transforms/Scalar.h"
190#include "llvm/Transforms/Utils/LoopUtils.h"
191
192#define DEBUG_TYPE "loop-predication"
193
194using namespace llvm;
195
Anna Thomas1d02b132017-11-02 21:21:02 +0000196static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
197 cl::Hidden, cl::init(true));
198
Anna Thomas7b360432017-12-04 15:11:48 +0000199static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
200 cl::Hidden, cl::init(true));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000201namespace {
202class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000203 /// Represents an induction variable check:
204 /// icmp Pred, <induction variable>, <loop invariant limit>
205 struct LoopICmp {
206 ICmpInst::Predicate Pred;
207 const SCEVAddRecExpr *IV;
208 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000209 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
210 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000211 : Pred(Pred), IV(IV), Limit(Limit) {}
212 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000213 void dump() {
214 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
215 << ", Limit = " << *Limit << "\n";
216 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000217 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000218
219 ScalarEvolution *SE;
220
221 Loop *L;
222 const DataLayout *DL;
223 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000224 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000225
Anna Thomas68797212017-11-03 14:25:39 +0000226 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000227 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
228 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
229 ICI->getOperand(1));
230 }
231 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
232 Value *RHS);
233
234 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000235
Anna Thomas68797212017-11-03 14:25:39 +0000236 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000237 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
238 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
239 Instruction *InsertAt);
240
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000241 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
242 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000243 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
244 LoopICmp RangeCheck,
245 SCEVExpander &Expander,
246 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000247 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
248 LoopICmp RangeCheck,
249 SCEVExpander &Expander,
250 IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000251 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
252
Anna Thomas1d02b132017-11-02 21:21:02 +0000253 // When the IV type is wider than the range operand type, we can still do loop
254 // predication, by generating SCEVs for the range and latch that are of the
255 // same type. We achieve this by generating a SCEV truncate expression for the
256 // latch IV. This is done iff truncation of the IV is a safe operation,
257 // without loss of information.
258 // Another way to achieve this is by generating a wider type SCEV for the
259 // range check operand, however, this needs a more involved check that
260 // operands do not overflow. This can lead to loss of information when the
261 // range operand is of the form: add i32 %offset, %iv. We need to prove that
262 // sext(x + y) is same as sext(x) + sext(y).
263 // This function returns true if we can safely represent the IV type in
264 // the RangeCheckType without loss of information.
265 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
266 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
267 // so.
268 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000269public:
270 LoopPredication(ScalarEvolution *SE) : SE(SE){};
271 bool runOnLoop(Loop *L);
272};
273
274class LoopPredicationLegacyPass : public LoopPass {
275public:
276 static char ID;
277 LoopPredicationLegacyPass() : LoopPass(ID) {
278 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
279 }
280
281 void getAnalysisUsage(AnalysisUsage &AU) const override {
282 getLoopAnalysisUsage(AU);
283 }
284
285 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
286 if (skipLoop(L))
287 return false;
288 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
289 LoopPredication LP(SE);
290 return LP.runOnLoop(L);
291 }
292};
293
294char LoopPredicationLegacyPass::ID = 0;
295} // end namespace llvm
296
297INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
298 "Loop predication", false, false)
299INITIALIZE_PASS_DEPENDENCY(LoopPass)
300INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
301 "Loop predication", false, false)
302
303Pass *llvm::createLoopPredicationPass() {
304 return new LoopPredicationLegacyPass();
305}
306
307PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
308 LoopStandardAnalysisResults &AR,
309 LPMUpdater &U) {
310 LoopPredication LP(&AR.SE);
311 if (!LP.runOnLoop(&L))
312 return PreservedAnalyses::all();
313
314 return getLoopPassPreservedAnalyses();
315}
316
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000317Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000318LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
319 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000320 const SCEV *LHSS = SE->getSCEV(LHS);
321 if (isa<SCEVCouldNotCompute>(LHSS))
322 return None;
323 const SCEV *RHSS = SE->getSCEV(RHS);
324 if (isa<SCEVCouldNotCompute>(RHSS))
325 return None;
326
327 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
328 if (SE->isLoopInvariant(LHSS, L)) {
329 std::swap(LHS, RHS);
330 std::swap(LHSS, RHSS);
331 Pred = ICmpInst::getSwappedPredicate(Pred);
332 }
333
334 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
335 if (!AR || AR->getLoop() != L)
336 return None;
337
338 return LoopICmp(Pred, AR, RHSS);
339}
340
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000341Value *LoopPredication::expandCheck(SCEVExpander &Expander,
342 IRBuilder<> &Builder,
343 ICmpInst::Predicate Pred, const SCEV *LHS,
344 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000345 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
346
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000347 Type *Ty = LHS->getType();
348 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000349
350 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
351 return Builder.getTrue();
352
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000353 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
354 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
355 return Builder.CreateICmp(Pred, LHSV, RHSV);
356}
357
Anna Thomas1d02b132017-11-02 21:21:02 +0000358Optional<LoopPredication::LoopICmp>
359LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
360
361 auto *LatchType = LatchCheck.IV->getType();
362 if (RangeCheckType == LatchType)
363 return LatchCheck;
364 // For now, bail out if latch type is narrower than range type.
365 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
366 return None;
367 if (!isSafeToTruncateWideIVType(RangeCheckType))
368 return None;
369 // We can now safely identify the truncated version of the IV and limit for
370 // RangeCheckType.
371 LoopICmp NewLatchCheck;
372 NewLatchCheck.Pred = LatchCheck.Pred;
373 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
374 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
375 if (!NewLatchCheck.IV)
376 return None;
377 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
378 DEBUG(dbgs() << "IV of type: " << *LatchType
379 << "can be represented as range check type:" << *RangeCheckType
380 << "\n");
381 DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
382 DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
383 return NewLatchCheck;
384}
385
Anna Thomas68797212017-11-03 14:25:39 +0000386bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000387 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000388}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000389
Anna Thomas68797212017-11-03 14:25:39 +0000390bool LoopPredication::CanExpand(const SCEV* S) {
391 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
392}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000393
Anna Thomas68797212017-11-03 14:25:39 +0000394Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
395 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
396 SCEVExpander &Expander, IRBuilder<> &Builder) {
397 auto *Ty = RangeCheck.IV->getType();
398 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000399 // guardStart u< guardLimit &&
400 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000401 // where <pred> depends on the latch condition predicate. See the file
402 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000403 // guardLimit - guardStart + latchStart - 1
404 const SCEV *GuardStart = RangeCheck.IV->getStart();
405 const SCEV *GuardLimit = RangeCheck.Limit;
406 const SCEV *LatchStart = LatchCheck.IV->getStart();
407 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000408
409 // guardLimit - guardStart + latchStart - 1
410 const SCEV *RHS =
411 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
412 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000413 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
414 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
415 DEBUG(dbgs() << "Can't expand limit check!\n");
416 return None;
417 }
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000418 ICmpInst::Predicate LimitCheckPred;
Anna Thomas68797212017-11-03 14:25:39 +0000419 switch (LatchCheck.Pred) {
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000420 case ICmpInst::ICMP_ULT:
421 LimitCheckPred = ICmpInst::ICMP_ULE;
422 break;
423 case ICmpInst::ICMP_ULE:
424 LimitCheckPred = ICmpInst::ICMP_ULT;
425 break;
426 case ICmpInst::ICMP_SLT:
427 LimitCheckPred = ICmpInst::ICMP_SLE;
428 break;
429 case ICmpInst::ICMP_SLE:
430 LimitCheckPred = ICmpInst::ICMP_SLT;
431 break;
432 default:
433 llvm_unreachable("Unsupported loop latch!");
434 }
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000435
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000436 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
437 DEBUG(dbgs() << "RHS: " << *RHS << "\n");
438 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
439
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000440 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000441 auto *LimitCheck =
442 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000443 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000444 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000445 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000446}
Anna Thomas7b360432017-12-04 15:11:48 +0000447
448Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
449 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
450 SCEVExpander &Expander, IRBuilder<> &Builder) {
451 auto *Ty = RangeCheck.IV->getType();
452 const SCEV *GuardStart = RangeCheck.IV->getStart();
453 const SCEV *GuardLimit = RangeCheck.Limit;
454 const SCEV *LatchLimit = LatchCheck.Limit;
455 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
456 !CanExpand(LatchLimit)) {
457 DEBUG(dbgs() << "Can't expand limit check!\n");
458 return None;
459 }
460 // The decrement of the latch check IV should be the same as the
461 // rangeCheckIV.
462 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
463 if (RangeCheck.IV != PostDecLatchCheckIV) {
464 DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
465 << *PostDecLatchCheckIV
466 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
467 return None;
468 }
469
470 // Generate the widened condition for CountDownLoop:
471 // guardStart u< guardLimit &&
472 // latchLimit <pred> 1.
473 // See the header comment for reasoning of the checks.
474 Instruction *InsertAt = Preheader->getTerminator();
475 auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred)
476 ? ICmpInst::ICMP_SGE
477 : ICmpInst::ICMP_UGE;
478 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
479 GuardStart, GuardLimit, InsertAt);
480 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
481 SE->getOne(Ty), InsertAt);
482 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
483}
484
Anna Thomas68797212017-11-03 14:25:39 +0000485/// If ICI can be widened to a loop invariant condition emits the loop
486/// invariant condition in the loop preheader and return it, otherwise
487/// returns None.
488Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
489 SCEVExpander &Expander,
490 IRBuilder<> &Builder) {
491 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
492 DEBUG(ICI->dump());
493
494 // parseLoopStructure guarantees that the latch condition is:
495 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
496 // We are looking for the range checks of the form:
497 // i u< guardLimit
498 auto RangeCheck = parseLoopICmp(ICI);
499 if (!RangeCheck) {
500 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
501 return None;
502 }
503 DEBUG(dbgs() << "Guard check:\n");
504 DEBUG(RangeCheck->dump());
505 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
506 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
507 << ")!\n");
508 return None;
509 }
510 auto *RangeCheckIV = RangeCheck->IV;
511 if (!RangeCheckIV->isAffine()) {
512 DEBUG(dbgs() << "Range check IV is not affine!\n");
513 return None;
514 }
515 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
516 // We cannot just compare with latch IV step because the latch and range IVs
517 // may have different types.
518 if (!isSupportedStep(Step)) {
519 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
520 return None;
521 }
522 auto *Ty = RangeCheckIV->getType();
523 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
524 if (!CurrLatchCheckOpt) {
525 DEBUG(dbgs() << "Failed to generate a loop latch check "
526 "corresponding to range type: "
527 << *Ty << "\n");
528 return None;
529 }
530
531 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000532 // At this point, the range and latch step should have the same type, but need
533 // not have the same value (we support both 1 and -1 steps).
534 assert(Step->getType() ==
535 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
536 "Range and latch steps should be of same type!");
537 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
538 DEBUG(dbgs() << "Range and latch have different step values!\n");
539 return None;
540 }
Anna Thomas68797212017-11-03 14:25:39 +0000541
Anna Thomas7b360432017-12-04 15:11:48 +0000542 if (Step->isOne())
543 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
544 Expander, Builder);
545 else {
546 assert(Step->isAllOnesValue() && "Step should be -1!");
547 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
548 Expander, Builder);
549 }
Anna Thomas68797212017-11-03 14:25:39 +0000550}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000551
552bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
553 SCEVExpander &Expander) {
554 DEBUG(dbgs() << "Processing guard:\n");
555 DEBUG(Guard->dump());
556
557 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
558
559 // The guard condition is expected to be in form of:
560 // cond1 && cond2 && cond3 ...
561 // Iterate over subconditions looking for for icmp conditions which can be
562 // widened across loop iterations. Widening these conditions remember the
563 // resulting list of subconditions in Checks vector.
564 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
565 SmallPtrSet<Value *, 4> Visited;
566
567 SmallVector<Value *, 4> Checks;
568
569 unsigned NumWidened = 0;
570 do {
571 Value *Condition = Worklist.pop_back_val();
572 if (!Visited.insert(Condition).second)
573 continue;
574
575 Value *LHS, *RHS;
576 using namespace llvm::PatternMatch;
577 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
578 Worklist.push_back(LHS);
579 Worklist.push_back(RHS);
580 continue;
581 }
582
583 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
584 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
585 Checks.push_back(NewRangeCheck.getValue());
586 NumWidened++;
587 continue;
588 }
589 }
590
591 // Save the condition as is if we can't widen it
592 Checks.push_back(Condition);
593 } while (Worklist.size() != 0);
594
595 if (NumWidened == 0)
596 return false;
597
598 // Emit the new guard condition
599 Builder.SetInsertPoint(Guard);
600 Value *LastCheck = nullptr;
601 for (auto *Check : Checks)
602 if (!LastCheck)
603 LastCheck = Check;
604 else
605 LastCheck = Builder.CreateAnd(LastCheck, Check);
606 Guard->setOperand(0, LastCheck);
607
608 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
609 return true;
610}
611
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000612Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
613 using namespace PatternMatch;
614
615 BasicBlock *LoopLatch = L->getLoopLatch();
616 if (!LoopLatch) {
617 DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
618 return None;
619 }
620
621 ICmpInst::Predicate Pred;
622 Value *LHS, *RHS;
623 BasicBlock *TrueDest, *FalseDest;
624
625 if (!match(LoopLatch->getTerminator(),
626 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
627 FalseDest))) {
628 DEBUG(dbgs() << "Failed to match the latch terminator!\n");
629 return None;
630 }
631 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
632 "One of the latch's destinations must be the header");
633 if (TrueDest != L->getHeader())
634 Pred = ICmpInst::getInversePredicate(Pred);
635
636 auto Result = parseLoopICmp(Pred, LHS, RHS);
637 if (!Result) {
638 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
639 return None;
640 }
641
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000642 // Check affine first, so if it's not we don't try to compute the step
643 // recurrence.
644 if (!Result->IV->isAffine()) {
645 DEBUG(dbgs() << "The induction variable is not affine!\n");
646 return None;
647 }
648
649 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000650 if (!isSupportedStep(Step)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000651 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
652 return None;
653 }
654
Anna Thomas68797212017-11-03 14:25:39 +0000655 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000656 if (Step->isOne()) {
657 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
658 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
659 } else {
660 assert(Step->isAllOnesValue() && "Step should be -1!");
661 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT;
662 }
Anna Thomas68797212017-11-03 14:25:39 +0000663 };
664
665 if (IsUnsupportedPredicate(Step, Result->Pred)) {
666 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
667 << ")!\n");
668 return None;
669 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000670 return Result;
671}
672
Anna Thomas1d02b132017-11-02 21:21:02 +0000673// Returns true if its safe to truncate the IV to RangeCheckType.
674bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
675 if (!EnableIVTruncation)
676 return false;
677 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
678 DL->getTypeSizeInBits(RangeCheckType) &&
679 "Expected latch check IV type to be larger than range check operand "
680 "type!");
681 // The start and end values of the IV should be known. This is to guarantee
682 // that truncating the wide type will not lose information.
683 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
684 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
685 if (!Limit || !Start)
686 return false;
687 // This check makes sure that the IV does not change sign during loop
688 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
689 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
690 // IV wraps around, and the truncation of the IV would lose the range of
691 // iterations between 2^32 and 2^64.
692 bool Increasing;
693 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
694 return false;
695 // The active bits should be less than the bits in the RangeCheckType. This
696 // guarantees that truncating the latch check to RangeCheckType is a safe
697 // operation.
698 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
699 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
700 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
701}
702
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000703bool LoopPredication::runOnLoop(Loop *Loop) {
704 L = Loop;
705
706 DEBUG(dbgs() << "Analyzing ");
707 DEBUG(L->dump());
708
709 Module *M = L->getHeader()->getModule();
710
711 // There is nothing to do if the module doesn't use guards
712 auto *GuardDecl =
713 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
714 if (!GuardDecl || GuardDecl->use_empty())
715 return false;
716
717 DL = &M->getDataLayout();
718
719 Preheader = L->getLoopPreheader();
720 if (!Preheader)
721 return false;
722
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000723 auto LatchCheckOpt = parseLoopLatchICmp();
724 if (!LatchCheckOpt)
725 return false;
726 LatchCheck = *LatchCheckOpt;
727
Anna Thomas68797212017-11-03 14:25:39 +0000728 DEBUG(dbgs() << "Latch check:\n");
729 DEBUG(LatchCheck.dump());
730
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000731 // Collect all the guards into a vector and process later, so as not
732 // to invalidate the instruction iterator.
733 SmallVector<IntrinsicInst *, 4> Guards;
734 for (const auto BB : L->blocks())
735 for (auto &I : *BB)
736 if (auto *II = dyn_cast<IntrinsicInst>(&I))
737 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
738 Guards.push_back(II);
739
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000740 if (Guards.empty())
741 return false;
742
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000743 SCEVExpander Expander(*SE, *DL, "loop-predication");
744
745 bool Changed = false;
746 for (auto *Guard : Guards)
747 Changed |= widenGuardConditions(Guard, Expander);
748
749 return Changed;
750}