blob: 3e0573bdcca70b8383a71f8270496064e7eccce8 [file] [log] [blame]
Johannes Doerfert58a7c752015-09-28 09:48:53 +00001//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
Tobias Grosser75805372011-04-29 06:27:02 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Create a polyhedral description for a static control flow region.
11//
12// The pass creates a polyhedral description of the Scops detected by the Scop
13// detection derived from their LLVM-IR code.
14//
Tobias Grossera5605d32014-10-29 19:58:28 +000015// This representation is shared among several tools in the polyhedral
Tobias Grosser75805372011-04-29 06:27:02 +000016// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
17//
18//===----------------------------------------------------------------------===//
19
Tobias Grosser5624d3c2015-12-21 12:38:56 +000020#include "polly/ScopInfo.h"
Tobias Grosser75805372011-04-29 06:27:02 +000021#include "polly/LinkAllPasses.h"
Johannes Doerfert0ee1f212014-06-17 17:31:36 +000022#include "polly/Options.h"
Tobias Grosser75805372011-04-29 06:27:02 +000023#include "polly/Support/GICHelper.h"
Tobias Grosser60b54f12011-11-08 15:41:28 +000024#include "polly/Support/SCEVValidator.h"
Tobias Grosser83628182013-05-07 08:11:54 +000025#include "polly/Support/ScopHelper.h"
Tobias Grosser9737c7b2015-11-22 11:06:51 +000026#include "llvm/ADT/DepthFirstIterator.h"
Tobias Grosserf4c24b22015-04-05 13:11:54 +000027#include "llvm/ADT/MapVector.h"
Tobias Grosserc2bb0cb2015-09-25 09:49:19 +000028#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/STLExtras.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000030#include "llvm/ADT/SetVector.h"
Tobias Grosser83628182013-05-07 08:11:54 +000031#include "llvm/ADT/Statistic.h"
Hongbin Zheng86a37742012-04-25 08:01:38 +000032#include "llvm/ADT/StringExtras.h"
Johannes Doerfertb164c792014-09-18 11:17:17 +000033#include "llvm/Analysis/AliasAnalysis.h"
Johannes Doerfert2af10e22015-11-12 03:25:01 +000034#include "llvm/Analysis/AssumptionCache.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000035#include "llvm/Analysis/LoopInfo.h"
Tobias Grosserc2bb0cb2015-09-25 09:49:19 +000036#include "llvm/Analysis/LoopIterator.h"
Tobias Grosser83628182013-05-07 08:11:54 +000037#include "llvm/Analysis/RegionIterator.h"
38#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Johannes Doerfert48fe86f2015-11-12 02:32:32 +000039#include "llvm/IR/DiagnosticInfo.h"
Tobias Grosser75805372011-04-29 06:27:02 +000040#include "llvm/Support/Debug.h"
Tobias Grosser33ba62ad2011-08-18 06:31:50 +000041#include "isl/aff.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000042#include "isl/constraint.h"
Tobias Grosserf5338802011-10-06 00:03:35 +000043#include "isl/local_space.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000044#include "isl/map.h"
Tobias Grosser4a8e3562011-12-07 07:42:51 +000045#include "isl/options.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000046#include "isl/printer.h"
Tobias Grosser808cd692015-07-14 09:33:13 +000047#include "isl/schedule.h"
48#include "isl/schedule_node.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000049#include "isl/set.h"
50#include "isl/union_map.h"
Tobias Grossercd524dc2015-05-09 09:36:38 +000051#include "isl/union_set.h"
Tobias Grosseredab1352013-06-21 06:41:31 +000052#include "isl/val.h"
Tobias Grosser75805372011-04-29 06:27:02 +000053#include <sstream>
54#include <string>
55#include <vector>
56
57using namespace llvm;
58using namespace polly;
59
Chandler Carruth95fef942014-04-22 03:30:19 +000060#define DEBUG_TYPE "polly-scops"
61
Tobias Grosser74394f02013-01-14 22:40:23 +000062STATISTIC(ScopFound, "Number of valid Scops");
63STATISTIC(RichScopFound, "Number of Scops containing a loop");
Tobias Grosser75805372011-04-29 06:27:02 +000064
Tobias Grosser75dc40c2015-12-20 13:31:48 +000065// The maximal number of basic sets we allow during domain construction to
66// be created. More complex scops will result in very high compile time and
67// are also unlikely to result in good code
68static int const MaxConjunctsInDomain = 20;
69
Michael Kruse7bf39442015-09-10 12:46:52 +000070static cl::opt<bool> ModelReadOnlyScalars(
71 "polly-analyze-read-only-scalars",
72 cl::desc("Model read-only scalar values in the scop description"),
73 cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
74
Johannes Doerfert9e7b17b2014-08-18 00:40:13 +000075// Multiplicative reductions can be disabled separately as these kind of
Johannes Doerfert0ee1f212014-06-17 17:31:36 +000076// operations can overflow easily. Additive reductions and bit operations
77// are in contrast pretty stable.
Tobias Grosser483a90d2014-07-09 10:50:10 +000078static cl::opt<bool> DisableMultiplicativeReductions(
79 "polly-disable-multiplicative-reductions",
80 cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
81 cl::init(false), cl::cat(PollyCategory));
Johannes Doerfert0ee1f212014-06-17 17:31:36 +000082
Johannes Doerfert9143d672014-09-27 11:02:39 +000083static cl::opt<unsigned> RunTimeChecksMaxParameters(
84 "polly-rtc-max-parameters",
85 cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
86 cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
87
Tobias Grosser71500722015-03-28 15:11:14 +000088static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
89 "polly-rtc-max-arrays-per-group",
90 cl::desc("The maximal number of arrays to compare in each alias group."),
91 cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
Tobias Grosser8a9c2352015-08-16 10:19:29 +000092static cl::opt<std::string> UserContextStr(
93 "polly-context", cl::value_desc("isl parameter set"),
94 cl::desc("Provide additional constraints on the context parameters"),
95 cl::init(""), cl::cat(PollyCategory));
Tobias Grosser71500722015-03-28 15:11:14 +000096
Tobias Grosserd83b8a82015-08-20 19:08:11 +000097static cl::opt<bool> DetectReductions("polly-detect-reductions",
98 cl::desc("Detect and exploit reductions"),
99 cl::Hidden, cl::ZeroOrMore,
100 cl::init(true), cl::cat(PollyCategory));
101
Tobias Grosser20a4c0c2015-11-11 16:22:36 +0000102static cl::opt<int> MaxDisjunctsAssumed(
103 "polly-max-disjuncts-assumed",
104 cl::desc("The maximal number of disjuncts we allow in the assumption "
105 "context (this bounds compile time)"),
106 cl::Hidden, cl::ZeroOrMore, cl::init(150), cl::cat(PollyCategory));
107
Tobias Grosser4927c8e2015-11-24 12:50:02 +0000108static cl::opt<bool> IgnoreIntegerWrapping(
109 "polly-ignore-integer-wrapping",
110 cl::desc("Do not build run-time checks to proof absence of integer "
111 "wrapping"),
112 cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
113
Michael Kruse7bf39442015-09-10 12:46:52 +0000114//===----------------------------------------------------------------------===//
Michael Kruse7bf39442015-09-10 12:46:52 +0000115
Michael Kruse046dde42015-08-10 13:01:57 +0000116// Create a sequence of two schedules. Either argument may be null and is
117// interpreted as the empty schedule. Can also return null if both schedules are
118// empty.
119static __isl_give isl_schedule *
120combineInSequence(__isl_take isl_schedule *Prev,
121 __isl_take isl_schedule *Succ) {
122 if (!Prev)
123 return Succ;
124 if (!Succ)
125 return Prev;
126
127 return isl_schedule_sequence(Prev, Succ);
128}
129
Johannes Doerferte7044942015-02-24 11:58:30 +0000130static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S,
131 const ConstantRange &Range,
132 int dim,
133 enum isl_dim_type type) {
134 isl_val *V;
135 isl_ctx *ctx = isl_set_get_ctx(S);
136
Johannes Doerfert8f8af432015-04-26 20:07:21 +0000137 bool useLowerUpperBound = Range.isSignWrappedSet() && !Range.isFullSet();
138 const auto LB = useLowerUpperBound ? Range.getLower() : Range.getSignedMin();
Johannes Doerferte4bd53b2015-03-08 19:49:50 +0000139 V = isl_valFromAPInt(ctx, LB, true);
Johannes Doerferte7044942015-02-24 11:58:30 +0000140 isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V);
141
Johannes Doerfert8f8af432015-04-26 20:07:21 +0000142 const auto UB = useLowerUpperBound ? Range.getUpper() : Range.getSignedMax();
Johannes Doerferte4bd53b2015-03-08 19:49:50 +0000143 V = isl_valFromAPInt(ctx, UB, true);
Johannes Doerfert8f8af432015-04-26 20:07:21 +0000144 if (useLowerUpperBound)
Johannes Doerferte4bd53b2015-03-08 19:49:50 +0000145 V = isl_val_sub_ui(V, 1);
Johannes Doerferte7044942015-02-24 11:58:30 +0000146 isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V);
147
Johannes Doerfert8f8af432015-04-26 20:07:21 +0000148 if (useLowerUpperBound)
Johannes Doerferte7044942015-02-24 11:58:30 +0000149 return isl_set_union(SLB, SUB);
150 else
151 return isl_set_intersect(SLB, SUB);
152}
153
Johannes Doerfert4eed5be2015-08-20 18:04:22 +0000154static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
155 LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
156 if (!BasePtrLI)
157 return nullptr;
158
159 if (!S->getRegion().contains(BasePtrLI))
160 return nullptr;
161
162 ScalarEvolution &SE = *S->getSE();
163
164 auto *OriginBaseSCEV =
165 SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
166 if (!OriginBaseSCEV)
167 return nullptr;
168
169 auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
170 if (!OriginBaseSCEVUnknown)
171 return nullptr;
172
Tobias Grosser6abc75a2015-11-10 17:31:31 +0000173 return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
Tobias Grossera535dff2015-12-13 19:59:01 +0000174 ScopArrayInfo::MK_Array);
Johannes Doerfert4eed5be2015-08-20 18:04:22 +0000175}
176
Tobias Grosser49ad36c2015-05-20 08:05:31 +0000177ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx,
Tobias Grossera535dff2015-12-13 19:59:01 +0000178 ArrayRef<const SCEV *> Sizes, enum MemoryKind Kind,
Johannes Doerfert55b3d8b2015-11-12 20:15:08 +0000179 const DataLayout &DL, Scop *S)
180 : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
Tobias Grosser92245222015-07-28 14:53:44 +0000181 std::string BasePtrName =
Tobias Grossera535dff2015-12-13 19:59:01 +0000182 getIslCompatibleName("MemRef_", BasePtr, Kind == MK_PHI ? "__phi" : "");
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000183 Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
Johannes Doerfert4eed5be2015-08-20 18:04:22 +0000184
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000185 updateSizes(Sizes);
Johannes Doerfert4eed5be2015-08-20 18:04:22 +0000186 BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
187 if (BasePtrOriginSAI)
188 const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000189}
190
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000191__isl_give isl_space *ScopArrayInfo::getSpace() const {
192 auto Space =
193 isl_space_set_alloc(isl_id_get_ctx(Id), 0, getNumberOfDimensions());
194 Space = isl_space_set_tuple_id(Space, isl_dim_set, isl_id_copy(Id));
195 return Space;
196}
197
Tobias Grosser8286b832015-11-02 11:29:32 +0000198bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes) {
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000199 int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
200 int ExtraDimsNew = NewSizes.size() - SharedDims;
201 int ExtraDimsOld = DimensionSizes.size() - SharedDims;
Tobias Grosser8286b832015-11-02 11:29:32 +0000202 for (int i = 0; i < SharedDims; i++)
203 if (NewSizes[i + ExtraDimsNew] != DimensionSizes[i + ExtraDimsOld])
204 return false;
205
206 if (DimensionSizes.size() >= NewSizes.size())
207 return true;
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000208
209 DimensionSizes.clear();
210 DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
211 NewSizes.end());
212 for (isl_pw_aff *Size : DimensionSizesPw)
213 isl_pw_aff_free(Size);
214 DimensionSizesPw.clear();
215 for (const SCEV *Expr : DimensionSizes) {
216 isl_pw_aff *Size = S.getPwAff(Expr);
217 DimensionSizesPw.push_back(Size);
218 }
Tobias Grosser8286b832015-11-02 11:29:32 +0000219 return true;
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000220}
221
Tobias Grosserd46fd5e2015-08-12 15:27:16 +0000222ScopArrayInfo::~ScopArrayInfo() {
223 isl_id_free(Id);
224 for (isl_pw_aff *Size : DimensionSizesPw)
225 isl_pw_aff_free(Size);
226}
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000227
Tobias Grosser49ad36c2015-05-20 08:05:31 +0000228std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); }
229
230int ScopArrayInfo::getElemSizeInBytes() const {
Johannes Doerfert55b3d8b2015-11-12 20:15:08 +0000231 return DL.getTypeAllocSize(ElementType);
Tobias Grosser49ad36c2015-05-20 08:05:31 +0000232}
233
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000234isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); }
235
236void ScopArrayInfo::dump() const { print(errs()); }
237
Tobias Grosserd46fd5e2015-08-12 15:27:16 +0000238void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
Tobias Grosser4ea2e072015-11-10 14:02:54 +0000239 OS.indent(8) << *getElementType() << " " << getName();
240 if (getNumberOfDimensions() > 0)
241 OS << "[*]";
Tobias Grosser26253842015-11-10 14:24:21 +0000242 for (unsigned u = 1; u < getNumberOfDimensions(); u++) {
Tobias Grosserd46fd5e2015-08-12 15:27:16 +0000243 OS << "[";
244
Tobias Grosser26253842015-11-10 14:24:21 +0000245 if (SizeAsPwAff) {
246 auto Size = getDimensionSizePw(u);
247 OS << " " << Size << " ";
248 isl_pw_aff_free(Size);
249 } else {
250 OS << *getDimensionSize(u);
251 }
Tobias Grosserd46fd5e2015-08-12 15:27:16 +0000252
253 OS << "]";
254 }
255
Tobias Grosser4ea2e072015-11-10 14:02:54 +0000256 OS << ";";
257
Johannes Doerfert4eed5be2015-08-20 18:04:22 +0000258 if (BasePtrOriginSAI)
259 OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
260
Tobias Grosser49ad36c2015-05-20 08:05:31 +0000261 OS << " // Element size " << getElemSizeInBytes() << "\n";
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000262}
263
264const ScopArrayInfo *
265ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
266 isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
267 assert(Id && "Output dimension didn't have an ID");
268 return getFromId(Id);
269}
270
271const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) {
272 void *User = isl_id_get_user(Id);
273 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
274 isl_id_free(Id);
275 return SAI;
276}
277
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000278void MemoryAccess::updateDimensionality() {
279 auto ArraySpace = getScopArrayInfo()->getSpace();
280 auto AccessSpace = isl_space_range(isl_map_get_space(AccessRelation));
281
282 auto DimsArray = isl_space_dim(ArraySpace, isl_dim_set);
283 auto DimsAccess = isl_space_dim(AccessSpace, isl_dim_set);
284 auto DimsMissing = DimsArray - DimsAccess;
285
286 auto Map = isl_map_from_domain_and_range(isl_set_universe(AccessSpace),
287 isl_set_universe(ArraySpace));
288
289 for (unsigned i = 0; i < DimsMissing; i++)
290 Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
291
292 for (unsigned i = DimsMissing; i < DimsArray; i++)
293 Map = isl_map_equate(Map, isl_dim_in, i - DimsMissing, isl_dim_out, i);
294
295 AccessRelation = isl_map_apply_range(AccessRelation, Map);
Roman Gareev10595a12016-01-08 14:01:59 +0000296
297 assumeNoOutOfBound();
Tobias Grosser99c70dd2015-09-26 08:55:54 +0000298}
299
Johannes Doerfert32868bf2014-08-01 08:13:25 +0000300const std::string
301MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
302 switch (RT) {
303 case MemoryAccess::RT_NONE:
304 llvm_unreachable("Requested a reduction operator string for a memory "
305 "access which isn't a reduction");
306 case MemoryAccess::RT_ADD:
307 return "+";
308 case MemoryAccess::RT_MUL:
309 return "*";
310 case MemoryAccess::RT_BOR:
311 return "|";
312 case MemoryAccess::RT_BXOR:
313 return "^";
314 case MemoryAccess::RT_BAND:
315 return "&";
316 }
317 llvm_unreachable("Unknown reduction type");
318 return "";
319}
320
Johannes Doerfertf6183392014-07-01 20:52:51 +0000321/// @brief Return the reduction type for a given binary operator
322static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
323 const Instruction *Load) {
324 if (!BinOp)
325 return MemoryAccess::RT_NONE;
326 switch (BinOp->getOpcode()) {
327 case Instruction::FAdd:
328 if (!BinOp->hasUnsafeAlgebra())
329 return MemoryAccess::RT_NONE;
330 // Fall through
331 case Instruction::Add:
332 return MemoryAccess::RT_ADD;
333 case Instruction::Or:
334 return MemoryAccess::RT_BOR;
335 case Instruction::Xor:
336 return MemoryAccess::RT_BXOR;
337 case Instruction::And:
338 return MemoryAccess::RT_BAND;
339 case Instruction::FMul:
340 if (!BinOp->hasUnsafeAlgebra())
341 return MemoryAccess::RT_NONE;
342 // Fall through
343 case Instruction::Mul:
344 if (DisableMultiplicativeReductions)
345 return MemoryAccess::RT_NONE;
346 return MemoryAccess::RT_MUL;
347 default:
348 return MemoryAccess::RT_NONE;
349 }
350}
Tobias Grosser5fd8c092015-09-17 17:28:15 +0000351
Tobias Grosser5fd8c092015-09-17 17:28:15 +0000352/// @brief Derive the individual index expressions from a GEP instruction
353///
354/// This function optimistically assumes the GEP references into a fixed size
355/// array. If this is actually true, this function returns a list of array
356/// subscript expressions as SCEV as well as a list of integers describing
357/// the size of the individual array dimensions. Both lists have either equal
358/// length of the size list is one element shorter in case there is no known
359/// size available for the outermost array dimension.
360///
361/// @param GEP The GetElementPtr instruction to analyze.
362///
363/// @return A tuple with the subscript expressions and the dimension sizes.
364static std::tuple<std::vector<const SCEV *>, std::vector<int>>
365getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) {
366 std::vector<const SCEV *> Subscripts;
367 std::vector<int> Sizes;
368
369 Type *Ty = GEP->getPointerOperandType();
370
371 bool DroppedFirstDim = false;
372
Michael Kruse26ed65e2015-09-24 17:32:49 +0000373 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
Tobias Grosser5fd8c092015-09-17 17:28:15 +0000374
375 const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
376
377 if (i == 1) {
378 if (auto PtrTy = dyn_cast<PointerType>(Ty)) {
379 Ty = PtrTy->getElementType();
380 } else if (auto ArrayTy = dyn_cast<ArrayType>(Ty)) {
381 Ty = ArrayTy->getElementType();
382 } else {
383 Subscripts.clear();
384 Sizes.clear();
385 break;
386 }
387 if (auto Const = dyn_cast<SCEVConstant>(Expr))
388 if (Const->getValue()->isZero()) {
389 DroppedFirstDim = true;
390 continue;
391 }
392 Subscripts.push_back(Expr);
393 continue;
394 }
395
396 auto ArrayTy = dyn_cast<ArrayType>(Ty);
397 if (!ArrayTy) {
398 Subscripts.clear();
399 Sizes.clear();
400 break;
401 }
402
403 Subscripts.push_back(Expr);
404 if (!(DroppedFirstDim && i == 2))
405 Sizes.push_back(ArrayTy->getNumElements());
406
407 Ty = ArrayTy->getElementType();
408 }
409
410 return std::make_tuple(Subscripts, Sizes);
411}
412
Tobias Grosser75805372011-04-29 06:27:02 +0000413MemoryAccess::~MemoryAccess() {
Tobias Grosser6f48e0f2015-05-15 09:58:32 +0000414 isl_id_free(Id);
Tobias Grosser54a86e62011-08-18 06:31:46 +0000415 isl_map_free(AccessRelation);
Tobias Grosser166c4222015-09-05 07:46:40 +0000416 isl_map_free(NewAccessRelation);
Tobias Grosser75805372011-04-29 06:27:02 +0000417}
418
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000419const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const {
420 isl_id *ArrayId = getArrayId();
421 void *User = isl_id_get_user(ArrayId);
422 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
423 isl_id_free(ArrayId);
424 return SAI;
425}
426
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000427__isl_give isl_id *MemoryAccess::getArrayId() const {
Johannes Doerfert5d83f092014-07-29 08:37:55 +0000428 return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
429}
430
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000431__isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation(
432 __isl_take isl_union_map *USchedule) const {
Johannes Doerferta99130f2014-10-13 12:58:03 +0000433 isl_map *Schedule, *ScheduledAccRel;
434 isl_union_set *UDomain;
435
436 UDomain = isl_union_set_from_set(getStatement()->getDomain());
437 USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
438 Schedule = isl_map_from_union_map(USchedule);
439 ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule);
440 return isl_pw_multi_aff_from_map(ScheduledAccRel);
441}
442
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000443__isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const {
Tobias Grosser5d453812011-10-06 00:04:11 +0000444 return isl_map_copy(AccessRelation);
445}
446
Johannes Doerferta99130f2014-10-13 12:58:03 +0000447std::string MemoryAccess::getOriginalAccessRelationStr() const {
Tobias Grosser5d453812011-10-06 00:04:11 +0000448 return stringFromIslObj(AccessRelation);
449}
450
Johannes Doerferta99130f2014-10-13 12:58:03 +0000451__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000452 return isl_map_get_space(AccessRelation);
453}
454
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000455__isl_give isl_map *MemoryAccess::getNewAccessRelation() const {
Tobias Grosser166c4222015-09-05 07:46:40 +0000456 return isl_map_copy(NewAccessRelation);
Tobias Grosser75805372011-04-29 06:27:02 +0000457}
458
Tobias Grosser6f730082015-09-05 07:46:47 +0000459std::string MemoryAccess::getNewAccessRelationStr() const {
460 return stringFromIslObj(NewAccessRelation);
461}
462
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000463__isl_give isl_basic_map *
464MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
Tobias Grosser084d8f72012-05-29 09:29:44 +0000465 isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
Tobias Grossered295662012-09-11 13:50:21 +0000466 Space = isl_space_align_params(Space, Statement->getDomainSpace());
Tobias Grosser75805372011-04-29 06:27:02 +0000467
Tobias Grosser084d8f72012-05-29 09:29:44 +0000468 return isl_basic_map_from_domain_and_range(
Tobias Grosserabfbe632013-02-05 12:09:06 +0000469 isl_basic_set_universe(Statement->getDomainSpace()),
470 isl_basic_set_universe(Space));
Tobias Grosser75805372011-04-29 06:27:02 +0000471}
472
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000473// Formalize no out-of-bound access assumption
474//
475// When delinearizing array accesses we optimistically assume that the
476// delinearized accesses do not access out of bound locations (the subscript
477// expression of each array evaluates for each statement instance that is
478// executed to a value that is larger than zero and strictly smaller than the
479// size of the corresponding dimension). The only exception is the outermost
Tobias Grosserf57d63f2014-08-03 21:07:30 +0000480// dimension for which we do not need to assume any upper bound. At this point
481// we formalize this assumption to ensure that at code generation time the
482// relevant run-time checks can be generated.
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000483//
484// To find the set of constraints necessary to avoid out of bound accesses, we
485// first build the set of data locations that are not within array bounds. We
486// then apply the reverse access relation to obtain the set of iterations that
487// may contain invalid accesses and reduce this set of iterations to the ones
488// that are actually executed by intersecting them with the domain of the
489// statement. If we now project out all loop dimensions, we obtain a set of
490// parameters that may cause statement instances to be executed that may
491// possibly yield out of bound memory accesses. The complement of these
492// constraints is the set of constraints that needs to be assumed to ensure such
493// statement instances are never executed.
Michael Krusee2bccbb2015-09-18 19:59:43 +0000494void MemoryAccess::assumeNoOutOfBound() {
Johannes Doerferta99130f2014-10-13 12:58:03 +0000495 isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000496 isl_set *Outside = isl_set_empty(isl_space_copy(Space));
Roman Gareev10595a12016-01-08 14:01:59 +0000497 for (int i = 1, Size = isl_space_dim(Space, isl_dim_set); i < Size; ++i) {
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000498 isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
499 isl_pw_aff *Var =
500 isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
501 isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
502
503 isl_set *DimOutside;
504
Tobias Grosserf57d63f2014-08-03 21:07:30 +0000505 DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
Roman Gareev10595a12016-01-08 14:01:59 +0000506 isl_pw_aff *SizeE = getScopArrayInfo()->getDimensionSizePw(i);
Tobias Grosserf57d63f2014-08-03 21:07:30 +0000507 SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
508 isl_space_dim(Space, isl_dim_set));
509 SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
510 isl_space_get_tuple_id(Space, isl_dim_set));
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000511
Tobias Grosserf57d63f2014-08-03 21:07:30 +0000512 DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000513
514 Outside = isl_set_union(Outside, DimOutside);
515 }
516
517 Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
518 Outside = isl_set_intersect(Outside, Statement->getDomain());
519 Outside = isl_set_params(Outside);
Tobias Grosserf54bb772015-06-26 12:09:28 +0000520
521 // Remove divs to avoid the construction of overly complicated assumptions.
522 // Doing so increases the set of parameter combinations that are assumed to
523 // not appear. This is always save, but may make the resulting run-time check
524 // bail out more often than strictly necessary.
525 Outside = isl_set_remove_divs(Outside);
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000526 Outside = isl_set_complement(Outside);
Johannes Doerfertd84493e2015-11-12 02:33:38 +0000527 Statement->getParent()->addAssumption(INBOUNDS, Outside,
528 getAccessInstruction()->getDebugLoc());
Tobias Grosser5e6813d2014-07-02 17:47:48 +0000529 isl_space_free(Space);
530}
531
Johannes Doerferte7044942015-02-24 11:58:30 +0000532void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
533 ScalarEvolution *SE = Statement->getParent()->getSE();
534
535 Value *Ptr = getPointerOperand(*getAccessInstruction());
536 if (!Ptr || !SE->isSCEVable(Ptr->getType()))
537 return;
538
539 auto *PtrSCEV = SE->getSCEV(Ptr);
540 if (isa<SCEVCouldNotCompute>(PtrSCEV))
541 return;
542
543 auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
544 if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
545 PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
546
547 const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
548 if (Range.isFullSet())
549 return;
550
Johannes Doerferte4bd53b2015-03-08 19:49:50 +0000551 bool isWrapping = Range.isSignWrappedSet();
Johannes Doerferte7044942015-02-24 11:58:30 +0000552 unsigned BW = Range.getBitWidth();
Johannes Doerferte4bd53b2015-03-08 19:49:50 +0000553 const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
554 const auto UB = isWrapping ? Range.getUpper() : Range.getSignedMax();
555
556 auto Min = LB.sdiv(APInt(BW, ElementSize));
557 auto Max = (UB - APInt(BW, 1)).sdiv(APInt(BW, ElementSize));
Johannes Doerferte7044942015-02-24 11:58:30 +0000558
559 isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation));
560 AccessRange =
561 addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set);
562 AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange);
563}
564
Michael Krusee2bccbb2015-09-18 19:59:43 +0000565__isl_give isl_map *MemoryAccess::foldAccess(__isl_take isl_map *AccessRelation,
Tobias Grosser619190d2015-03-30 17:22:28 +0000566 ScopStmt *Statement) {
Michael Krusee2bccbb2015-09-18 19:59:43 +0000567 int Size = Subscripts.size();
Tobias Grosser619190d2015-03-30 17:22:28 +0000568
569 for (int i = Size - 2; i >= 0; --i) {
570 isl_space *Space;
571 isl_map *MapOne, *MapTwo;
Michael Krusee2bccbb2015-09-18 19:59:43 +0000572 isl_pw_aff *DimSize = Statement->getPwAff(Sizes[i]);
Tobias Grosser619190d2015-03-30 17:22:28 +0000573
574 isl_space *SpaceSize = isl_pw_aff_get_space(DimSize);
575 isl_pw_aff_free(DimSize);
576 isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0);
577
578 Space = isl_map_get_space(AccessRelation);
579 Space = isl_space_map_from_set(isl_space_range(Space));
580 Space = isl_space_align_params(Space, SpaceSize);
581
582 int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId);
583 isl_id_free(ParamId);
584
585 MapOne = isl_map_universe(isl_space_copy(Space));
586 for (int j = 0; j < Size; ++j)
587 MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j);
588 MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0);
589
590 MapTwo = isl_map_universe(isl_space_copy(Space));
591 for (int j = 0; j < Size; ++j)
592 if (j < i || j > i + 1)
593 MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j);
594
595 isl_local_space *LS = isl_local_space_from_space(Space);
596 isl_constraint *C;
597 C = isl_equality_alloc(isl_local_space_copy(LS));
598 C = isl_constraint_set_constant_si(C, -1);
599 C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1);
600 C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1);
601 MapTwo = isl_map_add_constraint(MapTwo, C);
602 C = isl_equality_alloc(LS);
603 C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1);
604 C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1);
605 C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1);
606 MapTwo = isl_map_add_constraint(MapTwo, C);
607 MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1);
608
609 MapOne = isl_map_union(MapOne, MapTwo);
610 AccessRelation = isl_map_apply_range(AccessRelation, MapOne);
611 }
612 return AccessRelation;
613}
614
Johannes Doerferta4b77c02015-11-12 20:15:32 +0000615/// @brief Check if @p Expr is divisible by @p Size.
616static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
617
618 // Only one factor needs to be divisible.
619 if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
620 for (auto *FactorExpr : MulExpr->operands())
621 if (isDivisible(FactorExpr, Size, SE))
622 return true;
623 return false;
624 }
625
626 // For other n-ary expressions (Add, AddRec, Max,...) all operands need
627 // to be divisble.
628 if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
629 for (auto *OpExpr : NAryExpr->operands())
630 if (!isDivisible(OpExpr, Size, SE))
631 return false;
632 return true;
633 }
634
635 auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
636 auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
637 auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
638 return MulSCEV == Expr;
639}
640
Michael Krusee2bccbb2015-09-18 19:59:43 +0000641void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
642 assert(!AccessRelation && "AccessReltation already built");
Tobias Grosser75805372011-04-29 06:27:02 +0000643
Michael Krusee2bccbb2015-09-18 19:59:43 +0000644 isl_ctx *Ctx = isl_id_get_ctx(Id);
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000645 isl_id *BaseAddrId = SAI->getBasePtrId();
Tobias Grosser5683df42011-11-09 22:34:34 +0000646
Michael Krusee2bccbb2015-09-18 19:59:43 +0000647 if (!isAffine()) {
Tobias Grosser4f967492013-06-23 05:21:18 +0000648 // We overapproximate non-affine accesses with a possible access to the
649 // whole array. For read accesses it does not make a difference, if an
650 // access must or may happen. However, for write accesses it is important to
651 // differentiate between writes that must happen and writes that may happen.
Tobias Grosser04d6ae62013-06-23 06:04:54 +0000652 AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
Johannes Doerfert5d83f092014-07-29 08:37:55 +0000653 AccessRelation =
654 isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
Johannes Doerferte7044942015-02-24 11:58:30 +0000655
Michael Krusee2bccbb2015-09-18 19:59:43 +0000656 computeBoundsOnAccessRelation(getElemSizeInBytes());
Tobias Grossera1879642011-12-20 10:43:14 +0000657 return;
658 }
659
Johannes Doerferta4b77c02015-11-12 20:15:32 +0000660 Scop &S = *getStatement()->getParent();
Johannes Doerfert5d83f092014-07-29 08:37:55 +0000661 isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
Tobias Grosser79baa212014-04-10 08:38:02 +0000662 AccessRelation = isl_map_universe(Space);
Tobias Grossera1879642011-12-20 10:43:14 +0000663
Michael Krusee2bccbb2015-09-18 19:59:43 +0000664 for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
665 isl_pw_aff *Affine = Statement->getPwAff(Subscripts[i]);
Tobias Grosser75805372011-04-29 06:27:02 +0000666
Sebastian Pop422e33f2014-06-03 18:16:31 +0000667 if (Size == 1) {
668 // For the non delinearized arrays, divide the access function of the last
669 // subscript by the size of the elements in the array.
Sebastian Pop18016682014-04-08 21:20:44 +0000670 //
671 // A stride one array access in C expressed as A[i] is expressed in
672 // LLVM-IR as something like A[i * elementsize]. This hides the fact that
673 // two subsequent values of 'i' index two values that are stored next to
674 // each other in memory. By this division we make this characteristic
Johannes Doerferta4b77c02015-11-12 20:15:32 +0000675 // obvious again. However, if the index is not divisible by the element
676 // size we will bail out.
Michael Krusee2bccbb2015-09-18 19:59:43 +0000677 isl_val *v = isl_val_int_from_si(Ctx, getElemSizeInBytes());
Sebastian Pop18016682014-04-08 21:20:44 +0000678 Affine = isl_pw_aff_scale_down_val(Affine, v);
Johannes Doerferta4b77c02015-11-12 20:15:32 +0000679
680 if (!isDivisible(Subscripts[0], getElemSizeInBytes(), *S.getSE()))
Tobias Grosser8d4f6262015-12-12 09:52:26 +0000681 S.invalidate(ALIGNMENT, AccessInstruction->getDebugLoc());
Sebastian Pop18016682014-04-08 21:20:44 +0000682 }
683
684 isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
685
Tobias Grosser79baa212014-04-10 08:38:02 +0000686 AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
Sebastian Pop18016682014-04-08 21:20:44 +0000687 }
688
Michael Krusee2bccbb2015-09-18 19:59:43 +0000689 if (Sizes.size() > 1 && !isa<SCEVConstant>(Sizes[0]))
690 AccessRelation = foldAccess(AccessRelation, Statement);
Tobias Grosser619190d2015-03-30 17:22:28 +0000691
Tobias Grosser79baa212014-04-10 08:38:02 +0000692 Space = Statement->getDomainSpace();
Tobias Grosserabfbe632013-02-05 12:09:06 +0000693 AccessRelation = isl_map_set_tuple_id(
694 AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
Johannes Doerfert5d83f092014-07-29 08:37:55 +0000695 AccessRelation =
696 isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
697
Tobias Grosseraa660a92015-03-30 00:07:50 +0000698 AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
Johannes Doerfert5d83f092014-07-29 08:37:55 +0000699 isl_space_free(Space);
Tobias Grosser8cae72f2011-11-08 15:41:08 +0000700}
Tobias Grosser30b8a092011-08-18 07:51:37 +0000701
Michael Krusecac948e2015-10-02 13:53:07 +0000702MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
Tobias Grosserf1bfd752015-11-05 20:15:37 +0000703 AccessType Type, Value *BaseAddress,
704 unsigned ElemBytes, bool Affine,
Michael Krusee2bccbb2015-09-18 19:59:43 +0000705 ArrayRef<const SCEV *> Subscripts,
706 ArrayRef<const SCEV *> Sizes, Value *AccessValue,
Tobias Grossera535dff2015-12-13 19:59:01 +0000707 ScopArrayInfo::MemoryKind Kind, StringRef BaseName)
708 : Kind(Kind), AccType(Type), RedType(RT_NONE), Statement(Stmt),
Michael Krusecac948e2015-10-02 13:53:07 +0000709 BaseAddr(BaseAddress), BaseName(BaseName), ElemBytes(ElemBytes),
710 Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
711 AccessValue(AccessValue), IsAffine(Affine),
Michael Krusee2bccbb2015-09-18 19:59:43 +0000712 Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
Tobias Grosserf1bfd752015-11-05 20:15:37 +0000713 NewAccessRelation(nullptr) {
714
715 std::string IdName = "__polly_array_ref";
716 Id = isl_id_alloc(Stmt->getParent()->getIslCtx(), IdName.c_str(), this);
717}
Michael Krusee2bccbb2015-09-18 19:59:43 +0000718
Tobias Grosser8cae72f2011-11-08 15:41:08 +0000719void MemoryAccess::realignParams() {
Tobias Grosser6defb5b2014-04-10 08:37:44 +0000720 isl_space *ParamSpace = Statement->getParent()->getParamSpace();
Tobias Grosser37487052011-10-06 00:03:42 +0000721 AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
Tobias Grosser75805372011-04-29 06:27:02 +0000722}
723
Johannes Doerfert32868bf2014-08-01 08:13:25 +0000724const std::string MemoryAccess::getReductionOperatorStr() const {
725 return MemoryAccess::getReductionOperatorStr(getReductionType());
726}
727
Tobias Grosser6f48e0f2015-05-15 09:58:32 +0000728__isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); }
729
Johannes Doerfertf6183392014-07-01 20:52:51 +0000730raw_ostream &polly::operator<<(raw_ostream &OS,
731 MemoryAccess::ReductionType RT) {
Johannes Doerfert32868bf2014-08-01 08:13:25 +0000732 if (RT == MemoryAccess::RT_NONE)
Johannes Doerfertf6183392014-07-01 20:52:51 +0000733 OS << "NONE";
Johannes Doerfert32868bf2014-08-01 08:13:25 +0000734 else
735 OS << MemoryAccess::getReductionOperatorStr(RT);
Johannes Doerfertf6183392014-07-01 20:52:51 +0000736 return OS;
737}
738
Tobias Grosser75805372011-04-29 06:27:02 +0000739void MemoryAccess::print(raw_ostream &OS) const {
Johannes Doerfert4c7ce472014-10-08 10:11:33 +0000740 switch (AccType) {
Tobias Grosserb58f6a42013-07-13 20:41:24 +0000741 case READ:
Johannes Doerfert6780bc32014-06-26 18:47:03 +0000742 OS.indent(12) << "ReadAccess :=\t";
Tobias Grosser4f967492013-06-23 05:21:18 +0000743 break;
Tobias Grosserb58f6a42013-07-13 20:41:24 +0000744 case MUST_WRITE:
Johannes Doerfert6780bc32014-06-26 18:47:03 +0000745 OS.indent(12) << "MustWriteAccess :=\t";
Tobias Grosser4f967492013-06-23 05:21:18 +0000746 break;
Tobias Grosserb58f6a42013-07-13 20:41:24 +0000747 case MAY_WRITE:
Johannes Doerfert6780bc32014-06-26 18:47:03 +0000748 OS.indent(12) << "MayWriteAccess :=\t";
Tobias Grosser4f967492013-06-23 05:21:18 +0000749 break;
750 }
Johannes Doerfert0ff23ec2015-02-06 20:13:15 +0000751 OS << "[Reduction Type: " << getReductionType() << "] ";
Tobias Grossera535dff2015-12-13 19:59:01 +0000752 OS << "[Scalar: " << isScalarKind() << "]\n";
Michael Kruseb8d26442015-12-13 19:35:26 +0000753 OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
Tobias Grosser6f730082015-09-05 07:46:47 +0000754 if (hasNewAccessRelation())
755 OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
Tobias Grosser75805372011-04-29 06:27:02 +0000756}
757
Tobias Grosser74394f02013-01-14 22:40:23 +0000758void MemoryAccess::dump() const { print(errs()); }
Tobias Grosser75805372011-04-29 06:27:02 +0000759
760// Create a map in the size of the provided set domain, that maps from the
761// one element of the provided set domain to another element of the provided
762// set domain.
763// The mapping is limited to all points that are equal in all but the last
764// dimension and for which the last dimension of the input is strict smaller
765// than the last dimension of the output.
766//
767// getEqualAndLarger(set[i0, i1, ..., iX]):
768//
769// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
770// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
771//
Tobias Grosserf5338802011-10-06 00:03:35 +0000772static isl_map *getEqualAndLarger(isl_space *setDomain) {
Tobias Grosserc327932c2012-02-01 14:23:36 +0000773 isl_space *Space = isl_space_map_from_set(setDomain);
Tobias Grosser1b6ea572015-05-21 19:02:44 +0000774 isl_map *Map = isl_map_universe(Space);
Sebastian Pop40408762013-10-04 17:14:53 +0000775 unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
Tobias Grosser75805372011-04-29 06:27:02 +0000776
777 // Set all but the last dimension to be equal for the input and output
778 //
779 // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
780 // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
Sebastian Pop40408762013-10-04 17:14:53 +0000781 for (unsigned i = 0; i < lastDimension; ++i)
Tobias Grosserc327932c2012-02-01 14:23:36 +0000782 Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
Tobias Grosser75805372011-04-29 06:27:02 +0000783
784 // Set the last dimension of the input to be strict smaller than the
785 // last dimension of the output.
786 //
787 // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
Tobias Grosser1b6ea572015-05-21 19:02:44 +0000788 Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out,
789 lastDimension);
Tobias Grosserc327932c2012-02-01 14:23:36 +0000790 return Map;
Tobias Grosser75805372011-04-29 06:27:02 +0000791}
792
Tobias Grosser4f663aa2015-03-30 11:52:59 +0000793__isl_give isl_set *
794MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
Tobias Grosserabfbe632013-02-05 12:09:06 +0000795 isl_map *S = const_cast<isl_map *>(Schedule);
Johannes Doerferta99130f2014-10-13 12:58:03 +0000796 isl_map *AccessRelation = getAccessRelation();
Sebastian Popa00a0292012-12-18 07:46:06 +0000797 isl_space *Space = isl_space_range(isl_map_get_space(S));
798 isl_map *NextScatt = getEqualAndLarger(Space);
Tobias Grosser75805372011-04-29 06:27:02 +0000799
Sebastian Popa00a0292012-12-18 07:46:06 +0000800 S = isl_map_reverse(S);
801 NextScatt = isl_map_lexmin(NextScatt);
Tobias Grosser75805372011-04-29 06:27:02 +0000802
Sebastian Popa00a0292012-12-18 07:46:06 +0000803 NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
804 NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
805 NextScatt = isl_map_apply_domain(NextScatt, S);
806 NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
Tobias Grosser75805372011-04-29 06:27:02 +0000807
Sebastian Popa00a0292012-12-18 07:46:06 +0000808 isl_set *Deltas = isl_map_deltas(NextScatt);
809 return Deltas;
Tobias Grosser75805372011-04-29 06:27:02 +0000810}
811
Sebastian Popa00a0292012-12-18 07:46:06 +0000812bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
Tobias Grosser28dd4862012-01-24 16:42:16 +0000813 int StrideWidth) const {
814 isl_set *Stride, *StrideX;
815 bool IsStrideX;
Tobias Grosser75805372011-04-29 06:27:02 +0000816
Sebastian Popa00a0292012-12-18 07:46:06 +0000817 Stride = getStride(Schedule);
Tobias Grosser28dd4862012-01-24 16:42:16 +0000818 StrideX = isl_set_universe(isl_set_get_space(Stride));
Tobias Grosser01c8f5f2015-08-24 22:20:46 +0000819 for (unsigned i = 0; i < isl_set_dim(StrideX, isl_dim_set) - 1; i++)
820 StrideX = isl_set_fix_si(StrideX, isl_dim_set, i, 0);
821 StrideX = isl_set_fix_si(StrideX, isl_dim_set,
822 isl_set_dim(StrideX, isl_dim_set) - 1, StrideWidth);
Roman Gareevf2bd72e2015-08-18 16:12:05 +0000823 IsStrideX = isl_set_is_subset(Stride, StrideX);
Tobias Grosser75805372011-04-29 06:27:02 +0000824
Tobias Grosser28dd4862012-01-24 16:42:16 +0000825 isl_set_free(StrideX);
Tobias Grosserdea98232012-01-17 20:34:27 +0000826 isl_set_free(Stride);
Tobias Grosserb76f38532011-08-20 11:11:25 +0000827
Tobias Grosser28dd4862012-01-24 16:42:16 +0000828 return IsStrideX;
829}
830
Sebastian Popa00a0292012-12-18 07:46:06 +0000831bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
832 return isStrideX(Schedule, 0);
Tobias Grosser75805372011-04-29 06:27:02 +0000833}
834
Sebastian Popa00a0292012-12-18 07:46:06 +0000835bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
836 return isStrideX(Schedule, 1);
Tobias Grosser75805372011-04-29 06:27:02 +0000837}
838
Tobias Grosser166c4222015-09-05 07:46:40 +0000839void MemoryAccess::setNewAccessRelation(isl_map *NewAccess) {
840 isl_map_free(NewAccessRelation);
841 NewAccessRelation = NewAccess;
Raghesh Aloor3cb66282011-07-12 17:14:03 +0000842}
Tobias Grosser75805372011-04-29 06:27:02 +0000843
844//===----------------------------------------------------------------------===//
Tobias Grossercf3942d2011-10-06 00:04:05 +0000845
Tobias Grosser808cd692015-07-14 09:33:13 +0000846isl_map *ScopStmt::getSchedule() const {
847 isl_set *Domain = getDomain();
848 if (isl_set_is_empty(Domain)) {
849 isl_set_free(Domain);
850 return isl_map_from_aff(
851 isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
852 }
853 auto *Schedule = getParent()->getSchedule();
854 Schedule = isl_union_map_intersect_domain(
855 Schedule, isl_union_set_from_set(isl_set_copy(Domain)));
856 if (isl_union_map_is_empty(Schedule)) {
857 isl_set_free(Domain);
858 isl_union_map_free(Schedule);
859 return isl_map_from_aff(
860 isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
861 }
862 auto *M = isl_map_from_union_map(Schedule);
863 M = isl_map_coalesce(M);
864 M = isl_map_gist_domain(M, Domain);
865 M = isl_map_coalesce(M);
866 return M;
867}
Tobias Grossercf3942d2011-10-06 00:04:05 +0000868
Johannes Doerfert574182d2015-08-12 10:19:50 +0000869__isl_give isl_pw_aff *ScopStmt::getPwAff(const SCEV *E) {
Johannes Doerfertcef616f2015-09-15 22:49:04 +0000870 return getParent()->getPwAff(E, isBlockStmt() ? getBasicBlock()
871 : getRegion()->getEntry());
Johannes Doerfert574182d2015-08-12 10:19:50 +0000872}
873
Tobias Grosser37eb4222014-02-20 21:43:54 +0000874void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
875 assert(isl_set_is_subset(NewDomain, Domain) &&
876 "New domain is not a subset of old domain!");
877 isl_set_free(Domain);
878 Domain = NewDomain;
Tobias Grosser75805372011-04-29 06:27:02 +0000879}
880
Michael Krusecac948e2015-10-02 13:53:07 +0000881void ScopStmt::buildAccessRelations() {
882 for (MemoryAccess *Access : MemAccs) {
883 Type *ElementType = Access->getAccessValue()->getType();
Johannes Doerfert1a28a892014-10-05 11:32:18 +0000884
Tobias Grossera535dff2015-12-13 19:59:01 +0000885 ScopArrayInfo::MemoryKind Ty;
886 if (Access->isPHIKind())
887 Ty = ScopArrayInfo::MK_PHI;
888 else if (Access->isExitPHIKind())
889 Ty = ScopArrayInfo::MK_ExitPHI;
890 else if (Access->isValueKind())
891 Ty = ScopArrayInfo::MK_Value;
Tobias Grosser6abc75a2015-11-10 17:31:31 +0000892 else
Tobias Grossera535dff2015-12-13 19:59:01 +0000893 Ty = ScopArrayInfo::MK_Array;
Tobias Grosser6abc75a2015-11-10 17:31:31 +0000894
Johannes Doerfert80ef1102014-11-07 08:31:31 +0000895 const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo(
Tobias Grosser6abc75a2015-11-10 17:31:31 +0000896 Access->getBaseAddr(), ElementType, Access->Sizes, Ty);
Johannes Doerfert80ef1102014-11-07 08:31:31 +0000897
Michael Krusecac948e2015-10-02 13:53:07 +0000898 Access->buildAccessRelation(SAI);
Tobias Grosser75805372011-04-29 06:27:02 +0000899 }
900}
901
Michael Krusecac948e2015-10-02 13:53:07 +0000902void ScopStmt::addAccess(MemoryAccess *Access) {
903 Instruction *AccessInst = Access->getAccessInstruction();
904
Michael Kruse58fa3bb2015-12-22 23:25:11 +0000905 if (Access->isArrayKind()) {
906 MemoryAccessList &MAL = InstructionToAccess[AccessInst];
907 MAL.emplace_front(Access);
908 }
909
910 MemAccs.push_back(Access);
Michael Krusecac948e2015-10-02 13:53:07 +0000911}
912
Tobias Grosser8cae72f2011-11-08 15:41:08 +0000913void ScopStmt::realignParams() {
Johannes Doerfertf6752892014-06-13 18:01:45 +0000914 for (MemoryAccess *MA : *this)
915 MA->realignParams();
Tobias Grosser8cae72f2011-11-08 15:41:08 +0000916
917 Domain = isl_set_align_params(Domain, Parent.getParamSpace());
Tobias Grosser8cae72f2011-11-08 15:41:08 +0000918}
919
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +0000920/// @brief Add @p BSet to the set @p User if @p BSet is bounded.
921static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet,
922 void *User) {
923 isl_set **BoundedParts = static_cast<isl_set **>(User);
924 if (isl_basic_set_is_bounded(BSet))
925 *BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet));
926 else
927 isl_basic_set_free(BSet);
928 return isl_stat_ok;
929}
930
931/// @brief Return the bounded parts of @p S.
932static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) {
933 isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S));
934 isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts);
935 isl_set_free(S);
936 return BoundedParts;
937}
938
939/// @brief Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
940///
941/// @returns A separation of @p S into first an unbounded then a bounded subset,
942/// both with regards to the dimension @p Dim.
943static std::pair<__isl_give isl_set *, __isl_give isl_set *>
944partitionSetParts(__isl_take isl_set *S, unsigned Dim) {
945
946 for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++)
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +0000947 S = isl_set_lower_bound_si(S, isl_dim_set, u, 0);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +0000948
949 unsigned NumDimsS = isl_set_n_dim(S);
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +0000950 isl_set *OnlyDimS = isl_set_copy(S);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +0000951
952 // Remove dimensions that are greater than Dim as they are not interesting.
953 assert(NumDimsS >= Dim + 1);
954 OnlyDimS =
955 isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1);
956
957 // Create artificial parametric upper bounds for dimensions smaller than Dim
958 // as we are not interested in them.
959 OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim);
960 for (unsigned u = 0; u < Dim; u++) {
961 isl_constraint *C = isl_inequality_alloc(
962 isl_local_space_from_space(isl_set_get_space(OnlyDimS)));
963 C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1);
964 C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1);
965 OnlyDimS = isl_set_add_constraint(OnlyDimS, C);
966 }
967
968 // Collect all bounded parts of OnlyDimS.
969 isl_set *BoundedParts = collectBoundedParts(OnlyDimS);
970
971 // Create the dimensions greater than Dim again.
972 BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1,
973 NumDimsS - Dim - 1);
974
975 // Remove the artificial upper bound parameters again.
976 BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim);
977
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +0000978 isl_set *UnboundedParts = isl_set_subtract(S, isl_set_copy(BoundedParts));
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +0000979 return std::make_pair(UnboundedParts, BoundedParts);
980}
981
Johannes Doerfert9a132f32015-09-28 09:33:22 +0000982/// @brief Set the dimension Ids from @p From in @p To.
983static __isl_give isl_set *setDimensionIds(__isl_keep isl_set *From,
984 __isl_take isl_set *To) {
985 for (unsigned u = 0, e = isl_set_n_dim(From); u < e; u++) {
986 isl_id *DimId = isl_set_get_dim_id(From, isl_dim_set, u);
987 To = isl_set_set_dim_id(To, isl_dim_set, u, DimId);
988 }
989 return To;
990}
991
992/// @brief Create the conditions under which @p L @p Pred @p R is true.
Johannes Doerfert96425c22015-08-30 21:13:53 +0000993static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
Johannes Doerfert9a132f32015-09-28 09:33:22 +0000994 __isl_take isl_pw_aff *L,
995 __isl_take isl_pw_aff *R) {
Johannes Doerfert96425c22015-08-30 21:13:53 +0000996 switch (Pred) {
997 case ICmpInst::ICMP_EQ:
998 return isl_pw_aff_eq_set(L, R);
999 case ICmpInst::ICMP_NE:
1000 return isl_pw_aff_ne_set(L, R);
1001 case ICmpInst::ICMP_SLT:
1002 return isl_pw_aff_lt_set(L, R);
1003 case ICmpInst::ICMP_SLE:
1004 return isl_pw_aff_le_set(L, R);
1005 case ICmpInst::ICMP_SGT:
1006 return isl_pw_aff_gt_set(L, R);
1007 case ICmpInst::ICMP_SGE:
1008 return isl_pw_aff_ge_set(L, R);
1009 case ICmpInst::ICMP_ULT:
1010 return isl_pw_aff_lt_set(L, R);
1011 case ICmpInst::ICMP_UGT:
1012 return isl_pw_aff_gt_set(L, R);
1013 case ICmpInst::ICMP_ULE:
1014 return isl_pw_aff_le_set(L, R);
1015 case ICmpInst::ICMP_UGE:
1016 return isl_pw_aff_ge_set(L, R);
1017 default:
1018 llvm_unreachable("Non integer predicate not supported");
1019 }
1020}
1021
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001022/// @brief Create the conditions under which @p L @p Pred @p R is true.
1023///
1024/// Helper function that will make sure the dimensions of the result have the
1025/// same isl_id's as the @p Domain.
1026static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
1027 __isl_take isl_pw_aff *L,
1028 __isl_take isl_pw_aff *R,
1029 __isl_keep isl_set *Domain) {
1030 isl_set *ConsequenceCondSet = buildConditionSet(Pred, L, R);
1031 return setDimensionIds(Domain, ConsequenceCondSet);
1032}
1033
1034/// @brief Build the conditions sets for the switch @p SI in the @p Domain.
Johannes Doerfert96425c22015-08-30 21:13:53 +00001035///
1036/// This will fill @p ConditionSets with the conditions under which control
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001037/// will be moved from @p SI to its successors. Hence, @p ConditionSets will
1038/// have as many elements as @p SI has successors.
Johannes Doerfert96425c22015-08-30 21:13:53 +00001039static void
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001040buildConditionSets(Scop &S, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
Johannes Doerfert96425c22015-08-30 21:13:53 +00001041 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1042
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001043 Value *Condition = getConditionFromTerminator(SI);
1044 assert(Condition && "No condition for switch");
1045
1046 ScalarEvolution &SE = *S.getSE();
1047 BasicBlock *BB = SI->getParent();
1048 isl_pw_aff *LHS, *RHS;
1049 LHS = S.getPwAff(SE.getSCEVAtScope(Condition, L), BB);
1050
1051 unsigned NumSuccessors = SI->getNumSuccessors();
1052 ConditionSets.resize(NumSuccessors);
1053 for (auto &Case : SI->cases()) {
1054 unsigned Idx = Case.getSuccessorIndex();
1055 ConstantInt *CaseValue = Case.getCaseValue();
1056
1057 RHS = S.getPwAff(SE.getSCEV(CaseValue), BB);
1058 isl_set *CaseConditionSet =
1059 buildConditionSet(ICmpInst::ICMP_EQ, isl_pw_aff_copy(LHS), RHS, Domain);
1060 ConditionSets[Idx] = isl_set_coalesce(
1061 isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
1062 }
1063
1064 assert(ConditionSets[0] == nullptr && "Default condition set was set");
1065 isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
1066 for (unsigned u = 2; u < NumSuccessors; u++)
1067 ConditionSetUnion =
1068 isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
1069 ConditionSets[0] = setDimensionIds(
1070 Domain, isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion));
1071
1072 S.markAsOptimized();
1073 isl_pw_aff_free(LHS);
1074}
1075
Johannes Doerfert9b1f9c82015-10-11 13:21:03 +00001076/// @brief Build the conditions sets for the branch condition @p Condition in
1077/// the @p Domain.
1078///
1079/// This will fill @p ConditionSets with the conditions under which control
1080/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
Johannes Doerfert2af10e22015-11-12 03:25:01 +00001081/// have as many elements as @p TI has successors. If @p TI is nullptr the
1082/// context under which @p Condition is true/false will be returned as the
1083/// new elements of @p ConditionSets.
Johannes Doerfert9b1f9c82015-10-11 13:21:03 +00001084static void
1085buildConditionSets(Scop &S, Value *Condition, TerminatorInst *TI, Loop *L,
1086 __isl_keep isl_set *Domain,
1087 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1088
1089 isl_set *ConsequenceCondSet = nullptr;
1090 if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
1091 if (CCond->isZero())
1092 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
1093 else
1094 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
1095 } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
1096 auto Opcode = BinOp->getOpcode();
1097 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1098
1099 buildConditionSets(S, BinOp->getOperand(0), TI, L, Domain, ConditionSets);
1100 buildConditionSets(S, BinOp->getOperand(1), TI, L, Domain, ConditionSets);
1101
1102 isl_set_free(ConditionSets.pop_back_val());
1103 isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
1104 isl_set_free(ConditionSets.pop_back_val());
1105 isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
1106
1107 if (Opcode == Instruction::And)
1108 ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
1109 else
1110 ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
1111 } else {
1112 auto *ICond = dyn_cast<ICmpInst>(Condition);
1113 assert(ICond &&
1114 "Condition of exiting branch was neither constant nor ICmp!");
1115
1116 ScalarEvolution &SE = *S.getSE();
Johannes Doerfert2af10e22015-11-12 03:25:01 +00001117 BasicBlock *BB = TI ? TI->getParent() : nullptr;
Johannes Doerfert9b1f9c82015-10-11 13:21:03 +00001118 isl_pw_aff *LHS, *RHS;
1119 LHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(0), L), BB);
1120 RHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(1), L), BB);
1121 ConsequenceCondSet =
1122 buildConditionSet(ICond->getPredicate(), LHS, RHS, Domain);
1123 }
1124
Johannes Doerfert2af10e22015-11-12 03:25:01 +00001125 // If no terminator was given we are only looking for parameter constraints
1126 // under which @p Condition is true/false.
1127 if (!TI)
1128 ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
1129
Johannes Doerfert9b1f9c82015-10-11 13:21:03 +00001130 assert(ConsequenceCondSet);
1131 isl_set *AlternativeCondSet =
1132 isl_set_complement(isl_set_copy(ConsequenceCondSet));
1133
1134 ConditionSets.push_back(isl_set_coalesce(
1135 isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain))));
1136 ConditionSets.push_back(isl_set_coalesce(
1137 isl_set_intersect(AlternativeCondSet, isl_set_copy(Domain))));
1138}
1139
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001140/// @brief Build the conditions sets for the terminator @p TI in the @p Domain.
1141///
1142/// This will fill @p ConditionSets with the conditions under which control
1143/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1144/// have as many elements as @p TI has successors.
1145static void
1146buildConditionSets(Scop &S, TerminatorInst *TI, Loop *L,
1147 __isl_keep isl_set *Domain,
1148 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1149
1150 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
1151 return buildConditionSets(S, SI, L, Domain, ConditionSets);
1152
1153 assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
1154
1155 if (TI->getNumSuccessors() == 1) {
Johannes Doerfert96425c22015-08-30 21:13:53 +00001156 ConditionSets.push_back(isl_set_copy(Domain));
1157 return;
1158 }
1159
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001160 Value *Condition = getConditionFromTerminator(TI);
1161 assert(Condition && "No condition for Terminator");
Johannes Doerfert96425c22015-08-30 21:13:53 +00001162
Johannes Doerfert9b1f9c82015-10-11 13:21:03 +00001163 return buildConditionSets(S, Condition, TI, L, Domain, ConditionSets);
Johannes Doerfert96425c22015-08-30 21:13:53 +00001164}
1165
Johannes Doerfert32ae76e2015-09-10 13:12:02 +00001166void ScopStmt::buildDomain() {
Tobias Grosser084d8f72012-05-29 09:29:44 +00001167 isl_id *Id;
Tobias Grossere19661e2011-10-07 08:46:57 +00001168
Tobias Grosser084d8f72012-05-29 09:29:44 +00001169 Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
1170
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00001171 Domain = getParent()->getDomainConditions(this);
Tobias Grosser084d8f72012-05-29 09:29:44 +00001172 Domain = isl_set_set_tuple_id(Domain, Id);
Tobias Grosser75805372011-04-29 06:27:02 +00001173}
1174
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001175void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) {
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001176 isl_ctx *Ctx = Parent.getIslCtx();
1177 isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace());
1178 Type *Ty = GEP->getPointerOperandType();
1179 ScalarEvolution &SE = *Parent.getSE();
Johannes Doerfert09e36972015-10-07 20:17:36 +00001180 ScopDetection &SD = Parent.getSD();
1181
1182 // The set of loads that are required to be invariant.
1183 auto &ScopRIL = *SD.getRequiredInvariantLoads(&Parent.getRegion());
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001184
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001185 std::vector<const SCEV *> Subscripts;
1186 std::vector<int> Sizes;
1187
Tobias Grosser5fd8c092015-09-17 17:28:15 +00001188 std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001189
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001190 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001191 Ty = PtrTy->getElementType();
1192 }
1193
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001194 int IndexOffset = Subscripts.size() - Sizes.size();
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001195
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001196 assert(IndexOffset <= 1 && "Unexpected large index offset");
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001197
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001198 for (size_t i = 0; i < Sizes.size(); i++) {
1199 auto Expr = Subscripts[i + IndexOffset];
1200 auto Size = Sizes[i];
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001201
Johannes Doerfert09e36972015-10-07 20:17:36 +00001202 InvariantLoadsSetTy AccessILS;
1203 if (!isAffineExpr(&Parent.getRegion(), Expr, SE, nullptr, &AccessILS))
1204 continue;
1205
1206 bool NonAffine = false;
1207 for (LoadInst *LInst : AccessILS)
1208 if (!ScopRIL.count(LInst))
1209 NonAffine = true;
1210
1211 if (NonAffine)
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001212 continue;
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001213
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001214 isl_pw_aff *AccessOffset = getPwAff(Expr);
1215 AccessOffset =
1216 isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId());
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001217
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001218 isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain(
1219 isl_local_space_copy(LSpace), isl_val_int_from_si(Ctx, Size)));
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001220
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001221 isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize);
1222 OutOfBound = isl_set_intersect(getDomain(), OutOfBound);
1223 OutOfBound = isl_set_params(OutOfBound);
1224 isl_set *InBound = isl_set_complement(OutOfBound);
1225 isl_set *Executed = isl_set_params(getDomain());
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001226
Tobias Grosserfaf8f6f2015-09-17 15:47:52 +00001227 // A => B == !A or B
1228 isl_set *InBoundIfExecuted =
1229 isl_set_union(isl_set_complement(Executed), InBound);
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001230
Roman Gareev10595a12016-01-08 14:01:59 +00001231 InBoundIfExecuted = isl_set_coalesce(InBoundIfExecuted);
Johannes Doerfertd84493e2015-11-12 02:33:38 +00001232 Parent.addAssumption(INBOUNDS, InBoundIfExecuted, GEP->getDebugLoc());
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001233 }
1234
1235 isl_local_space_free(LSpace);
1236}
1237
Johannes Doerfertff9d1982015-02-24 12:00:50 +00001238void ScopStmt::deriveAssumptions(BasicBlock *Block) {
1239 for (Instruction &Inst : *Block)
Tobias Grosser7b50bee2014-11-25 10:51:12 +00001240 if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst))
1241 deriveAssumptionsFromGEP(GEP);
1242}
1243
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00001244void ScopStmt::collectSurroundingLoops() {
1245 for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) {
1246 isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u);
1247 NestLoops.push_back(static_cast<Loop *>(isl_id_get_user(DimId)));
1248 isl_id_free(DimId);
1249 }
1250}
1251
Michael Kruse9d080092015-09-11 21:41:48 +00001252ScopStmt::ScopStmt(Scop &parent, Region &R)
Michael Krusecac948e2015-10-02 13:53:07 +00001253 : Parent(parent), Domain(nullptr), BB(nullptr), R(&R), Build(nullptr) {
Johannes Doerfertff9d1982015-02-24 12:00:50 +00001254
Tobias Grosser16c44032015-07-09 07:31:45 +00001255 BaseName = getIslCompatibleName("Stmt_", R.getNameStr(), "");
Johannes Doerfertff9d1982015-02-24 12:00:50 +00001256}
1257
Michael Kruse9d080092015-09-11 21:41:48 +00001258ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb)
Michael Krusecac948e2015-10-02 13:53:07 +00001259 : Parent(parent), Domain(nullptr), BB(&bb), R(nullptr), Build(nullptr) {
Tobias Grosser75805372011-04-29 06:27:02 +00001260
Johannes Doerfert79fc23f2014-07-24 23:48:02 +00001261 BaseName = getIslCompatibleName("Stmt_", &bb, "");
Michael Krusecac948e2015-10-02 13:53:07 +00001262}
1263
1264void ScopStmt::init() {
1265 assert(!Domain && "init must be called only once");
Tobias Grosser75805372011-04-29 06:27:02 +00001266
Johannes Doerfert32ae76e2015-09-10 13:12:02 +00001267 buildDomain();
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00001268 collectSurroundingLoops();
Michael Krusecac948e2015-10-02 13:53:07 +00001269 buildAccessRelations();
1270
1271 if (BB) {
1272 deriveAssumptions(BB);
1273 } else {
1274 for (BasicBlock *Block : R->blocks()) {
1275 deriveAssumptions(Block);
1276 }
1277 }
1278
Tobias Grosserd83b8a82015-08-20 19:08:11 +00001279 if (DetectReductions)
1280 checkForReductions();
Johannes Doerfert0ee1f212014-06-17 17:31:36 +00001281}
1282
Johannes Doerferte58a0122014-06-27 20:31:28 +00001283/// @brief Collect loads which might form a reduction chain with @p StoreMA
1284///
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001285/// Check if the stored value for @p StoreMA is a binary operator with one or
1286/// two loads as operands. If the binary operand is commutative & associative,
Johannes Doerferte58a0122014-06-27 20:31:28 +00001287/// used only once (by @p StoreMA) and its load operands are also used only
1288/// once, we have found a possible reduction chain. It starts at an operand
1289/// load and includes the binary operator and @p StoreMA.
1290///
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001291/// Note: We allow only one use to ensure the load and binary operator cannot
Johannes Doerferte58a0122014-06-27 20:31:28 +00001292/// escape this block or into any other store except @p StoreMA.
1293void ScopStmt::collectCandiateReductionLoads(
1294 MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
1295 auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
1296 if (!Store)
Johannes Doerfert0ee1f212014-06-17 17:31:36 +00001297 return;
1298
1299 // Skip if there is not one binary operator between the load and the store
1300 auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
Johannes Doerferte58a0122014-06-27 20:31:28 +00001301 if (!BinOp)
1302 return;
1303
1304 // Skip if the binary operators has multiple uses
1305 if (BinOp->getNumUses() != 1)
Johannes Doerfert0ee1f212014-06-17 17:31:36 +00001306 return;
1307
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001308 // Skip if the opcode of the binary operator is not commutative/associative
Johannes Doerfert0ee1f212014-06-17 17:31:36 +00001309 if (!BinOp->isCommutative() || !BinOp->isAssociative())
1310 return;
1311
Johannes Doerfert9890a052014-07-01 00:32:29 +00001312 // Skip if the binary operator is outside the current SCoP
1313 if (BinOp->getParent() != Store->getParent())
1314 return;
1315
Johannes Doerfert0ee1f212014-06-17 17:31:36 +00001316 // Skip if it is a multiplicative reduction and we disabled them
1317 if (DisableMultiplicativeReductions &&
1318 (BinOp->getOpcode() == Instruction::Mul ||
1319 BinOp->getOpcode() == Instruction::FMul))
1320 return;
1321
Johannes Doerferte58a0122014-06-27 20:31:28 +00001322 // Check the binary operator operands for a candidate load
1323 auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
1324 auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
1325 if (!PossibleLoad0 && !PossibleLoad1)
1326 return;
1327
1328 // A load is only a candidate if it cannot escape (thus has only this use)
1329 if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
Johannes Doerfert9890a052014-07-01 00:32:29 +00001330 if (PossibleLoad0->getParent() == Store->getParent())
Tobias Grosser35ec5fb2015-12-15 23:50:04 +00001331 Loads.push_back(&getArrayAccessFor(PossibleLoad0));
Johannes Doerferte58a0122014-06-27 20:31:28 +00001332 if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
Johannes Doerfert9890a052014-07-01 00:32:29 +00001333 if (PossibleLoad1->getParent() == Store->getParent())
Tobias Grosser35ec5fb2015-12-15 23:50:04 +00001334 Loads.push_back(&getArrayAccessFor(PossibleLoad1));
Johannes Doerferte58a0122014-06-27 20:31:28 +00001335}
1336
1337/// @brief Check for reductions in this ScopStmt
1338///
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001339/// Iterate over all store memory accesses and check for valid binary reduction
1340/// like chains. For all candidates we check if they have the same base address
1341/// and there are no other accesses which overlap with them. The base address
1342/// check rules out impossible reductions candidates early. The overlap check,
1343/// together with the "only one user" check in collectCandiateReductionLoads,
Johannes Doerferte58a0122014-06-27 20:31:28 +00001344/// guarantees that none of the intermediate results will escape during
1345/// execution of the loop nest. We basically check here that no other memory
1346/// access can access the same memory as the potential reduction.
1347void ScopStmt::checkForReductions() {
1348 SmallVector<MemoryAccess *, 2> Loads;
1349 SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
1350
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001351 // First collect candidate load-store reduction chains by iterating over all
Johannes Doerferte58a0122014-06-27 20:31:28 +00001352 // stores and collecting possible reduction loads.
1353 for (MemoryAccess *StoreMA : MemAccs) {
1354 if (StoreMA->isRead())
1355 continue;
1356
1357 Loads.clear();
1358 collectCandiateReductionLoads(StoreMA, Loads);
1359 for (MemoryAccess *LoadMA : Loads)
1360 Candidates.push_back(std::make_pair(LoadMA, StoreMA));
1361 }
1362
1363 // Then check each possible candidate pair.
1364 for (const auto &CandidatePair : Candidates) {
1365 bool Valid = true;
1366 isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
1367 isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
1368
1369 // Skip those with obviously unequal base addresses.
1370 if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
1371 isl_map_free(LoadAccs);
1372 isl_map_free(StoreAccs);
1373 continue;
1374 }
1375
1376 // And check if the remaining for overlap with other memory accesses.
1377 isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
1378 AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
1379 isl_set *AllAccs = isl_map_range(AllAccsRel);
1380
1381 for (MemoryAccess *MA : MemAccs) {
1382 if (MA == CandidatePair.first || MA == CandidatePair.second)
1383 continue;
1384
1385 isl_map *AccRel =
1386 isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
1387 isl_set *Accs = isl_map_range(AccRel);
1388
1389 if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
1390 isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
1391 Valid = Valid && isl_set_is_empty(OverlapAccs);
1392 isl_set_free(OverlapAccs);
1393 }
1394 }
1395
1396 isl_set_free(AllAccs);
1397 if (!Valid)
1398 continue;
1399
Johannes Doerfertf6183392014-07-01 20:52:51 +00001400 const LoadInst *Load =
1401 dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
1402 MemoryAccess::ReductionType RT =
1403 getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
1404
Johannes Doerferte58a0122014-06-27 20:31:28 +00001405 // If no overlapping access was found we mark the load and store as
1406 // reduction like.
Johannes Doerfertf6183392014-07-01 20:52:51 +00001407 CandidatePair.first->markAsReductionLike(RT);
1408 CandidatePair.second->markAsReductionLike(RT);
Johannes Doerferte58a0122014-06-27 20:31:28 +00001409 }
Tobias Grosser75805372011-04-29 06:27:02 +00001410}
1411
Tobias Grosser74394f02013-01-14 22:40:23 +00001412std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
Tobias Grosser75805372011-04-29 06:27:02 +00001413
Tobias Grosser54839312015-04-21 11:37:25 +00001414std::string ScopStmt::getScheduleStr() const {
Tobias Grosser808cd692015-07-14 09:33:13 +00001415 auto *S = getSchedule();
1416 auto Str = stringFromIslObj(S);
1417 isl_map_free(S);
1418 return Str;
Tobias Grosser75805372011-04-29 06:27:02 +00001419}
1420
Tobias Grosser74394f02013-01-14 22:40:23 +00001421unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
Tobias Grosser75805372011-04-29 06:27:02 +00001422
Tobias Grosserf567e1a2015-02-19 22:16:12 +00001423unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
Tobias Grosser75805372011-04-29 06:27:02 +00001424
Tobias Grosser75805372011-04-29 06:27:02 +00001425const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
1426
Hongbin Zheng27f3afb2011-04-30 03:26:51 +00001427const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
Sebastian Pop860e0212013-02-15 21:26:44 +00001428 return NestLoops[Dimension];
Tobias Grosser75805372011-04-29 06:27:02 +00001429}
1430
Tobias Grosser74394f02013-01-14 22:40:23 +00001431isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
Tobias Grosser75805372011-04-29 06:27:02 +00001432
Tobias Grosser4f663aa2015-03-30 11:52:59 +00001433__isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
Tobias Grosserd5a7bfc2011-05-06 19:52:19 +00001434
Tobias Grosser6e6c7e02015-03-30 12:22:39 +00001435__isl_give isl_space *ScopStmt::getDomainSpace() const {
Tobias Grosser78d8a3d2012-01-17 20:34:23 +00001436 return isl_set_get_space(Domain);
1437}
1438
Tobias Grosser4f663aa2015-03-30 11:52:59 +00001439__isl_give isl_id *ScopStmt::getDomainId() const {
1440 return isl_set_get_tuple_id(Domain);
1441}
Tobias Grossercd95b772012-08-30 11:49:38 +00001442
Tobias Grosser10120182015-12-16 16:14:03 +00001443ScopStmt::~ScopStmt() { isl_set_free(Domain); }
Tobias Grosser75805372011-04-29 06:27:02 +00001444
1445void ScopStmt::print(raw_ostream &OS) const {
1446 OS << "\t" << getBaseName() << "\n";
Tobias Grosser75805372011-04-29 06:27:02 +00001447 OS.indent(12) << "Domain :=\n";
1448
1449 if (Domain) {
1450 OS.indent(16) << getDomainStr() << ";\n";
1451 } else
1452 OS.indent(16) << "n/a\n";
1453
Tobias Grosser54839312015-04-21 11:37:25 +00001454 OS.indent(12) << "Schedule :=\n";
Tobias Grosser75805372011-04-29 06:27:02 +00001455
1456 if (Domain) {
Tobias Grosser54839312015-04-21 11:37:25 +00001457 OS.indent(16) << getScheduleStr() << ";\n";
Tobias Grosser75805372011-04-29 06:27:02 +00001458 } else
1459 OS.indent(16) << "n/a\n";
1460
Tobias Grosser083d3d32014-06-28 08:59:45 +00001461 for (MemoryAccess *Access : MemAccs)
1462 Access->print(OS);
Tobias Grosser75805372011-04-29 06:27:02 +00001463}
1464
1465void ScopStmt::dump() const { print(dbgs()); }
1466
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001467void ScopStmt::removeMemoryAccesses(MemoryAccessList &InvMAs) {
Tobias Grosseref9ca5d2015-11-30 17:20:40 +00001468 // Remove all memory accesses in @p InvMAs from this statement
1469 // together with all scalar accesses that were caused by them.
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00001470 for (MemoryAccess *MA : InvMAs) {
Tobias Grosseref9ca5d2015-11-30 17:20:40 +00001471 auto Predicate = [&](MemoryAccess *Acc) {
Tobias Grosser3a6ac9f2015-11-30 21:13:43 +00001472 return Acc->getAccessInstruction() == MA->getAccessInstruction();
Tobias Grosseref9ca5d2015-11-30 17:20:40 +00001473 };
1474 MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
1475 MemAccs.end());
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00001476 InstructionToAccess.erase(MA->getAccessInstruction());
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00001477 }
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00001478}
1479
Tobias Grosser75805372011-04-29 06:27:02 +00001480//===----------------------------------------------------------------------===//
1481/// Scop class implement
Tobias Grosser60b54f12011-11-08 15:41:28 +00001482
Tobias Grosser7ffe4e82011-11-17 12:56:10 +00001483void Scop::setContext(__isl_take isl_set *NewContext) {
Tobias Grosserff9b54d2011-11-15 11:38:44 +00001484 NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
1485 isl_set_free(Context);
1486 Context = NewContext;
1487}
1488
Johannes Doerfertd6fc0702015-11-03 16:47:58 +00001489/// @brief Remap parameter values but keep AddRecs valid wrt. invariant loads.
1490struct SCEVSensitiveParameterRewriter
1491 : public SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *> {
1492 ValueToValueMap &VMap;
1493 ScalarEvolution &SE;
1494
1495public:
1496 SCEVSensitiveParameterRewriter(ValueToValueMap &VMap, ScalarEvolution &SE)
1497 : VMap(VMap), SE(SE) {}
1498
1499 static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
1500 ValueToValueMap &VMap) {
1501 SCEVSensitiveParameterRewriter SSPR(VMap, SE);
1502 return SSPR.visit(E);
1503 }
1504
1505 const SCEV *visit(const SCEV *E) {
1506 return SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *>::visit(E);
1507 }
1508
1509 const SCEV *visitConstant(const SCEVConstant *E) { return E; }
1510
1511 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
1512 return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
1513 }
1514
1515 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
1516 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
1517 }
1518
1519 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
1520 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
1521 }
1522
1523 const SCEV *visitAddExpr(const SCEVAddExpr *E) {
1524 SmallVector<const SCEV *, 4> Operands;
1525 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1526 Operands.push_back(visit(E->getOperand(i)));
1527 return SE.getAddExpr(Operands);
1528 }
1529
1530 const SCEV *visitMulExpr(const SCEVMulExpr *E) {
1531 SmallVector<const SCEV *, 4> Operands;
1532 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1533 Operands.push_back(visit(E->getOperand(i)));
1534 return SE.getMulExpr(Operands);
1535 }
1536
1537 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
1538 SmallVector<const SCEV *, 4> Operands;
1539 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1540 Operands.push_back(visit(E->getOperand(i)));
1541 return SE.getSMaxExpr(Operands);
1542 }
1543
1544 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
1545 SmallVector<const SCEV *, 4> Operands;
1546 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1547 Operands.push_back(visit(E->getOperand(i)));
1548 return SE.getUMaxExpr(Operands);
1549 }
1550
1551 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
1552 return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS()));
1553 }
1554
1555 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
1556 auto *Start = visit(E->getStart());
1557 auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
1558 visit(E->getStepRecurrence(SE)),
1559 E->getLoop(), SCEV::FlagAnyWrap);
1560 return SE.getAddExpr(Start, AddRec);
1561 }
1562
1563 const SCEV *visitUnknown(const SCEVUnknown *E) {
1564 if (auto *NewValue = VMap.lookup(E->getValue()))
1565 return SE.getUnknown(NewValue);
1566 return E;
1567 }
1568};
1569
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001570const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *S) {
Johannes Doerfertd6fc0702015-11-03 16:47:58 +00001571 return SCEVSensitiveParameterRewriter::rewrite(S, *SE, InvEquivClassVMap);
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001572}
1573
Tobias Grosserabfbe632013-02-05 12:09:06 +00001574void Scop::addParams(std::vector<const SCEV *> NewParameters) {
Tobias Grosser083d3d32014-06-28 08:59:45 +00001575 for (const SCEV *Parameter : NewParameters) {
Johannes Doerfertbe409962015-03-29 20:45:09 +00001576 Parameter = extractConstantFactor(Parameter, *SE).second;
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001577
1578 // Normalize the SCEV to get the representing element for an invariant load.
1579 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
1580
Tobias Grosser60b54f12011-11-08 15:41:28 +00001581 if (ParameterIds.find(Parameter) != ParameterIds.end())
1582 continue;
1583
1584 int dimension = Parameters.size();
1585
1586 Parameters.push_back(Parameter);
1587 ParameterIds[Parameter] = dimension;
1588 }
1589}
1590
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001591__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) {
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001592 // Normalize the SCEV to get the representing element for an invariant load.
1593 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
1594
Tobias Grosser9a38ab82011-11-08 15:41:03 +00001595 ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
Tobias Grosser76c2e322011-11-07 12:58:59 +00001596
Tobias Grosser9a38ab82011-11-08 15:41:03 +00001597 if (IdIter == ParameterIds.end())
Tobias Grosser5a56cbf2014-04-16 07:33:47 +00001598 return nullptr;
Tobias Grosser76c2e322011-11-07 12:58:59 +00001599
Tobias Grosser8f99c162011-11-15 11:38:55 +00001600 std::string ParameterName;
1601
Tobias Grosserb39c96a2015-11-17 11:54:51 +00001602 ParameterName = "p_" + utostr_32(IdIter->second);
1603
Tobias Grosser8f99c162011-11-15 11:38:55 +00001604 if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
1605 Value *Val = ValueParameter->getValue();
Tobias Grosser8f99c162011-11-15 11:38:55 +00001606
Tobias Grosserb39c96a2015-11-17 11:54:51 +00001607 // If this parameter references a specific Value and this value has a name
1608 // we use this name as it is likely to be unique and more useful than just
1609 // a number.
1610 if (Val->hasName())
1611 ParameterName = Val->getName();
1612 else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
1613 auto LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
1614 if (LoadOrigin->hasName()) {
1615 ParameterName += "_loaded_from_";
1616 ParameterName +=
1617 LI->getPointerOperand()->stripInBoundsOffsets()->getName();
1618 }
1619 }
1620 }
Tobias Grosser8f99c162011-11-15 11:38:55 +00001621
Tobias Grosser20532b82014-04-11 17:56:49 +00001622 return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
1623 const_cast<void *>((const void *)Parameter));
Tobias Grosser76c2e322011-11-07 12:58:59 +00001624}
Tobias Grosser75805372011-04-29 06:27:02 +00001625
Johannes Doerfert5d5b3062015-08-20 18:06:30 +00001626isl_set *Scop::addNonEmptyDomainConstraints(isl_set *C) const {
1627 isl_set *DomainContext = isl_union_set_params(getDomains());
1628 return isl_set_intersect_params(C, DomainContext);
1629}
1630
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001631void Scop::buildBoundaryContext() {
Tobias Grosser4927c8e2015-11-24 12:50:02 +00001632 if (IgnoreIntegerWrapping) {
1633 BoundaryContext = isl_set_universe(getParamSpace());
1634 return;
1635 }
1636
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001637 BoundaryContext = Affinator.getWrappingContext();
Tobias Grosser4cd07b12015-11-11 17:34:02 +00001638
1639 // The isl_set_complement operation used to create the boundary context
1640 // can possibly become very expensive. We bound the compile time of
1641 // this operation by setting a compute out.
1642 //
1643 // TODO: We can probably get around using isl_set_complement and directly
1644 // AST generate BoundaryContext.
1645 long MaxOpsOld = isl_ctx_get_max_operations(getIslCtx());
Tobias Grosserf920fb12015-11-13 16:56:13 +00001646 isl_ctx_reset_operations(getIslCtx());
Tobias Grosser4cd07b12015-11-11 17:34:02 +00001647 isl_ctx_set_max_operations(getIslCtx(), 300000);
1648 isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_CONTINUE);
1649
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001650 BoundaryContext = isl_set_complement(BoundaryContext);
Tobias Grosser4cd07b12015-11-11 17:34:02 +00001651
Tobias Grossera52b4da2015-11-11 17:59:53 +00001652 if (isl_ctx_last_error(getIslCtx()) == isl_error_quota) {
1653 isl_set_free(BoundaryContext);
Tobias Grosser4cd07b12015-11-11 17:34:02 +00001654 BoundaryContext = isl_set_empty(getParamSpace());
Tobias Grossera52b4da2015-11-11 17:59:53 +00001655 }
Tobias Grosser4cd07b12015-11-11 17:34:02 +00001656
1657 isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_ABORT);
1658 isl_ctx_reset_operations(getIslCtx());
1659 isl_ctx_set_max_operations(getIslCtx(), MaxOpsOld);
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001660 BoundaryContext = isl_set_gist_params(BoundaryContext, getContext());
Johannes Doerfertd84493e2015-11-12 02:33:38 +00001661 trackAssumption(WRAPPING, BoundaryContext, DebugLoc());
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001662}
1663
Johannes Doerfert2af10e22015-11-12 03:25:01 +00001664void Scop::addUserAssumptions(AssumptionCache &AC) {
1665 auto *R = &getRegion();
1666 auto &F = *R->getEntry()->getParent();
1667 for (auto &Assumption : AC.assumptions()) {
1668 auto *CI = dyn_cast_or_null<CallInst>(Assumption);
1669 if (!CI || CI->getNumArgOperands() != 1)
1670 continue;
1671 if (!DT.dominates(CI->getParent(), R->getEntry()))
1672 continue;
1673
1674 auto *Val = CI->getArgOperand(0);
1675 std::vector<const SCEV *> Params;
1676 if (!isAffineParamConstraint(Val, R, *SE, Params)) {
1677 emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE, F,
1678 CI->getDebugLoc(),
1679 "Non-affine user assumption ignored.");
1680 continue;
1681 }
1682
1683 addParams(Params);
1684
1685 auto *L = LI.getLoopFor(CI->getParent());
1686 SmallVector<isl_set *, 2> ConditionSets;
1687 buildConditionSets(*this, Val, nullptr, L, Context, ConditionSets);
1688 assert(ConditionSets.size() == 2);
1689 isl_set_free(ConditionSets[1]);
1690
1691 auto *AssumptionCtx = ConditionSets[0];
1692 emitOptimizationRemarkAnalysis(
1693 F.getContext(), DEBUG_TYPE, F, CI->getDebugLoc(),
1694 "Use user assumption: " + stringFromIslObj(AssumptionCtx));
1695 Context = isl_set_intersect(Context, AssumptionCtx);
1696 }
1697}
1698
Tobias Grosser8a9c2352015-08-16 10:19:29 +00001699void Scop::addUserContext() {
1700 if (UserContextStr.empty())
1701 return;
1702
1703 isl_set *UserContext = isl_set_read_from_str(IslCtx, UserContextStr.c_str());
1704 isl_space *Space = getParamSpace();
1705 if (isl_space_dim(Space, isl_dim_param) !=
1706 isl_set_dim(UserContext, isl_dim_param)) {
1707 auto SpaceStr = isl_space_to_str(Space);
1708 errs() << "Error: the context provided in -polly-context has not the same "
1709 << "number of dimensions than the computed context. Due to this "
1710 << "mismatch, the -polly-context option is ignored. Please provide "
1711 << "the context in the parameter space: " << SpaceStr << ".\n";
1712 free(SpaceStr);
1713 isl_set_free(UserContext);
1714 isl_space_free(Space);
1715 return;
1716 }
1717
1718 for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
1719 auto NameContext = isl_set_get_dim_name(Context, isl_dim_param, i);
1720 auto NameUserContext = isl_set_get_dim_name(UserContext, isl_dim_param, i);
1721
1722 if (strcmp(NameContext, NameUserContext) != 0) {
1723 auto SpaceStr = isl_space_to_str(Space);
1724 errs() << "Error: the name of dimension " << i
1725 << " provided in -polly-context "
1726 << "is '" << NameUserContext << "', but the name in the computed "
1727 << "context is '" << NameContext
1728 << "'. Due to this name mismatch, "
1729 << "the -polly-context option is ignored. Please provide "
1730 << "the context in the parameter space: " << SpaceStr << ".\n";
1731 free(SpaceStr);
1732 isl_set_free(UserContext);
1733 isl_space_free(Space);
1734 return;
1735 }
1736
1737 UserContext =
1738 isl_set_set_dim_id(UserContext, isl_dim_param, i,
1739 isl_space_get_dim_id(Space, isl_dim_param, i));
1740 }
1741
1742 Context = isl_set_intersect(Context, UserContext);
1743 isl_space_free(Space);
1744}
1745
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001746void Scop::buildInvariantEquivalenceClasses() {
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001747 DenseMap<const SCEV *, LoadInst *> EquivClasses;
1748
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001749 const InvariantLoadsSetTy &RIL = *SD.getRequiredInvariantLoads(&getRegion());
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001750 for (LoadInst *LInst : RIL) {
1751 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
1752
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001753 LoadInst *&ClassRep = EquivClasses[PointerSCEV];
Johannes Doerfertfc4bfc42015-11-11 04:30:07 +00001754 if (ClassRep) {
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00001755 InvEquivClassVMap[LInst] = ClassRep;
Johannes Doerfertfc4bfc42015-11-11 04:30:07 +00001756 continue;
1757 }
1758
1759 ClassRep = LInst;
1760 InvariantEquivClasses.emplace_back(PointerSCEV, MemoryAccessList(),
1761 nullptr);
Johannes Doerfert697fdf82015-10-09 17:12:26 +00001762 }
1763}
1764
Tobias Grosser6be480c2011-11-08 15:41:13 +00001765void Scop::buildContext() {
1766 isl_space *Space = isl_space_params_alloc(IslCtx, 0);
Tobias Grossere86109f2013-10-29 21:05:49 +00001767 Context = isl_set_universe(isl_space_copy(Space));
1768 AssumedContext = isl_set_universe(Space);
Tobias Grosser0e27e242011-10-06 00:03:48 +00001769}
1770
Tobias Grosser18daaca2012-05-22 10:47:27 +00001771void Scop::addParameterBounds() {
Johannes Doerfert4f8ac3d2015-02-23 16:15:51 +00001772 for (const auto &ParamID : ParameterIds) {
Johannes Doerfert4f8ac3d2015-02-23 16:15:51 +00001773 int dim = ParamID.second;
Tobias Grosser18daaca2012-05-22 10:47:27 +00001774
Johannes Doerfert4f8ac3d2015-02-23 16:15:51 +00001775 ConstantRange SRange = SE->getSignedRange(ParamID.first);
Tobias Grosser18daaca2012-05-22 10:47:27 +00001776
Johannes Doerferte7044942015-02-24 11:58:30 +00001777 Context = addRangeBoundsToSet(Context, SRange, dim, isl_dim_param);
Tobias Grosser18daaca2012-05-22 10:47:27 +00001778 }
1779}
1780
Tobias Grosser8cae72f2011-11-08 15:41:08 +00001781void Scop::realignParams() {
Tobias Grosser6be480c2011-11-08 15:41:13 +00001782 // Add all parameters into a common model.
Tobias Grosser60b54f12011-11-08 15:41:28 +00001783 isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
Tobias Grosser6be480c2011-11-08 15:41:13 +00001784
Tobias Grosser083d3d32014-06-28 08:59:45 +00001785 for (const auto &ParamID : ParameterIds) {
1786 const SCEV *Parameter = ParamID.first;
Tobias Grosser6be480c2011-11-08 15:41:13 +00001787 isl_id *id = getIdForParam(Parameter);
Tobias Grosser083d3d32014-06-28 08:59:45 +00001788 Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id);
Tobias Grosser6be480c2011-11-08 15:41:13 +00001789 }
1790
1791 // Align the parameters of all data structures to the model.
1792 Context = isl_set_align_params(Context, Space);
1793
Tobias Grosser7c3bad52015-05-27 05:16:57 +00001794 for (ScopStmt &Stmt : *this)
1795 Stmt.realignParams();
Tobias Grosser8cae72f2011-11-08 15:41:08 +00001796}
1797
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001798static __isl_give isl_set *
1799simplifyAssumptionContext(__isl_take isl_set *AssumptionContext,
1800 const Scop &S) {
Johannes Doerfertf85ad042015-11-08 20:16:39 +00001801 // If we modelt all blocks in the SCoP that have side effects we can simplify
1802 // the context with the constraints that are needed for anything to be
1803 // executed at all. However, if we have error blocks in the SCoP we already
1804 // assumed some parameter combinations cannot occure and removed them from the
1805 // domains, thus we cannot use the remaining domain to simplify the
1806 // assumptions.
1807 if (!S.hasErrorBlock()) {
1808 isl_set *DomainParameters = isl_union_set_params(S.getDomains());
1809 AssumptionContext =
1810 isl_set_gist_params(AssumptionContext, DomainParameters);
1811 }
1812
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001813 AssumptionContext = isl_set_gist_params(AssumptionContext, S.getContext());
1814 return AssumptionContext;
1815}
1816
1817void Scop::simplifyContexts() {
Tobias Grosser5e6813d2014-07-02 17:47:48 +00001818 // The parameter constraints of the iteration domains give us a set of
1819 // constraints that need to hold for all cases where at least a single
1820 // statement iteration is executed in the whole scop. We now simplify the
1821 // assumed context under the assumption that such constraints hold and at
1822 // least a single statement iteration is executed. For cases where no
1823 // statement instances are executed, the assumptions we have taken about
1824 // the executed code do not matter and can be changed.
1825 //
1826 // WARNING: This only holds if the assumptions we have taken do not reduce
1827 // the set of statement instances that are executed. Otherwise we
1828 // may run into a case where the iteration domains suggest that
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001829 // for a certain set of parameter constraints no code is executed,
Tobias Grosser5e6813d2014-07-02 17:47:48 +00001830 // but in the original program some computation would have been
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001831 // performed. In such a case, modifying the run-time conditions and
1832 // possibly influencing the run-time check may cause certain scops
Tobias Grosser5e6813d2014-07-02 17:47:48 +00001833 // to not be executed.
1834 //
1835 // Example:
1836 //
1837 // When delinearizing the following code:
1838 //
1839 // for (long i = 0; i < 100; i++)
1840 // for (long j = 0; j < m; j++)
1841 // A[i+p][j] = 1.0;
1842 //
1843 // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00001844 // otherwise we would access out of bound data. Now, knowing that code is
Tobias Grosser5e6813d2014-07-02 17:47:48 +00001845 // only executed for the case m >= 0, it is sufficient to assume p >= 0.
Johannes Doerfert883f8c12015-09-15 22:52:53 +00001846 AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
1847 BoundaryContext = simplifyAssumptionContext(BoundaryContext, *this);
Tobias Grosser5e6813d2014-07-02 17:47:48 +00001848}
1849
Johannes Doerfertb164c792014-09-18 11:17:17 +00001850/// @brief Add the minimal/maximal access in @p Set to @p User.
Tobias Grosserb2f39922015-05-28 13:32:11 +00001851static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
Johannes Doerfertb164c792014-09-18 11:17:17 +00001852 Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
1853 isl_pw_multi_aff *MinPMA, *MaxPMA;
1854 isl_pw_aff *LastDimAff;
1855 isl_aff *OneAff;
1856 unsigned Pos;
1857
Johannes Doerfert9143d672014-09-27 11:02:39 +00001858 // Restrict the number of parameters involved in the access as the lexmin/
1859 // lexmax computation will take too long if this number is high.
1860 //
1861 // Experiments with a simple test case using an i7 4800MQ:
1862 //
1863 // #Parameters involved | Time (in sec)
1864 // 6 | 0.01
1865 // 7 | 0.04
1866 // 8 | 0.12
1867 // 9 | 0.40
1868 // 10 | 1.54
1869 // 11 | 6.78
1870 // 12 | 30.38
1871 //
1872 if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
1873 unsigned InvolvedParams = 0;
1874 for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
1875 if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
1876 InvolvedParams++;
1877
1878 if (InvolvedParams > RunTimeChecksMaxParameters) {
1879 isl_set_free(Set);
Tobias Grosserb2f39922015-05-28 13:32:11 +00001880 return isl_stat_error;
Johannes Doerfert9143d672014-09-27 11:02:39 +00001881 }
1882 }
1883
Johannes Doerfertb6755bb2015-02-14 12:00:06 +00001884 Set = isl_set_remove_divs(Set);
1885
Johannes Doerfertb164c792014-09-18 11:17:17 +00001886 MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
1887 MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
1888
Johannes Doerfert219b20e2014-10-07 14:37:59 +00001889 MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
1890 MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
1891
Johannes Doerfertb164c792014-09-18 11:17:17 +00001892 // Adjust the last dimension of the maximal access by one as we want to
1893 // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
1894 // we test during code generation might now point after the end of the
1895 // allocated array but we will never dereference it anyway.
1896 assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&
1897 "Assumed at least one output dimension");
1898 Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
1899 LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
1900 OneAff = isl_aff_zero_on_domain(
1901 isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
1902 OneAff = isl_aff_add_constant_si(OneAff, 1);
1903 LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
1904 MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
1905
1906 MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
1907
1908 isl_set_free(Set);
Tobias Grosserb2f39922015-05-28 13:32:11 +00001909 return isl_stat_ok;
Johannes Doerfertb164c792014-09-18 11:17:17 +00001910}
1911
Johannes Doerferteeab05a2014-10-01 12:42:37 +00001912static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
1913 isl_set *Domain = MA->getStatement()->getDomain();
1914 Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
1915 return isl_set_reset_tuple_id(Domain);
1916}
1917
Johannes Doerfert338b42c2015-07-23 17:04:54 +00001918/// @brief Wrapper function to calculate minimal/maximal accesses to each array.
1919static bool calculateMinMaxAccess(__isl_take isl_union_map *Accesses,
Tobias Grosserbb853c22015-07-25 12:31:03 +00001920 __isl_take isl_union_set *Domains,
Johannes Doerfert210b09a2015-07-26 13:14:38 +00001921 Scop::MinMaxVectorTy &MinMaxAccesses) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00001922
1923 Accesses = isl_union_map_intersect_domain(Accesses, Domains);
1924 isl_union_set *Locations = isl_union_map_range(Accesses);
Johannes Doerfert338b42c2015-07-23 17:04:54 +00001925 Locations = isl_union_set_coalesce(Locations);
1926 Locations = isl_union_set_detect_equalities(Locations);
1927 bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
Johannes Doerfert210b09a2015-07-26 13:14:38 +00001928 &MinMaxAccesses));
Johannes Doerfert338b42c2015-07-23 17:04:54 +00001929 isl_union_set_free(Locations);
1930 return Valid;
1931}
1932
Johannes Doerfert96425c22015-08-30 21:13:53 +00001933/// @brief Helper to treat non-affine regions and basic blocks the same.
1934///
1935///{
1936
1937/// @brief Return the block that is the representing block for @p RN.
1938static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
1939 return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
1940 : RN->getNodeAs<BasicBlock>();
1941}
1942
1943/// @brief Return the @p idx'th block that is executed after @p RN.
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001944static inline BasicBlock *
1945getRegionNodeSuccessor(RegionNode *RN, TerminatorInst *TI, unsigned idx) {
Johannes Doerfert96425c22015-08-30 21:13:53 +00001946 if (RN->isSubRegion()) {
1947 assert(idx == 0);
1948 return RN->getNodeAs<Region>()->getExit();
1949 }
Johannes Doerfert9a132f32015-09-28 09:33:22 +00001950 return TI->getSuccessor(idx);
Johannes Doerfert96425c22015-08-30 21:13:53 +00001951}
1952
1953/// @brief Return the smallest loop surrounding @p RN.
1954static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
1955 if (!RN->isSubRegion())
1956 return LI.getLoopFor(RN->getNodeAs<BasicBlock>());
1957
1958 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
1959 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
1960 while (L && NonAffineSubRegion->contains(L))
1961 L = L->getParentLoop();
1962 return L;
1963}
1964
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00001965static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) {
1966 if (!RN->isSubRegion())
1967 return 1;
1968
1969 unsigned NumBlocks = 0;
1970 Region *R = RN->getNodeAs<Region>();
1971 for (auto BB : R->blocks()) {
1972 (void)BB;
1973 NumBlocks++;
1974 }
1975 return NumBlocks;
1976}
1977
Johannes Doerfert08d90a32015-10-07 20:32:43 +00001978static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
1979 const DominatorTree &DT) {
Johannes Doerfertf5673802015-10-01 23:48:18 +00001980 if (!RN->isSubRegion())
Johannes Doerfert08d90a32015-10-07 20:32:43 +00001981 return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
Johannes Doerfertf5673802015-10-01 23:48:18 +00001982 for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
Johannes Doerfert08d90a32015-10-07 20:32:43 +00001983 if (isErrorBlock(*BB, R, LI, DT))
Johannes Doerfertf5673802015-10-01 23:48:18 +00001984 return true;
1985 return false;
1986}
1987
Johannes Doerfert96425c22015-08-30 21:13:53 +00001988///}
1989
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00001990static inline __isl_give isl_set *addDomainDimId(__isl_take isl_set *Domain,
1991 unsigned Dim, Loop *L) {
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00001992 Domain = isl_set_lower_bound_si(Domain, isl_dim_set, Dim, -1);
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00001993 isl_id *DimId =
1994 isl_id_alloc(isl_set_get_ctx(Domain), nullptr, static_cast<void *>(L));
1995 return isl_set_set_dim_id(Domain, isl_dim_set, Dim, DimId);
1996}
1997
Johannes Doerfert96425c22015-08-30 21:13:53 +00001998isl_set *Scop::getDomainConditions(ScopStmt *Stmt) {
1999 BasicBlock *BB = Stmt->isBlockStmt() ? Stmt->getBasicBlock()
2000 : Stmt->getRegion()->getEntry();
Johannes Doerfertcef616f2015-09-15 22:49:04 +00002001 return getDomainConditions(BB);
2002}
2003
2004isl_set *Scop::getDomainConditions(BasicBlock *BB) {
2005 assert(DomainMap.count(BB) && "Requested BB did not have a domain");
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002006 return isl_set_copy(DomainMap[BB]);
Johannes Doerfert96425c22015-08-30 21:13:53 +00002007}
2008
Tobias Grosser9737c7b2015-11-22 11:06:51 +00002009void Scop::removeErrorBlockDomains() {
2010 auto removeDomains = [this](BasicBlock *Start) {
2011 auto BBNode = DT.getNode(Start);
2012 for (auto ErrorChild : depth_first(BBNode)) {
2013 auto ErrorChildBlock = ErrorChild->getBlock();
2014 auto CurrentDomain = DomainMap[ErrorChildBlock];
2015 auto Empty = isl_set_empty(isl_set_get_space(CurrentDomain));
2016 DomainMap[ErrorChildBlock] = Empty;
2017 isl_set_free(CurrentDomain);
2018 }
2019 };
2020
Tobias Grosser5ef2bc32015-11-23 10:18:23 +00002021 SmallVector<Region *, 4> Todo = {&R};
Tobias Grosser9737c7b2015-11-22 11:06:51 +00002022
2023 while (!Todo.empty()) {
2024 auto SubRegion = Todo.back();
2025 Todo.pop_back();
2026
2027 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
2028 for (auto &Child : *SubRegion)
2029 Todo.push_back(Child.get());
2030 continue;
2031 }
2032 if (containsErrorBlock(SubRegion->getNode(), getRegion(), LI, DT))
2033 removeDomains(SubRegion->getEntry());
2034 }
2035
2036 for (auto BB : R.blocks())
2037 if (isErrorBlock(*BB, R, LI, DT))
2038 removeDomains(BB);
2039}
2040
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002041void Scop::buildDomains(Region *R) {
Johannes Doerfert96425c22015-08-30 21:13:53 +00002042
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002043 auto *EntryBB = R->getEntry();
2044 int LD = getRelativeLoopDepth(LI.getLoopFor(EntryBB));
2045 auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx(), 0, LD + 1));
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002046
2047 Loop *L = LI.getLoopFor(EntryBB);
2048 while (LD-- >= 0) {
2049 S = addDomainDimId(S, LD + 1, L);
2050 L = L->getParentLoop();
2051 }
2052
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002053 DomainMap[EntryBB] = S;
Johannes Doerfert96425c22015-08-30 21:13:53 +00002054
Johannes Doerfert40fa56f2015-09-14 11:15:07 +00002055 if (SD.isNonAffineSubRegion(R, R))
2056 return;
2057
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002058 buildDomainsWithBranchConstraints(R);
2059 propagateDomainConstraints(R);
Tobias Grosser9737c7b2015-11-22 11:06:51 +00002060
2061 // Error blocks and blocks dominated by them have been assumed to never be
2062 // executed. Representing them in the Scop does not add any value. In fact,
2063 // it is likely to cause issues during construction of the ScopStmts. The
2064 // contents of error blocks have not been verfied to be expressible and
2065 // will cause problems when building up a ScopStmt for them.
2066 // Furthermore, basic blocks dominated by error blocks may reference
2067 // instructions in the error block which, if the error block is not modeled,
2068 // can themselves not be constructed properly.
2069 removeErrorBlockDomains();
Johannes Doerfert96425c22015-08-30 21:13:53 +00002070}
2071
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002072void Scop::buildDomainsWithBranchConstraints(Region *R) {
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002073 RegionInfo &RI = *R->getRegionInfo();
Johannes Doerfert96425c22015-08-30 21:13:53 +00002074
2075 // To create the domain for each block in R we iterate over all blocks and
2076 // subregions in R and propagate the conditions under which the current region
2077 // element is executed. To this end we iterate in reverse post order over R as
2078 // it ensures that we first visit all predecessors of a region node (either a
2079 // basic block or a subregion) before we visit the region node itself.
2080 // Initially, only the domain for the SCoP region entry block is set and from
2081 // there we propagate the current domain to all successors, however we add the
2082 // condition that the successor is actually executed next.
2083 // As we are only interested in non-loop carried constraints here we can
2084 // simply skip loop back edges.
2085
2086 ReversePostOrderTraversal<Region *> RTraversal(R);
2087 for (auto *RN : RTraversal) {
2088
2089 // Recurse for affine subregions but go on for basic blocks and non-affine
2090 // subregions.
2091 if (RN->isSubRegion()) {
2092 Region *SubRegion = RN->getNodeAs<Region>();
2093 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002094 buildDomainsWithBranchConstraints(SubRegion);
Johannes Doerfert96425c22015-08-30 21:13:53 +00002095 continue;
2096 }
2097 }
2098
Tobias Grosserb76cd3c2015-11-11 08:42:20 +00002099 if (containsErrorBlock(RN, getRegion(), LI, DT))
Johannes Doerfertf85ad042015-11-08 20:16:39 +00002100 HasErrorBlock = true;
Johannes Doerfertf5673802015-10-01 23:48:18 +00002101
Johannes Doerfert96425c22015-08-30 21:13:53 +00002102 BasicBlock *BB = getRegionNodeBasicBlock(RN);
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002103 TerminatorInst *TI = BB->getTerminator();
2104
Tobias Grosserb76cd3c2015-11-11 08:42:20 +00002105 if (isa<UnreachableInst>(TI))
2106 continue;
2107
Johannes Doerfertf5673802015-10-01 23:48:18 +00002108 isl_set *Domain = DomainMap.lookup(BB);
2109 if (!Domain) {
2110 DEBUG(dbgs() << "\tSkip: " << BB->getName()
2111 << ", it is only reachable from error blocks.\n");
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002112 continue;
2113 }
2114
Johannes Doerfert96425c22015-08-30 21:13:53 +00002115 DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n");
Johannes Doerfert96425c22015-08-30 21:13:53 +00002116
2117 Loop *BBLoop = getRegionNodeLoop(RN, LI);
2118 int BBLoopDepth = getRelativeLoopDepth(BBLoop);
2119
2120 // Build the condition sets for the successor nodes of the current region
2121 // node. If it is a non-affine subregion we will always execute the single
2122 // exit node, hence the single entry node domain is the condition set. For
2123 // basic blocks we use the helper function buildConditionSets.
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002124 SmallVector<isl_set *, 8> ConditionSets;
Johannes Doerfert96425c22015-08-30 21:13:53 +00002125 if (RN->isSubRegion())
2126 ConditionSets.push_back(isl_set_copy(Domain));
2127 else
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002128 buildConditionSets(*this, TI, BBLoop, Domain, ConditionSets);
Johannes Doerfert96425c22015-08-30 21:13:53 +00002129
2130 // Now iterate over the successors and set their initial domain based on
2131 // their condition set. We skip back edges here and have to be careful when
2132 // we leave a loop not to keep constraints over a dimension that doesn't
2133 // exist anymore.
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002134 assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
Johannes Doerfert96425c22015-08-30 21:13:53 +00002135 for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
Johannes Doerfert96425c22015-08-30 21:13:53 +00002136 isl_set *CondSet = ConditionSets[u];
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002137 BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
Johannes Doerfert96425c22015-08-30 21:13:53 +00002138
2139 // Skip back edges.
2140 if (DT.dominates(SuccBB, BB)) {
2141 isl_set_free(CondSet);
2142 continue;
2143 }
2144
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002145 // Do not adjust the number of dimensions if we enter a boxed loop or are
2146 // in a non-affine subregion or if the surrounding loop stays the same.
Johannes Doerfert96425c22015-08-30 21:13:53 +00002147 Loop *SuccBBLoop = LI.getLoopFor(SuccBB);
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002148 Region *SuccRegion = RI.getRegionFor(SuccBB);
Johannes Doerfert634909c2015-10-04 14:57:41 +00002149 if (SD.isNonAffineSubRegion(SuccRegion, &getRegion()))
2150 while (SuccBBLoop && SuccRegion->contains(SuccBBLoop))
2151 SuccBBLoop = SuccBBLoop->getParentLoop();
2152
2153 if (BBLoop != SuccBBLoop) {
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002154
2155 // Check if the edge to SuccBB is a loop entry or exit edge. If so
2156 // adjust the dimensionality accordingly. Lastly, if we leave a loop
2157 // and enter a new one we need to drop the old constraints.
2158 int SuccBBLoopDepth = getRelativeLoopDepth(SuccBBLoop);
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002159 unsigned LoopDepthDiff = std::abs(BBLoopDepth - SuccBBLoopDepth);
Tobias Grosser2df884f2015-09-01 18:17:41 +00002160 if (BBLoopDepth > SuccBBLoopDepth) {
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002161 CondSet = isl_set_project_out(CondSet, isl_dim_set,
2162 isl_set_n_dim(CondSet) - LoopDepthDiff,
2163 LoopDepthDiff);
Tobias Grosser2df884f2015-09-01 18:17:41 +00002164 } else if (SuccBBLoopDepth > BBLoopDepth) {
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002165 assert(LoopDepthDiff == 1);
Johannes Doerfertf08bd002015-08-31 13:56:32 +00002166 CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002167 CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
Tobias Grosser2df884f2015-09-01 18:17:41 +00002168 } else if (BBLoopDepth >= 0) {
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002169 assert(LoopDepthDiff <= 1);
Tobias Grosser2df884f2015-09-01 18:17:41 +00002170 CondSet = isl_set_project_out(CondSet, isl_dim_set, BBLoopDepth, 1);
2171 CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002172 CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
Tobias Grosser2df884f2015-09-01 18:17:41 +00002173 }
Johannes Doerfert96425c22015-08-30 21:13:53 +00002174 }
2175
2176 // Set the domain for the successor or merge it with an existing domain in
2177 // case there are multiple paths (without loop back edges) to the
2178 // successor block.
2179 isl_set *&SuccDomain = DomainMap[SuccBB];
2180 if (!SuccDomain)
2181 SuccDomain = CondSet;
2182 else
2183 SuccDomain = isl_set_union(SuccDomain, CondSet);
2184
2185 SuccDomain = isl_set_coalesce(SuccDomain);
Tobias Grosser75dc40c2015-12-20 13:31:48 +00002186 if (isl_set_n_basic_set(SuccDomain) > MaxConjunctsInDomain) {
2187 auto *Empty = isl_set_empty(isl_set_get_space(SuccDomain));
2188 isl_set_free(SuccDomain);
2189 SuccDomain = Empty;
2190 invalidate(ERROR_DOMAINCONJUNCTS, DebugLoc());
2191 }
Johannes Doerfert634909c2015-10-04 14:57:41 +00002192 DEBUG(dbgs() << "\tSet SuccBB: " << SuccBB->getName() << " : "
2193 << SuccDomain << "\n");
Johannes Doerfert96425c22015-08-30 21:13:53 +00002194 }
2195 }
2196}
2197
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002198/// @brief Return the domain for @p BB wrt @p DomainMap.
2199///
2200/// This helper function will lookup @p BB in @p DomainMap but also handle the
2201/// case where @p BB is contained in a non-affine subregion using the region
2202/// tree obtained by @p RI.
2203static __isl_give isl_set *
2204getDomainForBlock(BasicBlock *BB, DenseMap<BasicBlock *, isl_set *> &DomainMap,
2205 RegionInfo &RI) {
2206 auto DIt = DomainMap.find(BB);
2207 if (DIt != DomainMap.end())
2208 return isl_set_copy(DIt->getSecond());
2209
2210 Region *R = RI.getRegionFor(BB);
2211 while (R->getEntry() == BB)
2212 R = R->getParent();
2213 return getDomainForBlock(R->getEntry(), DomainMap, RI);
2214}
2215
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002216void Scop::propagateDomainConstraints(Region *R) {
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002217 // Iterate over the region R and propagate the domain constrains from the
2218 // predecessors to the current node. In contrast to the
2219 // buildDomainsWithBranchConstraints function, this one will pull the domain
2220 // information from the predecessors instead of pushing it to the successors.
2221 // Additionally, we assume the domains to be already present in the domain
2222 // map here. However, we iterate again in reverse post order so we know all
2223 // predecessors have been visited before a block or non-affine subregion is
2224 // visited.
2225
2226 // The set of boxed loops (loops in non-affine subregions) for this SCoP.
2227 auto &BoxedLoops = *SD.getBoxedLoops(&getRegion());
2228
2229 ReversePostOrderTraversal<Region *> RTraversal(R);
2230 for (auto *RN : RTraversal) {
2231
2232 // Recurse for affine subregions but go on for basic blocks and non-affine
2233 // subregions.
2234 if (RN->isSubRegion()) {
2235 Region *SubRegion = RN->getNodeAs<Region>();
2236 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002237 propagateDomainConstraints(SubRegion);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002238 continue;
2239 }
2240 }
2241
Johannes Doerfertf5673802015-10-01 23:48:18 +00002242 // Get the domain for the current block and check if it was initialized or
2243 // not. The only way it was not is if this block is only reachable via error
2244 // blocks, thus will not be executed under the assumptions we make. Such
2245 // blocks have to be skipped as their predecessors might not have domains
2246 // either. It would not benefit us to compute the domain anyway, only the
2247 // domains of the error blocks that are reachable from non-error blocks
2248 // are needed to generate assumptions.
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002249 BasicBlock *BB = getRegionNodeBasicBlock(RN);
Johannes Doerfertf5673802015-10-01 23:48:18 +00002250 isl_set *&Domain = DomainMap[BB];
2251 if (!Domain) {
2252 DEBUG(dbgs() << "\tSkip: " << BB->getName()
2253 << ", it is only reachable from error blocks.\n");
2254 DomainMap.erase(BB);
2255 continue;
2256 }
2257 DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n");
2258
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002259 Loop *BBLoop = getRegionNodeLoop(RN, LI);
2260 int BBLoopDepth = getRelativeLoopDepth(BBLoop);
2261
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002262 isl_set *PredDom = isl_set_empty(isl_set_get_space(Domain));
2263 for (auto *PredBB : predecessors(BB)) {
2264
2265 // Skip backedges
2266 if (DT.dominates(BB, PredBB))
2267 continue;
2268
2269 isl_set *PredBBDom = nullptr;
2270
2271 // Handle the SCoP entry block with its outside predecessors.
2272 if (!getRegion().contains(PredBB))
2273 PredBBDom = isl_set_universe(isl_set_get_space(PredDom));
2274
2275 if (!PredBBDom) {
2276 // Determine the loop depth of the predecessor and adjust its domain to
2277 // the domain of the current block. This can mean we have to:
2278 // o) Drop a dimension if this block is the exit of a loop, not the
2279 // header of a new loop and the predecessor was part of the loop.
2280 // o) Add an unconstrainted new dimension if this block is the header
2281 // of a loop and the predecessor is not part of it.
2282 // o) Drop the information about the innermost loop dimension when the
2283 // predecessor and the current block are surrounded by different
2284 // loops in the same depth.
2285 PredBBDom = getDomainForBlock(PredBB, DomainMap, *R->getRegionInfo());
2286 Loop *PredBBLoop = LI.getLoopFor(PredBB);
2287 while (BoxedLoops.count(PredBBLoop))
2288 PredBBLoop = PredBBLoop->getParentLoop();
2289
2290 int PredBBLoopDepth = getRelativeLoopDepth(PredBBLoop);
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002291 unsigned LoopDepthDiff = std::abs(BBLoopDepth - PredBBLoopDepth);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002292 if (BBLoopDepth < PredBBLoopDepth)
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002293 PredBBDom = isl_set_project_out(
2294 PredBBDom, isl_dim_set, isl_set_n_dim(PredBBDom) - LoopDepthDiff,
2295 LoopDepthDiff);
2296 else if (PredBBLoopDepth < BBLoopDepth) {
2297 assert(LoopDepthDiff == 1);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002298 PredBBDom = isl_set_add_dims(PredBBDom, isl_dim_set, 1);
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002299 } else if (BBLoop != PredBBLoop && BBLoopDepth >= 0) {
2300 assert(LoopDepthDiff <= 1);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002301 PredBBDom = isl_set_drop_constraints_involving_dims(
2302 PredBBDom, isl_dim_set, BBLoopDepth, 1);
Johannes Doerfertf4fa9872015-09-10 15:53:59 +00002303 }
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002304 }
2305
2306 PredDom = isl_set_union(PredDom, PredBBDom);
2307 }
2308
2309 // Under the union of all predecessor conditions we can reach this block.
Johannes Doerfertb20f1512015-09-15 22:11:49 +00002310 Domain = isl_set_coalesce(isl_set_intersect(Domain, PredDom));
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002311
Johannes Doerfertf32f5f22015-09-28 01:30:37 +00002312 if (BBLoop && BBLoop->getHeader() == BB && getRegion().contains(BBLoop))
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002313 addLoopBoundsToHeaderDomain(BBLoop);
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002314
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002315 // Add assumptions for error blocks.
Johannes Doerfert08d90a32015-10-07 20:32:43 +00002316 if (containsErrorBlock(RN, getRegion(), LI, DT)) {
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002317 IsOptimized = true;
2318 isl_set *DomPar = isl_set_params(isl_set_copy(Domain));
Johannes Doerfertd84493e2015-11-12 02:33:38 +00002319 addAssumption(ERRORBLOCK, isl_set_complement(DomPar),
2320 BB->getTerminator()->getDebugLoc());
Johannes Doerfert90db75e2015-09-10 17:51:27 +00002321 }
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002322 }
2323}
2324
2325/// @brief Create a map from SetSpace -> SetSpace where the dimensions @p Dim
2326/// is incremented by one and all other dimensions are equal, e.g.,
2327/// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
2328/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
2329static __isl_give isl_map *
2330createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) {
2331 auto *MapSpace = isl_space_map_from_set(SetSpace);
2332 auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace));
2333 for (unsigned u = 0; u < isl_map_n_in(NextIterationMap); u++)
2334 if (u != Dim)
2335 NextIterationMap =
2336 isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u);
2337 auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace));
2338 C = isl_constraint_set_constant_si(C, 1);
2339 C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1);
2340 C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1);
2341 NextIterationMap = isl_map_add_constraint(NextIterationMap, C);
2342 return NextIterationMap;
2343}
2344
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002345void Scop::addLoopBoundsToHeaderDomain(Loop *L) {
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002346 int LoopDepth = getRelativeLoopDepth(L);
2347 assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002348
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002349 BasicBlock *HeaderBB = L->getHeader();
2350 assert(DomainMap.count(HeaderBB));
2351 isl_set *&HeaderBBDom = DomainMap[HeaderBB];
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002352
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002353 isl_map *NextIterationMap =
2354 createNextIterationMap(isl_set_get_space(HeaderBBDom), LoopDepth);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002355
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002356 isl_set *UnionBackedgeCondition =
2357 isl_set_empty(isl_set_get_space(HeaderBBDom));
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002358
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002359 SmallVector<llvm::BasicBlock *, 4> LatchBlocks;
2360 L->getLoopLatches(LatchBlocks);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002361
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002362 for (BasicBlock *LatchBB : LatchBlocks) {
Johannes Doerfertf5673802015-10-01 23:48:18 +00002363
2364 // If the latch is only reachable via error statements we skip it.
2365 isl_set *LatchBBDom = DomainMap.lookup(LatchBB);
2366 if (!LatchBBDom)
2367 continue;
2368
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002369 isl_set *BackedgeCondition = nullptr;
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002370
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002371 TerminatorInst *TI = LatchBB->getTerminator();
2372 BranchInst *BI = dyn_cast<BranchInst>(TI);
2373 if (BI && BI->isUnconditional())
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002374 BackedgeCondition = isl_set_copy(LatchBBDom);
2375 else {
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002376 SmallVector<isl_set *, 8> ConditionSets;
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002377 int idx = BI->getSuccessor(0) != HeaderBB;
Johannes Doerfert9a132f32015-09-28 09:33:22 +00002378 buildConditionSets(*this, TI, L, LatchBBDom, ConditionSets);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002379
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002380 // Free the non back edge condition set as we do not need it.
2381 isl_set_free(ConditionSets[1 - idx]);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002382
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002383 BackedgeCondition = ConditionSets[idx];
Johannes Doerfert06c57b52015-09-20 15:00:20 +00002384 }
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002385
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002386 int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB));
2387 assert(LatchLoopDepth >= LoopDepth);
2388 BackedgeCondition =
2389 isl_set_project_out(BackedgeCondition, isl_dim_set, LoopDepth + 1,
2390 LatchLoopDepth - LoopDepth);
2391 UnionBackedgeCondition =
2392 isl_set_union(UnionBackedgeCondition, BackedgeCondition);
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002393 }
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002394
2395 isl_map *ForwardMap = isl_map_lex_le(isl_set_get_space(HeaderBBDom));
2396 for (int i = 0; i < LoopDepth; i++)
2397 ForwardMap = isl_map_equate(ForwardMap, isl_dim_in, i, isl_dim_out, i);
2398
2399 isl_set *UnionBackedgeConditionComplement =
2400 isl_set_complement(UnionBackedgeCondition);
2401 UnionBackedgeConditionComplement = isl_set_lower_bound_si(
2402 UnionBackedgeConditionComplement, isl_dim_set, LoopDepth, 0);
2403 UnionBackedgeConditionComplement =
2404 isl_set_apply(UnionBackedgeConditionComplement, ForwardMap);
2405 HeaderBBDom = isl_set_subtract(HeaderBBDom, UnionBackedgeConditionComplement);
2406 HeaderBBDom = isl_set_apply(HeaderBBDom, NextIterationMap);
2407
2408 auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
2409 HeaderBBDom = Parts.second;
2410
Johannes Doerfert6a72a2a2015-09-20 16:59:23 +00002411 // Check if there is a <nsw> tagged AddRec for this loop and if so do not add
2412 // the bounded assumptions to the context as they are already implied by the
2413 // <nsw> tag.
2414 if (Affinator.hasNSWAddRecForLoop(L)) {
2415 isl_set_free(Parts.first);
2416 return;
2417 }
2418
Johannes Doerfertf2cc86e2015-09-20 16:15:32 +00002419 isl_set *UnboundedCtx = isl_set_params(Parts.first);
2420 isl_set *BoundedCtx = isl_set_complement(UnboundedCtx);
Johannes Doerfertd84493e2015-11-12 02:33:38 +00002421 addAssumption(INFINITELOOP, BoundedCtx,
2422 HeaderBB->getTerminator()->getDebugLoc());
Johannes Doerfert5b9ff8b2015-09-10 13:00:06 +00002423}
2424
Johannes Doerfert120de4b2015-08-20 18:30:08 +00002425void Scop::buildAliasChecks(AliasAnalysis &AA) {
2426 if (!PollyUseRuntimeAliasChecks)
2427 return;
2428
2429 if (buildAliasGroups(AA))
2430 return;
2431
2432 // If a problem occurs while building the alias groups we need to delete
2433 // this SCoP and pretend it wasn't valid in the first place. To this end
2434 // we make the assumed context infeasible.
Tobias Grosser8d4f6262015-12-12 09:52:26 +00002435 invalidate(ALIASING, DebugLoc());
Johannes Doerfert120de4b2015-08-20 18:30:08 +00002436
2437 DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << getNameStr()
2438 << " could not be created as the number of parameters involved "
2439 "is too high. The SCoP will be "
2440 "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
2441 "the maximal number of parameters but be advised that the "
2442 "compile time might increase exponentially.\n\n");
2443}
2444
Johannes Doerfert9143d672014-09-27 11:02:39 +00002445bool Scop::buildAliasGroups(AliasAnalysis &AA) {
Johannes Doerfertb164c792014-09-18 11:17:17 +00002446 // To create sound alias checks we perform the following steps:
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00002447 // o) Use the alias analysis and an alias set tracker to build alias sets
Johannes Doerfertb164c792014-09-18 11:17:17 +00002448 // for all memory accesses inside the SCoP.
2449 // o) For each alias set we then map the aliasing pointers back to the
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00002450 // memory accesses we know, thus obtain groups of memory accesses which
Johannes Doerfertb164c792014-09-18 11:17:17 +00002451 // might alias.
Johannes Doerferteeab05a2014-10-01 12:42:37 +00002452 // o) We divide each group based on the domains of the minimal/maximal
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00002453 // accesses. That means two minimal/maximal accesses are only in a group
Johannes Doerferteeab05a2014-10-01 12:42:37 +00002454 // if their access domains intersect, otherwise they are in different
2455 // ones.
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002456 // o) We partition each group into read only and non read only accesses.
Johannes Doerfert6cad9c42015-02-24 16:00:29 +00002457 // o) For each group with more than one base pointer we then compute minimal
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002458 // and maximal accesses to each array of a group in read only and non
2459 // read only partitions separately.
Johannes Doerfertb164c792014-09-18 11:17:17 +00002460 using AliasGroupTy = SmallVector<MemoryAccess *, 4>;
2461
2462 AliasSetTracker AST(AA);
2463
2464 DenseMap<Value *, MemoryAccess *> PtrToAcc;
Johannes Doerfert13771732014-10-01 12:40:46 +00002465 DenseSet<Value *> HasWriteAccess;
Tobias Grosser7c3bad52015-05-27 05:16:57 +00002466 for (ScopStmt &Stmt : *this) {
Johannes Doerfertf1ee2622014-10-06 17:43:00 +00002467
2468 // Skip statements with an empty domain as they will never be executed.
Tobias Grosser7c3bad52015-05-27 05:16:57 +00002469 isl_set *StmtDomain = Stmt.getDomain();
Johannes Doerfertf1ee2622014-10-06 17:43:00 +00002470 bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
2471 isl_set_free(StmtDomain);
2472 if (StmtDomainEmpty)
2473 continue;
2474
Tobias Grosser7c3bad52015-05-27 05:16:57 +00002475 for (MemoryAccess *MA : Stmt) {
Tobias Grossera535dff2015-12-13 19:59:01 +00002476 if (MA->isScalarKind())
Johannes Doerfertb164c792014-09-18 11:17:17 +00002477 continue;
Johannes Doerfert13771732014-10-01 12:40:46 +00002478 if (!MA->isRead())
2479 HasWriteAccess.insert(MA->getBaseAddr());
Johannes Doerfertb164c792014-09-18 11:17:17 +00002480 Instruction *Acc = MA->getAccessInstruction();
2481 PtrToAcc[getPointerOperand(*Acc)] = MA;
2482 AST.add(Acc);
2483 }
2484 }
2485
2486 SmallVector<AliasGroupTy, 4> AliasGroups;
2487 for (AliasSet &AS : AST) {
Johannes Doerfert74f68692014-10-08 02:23:48 +00002488 if (AS.isMustAlias() || AS.isForwardingAliasSet())
Johannes Doerfertb164c792014-09-18 11:17:17 +00002489 continue;
2490 AliasGroupTy AG;
2491 for (auto PR : AS)
2492 AG.push_back(PtrToAcc[PR.getValue()]);
2493 assert(AG.size() > 1 &&
2494 "Alias groups should contain at least two accesses");
2495 AliasGroups.push_back(std::move(AG));
2496 }
2497
Johannes Doerferteeab05a2014-10-01 12:42:37 +00002498 // Split the alias groups based on their domain.
2499 for (unsigned u = 0; u < AliasGroups.size(); u++) {
2500 AliasGroupTy NewAG;
2501 AliasGroupTy &AG = AliasGroups[u];
2502 AliasGroupTy::iterator AGI = AG.begin();
2503 isl_set *AGDomain = getAccessDomain(*AGI);
2504 while (AGI != AG.end()) {
2505 MemoryAccess *MA = *AGI;
2506 isl_set *MADomain = getAccessDomain(MA);
2507 if (isl_set_is_disjoint(AGDomain, MADomain)) {
2508 NewAG.push_back(MA);
2509 AGI = AG.erase(AGI);
2510 isl_set_free(MADomain);
2511 } else {
2512 AGDomain = isl_set_union(AGDomain, MADomain);
2513 AGI++;
2514 }
2515 }
2516 if (NewAG.size() > 1)
2517 AliasGroups.push_back(std::move(NewAG));
2518 isl_set_free(AGDomain);
2519 }
2520
Johannes Doerfert0cf4e0a2015-11-12 02:32:51 +00002521 auto &F = *getRegion().getEntry()->getParent();
Tobias Grosserf4c24b22015-04-05 13:11:54 +00002522 MapVector<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs;
Johannes Doerfert13771732014-10-01 12:40:46 +00002523 SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues;
2524 for (AliasGroupTy &AG : AliasGroups) {
2525 NonReadOnlyBaseValues.clear();
2526 ReadOnlyPairs.clear();
2527
Johannes Doerferteeab05a2014-10-01 12:42:37 +00002528 if (AG.size() < 2) {
2529 AG.clear();
2530 continue;
2531 }
2532
Johannes Doerfert13771732014-10-01 12:40:46 +00002533 for (auto II = AG.begin(); II != AG.end();) {
Johannes Doerfert0cf4e0a2015-11-12 02:32:51 +00002534 emitOptimizationRemarkAnalysis(
2535 F.getContext(), DEBUG_TYPE, F,
2536 (*II)->getAccessInstruction()->getDebugLoc(),
2537 "Possibly aliasing pointer, use restrict keyword.");
2538
Johannes Doerfert13771732014-10-01 12:40:46 +00002539 Value *BaseAddr = (*II)->getBaseAddr();
2540 if (HasWriteAccess.count(BaseAddr)) {
2541 NonReadOnlyBaseValues.insert(BaseAddr);
2542 II++;
2543 } else {
2544 ReadOnlyPairs[BaseAddr].insert(*II);
2545 II = AG.erase(II);
2546 }
2547 }
2548
2549 // If we don't have read only pointers check if there are at least two
2550 // non read only pointers, otherwise clear the alias group.
Tobias Grosserbb853c22015-07-25 12:31:03 +00002551 if (ReadOnlyPairs.empty() && NonReadOnlyBaseValues.size() <= 1) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002552 AG.clear();
Johannes Doerfert13771732014-10-01 12:40:46 +00002553 continue;
2554 }
2555
2556 // If we don't have non read only pointers clear the alias group.
2557 if (NonReadOnlyBaseValues.empty()) {
2558 AG.clear();
2559 continue;
2560 }
2561
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002562 // Calculate minimal and maximal accesses for non read only accesses.
Johannes Doerfert210b09a2015-07-26 13:14:38 +00002563 MinMaxAliasGroups.emplace_back();
2564 MinMaxVectorPairTy &pair = MinMaxAliasGroups.back();
2565 MinMaxVectorTy &MinMaxAccessesNonReadOnly = pair.first;
2566 MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second;
2567 MinMaxAccessesNonReadOnly.reserve(AG.size());
Johannes Doerfertb164c792014-09-18 11:17:17 +00002568
2569 isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002570
2571 // AG contains only non read only accesses.
Johannes Doerfertb164c792014-09-18 11:17:17 +00002572 for (MemoryAccess *MA : AG)
2573 Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
Johannes Doerfertb164c792014-09-18 11:17:17 +00002574
Tobias Grosserdaaed0e2015-08-20 21:29:26 +00002575 bool Valid = calculateMinMaxAccess(Accesses, getDomains(),
2576 MinMaxAccessesNonReadOnly);
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002577
2578 // Bail out if the number of values we need to compare is too large.
2579 // This is important as the number of comparisions grows quadratically with
2580 // the number of values we need to compare.
Johannes Doerfert210b09a2015-07-26 13:14:38 +00002581 if (!Valid || (MinMaxAccessesNonReadOnly.size() + !ReadOnlyPairs.empty() >
2582 RunTimeChecksMaxArraysPerGroup))
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002583 return false;
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002584
2585 // Calculate minimal and maximal accesses for read only accesses.
Johannes Doerfert210b09a2015-07-26 13:14:38 +00002586 MinMaxAccessesReadOnly.reserve(ReadOnlyPairs.size());
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002587 Accesses = isl_union_map_empty(getParamSpace());
2588
2589 for (const auto &ReadOnlyPair : ReadOnlyPairs)
2590 for (MemoryAccess *MA : ReadOnlyPair.second)
2591 Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
2592
Tobias Grosserdaaed0e2015-08-20 21:29:26 +00002593 Valid =
2594 calculateMinMaxAccess(Accesses, getDomains(), MinMaxAccessesReadOnly);
Johannes Doerfert9143d672014-09-27 11:02:39 +00002595
2596 if (!Valid)
Tobias Grosser50d4e2e2015-03-28 14:50:32 +00002597 return false;
Johannes Doerfertb164c792014-09-18 11:17:17 +00002598 }
Johannes Doerfert9143d672014-09-27 11:02:39 +00002599
Tobias Grosser50d4e2e2015-03-28 14:50:32 +00002600 return true;
Johannes Doerfertb164c792014-09-18 11:17:17 +00002601}
2602
Johannes Doerfertdec27df2015-11-21 16:56:13 +00002603/// @brief Get the smallest loop that contains @p R but is not in @p R.
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002604static Loop *getLoopSurroundingRegion(Region &R, LoopInfo &LI) {
Johannes Doerfertdec27df2015-11-21 16:56:13 +00002605 // Start with the smallest loop containing the entry and expand that
2606 // loop until it contains all blocks in the region. If there is a loop
2607 // containing all blocks in the region check if it is itself contained
2608 // and if so take the parent loop as it will be the smallest containing
2609 // the region but not contained by it.
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002610 Loop *L = LI.getLoopFor(R.getEntry());
Johannes Doerfertdec27df2015-11-21 16:56:13 +00002611 while (L) {
2612 bool AllContained = true;
2613 for (auto *BB : R.blocks())
2614 AllContained &= L->contains(BB);
2615 if (AllContained)
2616 break;
2617 L = L->getParentLoop();
2618 }
2619
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00002620 return L ? (R.contains(L) ? L->getParentLoop() : L) : nullptr;
2621}
2622
Johannes Doerfertf8206cf2015-04-12 22:58:40 +00002623static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI,
2624 ScopDetection &SD) {
2625
2626 const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD.getBoxedLoops(&R);
2627
Johannes Doerferte3da05a2014-11-01 00:12:13 +00002628 unsigned MinLD = INT_MAX, MaxLD = 0;
2629 for (BasicBlock *BB : R.blocks()) {
2630 if (Loop *L = LI.getLoopFor(BB)) {
David Peixottodc0a11c2015-01-13 18:31:55 +00002631 if (!R.contains(L))
2632 continue;
Johannes Doerfertf8206cf2015-04-12 22:58:40 +00002633 if (BoxedLoops && BoxedLoops->count(L))
2634 continue;
Johannes Doerferte3da05a2014-11-01 00:12:13 +00002635 unsigned LD = L->getLoopDepth();
2636 MinLD = std::min(MinLD, LD);
2637 MaxLD = std::max(MaxLD, LD);
2638 }
2639 }
2640
2641 // Handle the case that there is no loop in the SCoP first.
2642 if (MaxLD == 0)
2643 return 1;
2644
2645 assert(MinLD >= 1 && "Minimal loop depth should be at least one");
2646 assert(MaxLD >= MinLD &&
2647 "Maximal loop depth was smaller than mininaml loop depth?");
2648 return MaxLD - MinLD + 1;
2649}
2650
Johannes Doerfert478a7de2015-10-02 13:09:31 +00002651Scop::Scop(Region &R, AccFuncMapType &AccFuncMap, ScopDetection &SD,
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002652 ScalarEvolution &ScalarEvolution, DominatorTree &DT, LoopInfo &LI,
Johannes Doerfert96425c22015-08-30 21:13:53 +00002653 isl_ctx *Context, unsigned MaxLoopDepth)
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002654 : LI(LI), DT(DT), SE(&ScalarEvolution), SD(SD), R(R),
2655 AccFuncMap(AccFuncMap), IsOptimized(false),
Johannes Doerfertf85ad042015-11-08 20:16:39 +00002656 HasSingleExitEdge(R.getExitingBlock()), HasErrorBlock(false),
2657 MaxLoopDepth(MaxLoopDepth), IslCtx(Context), Context(nullptr),
2658 Affinator(this), AssumedContext(nullptr), BoundaryContext(nullptr),
2659 Schedule(nullptr) {}
Johannes Doerfertff9d1982015-02-24 12:00:50 +00002660
Johannes Doerfert2af10e22015-11-12 03:25:01 +00002661void Scop::init(AliasAnalysis &AA, AssumptionCache &AC) {
Tobias Grosser6be480c2011-11-08 15:41:13 +00002662 buildContext();
Johannes Doerfert2af10e22015-11-12 03:25:01 +00002663 addUserAssumptions(AC);
Johannes Doerfert697fdf82015-10-09 17:12:26 +00002664 buildInvariantEquivalenceClasses();
2665
Johannes Doerfertd8dd8632015-10-07 20:31:36 +00002666 buildDomains(&R);
Johannes Doerfert96425c22015-08-30 21:13:53 +00002667
Michael Krusecac948e2015-10-02 13:53:07 +00002668 // Remove empty and ignored statements.
Michael Kruseafe06702015-10-02 16:33:27 +00002669 // Exit early in case there are no executable statements left in this scop.
Michael Krusecac948e2015-10-02 13:53:07 +00002670 simplifySCoP(true);
Michael Kruseafe06702015-10-02 16:33:27 +00002671 if (Stmts.empty())
2672 return;
Tobias Grosser75805372011-04-29 06:27:02 +00002673
Michael Krusecac948e2015-10-02 13:53:07 +00002674 // The ScopStmts now have enough information to initialize themselves.
2675 for (ScopStmt &Stmt : Stmts)
2676 Stmt.init();
2677
Johannes Doerfertf9711ef2016-01-06 12:59:23 +00002678 buildSchedule();
Tobias Grosser75805372011-04-29 06:27:02 +00002679
Tobias Grosser8286b832015-11-02 11:29:32 +00002680 if (isl_set_is_empty(AssumedContext))
2681 return;
2682
2683 updateAccessDimensionality();
Tobias Grosser8cae72f2011-11-08 15:41:08 +00002684 realignParams();
Tobias Grosser18daaca2012-05-22 10:47:27 +00002685 addParameterBounds();
Tobias Grosser8a9c2352015-08-16 10:19:29 +00002686 addUserContext();
Johannes Doerfert883f8c12015-09-15 22:52:53 +00002687 buildBoundaryContext();
2688 simplifyContexts();
Johannes Doerfert120de4b2015-08-20 18:30:08 +00002689 buildAliasChecks(AA);
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002690
2691 hoistInvariantLoads();
Michael Krusecac948e2015-10-02 13:53:07 +00002692 simplifySCoP(false);
Tobias Grosser75805372011-04-29 06:27:02 +00002693}
2694
2695Scop::~Scop() {
2696 isl_set_free(Context);
Tobias Grossere86109f2013-10-29 21:05:49 +00002697 isl_set_free(AssumedContext);
Johannes Doerfert883f8c12015-09-15 22:52:53 +00002698 isl_set_free(BoundaryContext);
Tobias Grosser808cd692015-07-14 09:33:13 +00002699 isl_schedule_free(Schedule);
Tobias Grosser75805372011-04-29 06:27:02 +00002700
Johannes Doerfert96425c22015-08-30 21:13:53 +00002701 for (auto It : DomainMap)
2702 isl_set_free(It.second);
2703
Johannes Doerfertb164c792014-09-18 11:17:17 +00002704 // Free the alias groups
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002705 for (MinMaxVectorPairTy &MinMaxAccessPair : MinMaxAliasGroups) {
Johannes Doerfert210b09a2015-07-26 13:14:38 +00002706 for (MinMaxAccessTy &MMA : MinMaxAccessPair.first) {
Johannes Doerfertb164c792014-09-18 11:17:17 +00002707 isl_pw_multi_aff_free(MMA.first);
2708 isl_pw_multi_aff_free(MMA.second);
2709 }
Johannes Doerfert210b09a2015-07-26 13:14:38 +00002710 for (MinMaxAccessTy &MMA : MinMaxAccessPair.second) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00002711 isl_pw_multi_aff_free(MMA.first);
2712 isl_pw_multi_aff_free(MMA.second);
2713 }
Johannes Doerfertb164c792014-09-18 11:17:17 +00002714 }
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002715
Johannes Doerfert697fdf82015-10-09 17:12:26 +00002716 for (const auto &IAClass : InvariantEquivClasses)
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00002717 isl_set_free(std::get<2>(IAClass));
Tobias Grosser75805372011-04-29 06:27:02 +00002718}
2719
Tobias Grosser99c70dd2015-09-26 08:55:54 +00002720void Scop::updateAccessDimensionality() {
2721 for (auto &Stmt : *this)
2722 for (auto &Access : Stmt)
2723 Access->updateDimensionality();
2724}
2725
Michael Krusecac948e2015-10-02 13:53:07 +00002726void Scop::simplifySCoP(bool RemoveIgnoredStmts) {
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002727 for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
2728 ScopStmt &Stmt = *StmtIt;
Michael Krusecac948e2015-10-02 13:53:07 +00002729 RegionNode *RN = Stmt.isRegionStmt()
2730 ? Stmt.getRegion()->getNode()
2731 : getRegion().getBBNode(Stmt.getBasicBlock());
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002732
Johannes Doerferteca9e892015-11-03 16:54:49 +00002733 bool RemoveStmt = StmtIt->isEmpty();
2734 if (!RemoveStmt)
2735 RemoveStmt = isl_set_is_empty(DomainMap[getRegionNodeBasicBlock(RN)]);
2736 if (!RemoveStmt)
2737 RemoveStmt = (RemoveIgnoredStmts && isIgnored(RN));
Johannes Doerfertf17a78e2015-10-04 15:00:05 +00002738
Johannes Doerferteca9e892015-11-03 16:54:49 +00002739 // Remove read only statements only after invariant loop hoisting.
2740 if (!RemoveStmt && !RemoveIgnoredStmts) {
2741 bool OnlyRead = true;
2742 for (MemoryAccess *MA : Stmt) {
2743 if (MA->isRead())
2744 continue;
2745
2746 OnlyRead = false;
2747 break;
2748 }
2749
2750 RemoveStmt = OnlyRead;
2751 }
2752
2753 if (RemoveStmt) {
Michael Krusecac948e2015-10-02 13:53:07 +00002754 // Remove the statement because it is unnecessary.
2755 if (Stmt.isRegionStmt())
2756 for (BasicBlock *BB : Stmt.getRegion()->blocks())
2757 StmtMap.erase(BB);
2758 else
2759 StmtMap.erase(Stmt.getBasicBlock());
2760
2761 StmtIt = Stmts.erase(StmtIt);
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002762 continue;
2763 }
2764
Michael Krusecac948e2015-10-02 13:53:07 +00002765 StmtIt++;
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002766 }
2767}
2768
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00002769const InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) const {
2770 LoadInst *LInst = dyn_cast<LoadInst>(Val);
2771 if (!LInst)
2772 return nullptr;
2773
2774 if (Value *Rep = InvEquivClassVMap.lookup(LInst))
2775 LInst = cast<LoadInst>(Rep);
2776
2777 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
2778 for (auto &IAClass : InvariantEquivClasses)
2779 if (PointerSCEV == std::get<0>(IAClass))
2780 return &IAClass;
2781
2782 return nullptr;
2783}
2784
2785void Scop::addInvariantLoads(ScopStmt &Stmt, MemoryAccessList &InvMAs) {
2786
2787 // Get the context under which the statement is executed.
2788 isl_set *DomainCtx = isl_set_params(Stmt.getDomain());
2789 DomainCtx = isl_set_remove_redundancies(DomainCtx);
2790 DomainCtx = isl_set_detect_equalities(DomainCtx);
2791 DomainCtx = isl_set_coalesce(DomainCtx);
2792
2793 // Project out all parameters that relate to loads in the statement. Otherwise
2794 // we could have cyclic dependences on the constraints under which the
2795 // hoisted loads are executed and we could not determine an order in which to
2796 // pre-load them. This happens because not only lower bounds are part of the
2797 // domain but also upper bounds.
2798 for (MemoryAccess *MA : InvMAs) {
2799 Instruction *AccInst = MA->getAccessInstruction();
2800 if (SE->isSCEVable(AccInst->getType())) {
Johannes Doerfert44483c52015-11-07 19:45:27 +00002801 SetVector<Value *> Values;
2802 for (const SCEV *Parameter : Parameters) {
2803 Values.clear();
2804 findValues(Parameter, Values);
2805 if (!Values.count(AccInst))
2806 continue;
2807
2808 if (isl_id *ParamId = getIdForParam(Parameter)) {
2809 int Dim = isl_set_find_dim_by_id(DomainCtx, isl_dim_param, ParamId);
2810 DomainCtx = isl_set_eliminate(DomainCtx, isl_dim_param, Dim, 1);
2811 isl_id_free(ParamId);
2812 }
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00002813 }
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00002814 }
2815 }
2816
2817 for (MemoryAccess *MA : InvMAs) {
2818 // Check for another invariant access that accesses the same location as
2819 // MA and if found consolidate them. Otherwise create a new equivalence
2820 // class at the end of InvariantEquivClasses.
2821 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
2822 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
2823
2824 bool Consolidated = false;
2825 for (auto &IAClass : InvariantEquivClasses) {
2826 if (PointerSCEV != std::get<0>(IAClass))
2827 continue;
2828
2829 Consolidated = true;
2830
2831 // Add MA to the list of accesses that are in this class.
2832 auto &MAs = std::get<1>(IAClass);
2833 MAs.push_front(MA);
2834
2835 // Unify the execution context of the class and this statement.
2836 isl_set *&IAClassDomainCtx = std::get<2>(IAClass);
Johannes Doerfertfc4bfc42015-11-11 04:30:07 +00002837 if (IAClassDomainCtx)
2838 IAClassDomainCtx = isl_set_coalesce(
2839 isl_set_union(IAClassDomainCtx, isl_set_copy(DomainCtx)));
2840 else
2841 IAClassDomainCtx = isl_set_copy(DomainCtx);
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00002842 break;
2843 }
2844
2845 if (Consolidated)
2846 continue;
2847
2848 // If we did not consolidate MA, thus did not find an equivalence class
2849 // for it, we create a new one.
2850 InvariantEquivClasses.emplace_back(PointerSCEV, MemoryAccessList{MA},
2851 isl_set_copy(DomainCtx));
2852 }
2853
2854 isl_set_free(DomainCtx);
2855}
2856
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002857bool Scop::isHoistableAccess(MemoryAccess *Access,
2858 __isl_keep isl_union_map *Writes) {
2859 // TODO: Loads that are not loop carried, hence are in a statement with
2860 // zero iterators, are by construction invariant, though we
2861 // currently "hoist" them anyway. This is necessary because we allow
2862 // them to be treated as parameters (e.g., in conditions) and our code
2863 // generation would otherwise use the old value.
2864
2865 auto &Stmt = *Access->getStatement();
2866 BasicBlock *BB =
2867 Stmt.isBlockStmt() ? Stmt.getBasicBlock() : Stmt.getRegion()->getEntry();
2868
2869 if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine())
2870 return false;
2871
2872 // Skip accesses that have an invariant base pointer which is defined but
2873 // not loaded inside the SCoP. This can happened e.g., if a readnone call
2874 // returns a pointer that is used as a base address. However, as we want
2875 // to hoist indirect pointers, we allow the base pointer to be defined in
2876 // the region if it is also a memory access. Each ScopArrayInfo object
2877 // that has a base pointer origin has a base pointer that is loaded and
2878 // that it is invariant, thus it will be hoisted too. However, if there is
2879 // no base pointer origin we check that the base pointer is defined
2880 // outside the region.
2881 const ScopArrayInfo *SAI = Access->getScopArrayInfo();
2882 while (auto *BasePtrOriginSAI = SAI->getBasePtrOriginSAI())
2883 SAI = BasePtrOriginSAI;
2884
2885 if (auto *BasePtrInst = dyn_cast<Instruction>(SAI->getBasePtr()))
2886 if (R.contains(BasePtrInst))
2887 return false;
2888
2889 // Skip accesses in non-affine subregions as they might not be executed
2890 // under the same condition as the entry of the non-affine subregion.
2891 if (BB != Access->getAccessInstruction()->getParent())
2892 return false;
2893
2894 isl_map *AccessRelation = Access->getAccessRelation();
2895
2896 // Skip accesses that have an empty access relation. These can be caused
2897 // by multiple offsets with a type cast in-between that cause the overall
2898 // byte offset to be not divisible by the new types sizes.
2899 if (isl_map_is_empty(AccessRelation)) {
2900 isl_map_free(AccessRelation);
2901 return false;
2902 }
2903
2904 if (isl_map_involves_dims(AccessRelation, isl_dim_in, 0,
2905 Stmt.getNumIterators())) {
2906 isl_map_free(AccessRelation);
2907 return false;
2908 }
2909
2910 AccessRelation = isl_map_intersect_domain(AccessRelation, Stmt.getDomain());
2911 isl_set *AccessRange = isl_map_range(AccessRelation);
2912
2913 isl_union_map *Written = isl_union_map_intersect_range(
2914 isl_union_map_copy(Writes), isl_union_set_from_set(AccessRange));
2915 bool IsWritten = !isl_union_map_is_empty(Written);
2916 isl_union_map_free(Written);
2917
2918 if (IsWritten)
2919 return false;
2920
2921 return true;
2922}
2923
2924void Scop::verifyInvariantLoads() {
2925 auto &RIL = *SD.getRequiredInvariantLoads(&getRegion());
2926 for (LoadInst *LI : RIL) {
2927 assert(LI && getRegion().contains(LI));
2928 ScopStmt *Stmt = getStmtForBasicBlock(LI->getParent());
Tobias Grosser949e8c62015-12-21 07:10:39 +00002929 if (Stmt && Stmt->getArrayAccessOrNULLFor(LI)) {
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002930 invalidate(INVARIANTLOAD, LI->getDebugLoc());
2931 return;
2932 }
2933 }
2934}
2935
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002936void Scop::hoistInvariantLoads() {
2937 isl_union_map *Writes = getWrites();
2938 for (ScopStmt &Stmt : *this) {
2939
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002940 MemoryAccessList InvariantAccesses;
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002941
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002942 for (MemoryAccess *Access : Stmt)
2943 if (isHoistableAccess(Access, Writes))
2944 InvariantAccesses.push_front(Access);
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002945
2946 // We inserted invariant accesses always in the front but need them to be
2947 // sorted in a "natural order". The statements are already sorted in reverse
2948 // post order and that suffices for the accesses too. The reason we require
2949 // an order in the first place is the dependences between invariant loads
2950 // that can be caused by indirect loads.
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002951 InvariantAccesses.reverse();
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002952
2953 // Transfer the memory access from the statement to the SCoP.
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002954 Stmt.removeMemoryAccesses(InvariantAccesses);
2955 addInvariantLoads(Stmt, InvariantAccesses);
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002956 }
2957 isl_union_map_free(Writes);
2958
Tobias Grosser29f38ab2015-12-13 21:00:40 +00002959 verifyInvariantLoads();
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00002960}
2961
Johannes Doerfert80ef1102014-11-07 08:31:31 +00002962const ScopArrayInfo *
2963Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType,
Tobias Grosser6abc75a2015-11-10 17:31:31 +00002964 ArrayRef<const SCEV *> Sizes,
Tobias Grossera535dff2015-12-13 19:59:01 +00002965 ScopArrayInfo::MemoryKind Kind) {
Tobias Grosser6abc75a2015-11-10 17:31:31 +00002966 auto &SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)];
Tobias Grosser99c70dd2015-09-26 08:55:54 +00002967 if (!SAI) {
Johannes Doerfert55b3d8b2015-11-12 20:15:08 +00002968 auto &DL = getRegion().getEntry()->getModule()->getDataLayout();
2969 SAI.reset(new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes, Kind,
2970 DL, this));
Tobias Grosser99c70dd2015-09-26 08:55:54 +00002971 } else {
Tobias Grosser8286b832015-11-02 11:29:32 +00002972 // In case of mismatching array sizes, we bail out by setting the run-time
2973 // context to false.
2974 if (!SAI->updateSizes(Sizes))
Tobias Grosser8d4f6262015-12-12 09:52:26 +00002975 invalidate(DELINEARIZATION, DebugLoc());
Tobias Grosser99c70dd2015-09-26 08:55:54 +00002976 }
Tobias Grosserab671442015-05-23 05:58:27 +00002977 return SAI.get();
Johannes Doerfert1a28a892014-10-05 11:32:18 +00002978}
2979
Tobias Grosser6abc75a2015-11-10 17:31:31 +00002980const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr,
Tobias Grossera535dff2015-12-13 19:59:01 +00002981 ScopArrayInfo::MemoryKind Kind) {
Tobias Grosser6abc75a2015-11-10 17:31:31 +00002982 auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
Johannes Doerfert1a28a892014-10-05 11:32:18 +00002983 assert(SAI && "No ScopArrayInfo available for this base pointer");
2984 return SAI;
2985}
2986
Tobias Grosser74394f02013-01-14 22:40:23 +00002987std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
Tobias Grosser5e6813d2014-07-02 17:47:48 +00002988std::string Scop::getAssumedContextStr() const {
2989 return stringFromIslObj(AssumedContext);
2990}
Johannes Doerfert883f8c12015-09-15 22:52:53 +00002991std::string Scop::getBoundaryContextStr() const {
2992 return stringFromIslObj(BoundaryContext);
2993}
Tobias Grosser75805372011-04-29 06:27:02 +00002994
2995std::string Scop::getNameStr() const {
2996 std::string ExitName, EntryName;
2997 raw_string_ostream ExitStr(ExitName);
2998 raw_string_ostream EntryStr(EntryName);
2999
Tobias Grosserf240b482014-01-09 10:42:15 +00003000 R.getEntry()->printAsOperand(EntryStr, false);
Tobias Grosser75805372011-04-29 06:27:02 +00003001 EntryStr.str();
3002
3003 if (R.getExit()) {
Tobias Grosserf240b482014-01-09 10:42:15 +00003004 R.getExit()->printAsOperand(ExitStr, false);
Tobias Grosser75805372011-04-29 06:27:02 +00003005 ExitStr.str();
3006 } else
3007 ExitName = "FunctionExit";
3008
3009 return EntryName + "---" + ExitName;
3010}
3011
Tobias Grosser74394f02013-01-14 22:40:23 +00003012__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
Tobias Grosser37487052011-10-06 00:03:42 +00003013__isl_give isl_space *Scop::getParamSpace() const {
Tobias Grossereeb9f3c2015-05-26 21:37:31 +00003014 return isl_set_get_space(Context);
Tobias Grosser37487052011-10-06 00:03:42 +00003015}
3016
Tobias Grossere86109f2013-10-29 21:05:49 +00003017__isl_give isl_set *Scop::getAssumedContext() const {
3018 return isl_set_copy(AssumedContext);
3019}
3020
Johannes Doerfert43788c52015-08-20 05:58:56 +00003021__isl_give isl_set *Scop::getRuntimeCheckContext() const {
3022 isl_set *RuntimeCheckContext = getAssumedContext();
Johannes Doerfert883f8c12015-09-15 22:52:53 +00003023 RuntimeCheckContext =
3024 isl_set_intersect(RuntimeCheckContext, getBoundaryContext());
3025 RuntimeCheckContext = simplifyAssumptionContext(RuntimeCheckContext, *this);
Johannes Doerfert43788c52015-08-20 05:58:56 +00003026 return RuntimeCheckContext;
3027}
3028
Johannes Doerfert5d5b3062015-08-20 18:06:30 +00003029bool Scop::hasFeasibleRuntimeContext() const {
Johannes Doerfert43788c52015-08-20 05:58:56 +00003030 isl_set *RuntimeCheckContext = getRuntimeCheckContext();
Johannes Doerfert5d5b3062015-08-20 18:06:30 +00003031 RuntimeCheckContext = addNonEmptyDomainConstraints(RuntimeCheckContext);
Johannes Doerfert43788c52015-08-20 05:58:56 +00003032 bool IsFeasible = !isl_set_is_empty(RuntimeCheckContext);
3033 isl_set_free(RuntimeCheckContext);
3034 return IsFeasible;
3035}
3036
Johannes Doerfertd84493e2015-11-12 02:33:38 +00003037static std::string toString(AssumptionKind Kind) {
3038 switch (Kind) {
3039 case ALIASING:
3040 return "No-aliasing";
3041 case INBOUNDS:
3042 return "Inbounds";
3043 case WRAPPING:
3044 return "No-overflows";
Johannes Doerferta4b77c02015-11-12 20:15:32 +00003045 case ALIGNMENT:
3046 return "Alignment";
Johannes Doerfertd84493e2015-11-12 02:33:38 +00003047 case ERRORBLOCK:
3048 return "No-error";
3049 case INFINITELOOP:
3050 return "Finite loop";
3051 case INVARIANTLOAD:
3052 return "Invariant load";
3053 case DELINEARIZATION:
3054 return "Delinearization";
Tobias Grosser75dc40c2015-12-20 13:31:48 +00003055 case ERROR_DOMAINCONJUNCTS:
3056 return "Low number of domain conjuncts";
Johannes Doerfertd84493e2015-11-12 02:33:38 +00003057 }
3058 llvm_unreachable("Unknown AssumptionKind!");
3059}
3060
3061void Scop::trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
3062 DebugLoc Loc) {
3063 if (isl_set_is_subset(Context, Set))
3064 return;
3065
3066 if (isl_set_is_subset(AssumedContext, Set))
3067 return;
3068
3069 auto &F = *getRegion().getEntry()->getParent();
3070 std::string Msg = toString(Kind) + " assumption:\t" + stringFromIslObj(Set);
3071 emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE, F, Loc, Msg);
3072}
3073
3074void Scop::addAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
3075 DebugLoc Loc) {
3076 trackAssumption(Kind, Set, Loc);
Tobias Grosser5e6813d2014-07-02 17:47:48 +00003077 AssumedContext = isl_set_intersect(AssumedContext, Set);
Tobias Grosser20a4c0c2015-11-11 16:22:36 +00003078
Johannes Doerfert9d7899e2015-11-11 20:01:31 +00003079 int NSets = isl_set_n_basic_set(AssumedContext);
Tobias Grosser20a4c0c2015-11-11 16:22:36 +00003080 if (NSets >= MaxDisjunctsAssumed) {
3081 isl_space *Space = isl_set_get_space(AssumedContext);
3082 isl_set_free(AssumedContext);
Tobias Grossere19fca42015-11-11 20:21:39 +00003083 AssumedContext = isl_set_empty(Space);
Tobias Grosser20a4c0c2015-11-11 16:22:36 +00003084 }
3085
Tobias Grosser7b50bee2014-11-25 10:51:12 +00003086 AssumedContext = isl_set_coalesce(AssumedContext);
Tobias Grosser5e6813d2014-07-02 17:47:48 +00003087}
3088
Tobias Grosser8d4f6262015-12-12 09:52:26 +00003089void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc) {
3090 addAssumption(Kind, isl_set_empty(getParamSpace()), Loc);
3091}
3092
Johannes Doerfert883f8c12015-09-15 22:52:53 +00003093__isl_give isl_set *Scop::getBoundaryContext() const {
3094 return isl_set_copy(BoundaryContext);
3095}
3096
Tobias Grosser75805372011-04-29 06:27:02 +00003097void Scop::printContext(raw_ostream &OS) const {
3098 OS << "Context:\n";
3099
3100 if (!Context) {
3101 OS.indent(4) << "n/a\n\n";
3102 return;
3103 }
3104
3105 OS.indent(4) << getContextStr() << "\n";
Tobias Grosser60b54f12011-11-08 15:41:28 +00003106
Tobias Grosser5e6813d2014-07-02 17:47:48 +00003107 OS.indent(4) << "Assumed Context:\n";
3108 if (!AssumedContext) {
3109 OS.indent(4) << "n/a\n\n";
3110 return;
3111 }
3112
3113 OS.indent(4) << getAssumedContextStr() << "\n";
3114
Johannes Doerfert883f8c12015-09-15 22:52:53 +00003115 OS.indent(4) << "Boundary Context:\n";
3116 if (!BoundaryContext) {
3117 OS.indent(4) << "n/a\n\n";
3118 return;
3119 }
3120
3121 OS.indent(4) << getBoundaryContextStr() << "\n";
3122
Tobias Grosser083d3d32014-06-28 08:59:45 +00003123 for (const SCEV *Parameter : Parameters) {
Tobias Grosser60b54f12011-11-08 15:41:28 +00003124 int Dim = ParameterIds.find(Parameter)->second;
Tobias Grosser60b54f12011-11-08 15:41:28 +00003125 OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
3126 }
Tobias Grosser75805372011-04-29 06:27:02 +00003127}
3128
Johannes Doerfertb164c792014-09-18 11:17:17 +00003129void Scop::printAliasAssumptions(raw_ostream &OS) const {
Tobias Grosserbb853c22015-07-25 12:31:03 +00003130 int noOfGroups = 0;
3131 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003132 if (Pair.second.size() == 0)
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003133 noOfGroups += 1;
3134 else
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003135 noOfGroups += Pair.second.size();
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003136 }
3137
Tobias Grosserbb853c22015-07-25 12:31:03 +00003138 OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
Johannes Doerfertb164c792014-09-18 11:17:17 +00003139 if (MinMaxAliasGroups.empty()) {
3140 OS.indent(8) << "n/a\n";
3141 return;
3142 }
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003143
Tobias Grosserbb853c22015-07-25 12:31:03 +00003144 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003145
3146 // If the group has no read only accesses print the write accesses.
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003147 if (Pair.second.empty()) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003148 OS.indent(8) << "[[";
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003149 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
Tobias Grosserbb853c22015-07-25 12:31:03 +00003150 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
3151 << ">";
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003152 }
3153 OS << " ]]\n";
3154 }
3155
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003156 for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003157 OS.indent(8) << "[[";
Tobias Grosserbb853c22015-07-25 12:31:03 +00003158 OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
Johannes Doerfert210b09a2015-07-26 13:14:38 +00003159 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
Tobias Grosserbb853c22015-07-25 12:31:03 +00003160 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
3161 << ">";
Johannes Doerfert338b42c2015-07-23 17:04:54 +00003162 }
3163 OS << " ]]\n";
3164 }
Johannes Doerfertb164c792014-09-18 11:17:17 +00003165 }
3166}
3167
Tobias Grosser75805372011-04-29 06:27:02 +00003168void Scop::printStatements(raw_ostream &OS) const {
3169 OS << "Statements {\n";
3170
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003171 for (const ScopStmt &Stmt : *this)
3172 OS.indent(4) << Stmt;
Tobias Grosser75805372011-04-29 06:27:02 +00003173
3174 OS.indent(4) << "}\n";
3175}
3176
Tobias Grosser49ad36c2015-05-20 08:05:31 +00003177void Scop::printArrayInfo(raw_ostream &OS) const {
3178 OS << "Arrays {\n";
3179
Tobias Grosserab671442015-05-23 05:58:27 +00003180 for (auto &Array : arrays())
Tobias Grosser49ad36c2015-05-20 08:05:31 +00003181 Array.second->print(OS);
3182
3183 OS.indent(4) << "}\n";
Tobias Grosserd46fd5e2015-08-12 15:27:16 +00003184
3185 OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
3186
3187 for (auto &Array : arrays())
3188 Array.second->print(OS, /* SizeAsPwAff */ true);
3189
3190 OS.indent(4) << "}\n";
Tobias Grosser49ad36c2015-05-20 08:05:31 +00003191}
3192
Tobias Grosser75805372011-04-29 06:27:02 +00003193void Scop::print(raw_ostream &OS) const {
Tobias Grosser4eb7ddb2014-03-18 18:51:11 +00003194 OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
3195 << "\n";
Tobias Grosser483fdd42014-03-18 18:05:38 +00003196 OS.indent(4) << "Region: " << getNameStr() << "\n";
David Peixottodc0a11c2015-01-13 18:31:55 +00003197 OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00003198 OS.indent(4) << "Invariant Accesses: {\n";
Johannes Doerfert697fdf82015-10-09 17:12:26 +00003199 for (const auto &IAClass : InvariantEquivClasses) {
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00003200 const auto &MAs = std::get<1>(IAClass);
3201 if (MAs.empty()) {
3202 OS.indent(12) << "Class Pointer: " << *std::get<0>(IAClass) << "\n";
Johannes Doerfert697fdf82015-10-09 17:12:26 +00003203 } else {
Johannes Doerfertaf3e3012015-10-18 12:39:19 +00003204 MAs.front()->print(OS);
3205 OS.indent(12) << "Execution Context: " << std::get<2>(IAClass) << "\n";
Johannes Doerfert697fdf82015-10-09 17:12:26 +00003206 }
Johannes Doerfertc1db67e2015-09-29 23:47:21 +00003207 }
3208 OS.indent(4) << "}\n";
Tobias Grosser75805372011-04-29 06:27:02 +00003209 printContext(OS.indent(4));
Tobias Grosser49ad36c2015-05-20 08:05:31 +00003210 printArrayInfo(OS.indent(4));
Johannes Doerfertb164c792014-09-18 11:17:17 +00003211 printAliasAssumptions(OS);
Tobias Grosser75805372011-04-29 06:27:02 +00003212 printStatements(OS.indent(4));
3213}
3214
3215void Scop::dump() const { print(dbgs()); }
3216
Tobias Grosser9a38ab82011-11-08 15:41:03 +00003217isl_ctx *Scop::getIslCtx() const { return IslCtx; }
Tobias Grosser75805372011-04-29 06:27:02 +00003218
Johannes Doerfertcef616f2015-09-15 22:49:04 +00003219__isl_give isl_pw_aff *Scop::getPwAff(const SCEV *E, BasicBlock *BB) {
3220 return Affinator.getPwAff(E, BB);
Johannes Doerfert574182d2015-08-12 10:19:50 +00003221}
3222
Tobias Grosser808cd692015-07-14 09:33:13 +00003223__isl_give isl_union_set *Scop::getDomains() const {
Tobias Grosserbc4ef902014-06-28 08:59:38 +00003224 isl_union_set *Domain = isl_union_set_empty(getParamSpace());
Tobias Grosser5f9a7622012-02-14 14:02:40 +00003225
Tobias Grosser808cd692015-07-14 09:33:13 +00003226 for (const ScopStmt &Stmt : *this)
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003227 Domain = isl_union_set_add_set(Domain, Stmt.getDomain());
Tobias Grosser5f9a7622012-02-14 14:02:40 +00003228
3229 return Domain;
3230}
3231
Tobias Grossere5a35142015-11-12 14:07:09 +00003232__isl_give isl_union_map *
3233Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
3234 isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003235
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003236 for (ScopStmt &Stmt : *this) {
3237 for (MemoryAccess *MA : Stmt) {
Tobias Grossere5a35142015-11-12 14:07:09 +00003238 if (!Predicate(*MA))
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003239 continue;
3240
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003241 isl_set *Domain = Stmt.getDomain();
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003242 isl_map *AccessDomain = MA->getAccessRelation();
3243 AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Tobias Grossere5a35142015-11-12 14:07:09 +00003244 Accesses = isl_union_map_add_map(Accesses, AccessDomain);
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003245 }
3246 }
Tobias Grossere5a35142015-11-12 14:07:09 +00003247 return isl_union_map_coalesce(Accesses);
3248}
3249
3250__isl_give isl_union_map *Scop::getMustWrites() {
3251 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003252}
3253
3254__isl_give isl_union_map *Scop::getMayWrites() {
Tobias Grossere5a35142015-11-12 14:07:09 +00003255 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
Tobias Grosser780ce0f2014-07-11 07:12:10 +00003256}
3257
Tobias Grosser37eb4222014-02-20 21:43:54 +00003258__isl_give isl_union_map *Scop::getWrites() {
Tobias Grossere5a35142015-11-12 14:07:09 +00003259 return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
Tobias Grosser37eb4222014-02-20 21:43:54 +00003260}
3261
3262__isl_give isl_union_map *Scop::getReads() {
Tobias Grossere5a35142015-11-12 14:07:09 +00003263 return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
Tobias Grosser37eb4222014-02-20 21:43:54 +00003264}
3265
Tobias Grosser2ac23382015-11-12 14:07:13 +00003266__isl_give isl_union_map *Scop::getAccesses() {
3267 return getAccessesOfType([](MemoryAccess &MA) { return true; });
3268}
3269
Tobias Grosser808cd692015-07-14 09:33:13 +00003270__isl_give isl_union_map *Scop::getSchedule() const {
3271 auto Tree = getScheduleTree();
3272 auto S = isl_schedule_get_map(Tree);
3273 isl_schedule_free(Tree);
3274 return S;
3275}
Tobias Grosser37eb4222014-02-20 21:43:54 +00003276
Tobias Grosser808cd692015-07-14 09:33:13 +00003277__isl_give isl_schedule *Scop::getScheduleTree() const {
3278 return isl_schedule_intersect_domain(isl_schedule_copy(Schedule),
3279 getDomains());
3280}
Tobias Grosserbc4ef902014-06-28 08:59:38 +00003281
Tobias Grosser808cd692015-07-14 09:33:13 +00003282void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) {
3283 auto *S = isl_schedule_from_domain(getDomains());
3284 S = isl_schedule_insert_partial_schedule(
3285 S, isl_multi_union_pw_aff_from_union_map(NewSchedule));
3286 isl_schedule_free(Schedule);
3287 Schedule = S;
3288}
3289
3290void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) {
3291 isl_schedule_free(Schedule);
3292 Schedule = NewSchedule;
Tobias Grosser37eb4222014-02-20 21:43:54 +00003293}
3294
3295bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
3296 bool Changed = false;
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003297 for (ScopStmt &Stmt : *this) {
3298 isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain());
Tobias Grosser37eb4222014-02-20 21:43:54 +00003299 isl_union_set *NewStmtDomain = isl_union_set_intersect(
3300 isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
3301
3302 if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
3303 isl_union_set_free(StmtDomain);
3304 isl_union_set_free(NewStmtDomain);
3305 continue;
3306 }
3307
3308 Changed = true;
3309
3310 isl_union_set_free(StmtDomain);
3311 NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
3312
3313 if (isl_union_set_is_empty(NewStmtDomain)) {
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003314 Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace()));
Tobias Grosser37eb4222014-02-20 21:43:54 +00003315 isl_union_set_free(NewStmtDomain);
3316 } else
Tobias Grosser7c3bad52015-05-27 05:16:57 +00003317 Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain));
Tobias Grosser37eb4222014-02-20 21:43:54 +00003318 }
3319 isl_union_set_free(Domain);
3320 return Changed;
3321}
3322
Tobias Grosser75805372011-04-29 06:27:02 +00003323ScalarEvolution *Scop::getSE() const { return SE; }
3324
Johannes Doerfertf5673802015-10-01 23:48:18 +00003325bool Scop::isIgnored(RegionNode *RN) {
3326 BasicBlock *BB = getRegionNodeBasicBlock(RN);
Michael Krusea902ba62015-12-13 19:21:45 +00003327 ScopStmt *Stmt = getStmtForRegionNode(RN);
3328
3329 // If there is no stmt, then it already has been removed.
3330 if (!Stmt)
3331 return true;
Tobias Grosser75805372011-04-29 06:27:02 +00003332
Johannes Doerfertf5673802015-10-01 23:48:18 +00003333 // Check if there are accesses contained.
Michael Krusea902ba62015-12-13 19:21:45 +00003334 if (Stmt->isEmpty())
Johannes Doerfertf5673802015-10-01 23:48:18 +00003335 return true;
3336
3337 // Check for reachability via non-error blocks.
3338 if (!DomainMap.count(BB))
3339 return true;
3340
3341 // Check if error blocks are contained.
Johannes Doerfert08d90a32015-10-07 20:32:43 +00003342 if (containsErrorBlock(RN, getRegion(), LI, DT))
Johannes Doerfertf5673802015-10-01 23:48:18 +00003343 return true;
3344
3345 return false;
Tobias Grosser75805372011-04-29 06:27:02 +00003346}
3347
Tobias Grosser808cd692015-07-14 09:33:13 +00003348struct MapToDimensionDataTy {
3349 int N;
3350 isl_union_pw_multi_aff *Res;
3351};
Johannes Doerfertff9d1982015-02-24 12:00:50 +00003352
Tobias Grosser808cd692015-07-14 09:33:13 +00003353// @brief Create a function that maps the elements of 'Set' to its N-th
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003354// dimension and add it to User->Res.
Tobias Grosser808cd692015-07-14 09:33:13 +00003355//
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003356// @param Set The input set.
3357// @param User->N The dimension to map to.
3358// @param User->Res The isl_union_pw_multi_aff to which to add the result.
Tobias Grosser808cd692015-07-14 09:33:13 +00003359//
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003360// @returns isl_stat_ok if no error occured, othewise isl_stat_error.
Tobias Grosser808cd692015-07-14 09:33:13 +00003361static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) {
3362 struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User;
3363 int Dim;
3364 isl_space *Space;
3365 isl_pw_multi_aff *PMA;
3366
3367 Dim = isl_set_dim(Set, isl_dim_set);
3368 Space = isl_set_get_space(Set);
3369 PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N,
3370 Dim - Data->N);
3371 if (Data->N > 1)
3372 PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1);
3373 Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA);
3374
3375 isl_set_free(Set);
3376
3377 return isl_stat_ok;
Johannes Doerfertff9d1982015-02-24 12:00:50 +00003378}
3379
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003380// @brief Create an isl_multi_union_aff that defines an identity mapping
3381// from the elements of USet to their N-th dimension.
Tobias Grosser808cd692015-07-14 09:33:13 +00003382//
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003383// # Example:
3384//
3385// Domain: { A[i,j]; B[i,j,k] }
3386// N: 1
3387//
3388// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
3389//
3390// @param USet A union set describing the elements for which to generate a
3391// mapping.
Tobias Grosser808cd692015-07-14 09:33:13 +00003392// @param N The dimension to map to.
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003393// @returns A mapping from USet to its N-th dimension.
Tobias Grosser808cd692015-07-14 09:33:13 +00003394static __isl_give isl_multi_union_pw_aff *
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003395mapToDimension(__isl_take isl_union_set *USet, int N) {
3396 assert(N >= 0);
Tobias Grosserc900633d2015-12-21 23:01:53 +00003397 assert(USet);
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003398 assert(!isl_union_set_is_empty(USet));
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00003399
Tobias Grosser808cd692015-07-14 09:33:13 +00003400 struct MapToDimensionDataTy Data;
Tobias Grosser808cd692015-07-14 09:33:13 +00003401
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003402 auto *Space = isl_union_set_get_space(USet);
3403 auto *PwAff = isl_union_pw_multi_aff_empty(Space);
Tobias Grosser808cd692015-07-14 09:33:13 +00003404
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003405 Data = {N, PwAff};
3406
3407 auto Res = isl_union_set_foreach_set(USet, &mapToDimension_AddSet, &Data);
3408
Sumanth Gundapaneni4b1472f2016-01-20 15:41:30 +00003409 (void)Res;
3410
Tobias Grossercbf7ae82015-12-21 22:45:53 +00003411 assert(Res == isl_stat_ok);
3412
3413 isl_union_set_free(USet);
Tobias Grosser808cd692015-07-14 09:33:13 +00003414 return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res);
3415}
3416
Tobias Grosser316b5b22015-11-11 19:28:14 +00003417void Scop::addScopStmt(BasicBlock *BB, Region *R) {
Tobias Grosser808cd692015-07-14 09:33:13 +00003418 if (BB) {
Michael Kruse9d080092015-09-11 21:41:48 +00003419 Stmts.emplace_back(*this, *BB);
Tobias Grosser316b5b22015-11-11 19:28:14 +00003420 auto Stmt = &Stmts.back();
Tobias Grosser808cd692015-07-14 09:33:13 +00003421 StmtMap[BB] = Stmt;
3422 } else {
3423 assert(R && "Either basic block or a region expected.");
Michael Kruse9d080092015-09-11 21:41:48 +00003424 Stmts.emplace_back(*this, *R);
Tobias Grosser316b5b22015-11-11 19:28:14 +00003425 auto Stmt = &Stmts.back();
Tobias Grosser808cd692015-07-14 09:33:13 +00003426 for (BasicBlock *BB : R->blocks())
3427 StmtMap[BB] = Stmt;
3428 }
Tobias Grosser808cd692015-07-14 09:33:13 +00003429}
3430
Johannes Doerfertf9711ef2016-01-06 12:59:23 +00003431void Scop::buildSchedule() {
Johannes Doerfertf9711ef2016-01-06 12:59:23 +00003432 DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> LoopSchedules;
3433 Loop *L = getLoopSurroundingRegion(getRegion(), LI);
3434 LoopSchedules[L];
Tobias Grosser8362c262016-01-06 15:30:06 +00003435 buildSchedule(getRegion().getNode(), LoopSchedules);
Johannes Doerfertf9711ef2016-01-06 12:59:23 +00003436 Schedule = LoopSchedules[L].first;
3437}
3438
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00003439void Scop::buildSchedule(
Tobias Grosser8362c262016-01-06 15:30:06 +00003440 RegionNode *RN,
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00003441 DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> &LoopSchedules) {
Michael Kruse046dde42015-08-10 13:01:57 +00003442
Tobias Grosser8362c262016-01-06 15:30:06 +00003443 if (RN->isSubRegion()) {
3444 auto *LocalRegion = RN->getNodeAs<Region>();
3445 if (!SD.isNonAffineSubRegion(LocalRegion, &getRegion())) {
3446 ReversePostOrderTraversal<Region *> RTraversal(LocalRegion);
3447 for (auto *Child : RTraversal)
3448 buildSchedule(Child, LoopSchedules);
3449 return;
3450 }
3451 }
Michael Kruse046dde42015-08-10 13:01:57 +00003452
Tobias Grosser8362c262016-01-06 15:30:06 +00003453 Loop *L = getRegionNodeLoop(RN, LI);
3454 if (!getRegion().contains(L))
3455 L = getLoopSurroundingRegion(getRegion(), LI);
3456
3457 int LD = getRelativeLoopDepth(L);
3458 auto &LSchedulePair = LoopSchedules[L];
3459 LSchedulePair.second += getNumBlocksInRegionNode(RN);
3460
3461 ScopStmt *Stmt = getStmtForRegionNode(RN);
3462 if (Stmt) {
3463 auto *UDomain = isl_union_set_from_set(Stmt->getDomain());
3464 auto *StmtSchedule = isl_schedule_from_domain(UDomain);
3465 LSchedulePair.first = combineInSequence(LSchedulePair.first, StmtSchedule);
3466 }
3467
3468 isl_schedule *LSchedule = LSchedulePair.first;
3469 unsigned NumVisited = LSchedulePair.second;
3470 while (L && NumVisited == L->getNumBlocks()) {
3471 auto *PL = L->getParentLoop();
3472
3473 // Either we have a proper loop and we also build a schedule for the
3474 // parent loop or we have a infinite loop that does not have a proper
3475 // parent loop. In the former case this conditional will be skipped, in
3476 // the latter case however we will break here as we do not build a domain
3477 // nor a schedule for a infinite loop.
3478 assert(LoopSchedules.count(PL) || LSchedule == nullptr);
3479 if (!LoopSchedules.count(PL))
3480 break;
3481
3482 auto &PSchedulePair = LoopSchedules[PL];
3483
3484 if (LSchedule) {
3485 auto *LDomain = isl_schedule_get_domain(LSchedule);
3486 auto *MUPA = mapToDimension(LDomain, LD + 1);
3487 LSchedule = isl_schedule_insert_partial_schedule(LSchedule, MUPA);
3488 PSchedulePair.first = combineInSequence(PSchedulePair.first, LSchedule);
Tobias Grosser75805372011-04-29 06:27:02 +00003489 }
Johannes Doerfertb68cffb2015-09-10 15:27:46 +00003490
Tobias Grosser8362c262016-01-06 15:30:06 +00003491 PSchedulePair.second += NumVisited;
Johannes Doerfert30c22652015-10-18 21:17:11 +00003492
Tobias Grosser8362c262016-01-06 15:30:06 +00003493 L = PL;
3494 LD--;
3495 NumVisited = PSchedulePair.second;
3496 LSchedule = PSchedulePair.first;
Tobias Grosser808cd692015-07-14 09:33:13 +00003497 }
Tobias Grosser75805372011-04-29 06:27:02 +00003498}
3499
Johannes Doerfert7c494212014-10-31 23:13:39 +00003500ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const {
Tobias Grosser57411e32015-05-27 06:51:34 +00003501 auto StmtMapIt = StmtMap.find(BB);
Johannes Doerfert7c494212014-10-31 23:13:39 +00003502 if (StmtMapIt == StmtMap.end())
3503 return nullptr;
3504 return StmtMapIt->second;
3505}
3506
Michael Krusea902ba62015-12-13 19:21:45 +00003507ScopStmt *Scop::getStmtForRegionNode(RegionNode *RN) const {
3508 return getStmtForBasicBlock(getRegionNodeBasicBlock(RN));
3509}
3510
Johannes Doerfert96425c22015-08-30 21:13:53 +00003511int Scop::getRelativeLoopDepth(const Loop *L) const {
3512 Loop *OuterLoop =
3513 L ? R.outermostLoopInRegion(const_cast<Loop *>(L)) : nullptr;
3514 if (!OuterLoop)
3515 return -1;
Johannes Doerfertd020b772015-08-27 06:53:52 +00003516 return L->getLoopDepth() - OuterLoop->getLoopDepth();
3517}
3518
Michael Krused868b5d2015-09-10 15:25:24 +00003519void ScopInfo::buildPHIAccesses(PHINode *PHI, Region &R,
Michael Krused868b5d2015-09-10 15:25:24 +00003520 Region *NonAffineSubRegion, bool IsExitBlock) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003521
3522 // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
3523 // true, are not modeled as ordinary PHI nodes as they are not part of the
3524 // region. However, we model the operands in the predecessor blocks that are
3525 // part of the region as regular scalar accesses.
3526
3527 // If we can synthesize a PHI we can skip it, however only if it is in
3528 // the region. If it is not it can only be in the exit block of the region.
3529 // In this case we model the operands but not the PHI itself.
3530 if (!IsExitBlock && canSynthesize(PHI, LI, SE, &R))
3531 return;
3532
3533 // PHI nodes are modeled as if they had been demoted prior to the SCoP
3534 // detection. Hence, the PHI is a load of a new memory location in which the
3535 // incoming value was written at the end of the incoming basic block.
3536 bool OnlyNonAffineSubRegionOperands = true;
3537 for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
3538 Value *Op = PHI->getIncomingValue(u);
3539 BasicBlock *OpBB = PHI->getIncomingBlock(u);
3540
3541 // Do not build scalar dependences inside a non-affine subregion.
3542 if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
3543 continue;
3544
3545 OnlyNonAffineSubRegionOperands = false;
3546
3547 if (!R.contains(OpBB))
3548 continue;
3549
3550 Instruction *OpI = dyn_cast<Instruction>(Op);
3551 if (OpI) {
3552 BasicBlock *OpIBB = OpI->getParent();
3553 // As we pretend there is a use (or more precise a write) of OpI in OpBB
3554 // we have to insert a scalar dependence from the definition of OpI to
3555 // OpBB if the definition is not in OpBB.
Michael Kruse668af712015-10-15 14:45:48 +00003556 if (scop->getStmtForBasicBlock(OpIBB) !=
3557 scop->getStmtForBasicBlock(OpBB)) {
Michael Kruse34e11222015-12-13 22:47:43 +00003558 addValueReadAccess(OpI, PHI, OpBB);
3559 addValueWriteAccess(OpI);
Michael Kruse7bf39442015-09-10 12:46:52 +00003560 }
Tobias Grosserda95a4a2015-09-24 20:59:59 +00003561 } else if (ModelReadOnlyScalars && !isa<Constant>(Op)) {
Michael Kruse34e11222015-12-13 22:47:43 +00003562 addValueReadAccess(Op, PHI, OpBB);
Michael Kruse7bf39442015-09-10 12:46:52 +00003563 }
3564
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003565 addPHIWriteAccess(PHI, OpBB, Op, IsExitBlock);
Michael Kruse7bf39442015-09-10 12:46:52 +00003566 }
3567
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003568 if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
3569 addPHIReadAccess(PHI);
Michael Kruse7bf39442015-09-10 12:46:52 +00003570 }
3571}
3572
Michael Krused868b5d2015-09-10 15:25:24 +00003573bool ScopInfo::buildScalarDependences(Instruction *Inst, Region *R,
3574 Region *NonAffineSubRegion) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003575 bool canSynthesizeInst = canSynthesize(Inst, LI, SE, R);
3576 if (isIgnoredIntrinsic(Inst))
3577 return false;
3578
3579 bool AnyCrossStmtUse = false;
3580 BasicBlock *ParentBB = Inst->getParent();
3581
3582 for (User *U : Inst->users()) {
3583 Instruction *UI = dyn_cast<Instruction>(U);
3584
3585 // Ignore the strange user
3586 if (UI == 0)
3587 continue;
3588
3589 BasicBlock *UseParent = UI->getParent();
3590
Tobias Grosserbaffa092015-10-24 20:55:27 +00003591 // Ignore basic block local uses. A value that is defined in a scop, but
3592 // used in a PHI node in the same basic block does not count as basic block
3593 // local, as for such cases a control flow edge is passed between definition
3594 // and use.
3595 if (UseParent == ParentBB && !isa<PHINode>(UI))
Michael Kruse7bf39442015-09-10 12:46:52 +00003596 continue;
3597
Michael Krusef714d472015-11-05 13:18:43 +00003598 // Uses by PHI nodes in the entry node count as external uses in case the
3599 // use is through an incoming block that is itself not contained in the
3600 // region.
3601 if (R->getEntry() == UseParent) {
3602 if (auto *PHI = dyn_cast<PHINode>(UI)) {
3603 bool ExternalUse = false;
3604 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
3605 if (PHI->getIncomingValue(i) == Inst &&
3606 !R->contains(PHI->getIncomingBlock(i))) {
3607 ExternalUse = true;
3608 break;
3609 }
3610 }
3611
3612 if (ExternalUse) {
3613 AnyCrossStmtUse = true;
3614 continue;
3615 }
3616 }
3617 }
3618
Michael Kruse7bf39442015-09-10 12:46:52 +00003619 // Do not build scalar dependences inside a non-affine subregion.
3620 if (NonAffineSubRegion && NonAffineSubRegion->contains(UseParent))
3621 continue;
3622
Michael Kruse01cb3792015-10-17 21:07:08 +00003623 // Check for PHI nodes in the region exit and skip them, if they will be
Tobias Grosser05d7fa72015-10-17 21:46:28 +00003624 // modeled as PHI nodes.
Michael Kruse01cb3792015-10-17 21:07:08 +00003625 //
3626 // PHI nodes in the region exit that have more than two incoming edges need
Tobias Grosser05d7fa72015-10-17 21:46:28 +00003627 // to be modeled as PHI-Nodes to correctly model the fact that depending on
3628 // the control flow a different value will be assigned to the PHI node. In
3629 // case this is the case, there is no need to create an additional normal
3630 // scalar dependence. Hence, bail out before we register an "out-of-region"
3631 // use for this definition.
Michael Kruse01cb3792015-10-17 21:07:08 +00003632 if (isa<PHINode>(UI) && UI->getParent() == R->getExit() &&
3633 !R->getExitingBlock())
3634 continue;
3635
Michael Kruse7bf39442015-09-10 12:46:52 +00003636 // Check whether or not the use is in the SCoP.
Tobias Grosserc73d8b02015-10-23 22:36:22 +00003637 if (!R->contains(UseParent)) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003638 AnyCrossStmtUse = true;
3639 continue;
3640 }
3641
3642 // If the instruction can be synthesized and the user is in the region
3643 // we do not need to add scalar dependences.
3644 if (canSynthesizeInst)
3645 continue;
3646
3647 // No need to translate these scalar dependences into polyhedral form,
3648 // because synthesizable scalars can be generated by the code generator.
3649 if (canSynthesize(UI, LI, SE, R))
3650 continue;
3651
3652 // Skip PHI nodes in the region as they handle their operands on their own.
3653 if (isa<PHINode>(UI))
3654 continue;
3655
3656 // Now U is used in another statement.
3657 AnyCrossStmtUse = true;
3658
3659 // Do not build a read access that is not in the current SCoP
Michael Krusee2bccbb2015-09-18 19:59:43 +00003660 // Use the def instruction as base address of the MemoryAccess, so that it
3661 // will become the name of the scalar access in the polyhedral form.
Michael Kruse34e11222015-12-13 22:47:43 +00003662 addValueReadAccess(Inst, UI);
Michael Kruse7bf39442015-09-10 12:46:52 +00003663 }
3664
Tobias Grosserda95a4a2015-09-24 20:59:59 +00003665 if (ModelReadOnlyScalars && !isa<PHINode>(Inst)) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003666 for (Value *Op : Inst->operands()) {
3667 if (canSynthesize(Op, LI, SE, R))
3668 continue;
3669
3670 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
3671 if (R->contains(OpInst))
3672 continue;
3673
3674 if (isa<Constant>(Op))
3675 continue;
3676
Michael Kruse34e11222015-12-13 22:47:43 +00003677 addValueReadAccess(Op, Inst);
Michael Kruse7bf39442015-09-10 12:46:52 +00003678 }
3679 }
3680
3681 return AnyCrossStmtUse;
3682}
3683
3684extern MapInsnToMemAcc InsnToMemAcc;
3685
Michael Krusee2bccbb2015-09-18 19:59:43 +00003686void ScopInfo::buildMemoryAccess(
3687 Instruction *Inst, Loop *L, Region *R,
Johannes Doerfert09e36972015-10-07 20:17:36 +00003688 const ScopDetection::BoxedLoopsSetTy *BoxedLoops,
3689 const InvariantLoadsSetTy &ScopRIL) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003690 unsigned Size;
3691 Type *SizeType;
3692 Value *Val;
Michael Krusee2bccbb2015-09-18 19:59:43 +00003693 enum MemoryAccess::AccessType Type;
Michael Kruse7bf39442015-09-10 12:46:52 +00003694
3695 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
3696 SizeType = Load->getType();
Johannes Doerfert55b3d8b2015-11-12 20:15:08 +00003697 Size = TD->getTypeAllocSize(SizeType);
Michael Krusee2bccbb2015-09-18 19:59:43 +00003698 Type = MemoryAccess::READ;
Michael Kruse7bf39442015-09-10 12:46:52 +00003699 Val = Load;
3700 } else {
3701 StoreInst *Store = cast<StoreInst>(Inst);
3702 SizeType = Store->getValueOperand()->getType();
Johannes Doerfert55b3d8b2015-11-12 20:15:08 +00003703 Size = TD->getTypeAllocSize(SizeType);
Michael Krusee2bccbb2015-09-18 19:59:43 +00003704 Type = MemoryAccess::MUST_WRITE;
Michael Kruse7bf39442015-09-10 12:46:52 +00003705 Val = Store->getValueOperand();
3706 }
3707
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003708 auto Address = getPointerOperand(*Inst);
3709
3710 const SCEV *AccessFunction = SE->getSCEVAtScope(Address, L);
Michael Kruse7bf39442015-09-10 12:46:52 +00003711 const SCEVUnknown *BasePointer =
3712 dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
3713
3714 assert(BasePointer && "Could not find base pointer");
3715 AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
3716
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003717 if (isa<GetElementPtrInst>(Address) || isa<BitCastInst>(Address)) {
3718 auto NewAddress = Address;
3719 if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
3720 auto Src = BitCast->getOperand(0);
3721 auto SrcTy = Src->getType();
3722 auto DstTy = BitCast->getType();
3723 if (SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits())
3724 NewAddress = Src;
3725 }
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003726
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003727 if (auto *GEP = dyn_cast<GetElementPtrInst>(NewAddress)) {
3728 std::vector<const SCEV *> Subscripts;
3729 std::vector<int> Sizes;
3730 std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, *SE);
3731 auto BasePtr = GEP->getOperand(0);
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003732
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003733 std::vector<const SCEV *> SizesSCEV;
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003734
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003735 bool AllAffineSubcripts = true;
Johannes Doerfert09e36972015-10-07 20:17:36 +00003736 for (auto Subscript : Subscripts) {
3737 InvariantLoadsSetTy AccessILS;
3738 AllAffineSubcripts =
3739 isAffineExpr(R, Subscript, *SE, nullptr, &AccessILS);
3740
3741 for (LoadInst *LInst : AccessILS)
3742 if (!ScopRIL.count(LInst))
3743 AllAffineSubcripts = false;
3744
3745 if (!AllAffineSubcripts)
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003746 break;
Johannes Doerfert09e36972015-10-07 20:17:36 +00003747 }
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003748
3749 if (AllAffineSubcripts && Sizes.size() > 0) {
3750 for (auto V : Sizes)
3751 SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
3752 IntegerType::getInt64Ty(BasePtr->getContext()), V)));
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003753 SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003754 IntegerType::getInt64Ty(BasePtr->getContext()), Size)));
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003755
Tobias Grossera535dff2015-12-13 19:59:01 +00003756 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, true,
3757 Subscripts, SizesSCEV, Val);
Tobias Grosserb1c39422015-09-21 16:19:25 +00003758 return;
Tobias Grosser6f36d9a2015-09-17 20:16:21 +00003759 }
Tobias Grosser5fd8c092015-09-17 17:28:15 +00003760 }
3761 }
3762
Michael Kruse7bf39442015-09-10 12:46:52 +00003763 auto AccItr = InsnToMemAcc.find(Inst);
Michael Krusee2bccbb2015-09-18 19:59:43 +00003764 if (PollyDelinearize && AccItr != InsnToMemAcc.end()) {
Tobias Grossera535dff2015-12-13 19:59:01 +00003765 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, true,
3766 AccItr->second.DelinearizedSubscripts,
3767 AccItr->second.Shape->DelinearizedSizes, Val);
Michael Krusee2bccbb2015-09-18 19:59:43 +00003768 return;
3769 }
Michael Kruse7bf39442015-09-10 12:46:52 +00003770
3771 // Check if the access depends on a loop contained in a non-affine subregion.
3772 bool isVariantInNonAffineLoop = false;
3773 if (BoxedLoops) {
3774 SetVector<const Loop *> Loops;
3775 findLoops(AccessFunction, Loops);
3776 for (const Loop *L : Loops)
3777 if (BoxedLoops->count(L))
3778 isVariantInNonAffineLoop = true;
3779 }
3780
Johannes Doerfert09e36972015-10-07 20:17:36 +00003781 InvariantLoadsSetTy AccessILS;
3782 bool IsAffine =
3783 !isVariantInNonAffineLoop &&
3784 isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue(), &AccessILS);
3785
3786 for (LoadInst *LInst : AccessILS)
3787 if (!ScopRIL.count(LInst))
3788 IsAffine = false;
Michael Kruse7bf39442015-09-10 12:46:52 +00003789
Michael Krusecaac2b62015-09-26 15:51:44 +00003790 // FIXME: Size of the number of bytes of an array element, not the number of
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003791 // elements as probably intended here.
Tobias Grossera43b6e92015-09-27 17:54:50 +00003792 const SCEV *SizeSCEV =
3793 SE->getConstant(TD->getIntPtrType(Inst->getContext()), Size);
Michael Kruse7bf39442015-09-10 12:46:52 +00003794
Michael Krusee2bccbb2015-09-18 19:59:43 +00003795 if (!IsAffine && Type == MemoryAccess::MUST_WRITE)
3796 Type = MemoryAccess::MAY_WRITE;
Michael Kruse7bf39442015-09-10 12:46:52 +00003797
Tobias Grossera535dff2015-12-13 19:59:01 +00003798 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, IsAffine,
3799 ArrayRef<const SCEV *>(AccessFunction),
3800 ArrayRef<const SCEV *>(SizeSCEV), Val);
Michael Kruse7bf39442015-09-10 12:46:52 +00003801}
3802
Michael Krused868b5d2015-09-10 15:25:24 +00003803void ScopInfo::buildAccessFunctions(Region &R, Region &SR) {
Michael Kruse7bf39442015-09-10 12:46:52 +00003804
3805 if (SD->isNonAffineSubRegion(&SR, &R)) {
3806 for (BasicBlock *BB : SR.blocks())
3807 buildAccessFunctions(R, *BB, &SR);
3808 return;
3809 }
3810
3811 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
3812 if (I->isSubRegion())
3813 buildAccessFunctions(R, *I->getNodeAs<Region>());
3814 else
3815 buildAccessFunctions(R, *I->getNodeAs<BasicBlock>());
3816}
3817
Michael Krusecac948e2015-10-02 13:53:07 +00003818void ScopInfo::buildStmts(Region &SR) {
3819 Region *R = getRegion();
3820
3821 if (SD->isNonAffineSubRegion(&SR, R)) {
3822 scop->addScopStmt(nullptr, &SR);
3823 return;
3824 }
3825
3826 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
3827 if (I->isSubRegion())
3828 buildStmts(*I->getNodeAs<Region>());
3829 else
3830 scop->addScopStmt(I->getNodeAs<BasicBlock>(), nullptr);
3831}
3832
Michael Krused868b5d2015-09-10 15:25:24 +00003833void ScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB,
3834 Region *NonAffineSubRegion,
3835 bool IsExitBlock) {
Tobias Grosser910cf262015-11-11 20:15:49 +00003836 // We do not build access functions for error blocks, as they may contain
3837 // instructions we can not model.
3838 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3839 if (isErrorBlock(BB, R, *LI, DT) && !IsExitBlock)
3840 return;
3841
Michael Kruse7bf39442015-09-10 12:46:52 +00003842 Loop *L = LI->getLoopFor(&BB);
3843
3844 // The set of loops contained in non-affine subregions that are part of R.
3845 const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD->getBoxedLoops(&R);
3846
Johannes Doerfert09e36972015-10-07 20:17:36 +00003847 // The set of loads that are required to be invariant.
3848 auto &ScopRIL = *SD->getRequiredInvariantLoads(&R);
3849
Michael Kruse7bf39442015-09-10 12:46:52 +00003850 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) {
Duncan P. N. Exon Smithb8f58b52015-11-06 22:56:54 +00003851 Instruction *Inst = &*I;
Michael Kruse7bf39442015-09-10 12:46:52 +00003852
3853 PHINode *PHI = dyn_cast<PHINode>(Inst);
3854 if (PHI)
Michael Krusee2bccbb2015-09-18 19:59:43 +00003855 buildPHIAccesses(PHI, R, NonAffineSubRegion, IsExitBlock);
Michael Kruse7bf39442015-09-10 12:46:52 +00003856
3857 // For the exit block we stop modeling after the last PHI node.
3858 if (!PHI && IsExitBlock)
3859 break;
3860
Johannes Doerfert09e36972015-10-07 20:17:36 +00003861 // TODO: At this point we only know that elements of ScopRIL have to be
3862 // invariant and will be hoisted for the SCoP to be processed. Though,
3863 // there might be other invariant accesses that will be hoisted and
3864 // that would allow to make a non-affine access affine.
Michael Kruse7bf39442015-09-10 12:46:52 +00003865 if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
Johannes Doerfert09e36972015-10-07 20:17:36 +00003866 buildMemoryAccess(Inst, L, &R, BoxedLoops, ScopRIL);
Michael Kruse7bf39442015-09-10 12:46:52 +00003867
3868 if (isIgnoredIntrinsic(Inst))
3869 continue;
3870
Johannes Doerfert09e36972015-10-07 20:17:36 +00003871 // Do not build scalar dependences for required invariant loads as we will
3872 // hoist them later on anyway or drop the SCoP if we cannot.
3873 if (ScopRIL.count(dyn_cast<LoadInst>(Inst)))
3874 continue;
3875
Michael Kruse7bf39442015-09-10 12:46:52 +00003876 if (buildScalarDependences(Inst, &R, NonAffineSubRegion)) {
Michael Krusee2bccbb2015-09-18 19:59:43 +00003877 if (!isa<StoreInst>(Inst))
Michael Kruse34e11222015-12-13 22:47:43 +00003878 addValueWriteAccess(Inst);
Michael Kruse7bf39442015-09-10 12:46:52 +00003879 }
3880 }
Michael Krusee2bccbb2015-09-18 19:59:43 +00003881}
Michael Kruse7bf39442015-09-10 12:46:52 +00003882
Michael Kruse2d0ece92015-09-24 11:41:21 +00003883void ScopInfo::addMemoryAccess(BasicBlock *BB, Instruction *Inst,
3884 MemoryAccess::AccessType Type,
3885 Value *BaseAddress, unsigned ElemBytes,
3886 bool Affine, Value *AccessValue,
3887 ArrayRef<const SCEV *> Subscripts,
Michael Kruse8d0b7342015-09-25 21:21:00 +00003888 ArrayRef<const SCEV *> Sizes,
Tobias Grossera535dff2015-12-13 19:59:01 +00003889 ScopArrayInfo::MemoryKind Kind) {
Michael Krusecac948e2015-10-02 13:53:07 +00003890 ScopStmt *Stmt = scop->getStmtForBasicBlock(BB);
3891
3892 // Do not create a memory access for anything not in the SCoP. It would be
3893 // ignored anyway.
3894 if (!Stmt)
3895 return;
3896
Michael Krusee2bccbb2015-09-18 19:59:43 +00003897 AccFuncSetType &AccList = AccFuncMap[BB];
Michael Krusee2bccbb2015-09-18 19:59:43 +00003898 Value *BaseAddr = BaseAddress;
3899 std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, "");
3900
Tobias Grosserf4f68702015-12-14 15:05:37 +00003901 bool isKnownMustAccess = false;
3902
3903 // Accesses in single-basic block statements are always excuted.
3904 if (Stmt->isBlockStmt())
3905 isKnownMustAccess = true;
3906
3907 if (Stmt->isRegionStmt()) {
3908 // Accesses that dominate the exit block of a non-affine region are always
3909 // executed. In non-affine regions there may exist MK_Values that do not
3910 // dominate the exit. MK_Values will always dominate the exit and MK_PHIs
3911 // only if there is at most one PHI_WRITE in the non-affine region.
3912 if (DT->dominates(BB, Stmt->getRegion()->getExit()))
3913 isKnownMustAccess = true;
3914 }
3915
3916 if (!isKnownMustAccess && Type == MemoryAccess::MUST_WRITE)
Michael Krusecac948e2015-10-02 13:53:07 +00003917 Type = MemoryAccess::MAY_WRITE;
3918
Tobias Grosserf1bfd752015-11-05 20:15:37 +00003919 AccList.emplace_back(Stmt, Inst, Type, BaseAddress, ElemBytes, Affine,
Tobias Grossera535dff2015-12-13 19:59:01 +00003920 Subscripts, Sizes, AccessValue, Kind, BaseName);
Michael Krusecac948e2015-10-02 13:53:07 +00003921 Stmt->addAccess(&AccList.back());
Michael Kruse7bf39442015-09-10 12:46:52 +00003922}
3923
Tobias Grossera535dff2015-12-13 19:59:01 +00003924void ScopInfo::addArrayAccess(Instruction *MemAccInst,
3925 MemoryAccess::AccessType Type, Value *BaseAddress,
3926 unsigned ElemBytes, bool IsAffine,
3927 ArrayRef<const SCEV *> Subscripts,
3928 ArrayRef<const SCEV *> Sizes,
3929 Value *AccessValue) {
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003930 assert(isa<LoadInst>(MemAccInst) || isa<StoreInst>(MemAccInst));
3931 assert(isa<LoadInst>(MemAccInst) == (Type == MemoryAccess::READ));
3932 addMemoryAccess(MemAccInst->getParent(), MemAccInst, Type, BaseAddress,
Michael Kruse8d0b7342015-09-25 21:21:00 +00003933 ElemBytes, IsAffine, AccessValue, Subscripts, Sizes,
Tobias Grossera535dff2015-12-13 19:59:01 +00003934 ScopArrayInfo::MK_Array);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003935}
Michael Kruse34e11222015-12-13 22:47:43 +00003936void ScopInfo::addValueWriteAccess(Instruction *Value) {
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003937 addMemoryAccess(Value->getParent(), Value, MemoryAccess::MUST_WRITE, Value, 1,
3938 true, Value, ArrayRef<const SCEV *>(),
Tobias Grossera535dff2015-12-13 19:59:01 +00003939 ArrayRef<const SCEV *>(), ScopArrayInfo::MK_Value);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003940}
Michael Kruse34e11222015-12-13 22:47:43 +00003941void ScopInfo::addValueReadAccess(Value *Value, Instruction *User) {
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003942 assert(!isa<PHINode>(User));
3943 addMemoryAccess(User->getParent(), User, MemoryAccess::READ, Value, 1, true,
3944 Value, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
Tobias Grossera535dff2015-12-13 19:59:01 +00003945 ScopArrayInfo::MK_Value);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003946}
Michael Kruse34e11222015-12-13 22:47:43 +00003947void ScopInfo::addValueReadAccess(Value *Value, PHINode *User,
3948 BasicBlock *UserBB) {
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003949 addMemoryAccess(UserBB, User, MemoryAccess::READ, Value, 1, true, Value,
Michael Kruse8d0b7342015-09-25 21:21:00 +00003950 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
Tobias Grossera535dff2015-12-13 19:59:01 +00003951 ScopArrayInfo::MK_Value);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003952}
3953void ScopInfo::addPHIWriteAccess(PHINode *PHI, BasicBlock *IncomingBlock,
3954 Value *IncomingValue, bool IsExitBlock) {
3955 addMemoryAccess(IncomingBlock, IncomingBlock->getTerminator(),
3956 MemoryAccess::MUST_WRITE, PHI, 1, true, IncomingValue,
3957 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
Tobias Grossera535dff2015-12-13 19:59:01 +00003958 IsExitBlock ? ScopArrayInfo::MK_ExitPHI
3959 : ScopArrayInfo::MK_PHI);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003960}
3961void ScopInfo::addPHIReadAccess(PHINode *PHI) {
3962 addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI, 1, true, PHI,
Michael Kruse8d0b7342015-09-25 21:21:00 +00003963 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
Tobias Grossera535dff2015-12-13 19:59:01 +00003964 ScopArrayInfo::MK_PHI);
Michael Kruse33d6c0b2015-09-25 18:53:27 +00003965}
3966
Michael Krusedaf66942015-12-13 22:10:37 +00003967void ScopInfo::buildScop(Region &R, AssumptionCache &AC) {
Michael Kruse9d080092015-09-11 21:41:48 +00003968 unsigned MaxLoopDepth = getMaxLoopDepthInRegion(R, *LI, *SD);
Michael Krusedaf66942015-12-13 22:10:37 +00003969 scop = new Scop(R, AccFuncMap, *SD, *SE, *DT, *LI, ctx, MaxLoopDepth);
Michael Kruse7bf39442015-09-10 12:46:52 +00003970
Michael Krusecac948e2015-10-02 13:53:07 +00003971 buildStmts(R);
Michael Kruse7bf39442015-09-10 12:46:52 +00003972 buildAccessFunctions(R, R);
3973
3974 // In case the region does not have an exiting block we will later (during
3975 // code generation) split the exit block. This will move potential PHI nodes
3976 // from the current exit block into the new region exiting block. Hence, PHI
3977 // nodes that are at this point not part of the region will be.
3978 // To handle these PHI nodes later we will now model their operands as scalar
3979 // accesses. Note that we do not model anything in the exit block if we have
3980 // an exiting block in the region, as there will not be any splitting later.
3981 if (!R.getExitingBlock())
3982 buildAccessFunctions(R, *R.getExit(), nullptr, /* IsExitBlock */ true);
3983
Johannes Doerfert2af10e22015-11-12 03:25:01 +00003984 scop->init(*AA, AC);
Michael Kruse7bf39442015-09-10 12:46:52 +00003985}
3986
Michael Krused868b5d2015-09-10 15:25:24 +00003987void ScopInfo::print(raw_ostream &OS, const Module *) const {
Michael Kruse9d080092015-09-11 21:41:48 +00003988 if (!scop) {
Michael Krused868b5d2015-09-10 15:25:24 +00003989 OS << "Invalid Scop!\n";
Michael Kruse9d080092015-09-11 21:41:48 +00003990 return;
3991 }
3992
Michael Kruse9d080092015-09-11 21:41:48 +00003993 scop->print(OS);
Michael Kruse7bf39442015-09-10 12:46:52 +00003994}
3995
Michael Krused868b5d2015-09-10 15:25:24 +00003996void ScopInfo::clear() {
Michael Kruse7bf39442015-09-10 12:46:52 +00003997 AccFuncMap.clear();
Michael Krused868b5d2015-09-10 15:25:24 +00003998 if (scop) {
3999 delete scop;
4000 scop = 0;
4001 }
Michael Kruse7bf39442015-09-10 12:46:52 +00004002}
4003
4004//===----------------------------------------------------------------------===//
Michael Kruse9d080092015-09-11 21:41:48 +00004005ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
Tobias Grosserb76f38532011-08-20 11:11:25 +00004006 ctx = isl_ctx_alloc();
Tobias Grosser4a8e3562011-12-07 07:42:51 +00004007 isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
Tobias Grosserb76f38532011-08-20 11:11:25 +00004008}
4009
4010ScopInfo::~ScopInfo() {
4011 clear();
4012 isl_ctx_free(ctx);
4013}
4014
Tobias Grosser75805372011-04-29 06:27:02 +00004015void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruthf5579872015-01-17 14:16:56 +00004016 AU.addRequired<LoopInfoWrapperPass>();
Matt Arsenault8ca36812014-07-19 18:40:17 +00004017 AU.addRequired<RegionInfoPass>();
Johannes Doerfert96425c22015-08-30 21:13:53 +00004018 AU.addRequired<DominatorTreeWrapperPass>();
Michael Krused868b5d2015-09-10 15:25:24 +00004019 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
4020 AU.addRequiredTransitive<ScopDetection>();
Chandler Carruth66ef16b2015-09-09 22:13:56 +00004021 AU.addRequired<AAResultsWrapperPass>();
Johannes Doerfert2af10e22015-11-12 03:25:01 +00004022 AU.addRequired<AssumptionCacheTracker>();
Tobias Grosser75805372011-04-29 06:27:02 +00004023 AU.setPreservesAll();
4024}
4025
4026bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
Michael Krused868b5d2015-09-10 15:25:24 +00004027 SD = &getAnalysis<ScopDetection>();
Tobias Grosser75805372011-04-29 06:27:02 +00004028
Michael Krused868b5d2015-09-10 15:25:24 +00004029 if (!SD->isMaxRegionInScop(*R))
4030 return false;
4031
4032 Function *F = R->getEntry()->getParent();
4033 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4034 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4035 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4036 TD = &F->getParent()->getDataLayout();
Michael Krusedaf66942015-12-13 22:10:37 +00004037 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Johannes Doerfert2af10e22015-11-12 03:25:01 +00004038 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
Michael Krused868b5d2015-09-10 15:25:24 +00004039
Johannes Doerfert48fe86f2015-11-12 02:32:32 +00004040 DebugLoc Beg, End;
4041 getDebugLocations(R, Beg, End);
4042 std::string Msg = "SCoP begins here.";
4043 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, Beg, Msg);
4044
Michael Krusedaf66942015-12-13 22:10:37 +00004045 buildScop(*R, AC);
Tobias Grosser75805372011-04-29 06:27:02 +00004046
Tobias Grosserd6a50b32015-05-30 06:26:21 +00004047 DEBUG(scop->print(dbgs()));
4048
Michael Kruseafe06702015-10-02 16:33:27 +00004049 if (scop->isEmpty() || !scop->hasFeasibleRuntimeContext()) {
Johannes Doerfert48fe86f2015-11-12 02:32:32 +00004050 Msg = "SCoP ends here but was dismissed.";
Johannes Doerfert43788c52015-08-20 05:58:56 +00004051 delete scop;
4052 scop = nullptr;
Johannes Doerfert48fe86f2015-11-12 02:32:32 +00004053 } else {
4054 Msg = "SCoP ends here.";
4055 ++ScopFound;
4056 if (scop->getMaxLoopDepth() > 0)
4057 ++RichScopFound;
Johannes Doerfert43788c52015-08-20 05:58:56 +00004058 }
4059
Johannes Doerfert48fe86f2015-11-12 02:32:32 +00004060 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, End, Msg);
4061
Tobias Grosser75805372011-04-29 06:27:02 +00004062 return false;
4063}
4064
4065char ScopInfo::ID = 0;
4066
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00004067Pass *polly::createScopInfoPass() { return new ScopInfo(); }
4068
Tobias Grosser73600b82011-10-08 00:30:40 +00004069INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
4070 "Polly - Create polyhedral description of Scops", false,
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00004071 false);
Chandler Carruth66ef16b2015-09-09 22:13:56 +00004072INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
Johannes Doerfert2af10e22015-11-12 03:25:01 +00004073INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
Chandler Carruthf5579872015-01-17 14:16:56 +00004074INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
Matt Arsenault8ca36812014-07-19 18:40:17 +00004075INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
Tobias Grosserc5bcf242015-08-17 10:57:08 +00004076INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
Johannes Doerfertff9d1982015-02-24 12:00:50 +00004077INITIALIZE_PASS_DEPENDENCY(ScopDetection);
Johannes Doerfert96425c22015-08-30 21:13:53 +00004078INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
Tobias Grosser73600b82011-10-08 00:30:40 +00004079INITIALIZE_PASS_END(ScopInfo, "polly-scops",
4080 "Polly - Create polyhedral description of Scops", false,
4081 false)