blob: 422ffd03a898a7f0e0168bdd84005e0ac414509f [file] [log] [blame]
Chris Lattnera65e2f72010-01-05 05:57:49 +00001//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Transforms/Utils/BasicBlockUtils.h"
18#include "llvm/Transforms/Utils/Local.h"
19#include "llvm/ADT/Statistic.h"
20using namespace llvm;
21
22STATISTIC(NumDeadStore, "Number of dead stores eliminated");
23
24Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
25 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
26 if (AI.isArrayAllocation()) { // Check C != 1
27 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
28 const Type *NewTy =
29 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
30 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
31 AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
32 New->setAlignment(AI.getAlignment());
33
34 // Scan to the end of the allocation instructions, to skip over a block of
35 // allocas if possible...also skip interleaved debug info
36 //
37 BasicBlock::iterator It = New;
38 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
39
40 // Now that I is pointing to the first non-allocation-inst in the block,
41 // insert our getelementptr instruction...
42 //
43 Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
44 Value *Idx[2];
45 Idx[0] = NullIdx;
46 Idx[1] = NullIdx;
47 Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
48 New->getName()+".sub", It);
49
50 // Now make everything use the getelementptr instead of the original
51 // allocation.
52 return ReplaceInstUsesWith(AI, V);
53 } else if (isa<UndefValue>(AI.getArraySize())) {
54 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
55 }
56 }
57
58 if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
59 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
60 // Note that we only do this for alloca's, because malloc should allocate
61 // and return a unique pointer, even for a zero byte allocation.
62 if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
63 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
64
65 // If the alignment is 0 (unspecified), assign it the preferred alignment.
66 if (AI.getAlignment() == 0)
67 AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
68 }
69
70 return 0;
71}
72
73
74/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
75static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
76 const TargetData *TD) {
77 User *CI = cast<User>(LI.getOperand(0));
78 Value *CastOp = CI->getOperand(0);
79
80 const PointerType *DestTy = cast<PointerType>(CI->getType());
81 const Type *DestPTy = DestTy->getElementType();
82 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
83
84 // If the address spaces don't match, don't eliminate the cast.
85 if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
86 return 0;
87
88 const Type *SrcPTy = SrcTy->getElementType();
89
90 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
91 isa<VectorType>(DestPTy)) {
92 // If the source is an array, the code below will not succeed. Check to
93 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
94 // constants.
95 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
96 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
97 if (ASrcTy->getNumElements() != 0) {
98 Value *Idxs[2];
99 Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
100 Idxs[1] = Idxs[0];
101 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
102 SrcTy = cast<PointerType>(CastOp->getType());
103 SrcPTy = SrcTy->getElementType();
104 }
105
106 if (IC.getTargetData() &&
107 (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
108 isa<VectorType>(SrcPTy)) &&
109 // Do not allow turning this into a load of an integer, which is then
110 // casted to a pointer, this pessimizes pointer analysis a lot.
111 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
112 IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
113 IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
114
115 // Okay, we are casting from one integer or pointer type to another of
116 // the same size. Instead of casting the pointer before the load, cast
117 // the result of the loaded value.
Bob Wilson4b71b6c2010-01-30 00:41:10 +0000118 LoadInst *NewLoad =
Chris Lattnera65e2f72010-01-05 05:57:49 +0000119 IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
Bob Wilson4b71b6c2010-01-30 00:41:10 +0000120 NewLoad->setAlignment(LI.getAlignment());
Chris Lattnera65e2f72010-01-05 05:57:49 +0000121 // Now cast the result of the load.
122 return new BitCastInst(NewLoad, LI.getType());
123 }
124 }
125 }
126 return 0;
127}
128
129Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
130 Value *Op = LI.getOperand(0);
131
132 // Attempt to improve the alignment.
133 if (TD) {
134 unsigned KnownAlign =
135 GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
136 if (KnownAlign >
137 (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
138 LI.getAlignment()))
139 LI.setAlignment(KnownAlign);
140 }
141
142 // load (cast X) --> cast (load X) iff safe.
143 if (isa<CastInst>(Op))
144 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
145 return Res;
146
147 // None of the following transforms are legal for volatile loads.
148 if (LI.isVolatile()) return 0;
149
150 // Do really simple store-to-load forwarding and load CSE, to catch cases
151 // where there are several consequtive memory accesses to the same location,
152 // separated by a few arithmetic operations.
153 BasicBlock::iterator BBI = &LI;
154 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
155 return ReplaceInstUsesWith(LI, AvailableVal);
156
157 // load(gep null, ...) -> unreachable
158 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
159 const Value *GEPI0 = GEPI->getOperand(0);
160 // TODO: Consider a target hook for valid address spaces for this xform.
161 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
162 // Insert a new store to null instruction before the load to indicate
163 // that this code is not reachable. We do this instead of inserting
164 // an unreachable instruction directly because we cannot modify the
165 // CFG.
166 new StoreInst(UndefValue::get(LI.getType()),
167 Constant::getNullValue(Op->getType()), &LI);
168 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
169 }
170 }
171
172 // load null/undef -> unreachable
173 // TODO: Consider a target hook for valid address spaces for this xform.
174 if (isa<UndefValue>(Op) ||
175 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
176 // Insert a new store to null instruction before the load to indicate that
177 // this code is not reachable. We do this instead of inserting an
178 // unreachable instruction directly because we cannot modify the CFG.
179 new StoreInst(UndefValue::get(LI.getType()),
180 Constant::getNullValue(Op->getType()), &LI);
181 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
182 }
183
184 // Instcombine load (constantexpr_cast global) -> cast (load global)
185 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
186 if (CE->isCast())
187 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
188 return Res;
189
190 if (Op->hasOneUse()) {
191 // Change select and PHI nodes to select values instead of addresses: this
192 // helps alias analysis out a lot, allows many others simplifications, and
193 // exposes redundancy in the code.
194 //
195 // Note that we cannot do the transformation unless we know that the
196 // introduced loads cannot trap! Something like this is valid as long as
197 // the condition is always false: load (select bool %C, int* null, int* %G),
198 // but it would not be valid if we transformed it to load from null
199 // unconditionally.
200 //
201 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
202 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Bob Wilson7c42b9d2010-01-29 19:19:08 +0000203 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, TD) &&
204 isSafeToLoadUnconditionally(SI->getOperand(2), SI, TD)) {
Bob Wilson4b71b6c2010-01-30 00:41:10 +0000205 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
Chris Lattnera65e2f72010-01-05 05:57:49 +0000206 SI->getOperand(1)->getName()+".val");
Bob Wilson4b71b6c2010-01-30 00:41:10 +0000207 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
Chris Lattnera65e2f72010-01-05 05:57:49 +0000208 SI->getOperand(2)->getName()+".val");
Bob Wilson4b71b6c2010-01-30 00:41:10 +0000209 V1->setAlignment(LI.getAlignment());
210 V2->setAlignment(LI.getAlignment());
Chris Lattnera65e2f72010-01-05 05:57:49 +0000211 return SelectInst::Create(SI->getCondition(), V1, V2);
212 }
213
214 // load (select (cond, null, P)) -> load P
215 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
216 if (C->isNullValue()) {
217 LI.setOperand(0, SI->getOperand(2));
218 return &LI;
219 }
220
221 // load (select (cond, P, null)) -> load P
222 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
223 if (C->isNullValue()) {
224 LI.setOperand(0, SI->getOperand(1));
225 return &LI;
226 }
227 }
228 }
229 return 0;
230}
231
232/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
233/// when possible. This makes it generally easy to do alias analysis and/or
234/// SROA/mem2reg of the memory object.
235static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
236 User *CI = cast<User>(SI.getOperand(1));
237 Value *CastOp = CI->getOperand(0);
238
239 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
240 const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
241 if (SrcTy == 0) return 0;
242
243 const Type *SrcPTy = SrcTy->getElementType();
244
245 if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
246 return 0;
247
248 /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
249 /// to its first element. This allows us to handle things like:
250 /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
251 /// on 32-bit hosts.
252 SmallVector<Value*, 4> NewGEPIndices;
253
254 // If the source is an array, the code below will not succeed. Check to
255 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
256 // constants.
257 if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
258 // Index through pointer.
259 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
260 NewGEPIndices.push_back(Zero);
261
262 while (1) {
263 if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
264 if (!STy->getNumElements()) /* Struct can be empty {} */
265 break;
266 NewGEPIndices.push_back(Zero);
267 SrcPTy = STy->getElementType(0);
268 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
269 NewGEPIndices.push_back(Zero);
270 SrcPTy = ATy->getElementType();
271 } else {
272 break;
273 }
274 }
275
276 SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
277 }
278
279 if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
280 return 0;
281
282 // If the pointers point into different address spaces or if they point to
283 // values with different sizes, we can't do the transformation.
284 if (!IC.getTargetData() ||
285 SrcTy->getAddressSpace() !=
286 cast<PointerType>(CI->getType())->getAddressSpace() ||
287 IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
288 IC.getTargetData()->getTypeSizeInBits(DestPTy))
289 return 0;
290
291 // Okay, we are casting from one integer or pointer type to another of
292 // the same size. Instead of casting the pointer before
293 // the store, cast the value to be stored.
294 Value *NewCast;
295 Value *SIOp0 = SI.getOperand(0);
296 Instruction::CastOps opcode = Instruction::BitCast;
297 const Type* CastSrcTy = SIOp0->getType();
298 const Type* CastDstTy = SrcPTy;
299 if (isa<PointerType>(CastDstTy)) {
300 if (CastSrcTy->isInteger())
301 opcode = Instruction::IntToPtr;
302 } else if (isa<IntegerType>(CastDstTy)) {
303 if (isa<PointerType>(SIOp0->getType()))
304 opcode = Instruction::PtrToInt;
305 }
306
307 // SIOp0 is a pointer to aggregate and this is a store to the first field,
308 // emit a GEP to index into its first field.
309 if (!NewGEPIndices.empty())
310 CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
311 NewGEPIndices.end());
312
313 NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
314 SIOp0->getName()+".c");
315 return new StoreInst(NewCast, CastOp);
316}
317
318/// equivalentAddressValues - Test if A and B will obviously have the same
319/// value. This includes recognizing that %t0 and %t1 will have the same
320/// value in code like this:
321/// %t0 = getelementptr \@a, 0, 3
322/// store i32 0, i32* %t0
323/// %t1 = getelementptr \@a, 0, 3
324/// %t2 = load i32* %t1
325///
326static bool equivalentAddressValues(Value *A, Value *B) {
327 // Test if the values are trivially equivalent.
328 if (A == B) return true;
329
330 // Test if the values come form identical arithmetic instructions.
331 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
332 // its only used to compare two uses within the same basic block, which
333 // means that they'll always either have the same value or one of them
334 // will have an undefined value.
335 if (isa<BinaryOperator>(A) ||
336 isa<CastInst>(A) ||
337 isa<PHINode>(A) ||
338 isa<GetElementPtrInst>(A))
339 if (Instruction *BI = dyn_cast<Instruction>(B))
340 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
341 return true;
342
343 // Otherwise they may not be equivalent.
344 return false;
345}
346
347// If this instruction has two uses, one of which is a llvm.dbg.declare,
348// return the llvm.dbg.declare.
349DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
350 if (!V->hasNUses(2))
351 return 0;
352 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
353 UI != E; ++UI) {
354 if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
355 return DI;
356 if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
357 if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
358 return DI;
359 }
360 }
361 return 0;
362}
363
364Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
365 Value *Val = SI.getOperand(0);
366 Value *Ptr = SI.getOperand(1);
367
368 // If the RHS is an alloca with a single use, zapify the store, making the
369 // alloca dead.
370 // If the RHS is an alloca with a two uses, the other one being a
371 // llvm.dbg.declare, zapify the store and the declare, making the
Eric Christopher84bd3162010-01-19 01:20:15 +0000372 // alloca dead. We must do this to prevent declares from affecting
Chris Lattnera65e2f72010-01-05 05:57:49 +0000373 // codegen.
374 if (!SI.isVolatile()) {
375 if (Ptr->hasOneUse()) {
376 if (isa<AllocaInst>(Ptr))
377 return EraseInstFromFunction(SI);
378 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
379 if (isa<AllocaInst>(GEP->getOperand(0))) {
380 if (GEP->getOperand(0)->hasOneUse())
381 return EraseInstFromFunction(SI);
382 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
383 EraseInstFromFunction(*DI);
384 return EraseInstFromFunction(SI);
385 }
386 }
387 }
388 }
389 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
390 EraseInstFromFunction(*DI);
391 return EraseInstFromFunction(SI);
392 }
393 }
394
395 // Attempt to improve the alignment.
396 if (TD) {
397 unsigned KnownAlign =
398 GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
399 if (KnownAlign >
400 (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
401 SI.getAlignment()))
402 SI.setAlignment(KnownAlign);
403 }
404
405 // Do really simple DSE, to catch cases where there are several consecutive
406 // stores to the same location, separated by a few arithmetic operations. This
407 // situation often occurs with bitfield accesses.
408 BasicBlock::iterator BBI = &SI;
409 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
410 --ScanInsts) {
411 --BBI;
Victor Hernandez5f8c8c02010-01-22 19:05:05 +0000412 // Don't count debug info directives, lest they affect codegen,
413 // and we skip pointer-to-pointer bitcasts, which are NOPs.
414 if (isa<DbgInfoIntrinsic>(BBI) ||
415 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
Chris Lattnera65e2f72010-01-05 05:57:49 +0000416 ScanInsts++;
417 continue;
418 }
419
420 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
421 // Prev store isn't volatile, and stores to the same location?
422 if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
423 SI.getOperand(1))) {
424 ++NumDeadStore;
425 ++BBI;
426 EraseInstFromFunction(*PrevSI);
427 continue;
428 }
429 break;
430 }
431
432 // If this is a load, we have to stop. However, if the loaded value is from
433 // the pointer we're loading and is producing the pointer we're storing,
434 // then *this* store is dead (X = load P; store X -> P).
435 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
436 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
437 !SI.isVolatile())
438 return EraseInstFromFunction(SI);
439
440 // Otherwise, this is a load from some other location. Stores before it
441 // may not be dead.
442 break;
443 }
444
445 // Don't skip over loads or things that can modify memory.
446 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
447 break;
448 }
449
450
451 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
452
453 // store X, null -> turns into 'unreachable' in SimplifyCFG
454 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
455 if (!isa<UndefValue>(Val)) {
456 SI.setOperand(0, UndefValue::get(Val->getType()));
457 if (Instruction *U = dyn_cast<Instruction>(Val))
458 Worklist.Add(U); // Dropped a use.
459 }
460 return 0; // Do not modify these!
461 }
462
463 // store undef, Ptr -> noop
464 if (isa<UndefValue>(Val))
465 return EraseInstFromFunction(SI);
466
467 // If the pointer destination is a cast, see if we can fold the cast into the
468 // source instead.
469 if (isa<CastInst>(Ptr))
470 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
471 return Res;
472 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
473 if (CE->isCast())
474 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
475 return Res;
476
477
478 // If this store is the last instruction in the basic block (possibly
Victor Hernandez5f5abd52010-01-21 23:07:15 +0000479 // excepting debug info instructions), and if the block ends with an
480 // unconditional branch, try to move it to the successor block.
Chris Lattnera65e2f72010-01-05 05:57:49 +0000481 BBI = &SI;
482 do {
483 ++BBI;
Victor Hernandez5f8c8c02010-01-22 19:05:05 +0000484 } while (isa<DbgInfoIntrinsic>(BBI) ||
485 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
Chris Lattnera65e2f72010-01-05 05:57:49 +0000486 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
487 if (BI->isUnconditional())
488 if (SimplifyStoreAtEndOfBlock(SI))
489 return 0; // xform done!
490
491 return 0;
492}
493
494/// SimplifyStoreAtEndOfBlock - Turn things like:
495/// if () { *P = v1; } else { *P = v2 }
496/// into a phi node with a store in the successor.
497///
498/// Simplify things like:
499/// *P = v1; if () { *P = v2; }
500/// into a phi node with a store in the successor.
501///
502bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
503 BasicBlock *StoreBB = SI.getParent();
504
505 // Check to see if the successor block has exactly two incoming edges. If
506 // so, see if the other predecessor contains a store to the same location.
507 // if so, insert a PHI node (if needed) and move the stores down.
508 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
509
510 // Determine whether Dest has exactly two predecessors and, if so, compute
511 // the other predecessor.
512 pred_iterator PI = pred_begin(DestBB);
513 BasicBlock *OtherBB = 0;
514 if (*PI != StoreBB)
515 OtherBB = *PI;
516 ++PI;
517 if (PI == pred_end(DestBB))
518 return false;
519
520 if (*PI != StoreBB) {
521 if (OtherBB)
522 return false;
523 OtherBB = *PI;
524 }
525 if (++PI != pred_end(DestBB))
526 return false;
527
528 // Bail out if all the relevant blocks aren't distinct (this can happen,
529 // for example, if SI is in an infinite loop)
530 if (StoreBB == DestBB || OtherBB == DestBB)
531 return false;
532
533 // Verify that the other block ends in a branch and is not otherwise empty.
534 BasicBlock::iterator BBI = OtherBB->getTerminator();
535 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
536 if (!OtherBr || BBI == OtherBB->begin())
537 return false;
538
539 // If the other block ends in an unconditional branch, check for the 'if then
540 // else' case. there is an instruction before the branch.
541 StoreInst *OtherStore = 0;
542 if (OtherBr->isUnconditional()) {
543 --BBI;
544 // Skip over debugging info.
Victor Hernandez5f8c8c02010-01-22 19:05:05 +0000545 while (isa<DbgInfoIntrinsic>(BBI) ||
546 (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
Chris Lattnera65e2f72010-01-05 05:57:49 +0000547 if (BBI==OtherBB->begin())
548 return false;
549 --BBI;
550 }
551 // If this isn't a store, isn't a store to the same location, or if the
552 // alignments differ, bail out.
553 OtherStore = dyn_cast<StoreInst>(BBI);
554 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
555 OtherStore->getAlignment() != SI.getAlignment())
556 return false;
557 } else {
558 // Otherwise, the other block ended with a conditional branch. If one of the
559 // destinations is StoreBB, then we have the if/then case.
560 if (OtherBr->getSuccessor(0) != StoreBB &&
561 OtherBr->getSuccessor(1) != StoreBB)
562 return false;
563
564 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
565 // if/then triangle. See if there is a store to the same ptr as SI that
566 // lives in OtherBB.
567 for (;; --BBI) {
568 // Check to see if we find the matching store.
569 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
570 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
571 OtherStore->getAlignment() != SI.getAlignment())
572 return false;
573 break;
574 }
575 // If we find something that may be using or overwriting the stored
576 // value, or if we run out of instructions, we can't do the xform.
577 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
578 BBI == OtherBB->begin())
579 return false;
580 }
581
582 // In order to eliminate the store in OtherBr, we have to
583 // make sure nothing reads or overwrites the stored value in
584 // StoreBB.
585 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
586 // FIXME: This should really be AA driven.
587 if (I->mayReadFromMemory() || I->mayWriteToMemory())
588 return false;
589 }
590 }
591
592 // Insert a PHI node now if we need it.
593 Value *MergedVal = OtherStore->getOperand(0);
594 if (MergedVal != SI.getOperand(0)) {
595 PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
596 PN->reserveOperandSpace(2);
597 PN->addIncoming(SI.getOperand(0), SI.getParent());
598 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
599 MergedVal = InsertNewInstBefore(PN, DestBB->front());
600 }
601
602 // Advance to a place where it is safe to insert the new store and
603 // insert it.
604 BBI = DestBB->getFirstNonPHI();
605 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
606 OtherStore->isVolatile(),
607 SI.getAlignment()), *BBI);
608
609 // Nuke the old stores.
610 EraseInstFromFunction(SI);
611 EraseInstFromFunction(*OtherStore);
612 return true;
613}