blob: 953bff20ad6690ddfad0ca7414e837c47e8dfac6 [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
Eli Friedman0cd23352013-07-10 01:33:19 +000059
60 // Perform the same check for block literals.
61 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62 if (ParmVarDecl *ContextParam
63 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64 return ContextParam->getDeclContext();
65 }
Guy Benyei11169dd2012-12-18 14:30:41 +000066
Eli Friedman95f50122013-07-02 17:52:28 +000067 const DeclContext *DC = D->getDeclContext();
68 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69 return getEffectiveDeclContext(CD);
70
71 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000072}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75 return getEffectiveDeclContext(cast<Decl>(DC));
76}
Eli Friedman95f50122013-07-02 17:52:28 +000077
78static bool isLocalContainerContext(const DeclContext *DC) {
79 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
Eli Friedmaneecc09a2013-07-05 20:27:40 +000082static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000083 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000084 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000085 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000086 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000087 D = cast<Decl>(DC);
88 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000089 }
90 return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95 return ftd->getTemplatedDecl();
96
97 return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102 return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000107class ItaniumMangleContextImpl : public ItaniumMangleContext {
Guy Benyei11169dd2012-12-18 14:30:41 +0000108 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000109 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000111 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000114 explicit ItaniumMangleContextImpl(ASTContext &Context,
115 DiagnosticsEngine &Diags)
116 : ItaniumMangleContext(Context, Diags) {}
Guy Benyei11169dd2012-12-18 14:30:41 +0000117
118 uint64_t getAnonymousStructId(const TagDecl *TD) {
119 std::pair<llvm::DenseMap<const TagDecl *,
120 uint64_t>::iterator, bool> Result =
121 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122 return Result.first->second;
123 }
124
Guy Benyei11169dd2012-12-18 14:30:41 +0000125 /// @name Mangler Entry Points
126 /// @{
127
Rafael Espindola002667c2013-10-16 01:40:34 +0000128 bool shouldMangleCXXName(const NamedDecl *D);
129 void mangleCXXName(const NamedDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000130 void mangleThunk(const CXXMethodDecl *MD,
131 const ThunkInfo &Thunk,
132 raw_ostream &);
133 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134 const ThisAdjustment &ThisAdjustment,
135 raw_ostream &);
136 void mangleReferenceTemporary(const VarDecl *D,
137 raw_ostream &);
138 void mangleCXXVTable(const CXXRecordDecl *RD,
139 raw_ostream &);
140 void mangleCXXVTT(const CXXRecordDecl *RD,
141 raw_ostream &);
142 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
143 const CXXRecordDecl *Type,
144 raw_ostream &);
145 void mangleCXXRTTI(QualType T, raw_ostream &);
146 void mangleCXXRTTIName(QualType T, raw_ostream &);
147 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
148 raw_ostream &);
149 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
150 raw_ostream &);
151
Reid Klecknerd8110b62013-09-10 20:14:30 +0000152 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &);
Reid Kleckner1ece9fc2013-09-10 20:43:12 +0000153 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
Reid Klecknerd8110b62013-09-10 20:14:30 +0000154 void mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000155 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
156 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000157
Guy Benyei11169dd2012-12-18 14:30:41 +0000158 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000159 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000160 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000161 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000162 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000163
164 // Anonymous tags are already numbered.
165 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
166 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
167 return false;
168 }
169
170 // Use the canonical number for externally visible decls.
171 if (ND->isExternallyVisible()) {
172 unsigned discriminator = getASTContext().getManglingNumber(ND);
173 if (discriminator == 1)
174 return false;
175 disc = discriminator - 2;
176 return true;
177 }
178
179 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000180 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000181 if (!discriminator) {
182 const DeclContext *DC = getEffectiveDeclContext(ND);
183 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
184 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000185 if (discriminator == 1)
186 return false;
187 disc = discriminator-2;
188 return true;
189 }
190 /// @}
191};
192
193/// CXXNameMangler - Manage the mangling of a single name.
194class CXXNameMangler {
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000195 ItaniumMangleContextImpl &Context;
Guy Benyei11169dd2012-12-18 14:30:41 +0000196 raw_ostream &Out;
197
198 /// The "structor" is the top-level declaration being mangled, if
199 /// that's not a template specialization; otherwise it's the pattern
200 /// for that specialization.
201 const NamedDecl *Structor;
202 unsigned StructorType;
203
204 /// SeqID - The next subsitution sequence number.
205 unsigned SeqID;
206
207 class FunctionTypeDepthState {
208 unsigned Bits;
209
210 enum { InResultTypeMask = 1 };
211
212 public:
213 FunctionTypeDepthState() : Bits(0) {}
214
215 /// The number of function types we're inside.
216 unsigned getDepth() const {
217 return Bits >> 1;
218 }
219
220 /// True if we're in the return type of the innermost function type.
221 bool isInResultType() const {
222 return Bits & InResultTypeMask;
223 }
224
225 FunctionTypeDepthState push() {
226 FunctionTypeDepthState tmp = *this;
227 Bits = (Bits & ~InResultTypeMask) + 2;
228 return tmp;
229 }
230
231 void enterResultType() {
232 Bits |= InResultTypeMask;
233 }
234
235 void leaveResultType() {
236 Bits &= ~InResultTypeMask;
237 }
238
239 void pop(FunctionTypeDepthState saved) {
240 assert(getDepth() == saved.getDepth() + 1);
241 Bits = saved.Bits;
242 }
243
244 } FunctionTypeDepth;
245
246 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
247
248 ASTContext &getASTContext() const { return Context.getASTContext(); }
249
250public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000251 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000252 const NamedDecl *D = 0)
253 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
254 SeqID(0) {
255 // These can't be mangled without a ctor type or dtor type.
256 assert(!D || (!isa<CXXDestructorDecl>(D) &&
257 !isa<CXXConstructorDecl>(D)));
258 }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000259 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000260 const CXXConstructorDecl *D, CXXCtorType Type)
261 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
262 SeqID(0) { }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000263 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000264 const CXXDestructorDecl *D, CXXDtorType Type)
265 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
266 SeqID(0) { }
267
268#if MANGLE_CHECKER
269 ~CXXNameMangler() {
270 if (Out.str()[0] == '\01')
271 return;
272
273 int status = 0;
274 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
275 assert(status == 0 && "Could not demangle mangled name!");
276 free(result);
277 }
278#endif
279 raw_ostream &getStream() { return Out; }
280
281 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
282 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
283 void mangleNumber(const llvm::APSInt &I);
284 void mangleNumber(int64_t Number);
285 void mangleFloat(const llvm::APFloat &F);
286 void mangleFunctionEncoding(const FunctionDecl *FD);
287 void mangleName(const NamedDecl *ND);
288 void mangleType(QualType T);
289 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
290
291private:
292 bool mangleSubstitution(const NamedDecl *ND);
293 bool mangleSubstitution(QualType T);
294 bool mangleSubstitution(TemplateName Template);
295 bool mangleSubstitution(uintptr_t Ptr);
296
297 void mangleExistingSubstitution(QualType type);
298 void mangleExistingSubstitution(TemplateName name);
299
300 bool mangleStandardSubstitution(const NamedDecl *ND);
301
302 void addSubstitution(const NamedDecl *ND) {
303 ND = cast<NamedDecl>(ND->getCanonicalDecl());
304
305 addSubstitution(reinterpret_cast<uintptr_t>(ND));
306 }
307 void addSubstitution(QualType T);
308 void addSubstitution(TemplateName Template);
309 void addSubstitution(uintptr_t Ptr);
310
311 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
312 NamedDecl *firstQualifierLookup,
313 bool recursive = false);
314 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
315 NamedDecl *firstQualifierLookup,
316 DeclarationName name,
317 unsigned KnownArity = UnknownArity);
318
319 void mangleName(const TemplateDecl *TD,
320 const TemplateArgument *TemplateArgs,
321 unsigned NumTemplateArgs);
322 void mangleUnqualifiedName(const NamedDecl *ND) {
323 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
324 }
325 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
326 unsigned KnownArity);
327 void mangleUnscopedName(const NamedDecl *ND);
328 void mangleUnscopedTemplateName(const TemplateDecl *ND);
329 void mangleUnscopedTemplateName(TemplateName);
330 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000331 void mangleLocalName(const Decl *D);
332 void mangleBlockForPrefix(const BlockDecl *Block);
333 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000334 void mangleLambda(const CXXRecordDecl *Lambda);
335 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
336 bool NoFunction=false);
337 void mangleNestedName(const TemplateDecl *TD,
338 const TemplateArgument *TemplateArgs,
339 unsigned NumTemplateArgs);
340 void manglePrefix(NestedNameSpecifier *qualifier);
341 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
342 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000343 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000344 void mangleTemplatePrefix(TemplateName Template);
345 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
346 void mangleQualifiers(Qualifiers Quals);
347 void mangleRefQualifier(RefQualifierKind RefQualifier);
348
349 void mangleObjCMethodName(const ObjCMethodDecl *MD);
350
351 // Declare manglers for every type class.
352#define ABSTRACT_TYPE(CLASS, PARENT)
353#define NON_CANONICAL_TYPE(CLASS, PARENT)
354#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
355#include "clang/AST/TypeNodes.def"
356
357 void mangleType(const TagType*);
358 void mangleType(TemplateName);
359 void mangleBareFunctionType(const FunctionType *T,
360 bool MangleReturnType);
361 void mangleNeonVectorType(const VectorType *T);
Tim Northover2fe823a2013-08-01 09:23:19 +0000362 void mangleAArch64NeonVectorType(const VectorType *T);
Guy Benyei11169dd2012-12-18 14:30:41 +0000363
364 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
365 void mangleMemberExpr(const Expr *base, bool isArrow,
366 NestedNameSpecifier *qualifier,
367 NamedDecl *firstQualifierLookup,
368 DeclarationName name,
369 unsigned knownArity);
370 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
371 void mangleCXXCtorType(CXXCtorType T);
372 void mangleCXXDtorType(CXXDtorType T);
373
374 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
375 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
376 unsigned NumTemplateArgs);
377 void mangleTemplateArgs(const TemplateArgumentList &AL);
378 void mangleTemplateArg(TemplateArgument A);
379
380 void mangleTemplateParameter(unsigned Index);
381
382 void mangleFunctionParam(const ParmVarDecl *parm);
383};
384
385}
386
Rafael Espindola002667c2013-10-16 01:40:34 +0000387bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000388 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000389 if (FD) {
390 LanguageLinkage L = FD->getLanguageLinkage();
391 // Overloadable functions need mangling.
392 if (FD->hasAttr<OverloadableAttr>())
393 return true;
394
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000395 // "main" is not mangled.
396 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000397 return false;
398
399 // C++ functions and those whose names are not a simple identifier need
400 // mangling.
401 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
402 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000403
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000404 // C functions are not mangled.
405 if (L == CLanguageLinkage)
406 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000407 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000408
409 // Otherwise, no mangling is done outside C++ mode.
410 if (!getASTContext().getLangOpts().CPlusPlus)
411 return false;
412
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000413 const VarDecl *VD = dyn_cast<VarDecl>(D);
414 if (VD) {
415 // C variables are not mangled.
416 if (VD->isExternC())
417 return false;
418
419 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000420 const DeclContext *DC = getEffectiveDeclContext(D);
421 // Check for extern variable declared locally.
422 if (DC->isFunctionOrMethod() && D->hasLinkage())
423 while (!DC->isNamespace() && !DC->isTranslationUnit())
424 DC = getEffectiveParentContext(DC);
Larisse Voufo39a1e502013-08-06 01:03:05 +0000425 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
426 !isa<VarTemplateSpecializationDecl>(D))
Guy Benyei11169dd2012-12-18 14:30:41 +0000427 return false;
428 }
429
Guy Benyei11169dd2012-12-18 14:30:41 +0000430 return true;
431}
432
433void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000434 // <mangled-name> ::= _Z <encoding>
435 // ::= <data name>
436 // ::= <special-name>
437 Out << Prefix;
438 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
439 mangleFunctionEncoding(FD);
440 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
441 mangleName(VD);
David Majnemer0eb8bbd2013-10-23 20:52:43 +0000442 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
443 mangleName(IFD->getAnonField());
Guy Benyei11169dd2012-12-18 14:30:41 +0000444 else
445 mangleName(cast<FieldDecl>(D));
446}
447
448void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
449 // <encoding> ::= <function name> <bare-function-type>
450 mangleName(FD);
451
452 // Don't mangle in the type if this isn't a decl we should typically mangle.
453 if (!Context.shouldMangleDeclName(FD))
454 return;
455
456 // Whether the mangling of a function type includes the return type depends on
457 // the context and the nature of the function. The rules for deciding whether
458 // the return type is included are:
459 //
460 // 1. Template functions (names or types) have return types encoded, with
461 // the exceptions listed below.
462 // 2. Function types not appearing as part of a function name mangling,
463 // e.g. parameters, pointer types, etc., have return type encoded, with the
464 // exceptions listed below.
465 // 3. Non-template function names do not have return types encoded.
466 //
467 // The exceptions mentioned in (1) and (2) above, for which the return type is
468 // never included, are
469 // 1. Constructors.
470 // 2. Destructors.
471 // 3. Conversion operator functions, e.g. operator int.
472 bool MangleReturnType = false;
473 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
474 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
475 isa<CXXConversionDecl>(FD)))
476 MangleReturnType = true;
477
478 // Mangle the type of the primary template.
479 FD = PrimaryTemplate->getTemplatedDecl();
480 }
481
482 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
483 MangleReturnType);
484}
485
486static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
487 while (isa<LinkageSpecDecl>(DC)) {
488 DC = getEffectiveParentContext(DC);
489 }
490
491 return DC;
492}
493
494/// isStd - Return whether a given namespace is the 'std' namespace.
495static bool isStd(const NamespaceDecl *NS) {
496 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
497 ->isTranslationUnit())
498 return false;
499
500 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
501 return II && II->isStr("std");
502}
503
504// isStdNamespace - Return whether a given decl context is a toplevel 'std'
505// namespace.
506static bool isStdNamespace(const DeclContext *DC) {
507 if (!DC->isNamespace())
508 return false;
509
510 return isStd(cast<NamespaceDecl>(DC));
511}
512
513static const TemplateDecl *
514isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
515 // Check if we have a function template.
516 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
517 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
518 TemplateArgs = FD->getTemplateSpecializationArgs();
519 return TD;
520 }
521 }
522
523 // Check if we have a class template.
524 if (const ClassTemplateSpecializationDecl *Spec =
525 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
526 TemplateArgs = &Spec->getTemplateArgs();
527 return Spec->getSpecializedTemplate();
528 }
529
Larisse Voufo39a1e502013-08-06 01:03:05 +0000530 // Check if we have a variable template.
531 if (const VarTemplateSpecializationDecl *Spec =
532 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
533 TemplateArgs = &Spec->getTemplateArgs();
534 return Spec->getSpecializedTemplate();
535 }
536
Guy Benyei11169dd2012-12-18 14:30:41 +0000537 return 0;
538}
539
540static bool isLambda(const NamedDecl *ND) {
541 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
542 if (!Record)
543 return false;
544
545 return Record->isLambda();
546}
547
548void CXXNameMangler::mangleName(const NamedDecl *ND) {
549 // <name> ::= <nested-name>
550 // ::= <unscoped-name>
551 // ::= <unscoped-template-name> <template-args>
552 // ::= <local-name>
553 //
554 const DeclContext *DC = getEffectiveDeclContext(ND);
555
556 // If this is an extern variable declared locally, the relevant DeclContext
557 // is that of the containing namespace, or the translation unit.
558 // FIXME: This is a hack; extern variables declared locally should have
559 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000560 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000561 while (!DC->isNamespace() && !DC->isTranslationUnit())
562 DC = getEffectiveParentContext(DC);
563 else if (GetLocalClassDecl(ND)) {
564 mangleLocalName(ND);
565 return;
566 }
567
568 DC = IgnoreLinkageSpecDecls(DC);
569
570 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
571 // Check if we have a template.
572 const TemplateArgumentList *TemplateArgs = 0;
573 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
574 mangleUnscopedTemplateName(TD);
575 mangleTemplateArgs(*TemplateArgs);
576 return;
577 }
578
579 mangleUnscopedName(ND);
580 return;
581 }
582
Eli Friedman95f50122013-07-02 17:52:28 +0000583 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000584 mangleLocalName(ND);
585 return;
586 }
587
588 mangleNestedName(ND, DC);
589}
590void CXXNameMangler::mangleName(const TemplateDecl *TD,
591 const TemplateArgument *TemplateArgs,
592 unsigned NumTemplateArgs) {
593 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
594
595 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
596 mangleUnscopedTemplateName(TD);
597 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
598 } else {
599 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600 }
601}
602
603void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604 // <unscoped-name> ::= <unqualified-name>
605 // ::= St <unqualified-name> # ::std::
606
607 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608 Out << "St";
609
610 mangleUnqualifiedName(ND);
611}
612
613void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614 // <unscoped-template-name> ::= <unscoped-name>
615 // ::= <substitution>
616 if (mangleSubstitution(ND))
617 return;
618
619 // <template-template-param> ::= <template-param>
620 if (const TemplateTemplateParmDecl *TTP
621 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622 mangleTemplateParameter(TTP->getIndex());
623 return;
624 }
625
626 mangleUnscopedName(ND->getTemplatedDecl());
627 addSubstitution(ND);
628}
629
630void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631 // <unscoped-template-name> ::= <unscoped-name>
632 // ::= <substitution>
633 if (TemplateDecl *TD = Template.getAsTemplateDecl())
634 return mangleUnscopedTemplateName(TD);
635
636 if (mangleSubstitution(Template))
637 return;
638
639 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640 assert(Dependent && "Not a dependent template name?");
641 if (const IdentifierInfo *Id = Dependent->getIdentifier())
642 mangleSourceName(Id);
643 else
644 mangleOperatorName(Dependent->getOperator(), UnknownArity);
645
646 addSubstitution(Template);
647}
648
649void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650 // ABI:
651 // Floating-point literals are encoded using a fixed-length
652 // lowercase hexadecimal string corresponding to the internal
653 // representation (IEEE on Itanium), high-order bytes first,
654 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655 // on Itanium.
656 // The 'without leading zeroes' thing seems to be an editorial
657 // mistake; see the discussion on cxx-abi-dev beginning on
658 // 2012-01-16.
659
660 // Our requirements here are just barely weird enough to justify
661 // using a custom algorithm instead of post-processing APInt::toString().
662
663 llvm::APInt valueBits = f.bitcastToAPInt();
664 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665 assert(numCharacters != 0);
666
667 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000668 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000669 buffer.set_size(numCharacters);
670
671 // Fill the buffer left-to-right.
672 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673 // The bit-index of the next hex digit.
674 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675
676 // Project out 4 bits starting at 'digitIndex'.
677 llvm::integerPart hexDigit
678 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680 hexDigit &= 0xF;
681
682 // Map that over to a lowercase hex digit.
683 static const char charForHex[16] = {
684 '0', '1', '2', '3', '4', '5', '6', '7',
685 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686 };
687 buffer[stringIndex] = charForHex[hexDigit];
688 }
689
690 Out.write(buffer.data(), numCharacters);
691}
692
693void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694 if (Value.isSigned() && Value.isNegative()) {
695 Out << 'n';
696 Value.abs().print(Out, /*signed*/ false);
697 } else {
698 Value.print(Out, /*signed*/ false);
699 }
700}
701
702void CXXNameMangler::mangleNumber(int64_t Number) {
703 // <number> ::= [n] <non-negative decimal integer>
704 if (Number < 0) {
705 Out << 'n';
706 Number = -Number;
707 }
708
709 Out << Number;
710}
711
712void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
713 // <call-offset> ::= h <nv-offset> _
714 // ::= v <v-offset> _
715 // <nv-offset> ::= <offset number> # non-virtual base override
716 // <v-offset> ::= <offset number> _ <virtual offset number>
717 // # virtual base override, with vcall offset
718 if (!Virtual) {
719 Out << 'h';
720 mangleNumber(NonVirtual);
721 Out << '_';
722 return;
723 }
724
725 Out << 'v';
726 mangleNumber(NonVirtual);
727 Out << '_';
728 mangleNumber(Virtual);
729 Out << '_';
730}
731
732void CXXNameMangler::manglePrefix(QualType type) {
733 if (const TemplateSpecializationType *TST =
734 type->getAs<TemplateSpecializationType>()) {
735 if (!mangleSubstitution(QualType(TST, 0))) {
736 mangleTemplatePrefix(TST->getTemplateName());
737
738 // FIXME: GCC does not appear to mangle the template arguments when
739 // the template in question is a dependent template name. Should we
740 // emulate that badness?
741 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
742 addSubstitution(QualType(TST, 0));
743 }
744 } else if (const DependentTemplateSpecializationType *DTST
745 = type->getAs<DependentTemplateSpecializationType>()) {
746 TemplateName Template
747 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
748 DTST->getIdentifier());
749 mangleTemplatePrefix(Template);
750
751 // FIXME: GCC does not appear to mangle the template arguments when
752 // the template in question is a dependent template name. Should we
753 // emulate that badness?
754 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
755 } else {
756 // We use the QualType mangle type variant here because it handles
757 // substitutions.
758 mangleType(type);
759 }
760}
761
762/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
763///
764/// \param firstQualifierLookup - the entity found by unqualified lookup
765/// for the first name in the qualifier, if this is for a member expression
766/// \param recursive - true if this is being called recursively,
767/// i.e. if there is more prefix "to the right".
768void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
769 NamedDecl *firstQualifierLookup,
770 bool recursive) {
771
772 // x, ::x
773 // <unresolved-name> ::= [gs] <base-unresolved-name>
774
775 // T::x / decltype(p)::x
776 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
777
778 // T::N::x /decltype(p)::N::x
779 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
780 // <base-unresolved-name>
781
782 // A::x, N::y, A<T>::z; "gs" means leading "::"
783 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
784 // <base-unresolved-name>
785
786 switch (qualifier->getKind()) {
787 case NestedNameSpecifier::Global:
788 Out << "gs";
789
790 // We want an 'sr' unless this is the entire NNS.
791 if (recursive)
792 Out << "sr";
793
794 // We never want an 'E' here.
795 return;
796
797 case NestedNameSpecifier::Namespace:
798 if (qualifier->getPrefix())
799 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
800 /*recursive*/ true);
801 else
802 Out << "sr";
803 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
804 break;
805 case NestedNameSpecifier::NamespaceAlias:
806 if (qualifier->getPrefix())
807 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
808 /*recursive*/ true);
809 else
810 Out << "sr";
811 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
812 break;
813
814 case NestedNameSpecifier::TypeSpec:
815 case NestedNameSpecifier::TypeSpecWithTemplate: {
816 const Type *type = qualifier->getAsType();
817
818 // We only want to use an unresolved-type encoding if this is one of:
819 // - a decltype
820 // - a template type parameter
821 // - a template template parameter with arguments
822 // In all of these cases, we should have no prefix.
823 if (qualifier->getPrefix()) {
824 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825 /*recursive*/ true);
826 } else {
827 // Otherwise, all the cases want this.
828 Out << "sr";
829 }
830
831 // Only certain other types are valid as prefixes; enumerate them.
832 switch (type->getTypeClass()) {
833 case Type::Builtin:
834 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000835 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000836 case Type::Pointer:
837 case Type::BlockPointer:
838 case Type::LValueReference:
839 case Type::RValueReference:
840 case Type::MemberPointer:
841 case Type::ConstantArray:
842 case Type::IncompleteArray:
843 case Type::VariableArray:
844 case Type::DependentSizedArray:
845 case Type::DependentSizedExtVector:
846 case Type::Vector:
847 case Type::ExtVector:
848 case Type::FunctionProto:
849 case Type::FunctionNoProto:
850 case Type::Enum:
851 case Type::Paren:
852 case Type::Elaborated:
853 case Type::Attributed:
854 case Type::Auto:
855 case Type::PackExpansion:
856 case Type::ObjCObject:
857 case Type::ObjCInterface:
858 case Type::ObjCObjectPointer:
859 case Type::Atomic:
860 llvm_unreachable("type is illegal as a nested name specifier");
861
862 case Type::SubstTemplateTypeParmPack:
863 // FIXME: not clear how to mangle this!
864 // template <class T...> class A {
865 // template <class U...> void foo(decltype(T::foo(U())) x...);
866 // };
867 Out << "_SUBSTPACK_";
868 break;
869
870 // <unresolved-type> ::= <template-param>
871 // ::= <decltype>
872 // ::= <template-template-param> <template-args>
873 // (this last is not official yet)
874 case Type::TypeOfExpr:
875 case Type::TypeOf:
876 case Type::Decltype:
877 case Type::TemplateTypeParm:
878 case Type::UnaryTransform:
879 case Type::SubstTemplateTypeParm:
880 unresolvedType:
881 assert(!qualifier->getPrefix());
882
883 // We only get here recursively if we're followed by identifiers.
884 if (recursive) Out << 'N';
885
886 // This seems to do everything we want. It's not really
887 // sanctioned for a substituted template parameter, though.
888 mangleType(QualType(type, 0));
889
890 // We never want to print 'E' directly after an unresolved-type,
891 // so we return directly.
892 return;
893
894 case Type::Typedef:
895 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
896 break;
897
898 case Type::UnresolvedUsing:
899 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
900 ->getIdentifier());
901 break;
902
903 case Type::Record:
904 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
905 break;
906
907 case Type::TemplateSpecialization: {
908 const TemplateSpecializationType *tst
909 = cast<TemplateSpecializationType>(type);
910 TemplateName name = tst->getTemplateName();
911 switch (name.getKind()) {
912 case TemplateName::Template:
913 case TemplateName::QualifiedTemplate: {
914 TemplateDecl *temp = name.getAsTemplateDecl();
915
916 // If the base is a template template parameter, this is an
917 // unresolved type.
918 assert(temp && "no template for template specialization type");
919 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
920
921 mangleSourceName(temp->getIdentifier());
922 break;
923 }
924
925 case TemplateName::OverloadedTemplate:
926 case TemplateName::DependentTemplate:
927 llvm_unreachable("invalid base for a template specialization type");
928
929 case TemplateName::SubstTemplateTemplateParm: {
930 SubstTemplateTemplateParmStorage *subst
931 = name.getAsSubstTemplateTemplateParm();
932 mangleExistingSubstitution(subst->getReplacement());
933 break;
934 }
935
936 case TemplateName::SubstTemplateTemplateParmPack: {
937 // FIXME: not clear how to mangle this!
938 // template <template <class U> class T...> class A {
939 // template <class U...> void foo(decltype(T<U>::foo) x...);
940 // };
941 Out << "_SUBSTPACK_";
942 break;
943 }
944 }
945
946 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
947 break;
948 }
949
950 case Type::InjectedClassName:
951 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
952 ->getIdentifier());
953 break;
954
955 case Type::DependentName:
956 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
957 break;
958
959 case Type::DependentTemplateSpecialization: {
960 const DependentTemplateSpecializationType *tst
961 = cast<DependentTemplateSpecializationType>(type);
962 mangleSourceName(tst->getIdentifier());
963 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
964 break;
965 }
966 }
967 break;
968 }
969
970 case NestedNameSpecifier::Identifier:
971 // Member expressions can have these without prefixes.
972 if (qualifier->getPrefix()) {
973 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
974 /*recursive*/ true);
975 } else if (firstQualifierLookup) {
976
977 // Try to make a proper qualifier out of the lookup result, and
978 // then just recurse on that.
979 NestedNameSpecifier *newQualifier;
980 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
981 QualType type = getASTContext().getTypeDeclType(typeDecl);
982
983 // Pretend we had a different nested name specifier.
984 newQualifier = NestedNameSpecifier::Create(getASTContext(),
985 /*prefix*/ 0,
986 /*template*/ false,
987 type.getTypePtr());
988 } else if (NamespaceDecl *nspace =
989 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
990 newQualifier = NestedNameSpecifier::Create(getASTContext(),
991 /*prefix*/ 0,
992 nspace);
993 } else if (NamespaceAliasDecl *alias =
994 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
995 newQualifier = NestedNameSpecifier::Create(getASTContext(),
996 /*prefix*/ 0,
997 alias);
998 } else {
999 // No sensible mangling to do here.
1000 newQualifier = 0;
1001 }
1002
1003 if (newQualifier)
1004 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1005
1006 } else {
1007 Out << "sr";
1008 }
1009
1010 mangleSourceName(qualifier->getAsIdentifier());
1011 break;
1012 }
1013
1014 // If this was the innermost part of the NNS, and we fell out to
1015 // here, append an 'E'.
1016 if (!recursive)
1017 Out << 'E';
1018}
1019
1020/// Mangle an unresolved-name, which is generally used for names which
1021/// weren't resolved to specific entities.
1022void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1023 NamedDecl *firstQualifierLookup,
1024 DeclarationName name,
1025 unsigned knownArity) {
1026 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1027 mangleUnqualifiedName(0, name, knownArity);
1028}
1029
1030static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1031 assert(RD->isAnonymousStructOrUnion() &&
1032 "Expected anonymous struct or union!");
1033
1034 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1035 I != E; ++I) {
1036 if (I->getIdentifier())
1037 return *I;
1038
1039 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1040 if (const FieldDecl *NamedDataMember =
1041 FindFirstNamedDataMember(RT->getDecl()))
1042 return NamedDataMember;
1043 }
1044
1045 // We didn't find a named data member.
1046 return 0;
1047}
1048
1049void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1050 DeclarationName Name,
1051 unsigned KnownArity) {
1052 // <unqualified-name> ::= <operator-name>
1053 // ::= <ctor-dtor-name>
1054 // ::= <source-name>
1055 switch (Name.getNameKind()) {
1056 case DeclarationName::Identifier: {
1057 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1058 // We must avoid conflicts between internally- and externally-
1059 // linked variable and function declaration names in the same TU:
1060 // void test() { extern void foo(); }
1061 // static void foo();
1062 // This naming convention is the same as that followed by GCC,
1063 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001064 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001065 getEffectiveDeclContext(ND)->isFileContext())
1066 Out << 'L';
1067
1068 mangleSourceName(II);
1069 break;
1070 }
1071
1072 // Otherwise, an anonymous entity. We must have a declaration.
1073 assert(ND && "mangling empty name without declaration");
1074
1075 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1076 if (NS->isAnonymousNamespace()) {
1077 // This is how gcc mangles these names.
1078 Out << "12_GLOBAL__N_1";
1079 break;
1080 }
1081 }
1082
1083 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1084 // We must have an anonymous union or struct declaration.
1085 const RecordDecl *RD =
1086 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1087
1088 // Itanium C++ ABI 5.1.2:
1089 //
1090 // For the purposes of mangling, the name of an anonymous union is
1091 // considered to be the name of the first named data member found by a
1092 // pre-order, depth-first, declaration-order walk of the data members of
1093 // the anonymous union. If there is no such data member (i.e., if all of
1094 // the data members in the union are unnamed), then there is no way for
1095 // a program to refer to the anonymous union, and there is therefore no
1096 // need to mangle its name.
1097 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1098
1099 // It's actually possible for various reasons for us to get here
1100 // with an empty anonymous struct / union. Fortunately, it
1101 // doesn't really matter what name we generate.
1102 if (!FD) break;
1103 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1104
1105 mangleSourceName(FD->getIdentifier());
1106 break;
1107 }
John McCall924046f2013-04-10 06:08:21 +00001108
1109 // Class extensions have no name as a category, and it's possible
1110 // for them to be the semantic parent of certain declarations
1111 // (primarily, tag decls defined within declarations). Such
1112 // declarations will always have internal linkage, so the name
1113 // doesn't really matter, but we shouldn't crash on them. For
1114 // safety, just handle all ObjC containers here.
1115 if (isa<ObjCContainerDecl>(ND))
1116 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001117
1118 // We must have an anonymous struct.
1119 const TagDecl *TD = cast<TagDecl>(ND);
1120 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1121 assert(TD->getDeclContext() == D->getDeclContext() &&
1122 "Typedef should not be in another decl context!");
1123 assert(D->getDeclName().getAsIdentifierInfo() &&
1124 "Typedef was not named!");
1125 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1126 break;
1127 }
1128
1129 // <unnamed-type-name> ::= <closure-type-name>
1130 //
1131 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1132 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1133 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1134 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1135 mangleLambda(Record);
1136 break;
1137 }
1138 }
1139
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001140 if (TD->isExternallyVisible()) {
1141 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001142 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001143 if (UnnamedMangle > 1)
1144 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001145 Out << '_';
1146 break;
1147 }
1148
1149 // Get a unique id for the anonymous struct.
1150 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1151
1152 // Mangle it as a source name in the form
1153 // [n] $_<id>
1154 // where n is the length of the string.
1155 SmallString<8> Str;
1156 Str += "$_";
1157 Str += llvm::utostr(AnonStructId);
1158
1159 Out << Str.size();
1160 Out << Str.str();
1161 break;
1162 }
1163
1164 case DeclarationName::ObjCZeroArgSelector:
1165 case DeclarationName::ObjCOneArgSelector:
1166 case DeclarationName::ObjCMultiArgSelector:
1167 llvm_unreachable("Can't mangle Objective-C selector names here!");
1168
1169 case DeclarationName::CXXConstructorName:
1170 if (ND == Structor)
1171 // If the named decl is the C++ constructor we're mangling, use the type
1172 // we were given.
1173 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1174 else
1175 // Otherwise, use the complete constructor name. This is relevant if a
1176 // class with a constructor is declared within a constructor.
1177 mangleCXXCtorType(Ctor_Complete);
1178 break;
1179
1180 case DeclarationName::CXXDestructorName:
1181 if (ND == Structor)
1182 // If the named decl is the C++ destructor we're mangling, use the type we
1183 // were given.
1184 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1185 else
1186 // Otherwise, use the complete destructor name. This is relevant if a
1187 // class with a destructor is declared within a destructor.
1188 mangleCXXDtorType(Dtor_Complete);
1189 break;
1190
1191 case DeclarationName::CXXConversionFunctionName:
1192 // <operator-name> ::= cv <type> # (cast)
1193 Out << "cv";
1194 mangleType(Name.getCXXNameType());
1195 break;
1196
1197 case DeclarationName::CXXOperatorName: {
1198 unsigned Arity;
1199 if (ND) {
1200 Arity = cast<FunctionDecl>(ND)->getNumParams();
1201
1202 // If we have a C++ member function, we need to include the 'this' pointer.
1203 // FIXME: This does not make sense for operators that are static, but their
1204 // names stay the same regardless of the arity (operator new for instance).
1205 if (isa<CXXMethodDecl>(ND))
1206 Arity++;
1207 } else
1208 Arity = KnownArity;
1209
1210 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1211 break;
1212 }
1213
1214 case DeclarationName::CXXLiteralOperatorName:
1215 // FIXME: This mangling is not yet official.
1216 Out << "li";
1217 mangleSourceName(Name.getCXXLiteralIdentifier());
1218 break;
1219
1220 case DeclarationName::CXXUsingDirective:
1221 llvm_unreachable("Can't mangle a using directive name!");
1222 }
1223}
1224
1225void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1226 // <source-name> ::= <positive length number> <identifier>
1227 // <number> ::= [n] <non-negative decimal integer>
1228 // <identifier> ::= <unqualified source code identifier>
1229 Out << II->getLength() << II->getName();
1230}
1231
1232void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1233 const DeclContext *DC,
1234 bool NoFunction) {
1235 // <nested-name>
1236 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1237 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1238 // <template-args> E
1239
1240 Out << 'N';
1241 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
David Majnemer42350df2013-11-03 23:51:28 +00001242 Qualifiers MethodQuals =
1243 Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1244 // We do not consider restrict a distinguishing attribute for overloading
1245 // purposes so we must not mangle it.
1246 MethodQuals.removeRestrict();
1247 mangleQualifiers(MethodQuals);
Guy Benyei11169dd2012-12-18 14:30:41 +00001248 mangleRefQualifier(Method->getRefQualifier());
1249 }
1250
1251 // Check if we have a template.
1252 const TemplateArgumentList *TemplateArgs = 0;
1253 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001254 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001255 mangleTemplateArgs(*TemplateArgs);
1256 }
1257 else {
1258 manglePrefix(DC, NoFunction);
1259 mangleUnqualifiedName(ND);
1260 }
1261
1262 Out << 'E';
1263}
1264void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1265 const TemplateArgument *TemplateArgs,
1266 unsigned NumTemplateArgs) {
1267 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1268
1269 Out << 'N';
1270
1271 mangleTemplatePrefix(TD);
1272 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1273
1274 Out << 'E';
1275}
1276
Eli Friedman95f50122013-07-02 17:52:28 +00001277void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001278 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1279 // := Z <function encoding> E s [<discriminator>]
1280 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1281 // _ <entity name>
1282 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001283 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001284 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001285 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001286
1287 Out << 'Z';
1288
Eli Friedman92821742013-07-02 02:01:18 +00001289 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1290 mangleObjCMethodName(MD);
1291 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001292 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001293 else
1294 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001295
Eli Friedman92821742013-07-02 02:01:18 +00001296 Out << 'E';
1297
1298 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001299 // The parameter number is omitted for the last parameter, 0 for the
1300 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1301 // <entity name> will of course contain a <closure-type-name>: Its
1302 // numbering will be local to the particular argument in which it appears
1303 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001304 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1305 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001306 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001307 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001308 if (const FunctionDecl *Func
1309 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1310 Out << 'd';
1311 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1312 if (Num > 1)
1313 mangleNumber(Num - 2);
1314 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001315 }
1316 }
1317 }
1318
1319 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001320 // equality ok because RD derived from ND above
1321 if (D == RD) {
1322 mangleUnqualifiedName(RD);
1323 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1324 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1325 mangleUnqualifiedBlock(BD);
1326 } else {
1327 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001328 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001329 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001330 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1331 // Mangle a block in a default parameter; see above explanation for
1332 // lambdas.
1333 if (const ParmVarDecl *Parm
1334 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1335 if (const FunctionDecl *Func
1336 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1337 Out << 'd';
1338 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1339 if (Num > 1)
1340 mangleNumber(Num - 2);
1341 Out << '_';
1342 }
1343 }
1344
1345 mangleUnqualifiedBlock(BD);
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001346 } else {
Eli Friedman0cd23352013-07-10 01:33:19 +00001347 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001348 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001349
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001350 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1351 unsigned disc;
1352 if (Context.getNextDiscriminator(ND, disc)) {
1353 if (disc < 10)
1354 Out << '_' << disc;
1355 else
1356 Out << "__" << disc << '_';
1357 }
1358 }
Eli Friedman95f50122013-07-02 17:52:28 +00001359}
1360
1361void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1362 if (GetLocalClassDecl(Block)) {
1363 mangleLocalName(Block);
1364 return;
1365 }
1366 const DeclContext *DC = getEffectiveDeclContext(Block);
1367 if (isLocalContainerContext(DC)) {
1368 mangleLocalName(Block);
1369 return;
1370 }
1371 manglePrefix(getEffectiveDeclContext(Block));
1372 mangleUnqualifiedBlock(Block);
1373}
1374
1375void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1376 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1377 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1378 Context->getDeclContext()->isRecord()) {
1379 if (const IdentifierInfo *Name
1380 = cast<NamedDecl>(Context)->getIdentifier()) {
1381 mangleSourceName(Name);
1382 Out << 'M';
1383 }
1384 }
1385 }
1386
1387 // If we have a block mangling number, use it.
1388 unsigned Number = Block->getBlockManglingNumber();
1389 // Otherwise, just make up a number. It doesn't matter what it is because
1390 // the symbol in question isn't externally visible.
1391 if (!Number)
1392 Number = Context.getBlockId(Block, false);
1393 Out << "Ub";
1394 if (Number > 1)
1395 Out << Number - 2;
1396 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001397}
1398
1399void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1400 // If the context of a closure type is an initializer for a class member
1401 // (static or nonstatic), it is encoded in a qualified name with a final
1402 // <prefix> of the form:
1403 //
1404 // <data-member-prefix> := <member source-name> M
1405 //
1406 // Technically, the data-member-prefix is part of the <prefix>. However,
1407 // since a closure type will always be mangled with a prefix, it's easier
1408 // to emit that last part of the prefix here.
1409 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1410 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1411 Context->getDeclContext()->isRecord()) {
1412 if (const IdentifierInfo *Name
1413 = cast<NamedDecl>(Context)->getIdentifier()) {
1414 mangleSourceName(Name);
1415 Out << 'M';
1416 }
1417 }
1418 }
1419
1420 Out << "Ul";
1421 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1422 getAs<FunctionProtoType>();
1423 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1424 Out << "E";
1425
1426 // The number is omitted for the first closure type with a given
1427 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1428 // (in lexical order) with that same <lambda-sig> and context.
1429 //
1430 // The AST keeps track of the number for us.
1431 unsigned Number = Lambda->getLambdaManglingNumber();
1432 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1433 if (Number > 1)
1434 mangleNumber(Number - 2);
1435 Out << '_';
1436}
1437
1438void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1439 switch (qualifier->getKind()) {
1440 case NestedNameSpecifier::Global:
1441 // nothing
1442 return;
1443
1444 case NestedNameSpecifier::Namespace:
1445 mangleName(qualifier->getAsNamespace());
1446 return;
1447
1448 case NestedNameSpecifier::NamespaceAlias:
1449 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1450 return;
1451
1452 case NestedNameSpecifier::TypeSpec:
1453 case NestedNameSpecifier::TypeSpecWithTemplate:
1454 manglePrefix(QualType(qualifier->getAsType(), 0));
1455 return;
1456
1457 case NestedNameSpecifier::Identifier:
1458 // Member expressions can have these without prefixes, but that
1459 // should end up in mangleUnresolvedPrefix instead.
1460 assert(qualifier->getPrefix());
1461 manglePrefix(qualifier->getPrefix());
1462
1463 mangleSourceName(qualifier->getAsIdentifier());
1464 return;
1465 }
1466
1467 llvm_unreachable("unexpected nested name specifier");
1468}
1469
1470void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1471 // <prefix> ::= <prefix> <unqualified-name>
1472 // ::= <template-prefix> <template-args>
1473 // ::= <template-param>
1474 // ::= # empty
1475 // ::= <substitution>
1476
1477 DC = IgnoreLinkageSpecDecls(DC);
1478
1479 if (DC->isTranslationUnit())
1480 return;
1481
Eli Friedman95f50122013-07-02 17:52:28 +00001482 if (NoFunction && isLocalContainerContext(DC))
1483 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001484
Eli Friedman95f50122013-07-02 17:52:28 +00001485 assert(!isLocalContainerContext(DC));
1486
Guy Benyei11169dd2012-12-18 14:30:41 +00001487 const NamedDecl *ND = cast<NamedDecl>(DC);
1488 if (mangleSubstitution(ND))
1489 return;
1490
1491 // Check if we have a template.
1492 const TemplateArgumentList *TemplateArgs = 0;
1493 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1494 mangleTemplatePrefix(TD);
1495 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001496 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001497 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1498 mangleUnqualifiedName(ND);
1499 }
1500
1501 addSubstitution(ND);
1502}
1503
1504void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1505 // <template-prefix> ::= <prefix> <template unqualified-name>
1506 // ::= <template-param>
1507 // ::= <substitution>
1508 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1509 return mangleTemplatePrefix(TD);
1510
1511 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1512 manglePrefix(Qualified->getQualifier());
1513
1514 if (OverloadedTemplateStorage *Overloaded
1515 = Template.getAsOverloadedTemplate()) {
1516 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1517 UnknownArity);
1518 return;
1519 }
1520
1521 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1522 assert(Dependent && "Unknown template name kind?");
1523 manglePrefix(Dependent->getQualifier());
1524 mangleUnscopedTemplateName(Template);
1525}
1526
Eli Friedman86af13f02013-07-05 18:41:30 +00001527void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1528 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001529 // <template-prefix> ::= <prefix> <template unqualified-name>
1530 // ::= <template-param>
1531 // ::= <substitution>
1532 // <template-template-param> ::= <template-param>
1533 // <substitution>
1534
1535 if (mangleSubstitution(ND))
1536 return;
1537
1538 // <template-template-param> ::= <template-param>
1539 if (const TemplateTemplateParmDecl *TTP
1540 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1541 mangleTemplateParameter(TTP->getIndex());
1542 return;
1543 }
1544
Eli Friedman86af13f02013-07-05 18:41:30 +00001545 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001546 mangleUnqualifiedName(ND->getTemplatedDecl());
1547 addSubstitution(ND);
1548}
1549
1550/// Mangles a template name under the production <type>. Required for
1551/// template template arguments.
1552/// <type> ::= <class-enum-type>
1553/// ::= <template-param>
1554/// ::= <substitution>
1555void CXXNameMangler::mangleType(TemplateName TN) {
1556 if (mangleSubstitution(TN))
1557 return;
1558
1559 TemplateDecl *TD = 0;
1560
1561 switch (TN.getKind()) {
1562 case TemplateName::QualifiedTemplate:
1563 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1564 goto HaveDecl;
1565
1566 case TemplateName::Template:
1567 TD = TN.getAsTemplateDecl();
1568 goto HaveDecl;
1569
1570 HaveDecl:
1571 if (isa<TemplateTemplateParmDecl>(TD))
1572 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1573 else
1574 mangleName(TD);
1575 break;
1576
1577 case TemplateName::OverloadedTemplate:
1578 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1579
1580 case TemplateName::DependentTemplate: {
1581 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1582 assert(Dependent->isIdentifier());
1583
1584 // <class-enum-type> ::= <name>
1585 // <name> ::= <nested-name>
1586 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1587 mangleSourceName(Dependent->getIdentifier());
1588 break;
1589 }
1590
1591 case TemplateName::SubstTemplateTemplateParm: {
1592 // Substituted template parameters are mangled as the substituted
1593 // template. This will check for the substitution twice, which is
1594 // fine, but we have to return early so that we don't try to *add*
1595 // the substitution twice.
1596 SubstTemplateTemplateParmStorage *subst
1597 = TN.getAsSubstTemplateTemplateParm();
1598 mangleType(subst->getReplacement());
1599 return;
1600 }
1601
1602 case TemplateName::SubstTemplateTemplateParmPack: {
1603 // FIXME: not clear how to mangle this!
1604 // template <template <class> class T...> class A {
1605 // template <template <class> class U...> void foo(B<T,U> x...);
1606 // };
1607 Out << "_SUBSTPACK_";
1608 break;
1609 }
1610 }
1611
1612 addSubstitution(TN);
1613}
1614
1615void
1616CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1617 switch (OO) {
1618 // <operator-name> ::= nw # new
1619 case OO_New: Out << "nw"; break;
1620 // ::= na # new[]
1621 case OO_Array_New: Out << "na"; break;
1622 // ::= dl # delete
1623 case OO_Delete: Out << "dl"; break;
1624 // ::= da # delete[]
1625 case OO_Array_Delete: Out << "da"; break;
1626 // ::= ps # + (unary)
1627 // ::= pl # + (binary or unknown)
1628 case OO_Plus:
1629 Out << (Arity == 1? "ps" : "pl"); break;
1630 // ::= ng # - (unary)
1631 // ::= mi # - (binary or unknown)
1632 case OO_Minus:
1633 Out << (Arity == 1? "ng" : "mi"); break;
1634 // ::= ad # & (unary)
1635 // ::= an # & (binary or unknown)
1636 case OO_Amp:
1637 Out << (Arity == 1? "ad" : "an"); break;
1638 // ::= de # * (unary)
1639 // ::= ml # * (binary or unknown)
1640 case OO_Star:
1641 // Use binary when unknown.
1642 Out << (Arity == 1? "de" : "ml"); break;
1643 // ::= co # ~
1644 case OO_Tilde: Out << "co"; break;
1645 // ::= dv # /
1646 case OO_Slash: Out << "dv"; break;
1647 // ::= rm # %
1648 case OO_Percent: Out << "rm"; break;
1649 // ::= or # |
1650 case OO_Pipe: Out << "or"; break;
1651 // ::= eo # ^
1652 case OO_Caret: Out << "eo"; break;
1653 // ::= aS # =
1654 case OO_Equal: Out << "aS"; break;
1655 // ::= pL # +=
1656 case OO_PlusEqual: Out << "pL"; break;
1657 // ::= mI # -=
1658 case OO_MinusEqual: Out << "mI"; break;
1659 // ::= mL # *=
1660 case OO_StarEqual: Out << "mL"; break;
1661 // ::= dV # /=
1662 case OO_SlashEqual: Out << "dV"; break;
1663 // ::= rM # %=
1664 case OO_PercentEqual: Out << "rM"; break;
1665 // ::= aN # &=
1666 case OO_AmpEqual: Out << "aN"; break;
1667 // ::= oR # |=
1668 case OO_PipeEqual: Out << "oR"; break;
1669 // ::= eO # ^=
1670 case OO_CaretEqual: Out << "eO"; break;
1671 // ::= ls # <<
1672 case OO_LessLess: Out << "ls"; break;
1673 // ::= rs # >>
1674 case OO_GreaterGreater: Out << "rs"; break;
1675 // ::= lS # <<=
1676 case OO_LessLessEqual: Out << "lS"; break;
1677 // ::= rS # >>=
1678 case OO_GreaterGreaterEqual: Out << "rS"; break;
1679 // ::= eq # ==
1680 case OO_EqualEqual: Out << "eq"; break;
1681 // ::= ne # !=
1682 case OO_ExclaimEqual: Out << "ne"; break;
1683 // ::= lt # <
1684 case OO_Less: Out << "lt"; break;
1685 // ::= gt # >
1686 case OO_Greater: Out << "gt"; break;
1687 // ::= le # <=
1688 case OO_LessEqual: Out << "le"; break;
1689 // ::= ge # >=
1690 case OO_GreaterEqual: Out << "ge"; break;
1691 // ::= nt # !
1692 case OO_Exclaim: Out << "nt"; break;
1693 // ::= aa # &&
1694 case OO_AmpAmp: Out << "aa"; break;
1695 // ::= oo # ||
1696 case OO_PipePipe: Out << "oo"; break;
1697 // ::= pp # ++
1698 case OO_PlusPlus: Out << "pp"; break;
1699 // ::= mm # --
1700 case OO_MinusMinus: Out << "mm"; break;
1701 // ::= cm # ,
1702 case OO_Comma: Out << "cm"; break;
1703 // ::= pm # ->*
1704 case OO_ArrowStar: Out << "pm"; break;
1705 // ::= pt # ->
1706 case OO_Arrow: Out << "pt"; break;
1707 // ::= cl # ()
1708 case OO_Call: Out << "cl"; break;
1709 // ::= ix # []
1710 case OO_Subscript: Out << "ix"; break;
1711
1712 // ::= qu # ?
1713 // The conditional operator can't be overloaded, but we still handle it when
1714 // mangling expressions.
1715 case OO_Conditional: Out << "qu"; break;
1716
1717 case OO_None:
1718 case NUM_OVERLOADED_OPERATORS:
1719 llvm_unreachable("Not an overloaded operator");
1720 }
1721}
1722
1723void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1724 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1725 if (Quals.hasRestrict())
1726 Out << 'r';
1727 if (Quals.hasVolatile())
1728 Out << 'V';
1729 if (Quals.hasConst())
1730 Out << 'K';
1731
1732 if (Quals.hasAddressSpace()) {
David Tweed31d09b02013-09-13 12:04:22 +00001733 // Address space extension:
Guy Benyei11169dd2012-12-18 14:30:41 +00001734 //
David Tweed31d09b02013-09-13 12:04:22 +00001735 // <type> ::= U <target-addrspace>
1736 // <type> ::= U <OpenCL-addrspace>
1737 // <type> ::= U <CUDA-addrspace>
1738
Guy Benyei11169dd2012-12-18 14:30:41 +00001739 SmallString<64> ASString;
David Tweed31d09b02013-09-13 12:04:22 +00001740 unsigned AS = Quals.getAddressSpace();
David Tweed31d09b02013-09-13 12:04:22 +00001741
1742 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1743 // <target-addrspace> ::= "AS" <address-space-number>
1744 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1745 ASString = "AS" + llvm::utostr_32(TargetAS);
1746 } else {
1747 switch (AS) {
1748 default: llvm_unreachable("Not a language specific address space");
1749 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1750 case LangAS::opencl_global: ASString = "CLglobal"; break;
1751 case LangAS::opencl_local: ASString = "CLlocal"; break;
1752 case LangAS::opencl_constant: ASString = "CLconstant"; break;
1753 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1754 case LangAS::cuda_device: ASString = "CUdevice"; break;
1755 case LangAS::cuda_constant: ASString = "CUconstant"; break;
1756 case LangAS::cuda_shared: ASString = "CUshared"; break;
1757 }
1758 }
Guy Benyei11169dd2012-12-18 14:30:41 +00001759 Out << 'U' << ASString.size() << ASString;
1760 }
1761
1762 StringRef LifetimeName;
1763 switch (Quals.getObjCLifetime()) {
1764 // Objective-C ARC Extension:
1765 //
1766 // <type> ::= U "__strong"
1767 // <type> ::= U "__weak"
1768 // <type> ::= U "__autoreleasing"
1769 case Qualifiers::OCL_None:
1770 break;
1771
1772 case Qualifiers::OCL_Weak:
1773 LifetimeName = "__weak";
1774 break;
1775
1776 case Qualifiers::OCL_Strong:
1777 LifetimeName = "__strong";
1778 break;
1779
1780 case Qualifiers::OCL_Autoreleasing:
1781 LifetimeName = "__autoreleasing";
1782 break;
1783
1784 case Qualifiers::OCL_ExplicitNone:
1785 // The __unsafe_unretained qualifier is *not* mangled, so that
1786 // __unsafe_unretained types in ARC produce the same manglings as the
1787 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1788 // better ABI compatibility.
1789 //
1790 // It's safe to do this because unqualified 'id' won't show up
1791 // in any type signatures that need to be mangled.
1792 break;
1793 }
1794 if (!LifetimeName.empty())
1795 Out << 'U' << LifetimeName.size() << LifetimeName;
1796}
1797
1798void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1799 // <ref-qualifier> ::= R # lvalue reference
1800 // ::= O # rvalue-reference
Guy Benyei11169dd2012-12-18 14:30:41 +00001801 switch (RefQualifier) {
1802 case RQ_None:
1803 break;
1804
1805 case RQ_LValue:
1806 Out << 'R';
1807 break;
1808
1809 case RQ_RValue:
1810 Out << 'O';
1811 break;
1812 }
1813}
1814
1815void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1816 Context.mangleObjCMethodName(MD, Out);
1817}
1818
1819void CXXNameMangler::mangleType(QualType T) {
1820 // If our type is instantiation-dependent but not dependent, we mangle
1821 // it as it was written in the source, removing any top-level sugar.
1822 // Otherwise, use the canonical type.
1823 //
1824 // FIXME: This is an approximation of the instantiation-dependent name
1825 // mangling rules, since we should really be using the type as written and
1826 // augmented via semantic analysis (i.e., with implicit conversions and
1827 // default template arguments) for any instantiation-dependent type.
1828 // Unfortunately, that requires several changes to our AST:
1829 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1830 // uniqued, so that we can handle substitutions properly
1831 // - Default template arguments will need to be represented in the
1832 // TemplateSpecializationType, since they need to be mangled even though
1833 // they aren't written.
1834 // - Conversions on non-type template arguments need to be expressed, since
1835 // they can affect the mangling of sizeof/alignof.
1836 if (!T->isInstantiationDependentType() || T->isDependentType())
1837 T = T.getCanonicalType();
1838 else {
1839 // Desugar any types that are purely sugar.
1840 do {
1841 // Don't desugar through template specialization types that aren't
1842 // type aliases. We need to mangle the template arguments as written.
1843 if (const TemplateSpecializationType *TST
1844 = dyn_cast<TemplateSpecializationType>(T))
1845 if (!TST->isTypeAlias())
1846 break;
1847
1848 QualType Desugared
1849 = T.getSingleStepDesugaredType(Context.getASTContext());
1850 if (Desugared == T)
1851 break;
1852
1853 T = Desugared;
1854 } while (true);
1855 }
1856 SplitQualType split = T.split();
1857 Qualifiers quals = split.Quals;
1858 const Type *ty = split.Ty;
1859
1860 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1861 if (isSubstitutable && mangleSubstitution(T))
1862 return;
1863
1864 // If we're mangling a qualified array type, push the qualifiers to
1865 // the element type.
1866 if (quals && isa<ArrayType>(T)) {
1867 ty = Context.getASTContext().getAsArrayType(T);
1868 quals = Qualifiers();
1869
1870 // Note that we don't update T: we want to add the
1871 // substitution at the original type.
1872 }
1873
1874 if (quals) {
1875 mangleQualifiers(quals);
1876 // Recurse: even if the qualified type isn't yet substitutable,
1877 // the unqualified type might be.
1878 mangleType(QualType(ty, 0));
1879 } else {
1880 switch (ty->getTypeClass()) {
1881#define ABSTRACT_TYPE(CLASS, PARENT)
1882#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1883 case Type::CLASS: \
1884 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1885 return;
1886#define TYPE(CLASS, PARENT) \
1887 case Type::CLASS: \
1888 mangleType(static_cast<const CLASS##Type*>(ty)); \
1889 break;
1890#include "clang/AST/TypeNodes.def"
1891 }
1892 }
1893
1894 // Add the substitution.
1895 if (isSubstitutable)
1896 addSubstitution(T);
1897}
1898
1899void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1900 if (!mangleStandardSubstitution(ND))
1901 mangleName(ND);
1902}
1903
1904void CXXNameMangler::mangleType(const BuiltinType *T) {
1905 // <type> ::= <builtin-type>
1906 // <builtin-type> ::= v # void
1907 // ::= w # wchar_t
1908 // ::= b # bool
1909 // ::= c # char
1910 // ::= a # signed char
1911 // ::= h # unsigned char
1912 // ::= s # short
1913 // ::= t # unsigned short
1914 // ::= i # int
1915 // ::= j # unsigned int
1916 // ::= l # long
1917 // ::= m # unsigned long
1918 // ::= x # long long, __int64
1919 // ::= y # unsigned long long, __int64
1920 // ::= n # __int128
1921 // UNSUPPORTED: ::= o # unsigned __int128
1922 // ::= f # float
1923 // ::= d # double
1924 // ::= e # long double, __float80
1925 // UNSUPPORTED: ::= g # __float128
1926 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1927 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1928 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1929 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1930 // ::= Di # char32_t
1931 // ::= Ds # char16_t
1932 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1933 // ::= u <source-name> # vendor extended type
1934 switch (T->getKind()) {
1935 case BuiltinType::Void: Out << 'v'; break;
1936 case BuiltinType::Bool: Out << 'b'; break;
1937 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1938 case BuiltinType::UChar: Out << 'h'; break;
1939 case BuiltinType::UShort: Out << 't'; break;
1940 case BuiltinType::UInt: Out << 'j'; break;
1941 case BuiltinType::ULong: Out << 'm'; break;
1942 case BuiltinType::ULongLong: Out << 'y'; break;
1943 case BuiltinType::UInt128: Out << 'o'; break;
1944 case BuiltinType::SChar: Out << 'a'; break;
1945 case BuiltinType::WChar_S:
1946 case BuiltinType::WChar_U: Out << 'w'; break;
1947 case BuiltinType::Char16: Out << "Ds"; break;
1948 case BuiltinType::Char32: Out << "Di"; break;
1949 case BuiltinType::Short: Out << 's'; break;
1950 case BuiltinType::Int: Out << 'i'; break;
1951 case BuiltinType::Long: Out << 'l'; break;
1952 case BuiltinType::LongLong: Out << 'x'; break;
1953 case BuiltinType::Int128: Out << 'n'; break;
1954 case BuiltinType::Half: Out << "Dh"; break;
1955 case BuiltinType::Float: Out << 'f'; break;
1956 case BuiltinType::Double: Out << 'd'; break;
1957 case BuiltinType::LongDouble: Out << 'e'; break;
1958 case BuiltinType::NullPtr: Out << "Dn"; break;
1959
1960#define BUILTIN_TYPE(Id, SingletonId)
1961#define PLACEHOLDER_TYPE(Id, SingletonId) \
1962 case BuiltinType::Id:
1963#include "clang/AST/BuiltinTypes.def"
1964 case BuiltinType::Dependent:
1965 llvm_unreachable("mangling a placeholder type");
1966 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1967 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1968 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001969 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1970 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1971 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1972 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1973 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1974 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001975 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001976 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001977 }
1978}
1979
1980// <type> ::= <function-type>
1981// <function-type> ::= [<CV-qualifiers>] F [Y]
1982// <bare-function-type> [<ref-qualifier>] E
Guy Benyei11169dd2012-12-18 14:30:41 +00001983void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1984 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1985 // e.g. "const" in "int (A::*)() const".
1986 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1987
1988 Out << 'F';
1989
1990 // FIXME: We don't have enough information in the AST to produce the 'Y'
1991 // encoding for extern "C" function types.
1992 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1993
1994 // Mangle the ref-qualifier, if present.
1995 mangleRefQualifier(T->getRefQualifier());
1996
1997 Out << 'E';
1998}
1999void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2000 llvm_unreachable("Can't mangle K&R function prototypes");
2001}
2002void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2003 bool MangleReturnType) {
2004 // We should never be mangling something without a prototype.
2005 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2006
2007 // Record that we're in a function type. See mangleFunctionParam
2008 // for details on what we're trying to achieve here.
2009 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2010
2011 // <bare-function-type> ::= <signature type>+
2012 if (MangleReturnType) {
2013 FunctionTypeDepth.enterResultType();
2014 mangleType(Proto->getResultType());
2015 FunctionTypeDepth.leaveResultType();
2016 }
2017
2018 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2019 // <builtin-type> ::= v # void
2020 Out << 'v';
2021
2022 FunctionTypeDepth.pop(saved);
2023 return;
2024 }
2025
2026 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2027 ArgEnd = Proto->arg_type_end();
2028 Arg != ArgEnd; ++Arg)
2029 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2030
2031 FunctionTypeDepth.pop(saved);
2032
2033 // <builtin-type> ::= z # ellipsis
2034 if (Proto->isVariadic())
2035 Out << 'z';
2036}
2037
2038// <type> ::= <class-enum-type>
2039// <class-enum-type> ::= <name>
2040void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2041 mangleName(T->getDecl());
2042}
2043
2044// <type> ::= <class-enum-type>
2045// <class-enum-type> ::= <name>
2046void CXXNameMangler::mangleType(const EnumType *T) {
2047 mangleType(static_cast<const TagType*>(T));
2048}
2049void CXXNameMangler::mangleType(const RecordType *T) {
2050 mangleType(static_cast<const TagType*>(T));
2051}
2052void CXXNameMangler::mangleType(const TagType *T) {
2053 mangleName(T->getDecl());
2054}
2055
2056// <type> ::= <array-type>
2057// <array-type> ::= A <positive dimension number> _ <element type>
2058// ::= A [<dimension expression>] _ <element type>
2059void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2060 Out << 'A' << T->getSize() << '_';
2061 mangleType(T->getElementType());
2062}
2063void CXXNameMangler::mangleType(const VariableArrayType *T) {
2064 Out << 'A';
2065 // decayed vla types (size 0) will just be skipped.
2066 if (T->getSizeExpr())
2067 mangleExpression(T->getSizeExpr());
2068 Out << '_';
2069 mangleType(T->getElementType());
2070}
2071void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2072 Out << 'A';
2073 mangleExpression(T->getSizeExpr());
2074 Out << '_';
2075 mangleType(T->getElementType());
2076}
2077void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2078 Out << "A_";
2079 mangleType(T->getElementType());
2080}
2081
2082// <type> ::= <pointer-to-member-type>
2083// <pointer-to-member-type> ::= M <class type> <member type>
2084void CXXNameMangler::mangleType(const MemberPointerType *T) {
2085 Out << 'M';
2086 mangleType(QualType(T->getClass(), 0));
2087 QualType PointeeType = T->getPointeeType();
2088 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2089 mangleType(FPT);
2090
2091 // Itanium C++ ABI 5.1.8:
2092 //
2093 // The type of a non-static member function is considered to be different,
2094 // for the purposes of substitution, from the type of a namespace-scope or
2095 // static member function whose type appears similar. The types of two
2096 // non-static member functions are considered to be different, for the
2097 // purposes of substitution, if the functions are members of different
2098 // classes. In other words, for the purposes of substitution, the class of
2099 // which the function is a member is considered part of the type of
2100 // function.
2101
2102 // Given that we already substitute member function pointers as a
2103 // whole, the net effect of this rule is just to unconditionally
2104 // suppress substitution on the function type in a member pointer.
2105 // We increment the SeqID here to emulate adding an entry to the
2106 // substitution table.
2107 ++SeqID;
2108 } else
2109 mangleType(PointeeType);
2110}
2111
2112// <type> ::= <template-param>
2113void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2114 mangleTemplateParameter(T->getIndex());
2115}
2116
2117// <type> ::= <template-param>
2118void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2119 // FIXME: not clear how to mangle this!
2120 // template <class T...> class A {
2121 // template <class U...> void foo(T(*)(U) x...);
2122 // };
2123 Out << "_SUBSTPACK_";
2124}
2125
2126// <type> ::= P <type> # pointer-to
2127void CXXNameMangler::mangleType(const PointerType *T) {
2128 Out << 'P';
2129 mangleType(T->getPointeeType());
2130}
2131void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2132 Out << 'P';
2133 mangleType(T->getPointeeType());
2134}
2135
2136// <type> ::= R <type> # reference-to
2137void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2138 Out << 'R';
2139 mangleType(T->getPointeeType());
2140}
2141
2142// <type> ::= O <type> # rvalue reference-to (C++0x)
2143void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2144 Out << 'O';
2145 mangleType(T->getPointeeType());
2146}
2147
2148// <type> ::= C <type> # complex pair (C 2000)
2149void CXXNameMangler::mangleType(const ComplexType *T) {
2150 Out << 'C';
2151 mangleType(T->getElementType());
2152}
2153
2154// ARM's ABI for Neon vector types specifies that they should be mangled as
2155// if they are structs (to match ARM's initial implementation). The
2156// vector type must be one of the special types predefined by ARM.
2157void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2158 QualType EltType = T->getElementType();
2159 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2160 const char *EltName = 0;
2161 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2162 switch (cast<BuiltinType>(EltType)->getKind()) {
2163 case BuiltinType::SChar: EltName = "poly8_t"; break;
2164 case BuiltinType::Short: EltName = "poly16_t"; break;
2165 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2166 }
2167 } else {
2168 switch (cast<BuiltinType>(EltType)->getKind()) {
2169 case BuiltinType::SChar: EltName = "int8_t"; break;
2170 case BuiltinType::UChar: EltName = "uint8_t"; break;
2171 case BuiltinType::Short: EltName = "int16_t"; break;
2172 case BuiltinType::UShort: EltName = "uint16_t"; break;
2173 case BuiltinType::Int: EltName = "int32_t"; break;
2174 case BuiltinType::UInt: EltName = "uint32_t"; break;
2175 case BuiltinType::LongLong: EltName = "int64_t"; break;
2176 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2177 case BuiltinType::Float: EltName = "float32_t"; break;
Tim Northover2fe823a2013-08-01 09:23:19 +00002178 case BuiltinType::Half: EltName = "float16_t";break;
2179 default:
2180 llvm_unreachable("unexpected Neon vector element type");
Guy Benyei11169dd2012-12-18 14:30:41 +00002181 }
2182 }
2183 const char *BaseName = 0;
2184 unsigned BitSize = (T->getNumElements() *
2185 getASTContext().getTypeSize(EltType));
2186 if (BitSize == 64)
2187 BaseName = "__simd64_";
2188 else {
2189 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2190 BaseName = "__simd128_";
2191 }
2192 Out << strlen(BaseName) + strlen(EltName);
2193 Out << BaseName << EltName;
2194}
2195
Tim Northover2fe823a2013-08-01 09:23:19 +00002196static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2197 switch (EltType->getKind()) {
2198 case BuiltinType::SChar:
2199 return "Int8";
2200 case BuiltinType::Short:
2201 return "Int16";
2202 case BuiltinType::Int:
2203 return "Int32";
2204 case BuiltinType::LongLong:
2205 return "Int64";
2206 case BuiltinType::UChar:
2207 return "Uint8";
2208 case BuiltinType::UShort:
2209 return "Uint16";
2210 case BuiltinType::UInt:
2211 return "Uint32";
2212 case BuiltinType::ULongLong:
2213 return "Uint64";
2214 case BuiltinType::Half:
2215 return "Float16";
2216 case BuiltinType::Float:
2217 return "Float32";
2218 case BuiltinType::Double:
2219 return "Float64";
2220 default:
2221 llvm_unreachable("Unexpected vector element base type");
2222 }
2223}
2224
2225// AArch64's ABI for Neon vector types specifies that they should be mangled as
2226// the equivalent internal name. The vector type must be one of the special
2227// types predefined by ARM.
2228void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2229 QualType EltType = T->getElementType();
2230 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2231 unsigned BitSize =
2232 (T->getNumElements() * getASTContext().getTypeSize(EltType));
Daniel Jasper8698af42013-08-01 10:30:11 +00002233 (void)BitSize; // Silence warning.
Tim Northover2fe823a2013-08-01 09:23:19 +00002234
2235 assert((BitSize == 64 || BitSize == 128) &&
2236 "Neon vector type not 64 or 128 bits");
2237
2238 assert(getASTContext().getTypeSize(EltType) != BitSize &&
2239 "Vector of 1 element not permitted");
2240
2241 StringRef EltName;
2242 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2243 switch (cast<BuiltinType>(EltType)->getKind()) {
2244 case BuiltinType::UChar:
2245 EltName = "Poly8";
2246 break;
2247 case BuiltinType::UShort:
2248 EltName = "Poly16";
2249 break;
2250 default:
2251 llvm_unreachable("unexpected Neon polynomial vector element type");
2252 }
2253 } else
2254 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2255
2256 std::string TypeName =
2257 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2258 Out << TypeName.length() << TypeName;
2259}
2260
Guy Benyei11169dd2012-12-18 14:30:41 +00002261// GNU extension: vector types
2262// <type> ::= <vector-type>
2263// <vector-type> ::= Dv <positive dimension number> _
2264// <extended element type>
2265// ::= Dv [<dimension expression>] _ <element type>
2266// <extended element type> ::= <element type>
2267// ::= p # AltiVec vector pixel
2268// ::= b # Altivec vector bool
2269void CXXNameMangler::mangleType(const VectorType *T) {
2270 if ((T->getVectorKind() == VectorType::NeonVector ||
2271 T->getVectorKind() == VectorType::NeonPolyVector)) {
Tim Northover2fe823a2013-08-01 09:23:19 +00002272 if (getASTContext().getTargetInfo().getTriple().getArch() ==
2273 llvm::Triple::aarch64)
2274 mangleAArch64NeonVectorType(T);
2275 else
2276 mangleNeonVectorType(T);
Guy Benyei11169dd2012-12-18 14:30:41 +00002277 return;
2278 }
2279 Out << "Dv" << T->getNumElements() << '_';
2280 if (T->getVectorKind() == VectorType::AltiVecPixel)
2281 Out << 'p';
2282 else if (T->getVectorKind() == VectorType::AltiVecBool)
2283 Out << 'b';
2284 else
2285 mangleType(T->getElementType());
2286}
2287void CXXNameMangler::mangleType(const ExtVectorType *T) {
2288 mangleType(static_cast<const VectorType*>(T));
2289}
2290void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2291 Out << "Dv";
2292 mangleExpression(T->getSizeExpr());
2293 Out << '_';
2294 mangleType(T->getElementType());
2295}
2296
2297void CXXNameMangler::mangleType(const PackExpansionType *T) {
2298 // <type> ::= Dp <type> # pack expansion (C++0x)
2299 Out << "Dp";
2300 mangleType(T->getPattern());
2301}
2302
2303void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2304 mangleSourceName(T->getDecl()->getIdentifier());
2305}
2306
2307void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002308 if (!T->qual_empty()) {
2309 // Mangle protocol qualifiers.
2310 SmallString<64> QualStr;
2311 llvm::raw_svector_ostream QualOS(QualStr);
2312 QualOS << "objcproto";
2313 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2314 for ( ; i != e; ++i) {
2315 StringRef name = (*i)->getName();
2316 QualOS << name.size() << name;
2317 }
2318 QualOS.flush();
2319 Out << 'U' << QualStr.size() << QualStr;
2320 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002321 mangleType(T->getBaseType());
2322}
2323
2324void CXXNameMangler::mangleType(const BlockPointerType *T) {
2325 Out << "U13block_pointer";
2326 mangleType(T->getPointeeType());
2327}
2328
2329void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2330 // Mangle injected class name types as if the user had written the
2331 // specialization out fully. It may not actually be possible to see
2332 // this mangling, though.
2333 mangleType(T->getInjectedSpecializationType());
2334}
2335
2336void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2337 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2338 mangleName(TD, T->getArgs(), T->getNumArgs());
2339 } else {
2340 if (mangleSubstitution(QualType(T, 0)))
2341 return;
2342
2343 mangleTemplatePrefix(T->getTemplateName());
2344
2345 // FIXME: GCC does not appear to mangle the template arguments when
2346 // the template in question is a dependent template name. Should we
2347 // emulate that badness?
2348 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2349 addSubstitution(QualType(T, 0));
2350 }
2351}
2352
2353void CXXNameMangler::mangleType(const DependentNameType *T) {
2354 // Typename types are always nested
2355 Out << 'N';
2356 manglePrefix(T->getQualifier());
2357 mangleSourceName(T->getIdentifier());
2358 Out << 'E';
2359}
2360
2361void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2362 // Dependently-scoped template types are nested if they have a prefix.
2363 Out << 'N';
2364
2365 // TODO: avoid making this TemplateName.
2366 TemplateName Prefix =
2367 getASTContext().getDependentTemplateName(T->getQualifier(),
2368 T->getIdentifier());
2369 mangleTemplatePrefix(Prefix);
2370
2371 // FIXME: GCC does not appear to mangle the template arguments when
2372 // the template in question is a dependent template name. Should we
2373 // emulate that badness?
2374 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2375 Out << 'E';
2376}
2377
2378void CXXNameMangler::mangleType(const TypeOfType *T) {
2379 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2380 // "extension with parameters" mangling.
2381 Out << "u6typeof";
2382}
2383
2384void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2385 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2386 // "extension with parameters" mangling.
2387 Out << "u6typeof";
2388}
2389
2390void CXXNameMangler::mangleType(const DecltypeType *T) {
2391 Expr *E = T->getUnderlyingExpr();
2392
2393 // type ::= Dt <expression> E # decltype of an id-expression
2394 // # or class member access
2395 // ::= DT <expression> E # decltype of an expression
2396
2397 // This purports to be an exhaustive list of id-expressions and
2398 // class member accesses. Note that we do not ignore parentheses;
2399 // parentheses change the semantics of decltype for these
2400 // expressions (and cause the mangler to use the other form).
2401 if (isa<DeclRefExpr>(E) ||
2402 isa<MemberExpr>(E) ||
2403 isa<UnresolvedLookupExpr>(E) ||
2404 isa<DependentScopeDeclRefExpr>(E) ||
2405 isa<CXXDependentScopeMemberExpr>(E) ||
2406 isa<UnresolvedMemberExpr>(E))
2407 Out << "Dt";
2408 else
2409 Out << "DT";
2410 mangleExpression(E);
2411 Out << 'E';
2412}
2413
2414void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2415 // If this is dependent, we need to record that. If not, we simply
2416 // mangle it as the underlying type since they are equivalent.
2417 if (T->isDependentType()) {
2418 Out << 'U';
2419
2420 switch (T->getUTTKind()) {
2421 case UnaryTransformType::EnumUnderlyingType:
2422 Out << "3eut";
2423 break;
2424 }
2425 }
2426
2427 mangleType(T->getUnderlyingType());
2428}
2429
2430void CXXNameMangler::mangleType(const AutoType *T) {
2431 QualType D = T->getDeducedType();
2432 // <builtin-type> ::= Da # dependent auto
2433 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002434 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002435 else
2436 mangleType(D);
2437}
2438
2439void CXXNameMangler::mangleType(const AtomicType *T) {
2440 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2441 // (Until there's a standardized mangling...)
2442 Out << "U7_Atomic";
2443 mangleType(T->getValueType());
2444}
2445
2446void CXXNameMangler::mangleIntegerLiteral(QualType T,
2447 const llvm::APSInt &Value) {
2448 // <expr-primary> ::= L <type> <value number> E # integer literal
2449 Out << 'L';
2450
2451 mangleType(T);
2452 if (T->isBooleanType()) {
2453 // Boolean values are encoded as 0/1.
2454 Out << (Value.getBoolValue() ? '1' : '0');
2455 } else {
2456 mangleNumber(Value);
2457 }
2458 Out << 'E';
2459
2460}
2461
2462/// Mangles a member expression.
2463void CXXNameMangler::mangleMemberExpr(const Expr *base,
2464 bool isArrow,
2465 NestedNameSpecifier *qualifier,
2466 NamedDecl *firstQualifierLookup,
2467 DeclarationName member,
2468 unsigned arity) {
2469 // <expression> ::= dt <expression> <unresolved-name>
2470 // ::= pt <expression> <unresolved-name>
2471 if (base) {
2472 if (base->isImplicitCXXThis()) {
2473 // Note: GCC mangles member expressions to the implicit 'this' as
2474 // *this., whereas we represent them as this->. The Itanium C++ ABI
2475 // does not specify anything here, so we follow GCC.
2476 Out << "dtdefpT";
2477 } else {
2478 Out << (isArrow ? "pt" : "dt");
2479 mangleExpression(base);
2480 }
2481 }
2482 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2483}
2484
2485/// Look at the callee of the given call expression and determine if
2486/// it's a parenthesized id-expression which would have triggered ADL
2487/// otherwise.
2488static bool isParenthesizedADLCallee(const CallExpr *call) {
2489 const Expr *callee = call->getCallee();
2490 const Expr *fn = callee->IgnoreParens();
2491
2492 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2493 // too, but for those to appear in the callee, it would have to be
2494 // parenthesized.
2495 if (callee == fn) return false;
2496
2497 // Must be an unresolved lookup.
2498 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2499 if (!lookup) return false;
2500
2501 assert(!lookup->requiresADL());
2502
2503 // Must be an unqualified lookup.
2504 if (lookup->getQualifier()) return false;
2505
2506 // Must not have found a class member. Note that if one is a class
2507 // member, they're all class members.
2508 if (lookup->getNumDecls() > 0 &&
2509 (*lookup->decls_begin())->isCXXClassMember())
2510 return false;
2511
2512 // Otherwise, ADL would have been triggered.
2513 return true;
2514}
2515
2516void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2517 // <expression> ::= <unary operator-name> <expression>
2518 // ::= <binary operator-name> <expression> <expression>
2519 // ::= <trinary operator-name> <expression> <expression> <expression>
2520 // ::= cv <type> expression # conversion with one argument
2521 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2522 // ::= st <type> # sizeof (a type)
2523 // ::= at <type> # alignof (a type)
2524 // ::= <template-param>
2525 // ::= <function-param>
2526 // ::= sr <type> <unqualified-name> # dependent name
2527 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2528 // ::= ds <expression> <expression> # expr.*expr
2529 // ::= sZ <template-param> # size of a parameter pack
2530 // ::= sZ <function-param> # size of a function parameter pack
2531 // ::= <expr-primary>
2532 // <expr-primary> ::= L <type> <value number> E # integer literal
2533 // ::= L <type <value float> E # floating literal
2534 // ::= L <mangled-name> E # external name
2535 // ::= fpT # 'this' expression
2536 QualType ImplicitlyConvertedToType;
2537
2538recurse:
2539 switch (E->getStmtClass()) {
2540 case Expr::NoStmtClass:
2541#define ABSTRACT_STMT(Type)
2542#define EXPR(Type, Base)
2543#define STMT(Type, Base) \
2544 case Expr::Type##Class:
2545#include "clang/AST/StmtNodes.inc"
2546 // fallthrough
2547
2548 // These all can only appear in local or variable-initialization
2549 // contexts and so should never appear in a mangling.
2550 case Expr::AddrLabelExprClass:
2551 case Expr::DesignatedInitExprClass:
2552 case Expr::ImplicitValueInitExprClass:
2553 case Expr::ParenListExprClass:
2554 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002555 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002556 llvm_unreachable("unexpected statement kind");
2557
2558 // FIXME: invent manglings for all these.
2559 case Expr::BlockExprClass:
2560 case Expr::CXXPseudoDestructorExprClass:
2561 case Expr::ChooseExprClass:
2562 case Expr::CompoundLiteralExprClass:
2563 case Expr::ExtVectorElementExprClass:
2564 case Expr::GenericSelectionExprClass:
2565 case Expr::ObjCEncodeExprClass:
2566 case Expr::ObjCIsaExprClass:
2567 case Expr::ObjCIvarRefExprClass:
2568 case Expr::ObjCMessageExprClass:
2569 case Expr::ObjCPropertyRefExprClass:
2570 case Expr::ObjCProtocolExprClass:
2571 case Expr::ObjCSelectorExprClass:
2572 case Expr::ObjCStringLiteralClass:
2573 case Expr::ObjCBoxedExprClass:
2574 case Expr::ObjCArrayLiteralClass:
2575 case Expr::ObjCDictionaryLiteralClass:
2576 case Expr::ObjCSubscriptRefExprClass:
2577 case Expr::ObjCIndirectCopyRestoreExprClass:
2578 case Expr::OffsetOfExprClass:
2579 case Expr::PredefinedExprClass:
2580 case Expr::ShuffleVectorExprClass:
Hal Finkelc4d7c822013-09-18 03:29:45 +00002581 case Expr::ConvertVectorExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002582 case Expr::StmtExprClass:
2583 case Expr::UnaryTypeTraitExprClass:
2584 case Expr::BinaryTypeTraitExprClass:
2585 case Expr::TypeTraitExprClass:
2586 case Expr::ArrayTypeTraitExprClass:
2587 case Expr::ExpressionTraitExprClass:
2588 case Expr::VAArgExprClass:
2589 case Expr::CXXUuidofExprClass:
2590 case Expr::CUDAKernelCallExprClass:
2591 case Expr::AsTypeExprClass:
2592 case Expr::PseudoObjectExprClass:
2593 case Expr::AtomicExprClass:
2594 {
2595 // As bad as this diagnostic is, it's better than crashing.
2596 DiagnosticsEngine &Diags = Context.getDiags();
2597 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2598 "cannot yet mangle expression type %0");
2599 Diags.Report(E->getExprLoc(), DiagID)
2600 << E->getStmtClassName() << E->getSourceRange();
2601 break;
2602 }
2603
2604 // Even gcc-4.5 doesn't mangle this.
2605 case Expr::BinaryConditionalOperatorClass: {
2606 DiagnosticsEngine &Diags = Context.getDiags();
2607 unsigned DiagID =
2608 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2609 "?: operator with omitted middle operand cannot be mangled");
2610 Diags.Report(E->getExprLoc(), DiagID)
2611 << E->getStmtClassName() << E->getSourceRange();
2612 break;
2613 }
2614
2615 // These are used for internal purposes and cannot be meaningfully mangled.
2616 case Expr::OpaqueValueExprClass:
2617 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2618
2619 case Expr::InitListExprClass: {
2620 // Proposal by Jason Merrill, 2012-01-03
2621 Out << "il";
2622 const InitListExpr *InitList = cast<InitListExpr>(E);
2623 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2624 mangleExpression(InitList->getInit(i));
2625 Out << "E";
2626 break;
2627 }
2628
2629 case Expr::CXXDefaultArgExprClass:
2630 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2631 break;
2632
Richard Smith852c9db2013-04-20 22:23:05 +00002633 case Expr::CXXDefaultInitExprClass:
2634 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2635 break;
2636
Richard Smithcc1b96d2013-06-12 22:31:48 +00002637 case Expr::CXXStdInitializerListExprClass:
2638 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2639 break;
2640
Guy Benyei11169dd2012-12-18 14:30:41 +00002641 case Expr::SubstNonTypeTemplateParmExprClass:
2642 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2643 Arity);
2644 break;
2645
2646 case Expr::UserDefinedLiteralClass:
2647 // We follow g++'s approach of mangling a UDL as a call to the literal
2648 // operator.
2649 case Expr::CXXMemberCallExprClass: // fallthrough
2650 case Expr::CallExprClass: {
2651 const CallExpr *CE = cast<CallExpr>(E);
2652
2653 // <expression> ::= cp <simple-id> <expression>* E
2654 // We use this mangling only when the call would use ADL except
2655 // for being parenthesized. Per discussion with David
2656 // Vandervoorde, 2011.04.25.
2657 if (isParenthesizedADLCallee(CE)) {
2658 Out << "cp";
2659 // The callee here is a parenthesized UnresolvedLookupExpr with
2660 // no qualifier and should always get mangled as a <simple-id>
2661 // anyway.
2662
2663 // <expression> ::= cl <expression>* E
2664 } else {
2665 Out << "cl";
2666 }
2667
2668 mangleExpression(CE->getCallee(), CE->getNumArgs());
2669 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2670 mangleExpression(CE->getArg(I));
2671 Out << 'E';
2672 break;
2673 }
2674
2675 case Expr::CXXNewExprClass: {
2676 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2677 if (New->isGlobalNew()) Out << "gs";
2678 Out << (New->isArray() ? "na" : "nw");
2679 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2680 E = New->placement_arg_end(); I != E; ++I)
2681 mangleExpression(*I);
2682 Out << '_';
2683 mangleType(New->getAllocatedType());
2684 if (New->hasInitializer()) {
2685 // Proposal by Jason Merrill, 2012-01-03
2686 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2687 Out << "il";
2688 else
2689 Out << "pi";
2690 const Expr *Init = New->getInitializer();
2691 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2692 // Directly inline the initializers.
2693 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2694 E = CCE->arg_end();
2695 I != E; ++I)
2696 mangleExpression(*I);
2697 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2698 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2699 mangleExpression(PLE->getExpr(i));
2700 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2701 isa<InitListExpr>(Init)) {
2702 // Only take InitListExprs apart for list-initialization.
2703 const InitListExpr *InitList = cast<InitListExpr>(Init);
2704 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2705 mangleExpression(InitList->getInit(i));
2706 } else
2707 mangleExpression(Init);
2708 }
2709 Out << 'E';
2710 break;
2711 }
2712
2713 case Expr::MemberExprClass: {
2714 const MemberExpr *ME = cast<MemberExpr>(E);
2715 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2716 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2717 Arity);
2718 break;
2719 }
2720
2721 case Expr::UnresolvedMemberExprClass: {
2722 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2723 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2724 ME->getQualifier(), 0, ME->getMemberName(),
2725 Arity);
2726 if (ME->hasExplicitTemplateArgs())
2727 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2728 break;
2729 }
2730
2731 case Expr::CXXDependentScopeMemberExprClass: {
2732 const CXXDependentScopeMemberExpr *ME
2733 = cast<CXXDependentScopeMemberExpr>(E);
2734 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2735 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2736 ME->getMember(), Arity);
2737 if (ME->hasExplicitTemplateArgs())
2738 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2739 break;
2740 }
2741
2742 case Expr::UnresolvedLookupExprClass: {
2743 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2744 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2745
2746 // All the <unresolved-name> productions end in a
2747 // base-unresolved-name, where <template-args> are just tacked
2748 // onto the end.
2749 if (ULE->hasExplicitTemplateArgs())
2750 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2751 break;
2752 }
2753
2754 case Expr::CXXUnresolvedConstructExprClass: {
2755 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2756 unsigned N = CE->arg_size();
2757
2758 Out << "cv";
2759 mangleType(CE->getType());
2760 if (N != 1) Out << '_';
2761 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2762 if (N != 1) Out << 'E';
2763 break;
2764 }
2765
2766 case Expr::CXXTemporaryObjectExprClass:
2767 case Expr::CXXConstructExprClass: {
2768 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2769 unsigned N = CE->getNumArgs();
2770
2771 // Proposal by Jason Merrill, 2012-01-03
2772 if (CE->isListInitialization())
2773 Out << "tl";
2774 else
2775 Out << "cv";
2776 mangleType(CE->getType());
2777 if (N != 1) Out << '_';
2778 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2779 if (N != 1) Out << 'E';
2780 break;
2781 }
2782
2783 case Expr::CXXScalarValueInitExprClass:
2784 Out <<"cv";
2785 mangleType(E->getType());
2786 Out <<"_E";
2787 break;
2788
2789 case Expr::CXXNoexceptExprClass:
2790 Out << "nx";
2791 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2792 break;
2793
2794 case Expr::UnaryExprOrTypeTraitExprClass: {
2795 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2796
2797 if (!SAE->isInstantiationDependent()) {
2798 // Itanium C++ ABI:
2799 // If the operand of a sizeof or alignof operator is not
2800 // instantiation-dependent it is encoded as an integer literal
2801 // reflecting the result of the operator.
2802 //
2803 // If the result of the operator is implicitly converted to a known
2804 // integer type, that type is used for the literal; otherwise, the type
2805 // of std::size_t or std::ptrdiff_t is used.
2806 QualType T = (ImplicitlyConvertedToType.isNull() ||
2807 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2808 : ImplicitlyConvertedToType;
2809 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2810 mangleIntegerLiteral(T, V);
2811 break;
2812 }
2813
2814 switch(SAE->getKind()) {
2815 case UETT_SizeOf:
2816 Out << 's';
2817 break;
2818 case UETT_AlignOf:
2819 Out << 'a';
2820 break;
2821 case UETT_VecStep:
2822 DiagnosticsEngine &Diags = Context.getDiags();
2823 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2824 "cannot yet mangle vec_step expression");
2825 Diags.Report(DiagID);
2826 return;
2827 }
2828 if (SAE->isArgumentType()) {
2829 Out << 't';
2830 mangleType(SAE->getArgumentType());
2831 } else {
2832 Out << 'z';
2833 mangleExpression(SAE->getArgumentExpr());
2834 }
2835 break;
2836 }
2837
2838 case Expr::CXXThrowExprClass: {
2839 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002840 // <expression> ::= tw <expression> # throw expression
2841 // ::= tr # rethrow
Guy Benyei11169dd2012-12-18 14:30:41 +00002842 if (TE->getSubExpr()) {
2843 Out << "tw";
2844 mangleExpression(TE->getSubExpr());
2845 } else {
2846 Out << "tr";
2847 }
2848 break;
2849 }
2850
2851 case Expr::CXXTypeidExprClass: {
2852 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002853 // <expression> ::= ti <type> # typeid (type)
2854 // ::= te <expression> # typeid (expression)
Guy Benyei11169dd2012-12-18 14:30:41 +00002855 if (TIE->isTypeOperand()) {
2856 Out << "ti";
David Majnemer143c55e2013-09-27 07:04:31 +00002857 mangleType(TIE->getTypeOperand(Context.getASTContext()));
Guy Benyei11169dd2012-12-18 14:30:41 +00002858 } else {
2859 Out << "te";
2860 mangleExpression(TIE->getExprOperand());
2861 }
2862 break;
2863 }
2864
2865 case Expr::CXXDeleteExprClass: {
2866 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002867 // <expression> ::= [gs] dl <expression> # [::] delete expr
2868 // ::= [gs] da <expression> # [::] delete [] expr
Guy Benyei11169dd2012-12-18 14:30:41 +00002869 if (DE->isGlobalDelete()) Out << "gs";
2870 Out << (DE->isArrayForm() ? "da" : "dl");
2871 mangleExpression(DE->getArgument());
2872 break;
2873 }
2874
2875 case Expr::UnaryOperatorClass: {
2876 const UnaryOperator *UO = cast<UnaryOperator>(E);
2877 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2878 /*Arity=*/1);
2879 mangleExpression(UO->getSubExpr());
2880 break;
2881 }
2882
2883 case Expr::ArraySubscriptExprClass: {
2884 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2885
2886 // Array subscript is treated as a syntactically weird form of
2887 // binary operator.
2888 Out << "ix";
2889 mangleExpression(AE->getLHS());
2890 mangleExpression(AE->getRHS());
2891 break;
2892 }
2893
2894 case Expr::CompoundAssignOperatorClass: // fallthrough
2895 case Expr::BinaryOperatorClass: {
2896 const BinaryOperator *BO = cast<BinaryOperator>(E);
2897 if (BO->getOpcode() == BO_PtrMemD)
2898 Out << "ds";
2899 else
2900 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2901 /*Arity=*/2);
2902 mangleExpression(BO->getLHS());
2903 mangleExpression(BO->getRHS());
2904 break;
2905 }
2906
2907 case Expr::ConditionalOperatorClass: {
2908 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2909 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2910 mangleExpression(CO->getCond());
2911 mangleExpression(CO->getLHS(), Arity);
2912 mangleExpression(CO->getRHS(), Arity);
2913 break;
2914 }
2915
2916 case Expr::ImplicitCastExprClass: {
2917 ImplicitlyConvertedToType = E->getType();
2918 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2919 goto recurse;
2920 }
2921
2922 case Expr::ObjCBridgedCastExprClass: {
2923 // Mangle ownership casts as a vendor extended operator __bridge,
2924 // __bridge_transfer, or __bridge_retain.
2925 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2926 Out << "v1U" << Kind.size() << Kind;
2927 }
2928 // Fall through to mangle the cast itself.
2929
2930 case Expr::CStyleCastExprClass:
2931 case Expr::CXXStaticCastExprClass:
2932 case Expr::CXXDynamicCastExprClass:
2933 case Expr::CXXReinterpretCastExprClass:
2934 case Expr::CXXConstCastExprClass:
2935 case Expr::CXXFunctionalCastExprClass: {
2936 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2937 Out << "cv";
2938 mangleType(ECE->getType());
2939 mangleExpression(ECE->getSubExpr());
2940 break;
2941 }
2942
2943 case Expr::CXXOperatorCallExprClass: {
2944 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2945 unsigned NumArgs = CE->getNumArgs();
2946 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2947 // Mangle the arguments.
2948 for (unsigned i = 0; i != NumArgs; ++i)
2949 mangleExpression(CE->getArg(i));
2950 break;
2951 }
2952
2953 case Expr::ParenExprClass:
2954 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2955 break;
2956
2957 case Expr::DeclRefExprClass: {
2958 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2959
2960 switch (D->getKind()) {
2961 default:
2962 // <expr-primary> ::= L <mangled-name> E # external name
2963 Out << 'L';
2964 mangle(D, "_Z");
2965 Out << 'E';
2966 break;
2967
2968 case Decl::ParmVar:
2969 mangleFunctionParam(cast<ParmVarDecl>(D));
2970 break;
2971
2972 case Decl::EnumConstant: {
2973 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2974 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2975 break;
2976 }
2977
2978 case Decl::NonTypeTemplateParm: {
2979 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2980 mangleTemplateParameter(PD->getIndex());
2981 break;
2982 }
2983
2984 }
2985
2986 break;
2987 }
2988
2989 case Expr::SubstNonTypeTemplateParmPackExprClass:
2990 // FIXME: not clear how to mangle this!
2991 // template <unsigned N...> class A {
2992 // template <class U...> void foo(U (&x)[N]...);
2993 // };
2994 Out << "_SUBSTPACK_";
2995 break;
2996
2997 case Expr::FunctionParmPackExprClass: {
2998 // FIXME: not clear how to mangle this!
2999 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3000 Out << "v110_SUBSTPACK";
3001 mangleFunctionParam(FPPE->getParameterPack());
3002 break;
3003 }
3004
3005 case Expr::DependentScopeDeclRefExprClass: {
3006 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3007 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3008
3009 // All the <unresolved-name> productions end in a
3010 // base-unresolved-name, where <template-args> are just tacked
3011 // onto the end.
3012 if (DRE->hasExplicitTemplateArgs())
3013 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3014 break;
3015 }
3016
3017 case Expr::CXXBindTemporaryExprClass:
3018 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3019 break;
3020
3021 case Expr::ExprWithCleanupsClass:
3022 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3023 break;
3024
3025 case Expr::FloatingLiteralClass: {
3026 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3027 Out << 'L';
3028 mangleType(FL->getType());
3029 mangleFloat(FL->getValue());
3030 Out << 'E';
3031 break;
3032 }
3033
3034 case Expr::CharacterLiteralClass:
3035 Out << 'L';
3036 mangleType(E->getType());
3037 Out << cast<CharacterLiteral>(E)->getValue();
3038 Out << 'E';
3039 break;
3040
3041 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3042 case Expr::ObjCBoolLiteralExprClass:
3043 Out << "Lb";
3044 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3045 Out << 'E';
3046 break;
3047
3048 case Expr::CXXBoolLiteralExprClass:
3049 Out << "Lb";
3050 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3051 Out << 'E';
3052 break;
3053
3054 case Expr::IntegerLiteralClass: {
3055 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3056 if (E->getType()->isSignedIntegerType())
3057 Value.setIsSigned(true);
3058 mangleIntegerLiteral(E->getType(), Value);
3059 break;
3060 }
3061
3062 case Expr::ImaginaryLiteralClass: {
3063 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3064 // Mangle as if a complex literal.
3065 // Proposal from David Vandevoorde, 2010.06.30.
3066 Out << 'L';
3067 mangleType(E->getType());
3068 if (const FloatingLiteral *Imag =
3069 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3070 // Mangle a floating-point zero of the appropriate type.
3071 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3072 Out << '_';
3073 mangleFloat(Imag->getValue());
3074 } else {
3075 Out << "0_";
3076 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3077 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3078 Value.setIsSigned(true);
3079 mangleNumber(Value);
3080 }
3081 Out << 'E';
3082 break;
3083 }
3084
3085 case Expr::StringLiteralClass: {
3086 // Revised proposal from David Vandervoorde, 2010.07.15.
3087 Out << 'L';
3088 assert(isa<ConstantArrayType>(E->getType()));
3089 mangleType(E->getType());
3090 Out << 'E';
3091 break;
3092 }
3093
3094 case Expr::GNUNullExprClass:
3095 // FIXME: should this really be mangled the same as nullptr?
3096 // fallthrough
3097
3098 case Expr::CXXNullPtrLiteralExprClass: {
Guy Benyei11169dd2012-12-18 14:30:41 +00003099 Out << "LDnE";
3100 break;
3101 }
3102
3103 case Expr::PackExpansionExprClass:
3104 Out << "sp";
3105 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3106 break;
3107
3108 case Expr::SizeOfPackExprClass: {
3109 Out << "sZ";
3110 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3111 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3112 mangleTemplateParameter(TTP->getIndex());
3113 else if (const NonTypeTemplateParmDecl *NTTP
3114 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3115 mangleTemplateParameter(NTTP->getIndex());
3116 else if (const TemplateTemplateParmDecl *TempTP
3117 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3118 mangleTemplateParameter(TempTP->getIndex());
3119 else
3120 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3121 break;
3122 }
3123
3124 case Expr::MaterializeTemporaryExprClass: {
3125 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3126 break;
3127 }
3128
3129 case Expr::CXXThisExprClass:
3130 Out << "fpT";
3131 break;
3132 }
3133}
3134
3135/// Mangle an expression which refers to a parameter variable.
3136///
3137/// <expression> ::= <function-param>
3138/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3139/// <function-param> ::= fp <top-level CV-qualifiers>
3140/// <parameter-2 non-negative number> _ # L == 0, I > 0
3141/// <function-param> ::= fL <L-1 non-negative number>
3142/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3143/// <function-param> ::= fL <L-1 non-negative number>
3144/// p <top-level CV-qualifiers>
3145/// <I-1 non-negative number> _ # L > 0, I > 0
3146///
3147/// L is the nesting depth of the parameter, defined as 1 if the
3148/// parameter comes from the innermost function prototype scope
3149/// enclosing the current context, 2 if from the next enclosing
3150/// function prototype scope, and so on, with one special case: if
3151/// we've processed the full parameter clause for the innermost
3152/// function type, then L is one less. This definition conveniently
3153/// makes it irrelevant whether a function's result type was written
3154/// trailing or leading, but is otherwise overly complicated; the
3155/// numbering was first designed without considering references to
3156/// parameter in locations other than return types, and then the
3157/// mangling had to be generalized without changing the existing
3158/// manglings.
3159///
3160/// I is the zero-based index of the parameter within its parameter
3161/// declaration clause. Note that the original ABI document describes
3162/// this using 1-based ordinals.
3163void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3164 unsigned parmDepth = parm->getFunctionScopeDepth();
3165 unsigned parmIndex = parm->getFunctionScopeIndex();
3166
3167 // Compute 'L'.
3168 // parmDepth does not include the declaring function prototype.
3169 // FunctionTypeDepth does account for that.
3170 assert(parmDepth < FunctionTypeDepth.getDepth());
3171 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3172 if (FunctionTypeDepth.isInResultType())
3173 nestingDepth--;
3174
3175 if (nestingDepth == 0) {
3176 Out << "fp";
3177 } else {
3178 Out << "fL" << (nestingDepth - 1) << 'p';
3179 }
3180
3181 // Top-level qualifiers. We don't have to worry about arrays here,
3182 // because parameters declared as arrays should already have been
3183 // transformed to have pointer type. FIXME: apparently these don't
3184 // get mangled if used as an rvalue of a known non-class type?
3185 assert(!parm->getType()->isArrayType()
3186 && "parameter's type is still an array type?");
3187 mangleQualifiers(parm->getType().getQualifiers());
3188
3189 // Parameter index.
3190 if (parmIndex != 0) {
3191 Out << (parmIndex - 1);
3192 }
3193 Out << '_';
3194}
3195
3196void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3197 // <ctor-dtor-name> ::= C1 # complete object constructor
3198 // ::= C2 # base object constructor
3199 // ::= C3 # complete object allocating constructor
3200 //
3201 switch (T) {
3202 case Ctor_Complete:
3203 Out << "C1";
3204 break;
3205 case Ctor_Base:
3206 Out << "C2";
3207 break;
3208 case Ctor_CompleteAllocating:
3209 Out << "C3";
3210 break;
3211 }
3212}
3213
3214void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3215 // <ctor-dtor-name> ::= D0 # deleting destructor
3216 // ::= D1 # complete object destructor
3217 // ::= D2 # base object destructor
3218 //
3219 switch (T) {
3220 case Dtor_Deleting:
3221 Out << "D0";
3222 break;
3223 case Dtor_Complete:
3224 Out << "D1";
3225 break;
3226 case Dtor_Base:
3227 Out << "D2";
3228 break;
3229 }
3230}
3231
3232void CXXNameMangler::mangleTemplateArgs(
3233 const ASTTemplateArgumentListInfo &TemplateArgs) {
3234 // <template-args> ::= I <template-arg>+ E
3235 Out << 'I';
3236 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3237 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3238 Out << 'E';
3239}
3240
3241void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3242 // <template-args> ::= I <template-arg>+ E
3243 Out << 'I';
3244 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3245 mangleTemplateArg(AL[i]);
3246 Out << 'E';
3247}
3248
3249void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3250 unsigned NumTemplateArgs) {
3251 // <template-args> ::= I <template-arg>+ E
3252 Out << 'I';
3253 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3254 mangleTemplateArg(TemplateArgs[i]);
3255 Out << 'E';
3256}
3257
3258void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3259 // <template-arg> ::= <type> # type or template
3260 // ::= X <expression> E # expression
3261 // ::= <expr-primary> # simple expressions
3262 // ::= J <template-arg>* E # argument pack
Guy Benyei11169dd2012-12-18 14:30:41 +00003263 if (!A.isInstantiationDependent() || A.isDependent())
3264 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3265
3266 switch (A.getKind()) {
3267 case TemplateArgument::Null:
3268 llvm_unreachable("Cannot mangle NULL template argument");
3269
3270 case TemplateArgument::Type:
3271 mangleType(A.getAsType());
3272 break;
3273 case TemplateArgument::Template:
3274 // This is mangled as <type>.
3275 mangleType(A.getAsTemplate());
3276 break;
3277 case TemplateArgument::TemplateExpansion:
3278 // <type> ::= Dp <type> # pack expansion (C++0x)
3279 Out << "Dp";
3280 mangleType(A.getAsTemplateOrTemplatePattern());
3281 break;
3282 case TemplateArgument::Expression: {
3283 // It's possible to end up with a DeclRefExpr here in certain
3284 // dependent cases, in which case we should mangle as a
3285 // declaration.
3286 const Expr *E = A.getAsExpr()->IgnoreParens();
3287 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3288 const ValueDecl *D = DRE->getDecl();
3289 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3290 Out << "L";
3291 mangle(D, "_Z");
3292 Out << 'E';
3293 break;
3294 }
3295 }
3296
3297 Out << 'X';
3298 mangleExpression(E);
3299 Out << 'E';
3300 break;
3301 }
3302 case TemplateArgument::Integral:
3303 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3304 break;
3305 case TemplateArgument::Declaration: {
3306 // <expr-primary> ::= L <mangled-name> E # external name
3307 // Clang produces AST's where pointer-to-member-function expressions
3308 // and pointer-to-function expressions are represented as a declaration not
3309 // an expression. We compensate for it here to produce the correct mangling.
3310 ValueDecl *D = A.getAsDecl();
3311 bool compensateMangling = !A.isDeclForReferenceParam();
3312 if (compensateMangling) {
3313 Out << 'X';
3314 mangleOperatorName(OO_Amp, 1);
3315 }
3316
3317 Out << 'L';
3318 // References to external entities use the mangled name; if the name would
3319 // not normally be manged then mangle it as unqualified.
3320 //
3321 // FIXME: The ABI specifies that external names here should have _Z, but
3322 // gcc leaves this off.
3323 if (compensateMangling)
3324 mangle(D, "_Z");
3325 else
3326 mangle(D, "Z");
3327 Out << 'E';
3328
3329 if (compensateMangling)
3330 Out << 'E';
3331
3332 break;
3333 }
3334 case TemplateArgument::NullPtr: {
3335 // <expr-primary> ::= L <type> 0 E
3336 Out << 'L';
3337 mangleType(A.getNullPtrType());
3338 Out << "0E";
3339 break;
3340 }
3341 case TemplateArgument::Pack: {
Richard Smitheb0133c2013-08-27 01:03:46 +00003342 // <template-arg> ::= J <template-arg>* E
Guy Benyei11169dd2012-12-18 14:30:41 +00003343 Out << 'J';
Richard Smitheb0133c2013-08-27 01:03:46 +00003344 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
Guy Benyei11169dd2012-12-18 14:30:41 +00003345 PAEnd = A.pack_end();
3346 PA != PAEnd; ++PA)
3347 mangleTemplateArg(*PA);
3348 Out << 'E';
3349 }
3350 }
3351}
3352
3353void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3354 // <template-param> ::= T_ # first template parameter
3355 // ::= T <parameter-2 non-negative number> _
3356 if (Index == 0)
3357 Out << "T_";
3358 else
3359 Out << 'T' << (Index - 1) << '_';
3360}
3361
3362void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3363 bool result = mangleSubstitution(type);
3364 assert(result && "no existing substitution for type");
3365 (void) result;
3366}
3367
3368void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3369 bool result = mangleSubstitution(tname);
3370 assert(result && "no existing substitution for template name");
3371 (void) result;
3372}
3373
3374// <substitution> ::= S <seq-id> _
3375// ::= S_
3376bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3377 // Try one of the standard substitutions first.
3378 if (mangleStandardSubstitution(ND))
3379 return true;
3380
3381 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3382 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3383}
3384
3385/// \brief Determine whether the given type has any qualifiers that are
3386/// relevant for substitutions.
3387static bool hasMangledSubstitutionQualifiers(QualType T) {
3388 Qualifiers Qs = T.getQualifiers();
3389 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3390}
3391
3392bool CXXNameMangler::mangleSubstitution(QualType T) {
3393 if (!hasMangledSubstitutionQualifiers(T)) {
3394 if (const RecordType *RT = T->getAs<RecordType>())
3395 return mangleSubstitution(RT->getDecl());
3396 }
3397
3398 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3399
3400 return mangleSubstitution(TypePtr);
3401}
3402
3403bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3404 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3405 return mangleSubstitution(TD);
3406
3407 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3408 return mangleSubstitution(
3409 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3410}
3411
3412bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3413 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3414 if (I == Substitutions.end())
3415 return false;
3416
3417 unsigned SeqID = I->second;
3418 if (SeqID == 0)
3419 Out << "S_";
3420 else {
3421 SeqID--;
3422
3423 // <seq-id> is encoded in base-36, using digits and upper case letters.
3424 char Buffer[10];
3425 char *BufferPtr = llvm::array_endof(Buffer);
3426
3427 if (SeqID == 0) *--BufferPtr = '0';
3428
3429 while (SeqID) {
3430 assert(BufferPtr > Buffer && "Buffer overflow!");
3431
3432 char c = static_cast<char>(SeqID % 36);
3433
3434 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3435 SeqID /= 36;
3436 }
3437
3438 Out << 'S'
3439 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3440 << '_';
3441 }
3442
3443 return true;
3444}
3445
3446static bool isCharType(QualType T) {
3447 if (T.isNull())
3448 return false;
3449
3450 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3451 T->isSpecificBuiltinType(BuiltinType::Char_U);
3452}
3453
3454/// isCharSpecialization - Returns whether a given type is a template
3455/// specialization of a given name with a single argument of type char.
3456static bool isCharSpecialization(QualType T, const char *Name) {
3457 if (T.isNull())
3458 return false;
3459
3460 const RecordType *RT = T->getAs<RecordType>();
3461 if (!RT)
3462 return false;
3463
3464 const ClassTemplateSpecializationDecl *SD =
3465 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3466 if (!SD)
3467 return false;
3468
3469 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3470 return false;
3471
3472 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3473 if (TemplateArgs.size() != 1)
3474 return false;
3475
3476 if (!isCharType(TemplateArgs[0].getAsType()))
3477 return false;
3478
3479 return SD->getIdentifier()->getName() == Name;
3480}
3481
3482template <std::size_t StrLen>
3483static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3484 const char (&Str)[StrLen]) {
3485 if (!SD->getIdentifier()->isStr(Str))
3486 return false;
3487
3488 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3489 if (TemplateArgs.size() != 2)
3490 return false;
3491
3492 if (!isCharType(TemplateArgs[0].getAsType()))
3493 return false;
3494
3495 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3496 return false;
3497
3498 return true;
3499}
3500
3501bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3502 // <substitution> ::= St # ::std::
3503 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3504 if (isStd(NS)) {
3505 Out << "St";
3506 return true;
3507 }
3508 }
3509
3510 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3511 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3512 return false;
3513
3514 // <substitution> ::= Sa # ::std::allocator
3515 if (TD->getIdentifier()->isStr("allocator")) {
3516 Out << "Sa";
3517 return true;
3518 }
3519
3520 // <<substitution> ::= Sb # ::std::basic_string
3521 if (TD->getIdentifier()->isStr("basic_string")) {
3522 Out << "Sb";
3523 return true;
3524 }
3525 }
3526
3527 if (const ClassTemplateSpecializationDecl *SD =
3528 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3529 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3530 return false;
3531
3532 // <substitution> ::= Ss # ::std::basic_string<char,
3533 // ::std::char_traits<char>,
3534 // ::std::allocator<char> >
3535 if (SD->getIdentifier()->isStr("basic_string")) {
3536 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3537
3538 if (TemplateArgs.size() != 3)
3539 return false;
3540
3541 if (!isCharType(TemplateArgs[0].getAsType()))
3542 return false;
3543
3544 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3545 return false;
3546
3547 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3548 return false;
3549
3550 Out << "Ss";
3551 return true;
3552 }
3553
3554 // <substitution> ::= Si # ::std::basic_istream<char,
3555 // ::std::char_traits<char> >
3556 if (isStreamCharSpecialization(SD, "basic_istream")) {
3557 Out << "Si";
3558 return true;
3559 }
3560
3561 // <substitution> ::= So # ::std::basic_ostream<char,
3562 // ::std::char_traits<char> >
3563 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3564 Out << "So";
3565 return true;
3566 }
3567
3568 // <substitution> ::= Sd # ::std::basic_iostream<char,
3569 // ::std::char_traits<char> >
3570 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3571 Out << "Sd";
3572 return true;
3573 }
3574 }
3575 return false;
3576}
3577
3578void CXXNameMangler::addSubstitution(QualType T) {
3579 if (!hasMangledSubstitutionQualifiers(T)) {
3580 if (const RecordType *RT = T->getAs<RecordType>()) {
3581 addSubstitution(RT->getDecl());
3582 return;
3583 }
3584 }
3585
3586 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3587 addSubstitution(TypePtr);
3588}
3589
3590void CXXNameMangler::addSubstitution(TemplateName Template) {
3591 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3592 return addSubstitution(TD);
3593
3594 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3595 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3596}
3597
3598void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3599 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3600 Substitutions[Ptr] = SeqID++;
3601}
3602
3603//
3604
3605/// \brief Mangles the name of the declaration D and emits that name to the
3606/// given output stream.
3607///
3608/// If the declaration D requires a mangled name, this routine will emit that
3609/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3610/// and this routine will return false. In this case, the caller should just
3611/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3612/// name.
Rafael Espindola002667c2013-10-16 01:40:34 +00003613void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3614 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003615 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3616 "Invalid mangleName() call, argument is not a variable or function!");
3617 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3618 "Invalid mangleName() call on 'structor decl!");
3619
3620 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3621 getASTContext().getSourceManager(),
3622 "Mangling declaration");
3623
3624 CXXNameMangler Mangler(*this, Out, D);
3625 return Mangler.mangle(D);
3626}
3627
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003628void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3629 CXXCtorType Type,
3630 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003631 CXXNameMangler Mangler(*this, Out, D, Type);
3632 Mangler.mangle(D);
3633}
3634
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003635void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3636 CXXDtorType Type,
3637 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003638 CXXNameMangler Mangler(*this, Out, D, Type);
3639 Mangler.mangle(D);
3640}
3641
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003642void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3643 const ThunkInfo &Thunk,
3644 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003645 // <special-name> ::= T <call-offset> <base encoding>
3646 // # base is the nominal target function of thunk
3647 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3648 // # base is the nominal target function of thunk
3649 // # first call-offset is 'this' adjustment
3650 // # second call-offset is result adjustment
3651
3652 assert(!isa<CXXDestructorDecl>(MD) &&
3653 "Use mangleCXXDtor for destructor decls!");
3654 CXXNameMangler Mangler(*this, Out);
3655 Mangler.getStream() << "_ZT";
3656 if (!Thunk.Return.isEmpty())
3657 Mangler.getStream() << 'c';
3658
3659 // Mangle the 'this' pointer adjustment.
3660 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3661
3662 // Mangle the return pointer adjustment if there is one.
3663 if (!Thunk.Return.isEmpty())
3664 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
Timur Iskhodzhanov02014322013-10-30 11:55:43 +00003665 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3666
Guy Benyei11169dd2012-12-18 14:30:41 +00003667 Mangler.mangleFunctionEncoding(MD);
3668}
3669
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003670void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3671 const CXXDestructorDecl *DD, CXXDtorType Type,
3672 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003673 // <special-name> ::= T <call-offset> <base encoding>
3674 // # base is the nominal target function of thunk
3675 CXXNameMangler Mangler(*this, Out, DD, Type);
3676 Mangler.getStream() << "_ZT";
3677
3678 // Mangle the 'this' pointer adjustment.
3679 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3680 ThisAdjustment.VCallOffsetOffset);
3681
3682 Mangler.mangleFunctionEncoding(DD);
3683}
3684
3685/// mangleGuardVariable - Returns the mangled name for a guard variable
3686/// for the passed in VarDecl.
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003687void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3688 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003689 // <special-name> ::= GV <object name> # Guard variable for one-time
3690 // # initialization
3691 CXXNameMangler Mangler(*this, Out);
3692 Mangler.getStream() << "_ZGV";
3693 Mangler.mangleName(D);
3694}
3695
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003696void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3697 raw_ostream &Out) {
Reid Kleckner1ece9fc2013-09-10 20:43:12 +00003698 // These symbols are internal in the Itanium ABI, so the names don't matter.
3699 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3700 // avoid duplicate symbols.
3701 Out << "__cxx_global_var_init";
3702}
3703
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003704void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3705 raw_ostream &Out) {
Reid Klecknerd8110b62013-09-10 20:14:30 +00003706 // Prefix the mangling of D with __dtor_.
3707 CXXNameMangler Mangler(*this, Out);
3708 Mangler.getStream() << "__dtor_";
3709 if (shouldMangleDeclName(D))
3710 Mangler.mangle(D);
3711 else
3712 Mangler.getStream() << D->getName();
3713}
3714
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003715void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3716 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003717 // <special-name> ::= TH <object name>
3718 CXXNameMangler Mangler(*this, Out);
3719 Mangler.getStream() << "_ZTH";
3720 Mangler.mangleName(D);
3721}
3722
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003723void
3724ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3725 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003726 // <special-name> ::= TW <object name>
3727 CXXNameMangler Mangler(*this, Out);
3728 Mangler.getStream() << "_ZTW";
3729 Mangler.mangleName(D);
3730}
3731
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003732void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3733 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003734 // We match the GCC mangling here.
3735 // <special-name> ::= GR <object name>
3736 CXXNameMangler Mangler(*this, Out);
3737 Mangler.getStream() << "_ZGR";
3738 Mangler.mangleName(D);
3739}
3740
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003741void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3742 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003743 // <special-name> ::= TV <type> # virtual table
3744 CXXNameMangler Mangler(*this, Out);
3745 Mangler.getStream() << "_ZTV";
3746 Mangler.mangleNameOrStandardSubstitution(RD);
3747}
3748
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003749void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3750 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003751 // <special-name> ::= TT <type> # VTT structure
3752 CXXNameMangler Mangler(*this, Out);
3753 Mangler.getStream() << "_ZTT";
3754 Mangler.mangleNameOrStandardSubstitution(RD);
3755}
3756
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003757void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3758 int64_t Offset,
3759 const CXXRecordDecl *Type,
3760 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003761 // <special-name> ::= TC <type> <offset number> _ <base type>
3762 CXXNameMangler Mangler(*this, Out);
3763 Mangler.getStream() << "_ZTC";
3764 Mangler.mangleNameOrStandardSubstitution(RD);
3765 Mangler.getStream() << Offset;
3766 Mangler.getStream() << '_';
3767 Mangler.mangleNameOrStandardSubstitution(Type);
3768}
3769
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003770void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003771 // <special-name> ::= TI <type> # typeinfo structure
3772 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3773 CXXNameMangler Mangler(*this, Out);
3774 Mangler.getStream() << "_ZTI";
3775 Mangler.mangleType(Ty);
3776}
3777
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003778void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3779 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003780 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3781 CXXNameMangler Mangler(*this, Out);
3782 Mangler.getStream() << "_ZTS";
3783 Mangler.mangleType(Ty);
3784}
3785
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003786ItaniumMangleContext *
3787ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3788 return new ItaniumMangleContextImpl(Context, Diags);
Guy Benyei11169dd2012-12-18 14:30:41 +00003789}